2,316 research outputs found

    Comparison of numerical methods for the calculation of cold atom collisions

    Full text link
    Three different numerical techniques for solving a coupled channel Schroedinger equation are compared. This benchmark equation, which describes the collision between two ultracold atoms, consists of two channels, each containing the same diagonal Lennard-Jones potential, one of positive and the other of negative energy. The coupling potential is of an exponential form. The methods are i) a recently developed spectral type integral equation method based on Chebyshev expansions, ii) a finite element expansion, and iii) a combination of an improved Numerov finite difference method and a Gordon method. The computing time and the accuracy of the resulting phase shift is found to be comparable for methods i) and ii), achieving an accuracy of ten significant figures with a double precision calculation. Method iii) achieves seven significant figures. The scattering length and effective range are also obtained.Comment: 22 pages, 3 figures, submitted to J. Comput. Phys. documentstyle [thmsa,sw20aip]{article} in .te

    Basic studies in microwave remote sensing

    Get PDF
    Scattering models were developed in support of microwave remote sensing of earth terrains with particular emphasis on model applications to airborne Synthetic Aperture Radar measurements of forest. Practically useful surface scattering models based on a solution of a pair of integral equations including multiple scattering effects were developed. Comparisons of these models with controlled scattering measurements from statistically known random surfaces indicate that they are valid over a wide range of frequencies. Scattering models treating a forest environment as a two and three layered media were also developed. Extensive testing and comparisons were carried out with the two layered model. Further studies with the three layered model are being carried out. A volume scattering model valid for dense media such as a snow layer was also developed that shows the appropriate trend dependence with the volume fraction of scatterers

    Unusual metamagnetism in CeIrIn5_5

    Full text link
    We report a high field investigation (up to 45 T) of the metamagnetic transition in CeIrIn5_5 with resistivity and de-Haas-van-Alphen (dHvA) effect measurements in the temperature range 0.03-1 K. As the magnetic field is increased the resistivity increases, reaches a maximum at the metamagnetic critical field, and falls precipitously for fields just above the transition, while the amplitude of all measurable dHvA frequencies are significantly attenuated near the metamagnetic critical field. However, the dHvA frequencies and cyclotron masses are not substantially altered by the transition. In the low field state, the resistivity is observed to increase toward low temperatures in a singular fashion, a behavior that is rapidly suppressed above the transition. Instead, in the high field state, the resistivity monotonically increases with temperature with a dependence that is more singular than the iconic Fermi-liquid, temperature-squared, behavior. Both the damping of the dHvA amplitudes and the increased resistivity near the metamagnetic critical field indicate an increased scattering rate for charge carriers consistent with critical fluctuation scattering in proximity to a phase transition. The dHvA amplitudes do not uniformly recover above the critical field, with some hole-like orbits being entirely suppressed at high fields. These changes, taken as a whole, suggest that the metamagnetic transition in CeIrIn5_5 is associated with the polarization and localization of the heaviest of quasiparticles on the hole-like Fermi surface.Comment: 29 pages, 9 figure

    Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT

    Get PDF
    Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of γ\gamma-ray telescopes. Here we use three years of Fermi Large Area Telescope (LAT) data, which are the most suitable for searching for very extended emission in the vicinity of nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3\deg that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential γ\gamma-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into bbb\overline{b}, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for mDM100GeVm_{\mathrm{DM}}\lesssim100\,\mathrm{GeV}. In a more optimistic scenario, we exclude σv3×1026cm3s1\langle \sigma v \rangle\sim3\times10^{-26}\,\mathrm{cm^{3}\,s^{-1}} for mDM40GeVm_{\mathrm{DM}}\lesssim40\,\mathrm{GeV} for the same channel. Finally, we derive upper limits on the γ\gamma-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than 6%\sim6\%.Comment: 15 pages, 11 figures, 4 tables, accepted for publication in ApJ; corresponding authors: T. Jogler, S. Zimmer & A. Pinzk

    Fluorescence Correlation Spectroscopy analysis of segmental dynamics in Actin filaments

    Full text link
    We adapt Fluorescence Correlation spectroscopy (FCS) formalism to the studies of the dynamics of semi-flexible polymers and derive expressions relating FCS correlation function to the longitudinal and transverse mean square displacements of polymer segments. We use the derived expressions to measure the dynamics of actin filaments in two experimental situations: filaments labeled at distinct positions and homogeneously labeled filaments. Both approaches give consistent results and allow to measure the temporal dependence of the segmental mean-square displacement (MSD) over almost five decades in time, from ~0.04ms to 2s. These noninvasive measurements allow for a detailed quantitative comparison of the experimental data to the current theories of semi-flexible polymer dynamics. Good quantitative agreement is found between the experimental results and theories explicitly accounting for the hydrodynamic interactions between polymer segments

    Leptonic origin of the 100 MeV gamma-ray emission from the Galactic Centre

    Full text link
    The Galactic centre is a bright gamma-ray source with the GeV-TeV band spectrum composed of two distinct components in the 1-10 GeV and 1-10 TeV energy ranges. The nature of these two components is not clearly understood. We investigate the gamma-ray properties of the Galactic centre to clarify the origin of the observed emission. We report imaging, spectral, and timing analysis of data from 74 months of observations of the Galactic centre by FERMI/LAT gamma-ray telescope complemented by sub-MeV data from approximately ten years of INTEGRAL/PICsIT observations. We find that the Galactic centre is spatially consistent with the point source in the GeV band. The tightest 3 sigma upper limit on its radius is 0.13 degree in the 10-300 GeV energy band. The spectrum of the source in the 100 MeV energy range does not have a characteristic turnover that would point to the pion decay origin of the signal. Instead, the source spectrum is consistent with a model of inverse Compton scattering by high-energy electrons. In this a model, the GeV bump in the spectrum originates from an episode of injection of high-energy particles, which happened ~300 years ago. This injection episode coincides with the known activity episode of the Galactic centre region, previously identified using X-ray observations. The hadronic model of source activity could be still compatible with the data if bremsstrahlung emission from high-energy electrons was present in addition to pion decay emission.Comment: To match the accepted versio

    Uncertainty Estimates for Theoretical Atomic and Molecular Data

    Get PDF
    Sources of uncertainty are reviewed for calculated atomic and molecular data that are important for plasma modeling: atomic and molecular structure and cross sections for electron-atom, electron-molecule, and heavy particle collisions. We concentrate on model uncertainties due to approximations to the fundamental many-body quantum mechanical equations and we aim to provide guidelines to estimate uncertainties as a routine part of computations of data for structure and scattering.Comment: 65 pages, 18 Figures, 3 Tables. J. Phys. D: Appl. Phys. Final accepted versio
    corecore