
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-52

2005-11-09

Design of an Interlock Module for Use in a Globally Asynchronous, Design of an Interlock Module for Use in a Globally Asynchronous,

Locally Synchronous Design Methodology Locally Synchronous Design Methodology

U. G. Swamy, J. R. Cox, G. L. Engel, and D. M. Zar

As the number of transistors on a single integrated circuit approach a billion, the problems of

clock distribution, power consumption, multiple clock domains, meeting timing requirements,

and reuse of subsystem designs grow ever more difficult. Coordinating a billion transistors with

the present design methodologies will require hundreds of years of engineering time. A new

design methodology is needed. The GALS (Globally Asynchronous Locally Synchronous)

approach, that blends clockless and clocked subsystems is a strong contender.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Swamy, U. G.; Cox, J. R.; Engel, G. L.; and Zar, D. M., "Design of an Interlock Module for Use in a Globally
Asynchronous, Locally Synchronous Design Methodology" Report Number: WUCSE-2005-52 (2005). All
Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/969

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233200036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/969?utm_source=openscholarship.wustl.edu%2Fcse_research%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Design of an Interlock Module for Use in a Globally Asynchronous,
Locally Synchronous Design Methodology

U. G. Swamy1, J. R. Cox2, G. L. Engel1, D. M. Zar2

1Department of Electrical and Computer Engineering, VLSI Design Research Laboratory,

Southern Illinois University Edwardsville, Illinois, USA, 62025

2Department of Computer Science and Engineering,
Washington University in Saint Louis, Illinois, USA, 63130

Introduction

As the number of transistors on a single integrated circuit approach a billion, the
problems of clock distribution, power consumption, multiple clock domains, meeting
timing requirements, and reuse of subsystem designs grow ever more difficult.
Coordinating a billion transistors with the present design methodologies will require
hundreds of years of engineering time. A new design methodology is needed. The GALS
(Globally Asynchronous Locally Synchronous) approach [1], [2] that blends clockless
and clocked subsystems is a strong contender.

Blended Methodology

The proposed blended methodology utilizes multiple, independently clocked domains,
restartable crystal clocks [3], [4] and asynchronous control elements to sequence
interactions between processors in the various clocked domains. Combining a clock
generator standard cell with standard cells for macromodular control elements [5] will
provide the designer with the opportunity to blend simple asynchronous control networks
with clocked subsystems without the need to meet global timing constraints. Additional
advantages are freedom from the possibility of synchronizer failure [6], superior local
timing accuracy, and mathematical tools for verifying correct sequence behavior. A key
macromodular element in this methodology is the interlock [5], an element that ensures
mutual exclusion between concurrent requests for a shared resource.

Interlock Design

The Petri net [7] model of the interlock and its environment is shown in Figure 1. The
place et belongs to one remote processor and eb to another. Requests from these
processors are controlled by the interlock which provides access to places ht and hb
belonging to the shared resource.

Page 1 of 7

All Petri net transitions (At, Bt, Ct, Dt, Ab, Bb, Cb and Db) in Figure 2 represent logic level
transitions [8]. The firing of transition Bt moves the token from et to gt. This enables
transition Dt, because its two input places contains tokens, and Dt in turn fires. The firing
of Dt grants the shared resource to the “t” processor. Thus, the two input places of Dt are
emptied, and a token is placed in the shared resource place, ht. Once use of the resource
is completed, a token is returned to node ‘i’ by firing transition Ct. A completion signal is
sent to the requesting processor only after the release of the shared resource.

If the two processors should simultaneously request the shared resource, both Dt and Db
are enabled and the interlock must go into an arbitration state (an unstable state) where it
resolves the conflict between the two contenders. Only one of the outputs will transition,
thereby allocating the resource to one of the processors.

The design methodology for the circuit to implement the interlock is detailed in [8]. The
resulting logic equations are

)()('

)()('

dbcbctdbcbbtdt

dtctcbdtctbbdb

⊕⋅+⊕⋅=

⊕⋅+⊕⋅=

These equations describe the two output variables and inferred from the Petri net
reachability graph. The interlock circuit is shown in Figure 2. When inputs to the
interlock transition simultaneously, the interlock exhibits oscillatory behavior while
trying to resolve the conflict. It is necessary to detect when this metastable condition is
present.

'db 'dt

et

eb hb

fA tt

fb

gt

 ht

i

gb

B

C

D

DB bb

 CA bb

Figure 1: Petri net model of interlock and its environment

Page 2 of 7

ct

cb

dt

 db’bb

bt

The metastability detection circuit (MDC) shown in Figure 3 was derived from a circuit
described in [9]. The outputs (Free1, Free2) are held low whenever db’ and dt’ are equal;
the outputs (Free3, Free4) are held low when db’ and dt’ are not equal. NFETS M1 and
M6 are weak pulldowns and were added for the cases where the output nodes are
discharged through either PFET M2 or M4. The transmission gate equalizes the inverter
delay.

Metastability detection in the interlock is complicated by the fact that metastability could
be present when the outputs db’ and dt’ are similar or when the outputs db’ and dt’ are
different. These two cases can be distinguished independent of the possibly anomalous
behavior of the outputs by examining the interlock completion signals ab and at (delayed
versions of cb and ct). That is, if atab = , metastability is present if ' and
if , metastability is present if

' dtdb ≅
atab ≠ '' dtdb ≠ .

