11 research outputs found

    Design of an Interlock Module for Use in a Globally Asynchronous, Locally Synchronous Design Methodology

    Get PDF
    As the number of transistors on a single integrated circuit approach a billion, the problems of clock distribution, power consumption, multiple clock domains, meeting timing requirements, and reuse of subsystem designs grow ever more difficult. Coordinating a billion transistors with the present design methodologies will require hundreds of years of engineering time. A new design methodology is needed. The GALS (Globally Asynchronous Locally Synchronous) approach, that blends clockless and clocked subsystems is a strong contender

    Problems Encountered With Control Networks in Highly-Restructurable Digital Systems

    Get PDF
    This paper discusses problems encountered with control networks in highly restructurable digital systems. In particular the treatment of implementation errors is covered with emphasis on concurrent processing. The implementation of concurrent processing networks may result in errors which will be quite complex to detect and systematic methods are warranted. Four meta control elements are employed in obtaining convenient concurrent structures. We analyze several error detecting schemes and conclude that the arc-node method with node partitioning appears to be the most realistic approach at this time

    Peephole optimization of asynchronous macromodule networks

    Get PDF
    Journal ArticleMost high level synthesis tools for asynchronous circuits take descriptions in concurrent hardware description languages and generate networks of macromodules or handshake components. In this paper we describe a peephole optimizer for such macromodule networks that often effects area and/or time improvements. Our optimizer first deduces an equivalent black-box behavior for the given network of macrmodules using Dill's trace-theoretic parallel composition operator. It then applies a new procedure culled Burst-mode reduction to obtain burst-mode machines, which can be synthesized into gate networks using available tools. Since burst-mode reduction can be applied to any macromodule network that is delay-insensitive as well as deterministic, our optimizer covers a significant number of asynchronous circuits especially those generated by asynchronous high level synthesis tools

    Translating concurrent programs into delay-insensitive circuits

    Get PDF
    Journal ArticlePrograms written in a subset of occam are automatically translated into delay-insensitive circuits using syntax-directed techniques. The resulting circuits are improved using semantics-preserving circuit-to-circuit transformations. Since each step of the translation process can be proven correct, the resulting circuit behavior is a faithful copy of the original program behavior. A compiler has been constructed that automatically performs the translation and transformation

    Peephole optimization of asynchronous macromodule networks

    Get PDF
    Journal ArticleAbstract- Most high-level synthesis tools for asynchronous circuits take descriptions in concurrent hardware description languages and generate networks of macromodules or handshake components. In this paper, we propose a peephole optimizer for these networks. Our peephole optimizer first deduces an equivalent blackbox behavior for the network using Dill's tracetheoretic parallel composition operator. It then applies a new procedure called burst-mode reduction to obtain burst-mode machines from the deduced behavior. In a significant number of examples, our optimizer achieves gate-count improvements by a factor of five, and speed (cycle-time) improvements by a factor of two. Burst-mode reduction can be applied to any macromodule network that is delay insensitive as well as deterministic. A significant number of asynchronous circuits, especially those generated by asynchronous high-level synthesis tools, fall into this class, thus making our procedure widely applicable

    Peephole optimization of asynchronous networks through process composition and burst-mode machine generation

    Get PDF
    Journal ArticleIn this paper, we discuss the problem of improving the efficiency of macromodule networks generated through asynchronous high level synthesis. We compose the behaviors of the modules in the sub-network being optimized using Dill's trace-theoretic operators to get a single behavioral description for the whole sub-network. From the composite trace structures so obtained, we obtain interface state graphs (ISG) (as described by Sutherland, Sproull, and Molnar), encode the ISGs to obtain encoded ISGs (EISGs), and then apply a procedure we have developed called Burst-mode machine reduction (BM-reduction) to obtain burstmode machines from EISGs. We then synthesize burst-mode machine circuits (currently) using the tool of Ken Yun (Stanford). We can report significant area- and time-improvements on a number of examples, as a result of our optimization method

    Synthesis of Control Elements from Petri Net Models

    Get PDF
    Methods are presented for synthesizing delay-insensitive circuits whose behavior is specified by Petri net models of macromodular control elements. These control elements implement five natural functions used in asynchronous system design. Particular attention is paid to modules requiring mutual exclusion where metastability must be carefully controlled

    Asynchronous design of a multi-dimensional logarithmic number system processor for digital hearing instruments.

    Get PDF
    This thesis presents an asynchronous Multi-Dimensional Logarithmic Number System (MDLNS) processor that exhibits very low power dissipation. The target application is for a hearing instrument DSP. The MDLNS is a newly developed number system that has the advantage of reducing hardware complexity compared to the classical Logarithmic Number System (LNS). A synchronous implementation of a 2-digit 2DLNS filterbank, using the MDLNS to construct a FIR filterbank, has successfully proved that this novel number representation can benefit this digital hearing instrument application in the requirement of small size and low power. In this thesis we demonstrate that the combination of using the MDLNS, along with an asynchronous design methodology, produces impressive power savings compared to the previous synchronous design. A 4-phase bundled-data full-handshaking protocol is applied to the asynchronous control design. We adopt the Differential Cascade Voltage Switch Logic (DCVSL) circuit family for the design of the computation cells in this asynchronous MDLNS processor. Besides the asynchronous design methodology, we also use finite ring calculations to reduce adder bit-width to provide improvements compared to the previous MDLNS filterbank architecture. Spectre power simulation results from simulations of this asynchronous MDLNS processor demonstrate that over 70 percent power savings have been achieved compared to the synchronous design. This full-custom asynchronous MDLNS processor has been submitted for fabrication in the TSMC 0.18mum CMOS technology. A further contribution in this thesis is the development of a novel synchronizing method of design for testability (DfT), which is offered as a possible solution for asynchronous DfT methods.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .W85. Source: Masters Abstracts International, Volume: 43-01, page: 0288. Advisers: G. A. Jullien; W. C. Miller. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004
    corecore