The completed interlock circuit is presented in Figure 4. The rising edge of the stable
signal, S, clocks FF1 and FF2 to copy both dt’ and db’ to their delayed and metastability-
free versions dt” and db”. This circuit produces delayed and stable versions of the
outputs dt’ and db’ upon every transition for either of these outputs.

Figure 2: Schematic of interlock module with metastability
detection circuit (MDC)

MDC

Free1

Free3

Free2

Free4

Page 3 of 7

Page 4 of 7

GND

GND

VDD

VDD

Free4

Free3

VDD

GND

db’

dt’

GND

Free2

Free1

GND

GND

VDD

VDD

 db’

dt’

M1

M2 M3

MM4

M6

GND

Figure 3: Metastability Detection Circuit (MDC)

’

Simulation Results

Verification of the performance of the interlock was done using Spectre. The target
technology is the TSMC n-well 0.25 μm process. There are four critical cases in the
reachability graph where the inputs transition simultaneously. Simulation results
presented in Figure 5 demonstrate how the interlock resolves the conflict between the two
contenders successfully in one of those cases. The inputs cb and ct are not shown because
they are in the low state throughout the simulation.

Figure 4: Circuit that produces stable version of interlock outputs

FF

D db’ db

FF

D dt dt’

Interlock
Module

bb

bt

cb

ct

Free1

Free3

Free

S
2

Free4

db dt

cb
ct

sel
Dela

a
a

2x1
MUX

0

1

2x1
MUX

0

1

sel

sel

Figure 5: Interlock when in state ‘00’ and the input
requests bb and bt change simultaneously

Page 5 of 7

Prior to 10 ns, the inputs (bb, bt, cb, and ct) and the outputs (db’ and dt’) are stable. At 10
ns both bb and bt change. The interlock is forced to decide which requesting module will
receive the shared resource. Both outputs db’ and dt’ pulse high then low.

When, both db’ and dt’ are high, the interlock is in an arbitration state as mentioned
earlier; when both are low, then it is in “don’t care” state as predicted in [8]. Output db’
resolves high and dt’ resolves low; outputs db” and dt” are free of oscillations. Also, at
28 ns, bb clearly transitions before bt and as expected the “b” processor is granted use of
the shared resource. Similar results are obtained for the other three arbitration states.

Acknowledgement

The authors would like to thank Trong Wu, Department of Computer Science, Southern
Illinois University Edwardsville, for providing valuable information regarding Petri nets
and to Sasi Tallapragada for his assistance in simulating the interlock.

References

[1] D.M. Chapiro, Globally-Asynchronous Locally-Synchronous Systems, Ph.D.

thesis, Stanford University, Oct. 1984.

[2] K.Y. Yun and A. E. Dooply, “Plausible clocking based heterogenous systems”,

IEEE Transactions on VLSI Systems, vol. 7, no. 4, pp 482-487, Dec. 1999.

[3] J.R. Cox, “Can a crystal clock be started and stopped?” Appl. Math. Lett. Vol 1,

No. 1, pp. 37-40, 1988.

[4] J. R. Cox and D. M. Zar, “An asynchronous crystal clock for use in GALS

system,” Poster presented at Clockless Computing Symposium, Washington
University, 26 March 2004.

[5] S.M. Ornstein, M. J. Stucki and W.A. Clark, “A functional description of

macromodules,” Spring Joint Computer Conf., AFIPS Proceedings, Vol. 30,
Thompson Books, Washington D. C., pp. 357-364, 1967.

[6] T. Chaney and F. Rosenberger, “Anomalous Behavior of Synchronizer and

Arbiter Circuits,” IEEE Trans. on Computers, vol. C-22, pp. 421-422, April 1973.

[7] James Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall,

1981.

Page 6 of 7

[8] J. R. Cox and D. M. Zar, “Synthesis of Control Elements from Petri Net
Models,” WU Tech Report, WUCSE-2005-43, Sep. 2005.

[9] Neil Weste, David Harris, CMOS VLSI Design: A Circuit and Systems

Persepctive(3rd Ed.), Pearson Education, Inc., pp. 453-463, 2004.

Page 7 of 7

	Design of an Interlock Module for Use in a Globally Asynchronous, Locally Synchronous Design Methodology
	Recommended Citation

	tmp.1469562486.pdf.txCYr

	Abstract: Abstract: As the number of transistors on a single integrated circuit approach a billion, the problems of clock distribution, power consumption, multiple clock domains, meeting timing requirements, and reuse of subsystem designs grow ever more difficult. Coordinating a billion transistors with the present design methodologies will require hundreds of years of engineering time. A new design methodology is needed. The GALS (Globally Asynchronous Locally Synchronous) approach, that blends clockless and clocked subsystems is a strong contender.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: November 9, 2005
	Author: Authors: U. G. Swamy, J. R. Cox, G. L. Engel, D. M. Zar
	Title: Design of an Interlock Module for Use in a Globally Asynchronous, Locally Synchronous Design Methodology
	ReportNumber: 2005-52
	DepartmentName: Department of Computer Science & Engineering

