
Translating Concurrent Programs into Delay-Insensitive Circuits

Abstract

Erik Brunvand*
Carnegie Mellon University

Programs written in a subset of occam are automatically translated
into delay-insensitive circuits using syntax-directed techniques. The
resulting circuits are improved using semantics-preserving circuit-to
circuit transformations. Since each step of the translation process can
be proven correct, the resulting circuit behavior is a faithful copy of
the original program behavior. A compiler has been constructed that
automatically performs the translation and transformation.

1 Introduction

As VLSI systems become larger and more complicated, managing
their very complexity becomes a major part of the design process.
One method for taming their complexity is to use automatic methods
for generating circuits from behavioral descriptions. This allows the
designer to abstract away details of the low-level circuits and think
of system behavior in terms of high level programs. In addition to
making system design easier, formal proof techniques can be used
to verify that the program meets Ihe system specification. Since Ihe
generated circuits faithfully mimic the behavior of Ihe program, Ihe
resulting circuits are correct by construction. At Ihe same time, if
a programmer is to design efficient systems in this way, Ihen there
must be a way for Ihe programmer to reason about Ihe resulting
circuit based on the program text. The translation process must be
sufficiently transparent to give the programmer some idea of how
different program alternatives will affect the compiled circuit.

This paper presents a melhod for automatically translating a con
current program into an asynchronous circuit. The translation pro
cedure involves a simple syntax-directed translation from program
constructs into initial asynchronous circuits. The resulting circuits
are improved with correctness-preserving circuit-to-circuit transfor
mations similar to peephole optimization in conventional compilers.
Because Ihese steps can be proven to be correct, the programmer is
guaranteed that any specification met by Ihe program will also be
met by Ihe circuit A system has been constructed to perform Ihe
translation automatically. This paper gives a very brief description
of the method followed by two examples of programs translated into
circuits. A more complete description can be found in [3].

·This research was sponsored in part by the Defcose Advanced Research Projects
Agency (DOD), ARPA Order No. 4976. The principal author has also been sup
ported by an IBM Graduate Fellowship. The second author has been supported by
the Asynchronous Systems Study. sponsored by Apple Computer, Austek Microsys
tems, Digital Equipment Corp., Evans and Sutherland, Floating Point Systems, and
Schlumberger.

CH2805-0/89/0000/0262$01.00 © 1989 IEEE

Robert F. Sproull
Sutherland, Sproull, and Associates

262

2 Related Work

Olher groups apply different techniques to achieve Ihe same objective
of translating programs into asynchronous circuits. Martin [4,10] at
CalTech has had good success compiling a language based on CSP [8]
into gate-level circuits. Initial programs are first decomposed into
many smaller processes initiated by signals on new communication
channels. These simpler processes are expanded to include details of
the four-phase handshake used for control signals and then mapped
into a set of production rules Ihat define when Ihe handshake signals
are set and reset. These productions are strenglhened to enforce
sequencing, and then mapped to a library of gates to construct the
circuit.

A group at Philips Labs [11,17] has also compiled a similar CSP
based language into circuits by translating Ihe initial program into
an intermediate representation Ihat include:; details of the four-phase
control signals, and then implementing the circuit wilh a library of
simple circuits.

Our target language is not a circuit of individual transistors, or
even gates, but ralher a collection of data and control modules, wired
appropriately. The modules are like standard cells, each of which
may be implemented wilh a small number of transistors and which
correspond closely to programming constructs. Modules of this type
trace their ancestry to Macromodules [5,12], designed at Washington
University in Ihe late 1960's.

3 Translation Method

The source language for Ihis translation is a subset of occam [9], a
language based on CSP [8]. Occam describes computation as a set of
concurrent processes Ihat interact by communication over fixed links
called channels. Control over concurrent and sequential aspects of
communication is explicit. The syntax for occam code in this paper
is very similar to that in [9] except that parenthesis are used for block
structuring instead of indentation alone.

The target for Ihe translation is an asynchronous circuit. In particu
lar, the target circuits are delay-insensitive control circuits using two
phase transition signalling [14] combined with bundled data palhs. A
circuit is delay-insensitive if the correct operation of Ihe circuit does
not depend on any assumptions about delay in wires or operators
of the circuit. This property guarantees that any correctly function
ing subcircuits may be composed together and continue to operate
correctly. It also cleanly separates performance-related timing issues
from functionality issues. Changes in relative delays of the system
can affect performance, but not functionality.

A bundled data path uses a single set of control wires to indicate
Ihe validity of a "bundle" of data wires. This requires that Ihe data
bundle and the control wires be constructed such that the value on
Ihe data bundle is stable at the receiver before a signal appears on

w
:-------~--~----------:

v_: :Ack

-.; I C:
• N •
I PAR I 1.._----- ... ---_ .. -_____ 1

(pAlt (deel) A ... N)

Figure 1: Initial Transformation of the Parallel Construct

the control wire. This condition is similar"to, but weaker than, the
equipotential constraint [14]. ~

The main step in translating occam programs into circuits is the
initial substitution of circuit structures for occam language constructs.
The circuit modules used in the initial substitution are like those
described in [2,16] and are implemented as a set of standard cells
using the MOSIS scalable CMOS design rules. The modules used in
the following examples include a Merge module that implements the
"or" function for transitions, a C-Element that is the "and" function
for transitions, a Call module that acts as a hardware subroutine call
allowing multiple access to a shared subcircuit, a Select module that
steers a transition to one of two outputs based on the value of a
"select" signal, an Enable element that enables bundled data at the
output in response to transition control signals, and a Register that
latches bundled data in response to transition control signals.

Control modules are interconnected with signals that obey transi
tion signalling conventions, in which a transition from low to high or
from high to low signals an event [14]. Each module responds to a
global clear signal by forcing its outputs to a known state and clearing
any internal state. The environment issues a transition signal called
start after a global clear to get things started. This is connected to the
request input of process obtained by translating the single top-level
occam process.

An example of a circuit substitution can be seen in Figure 1. An
occam parallel (PAR) construct is implemented by sending the request
signal to all of the component processes. The acknowledgments are
combined in a C-element so that the PAR construct acknowledges
after all the component processes acknowledge. Circuit substitutions
for the other occam language constructs are shown in [3].

Once the initial translation from program constructs to circuit con
structs has been carned out, a variety of interesting transformations,
similar to peephole optimizations in software compilers, may be ap
plied to the resulting circuit A transformation is described as an
initial circuit and a replacement circuit. The circuit is a graph made
up of modules (nodes) and connections (arcs). This circuit graph is
searched to find a match with the initial circuit graph of a transfor
mation. When a circuit topology is matched with a template it is
replaced with a new structure that retains the behavior of the original
but improves its performance. The behavior of a circuit module can
be described using trace theory [18]. and automatic methods can be
used to verify that the behavior of the replacement is an acceptable
substitute for the original circuit [7]. An example of a transforma
tion is shown in Figure 2. If the acknowledgments from all inputs
of a call element are combined in a merge, then the circuit may be
simplified by eliminating the call element as shown.

4 Examples

4.1 Fifo Buffer

The two-place fifo buffer shown in Figure 3 is the first example. A
single place buffer that copies its input to its output is defined as

263

Figure 2: An Example Circuit Transformation

(PROC buffer «CHAN A Bll
(WHILE TRUE

(SEQ «VAR temp<8>))
(1 A temp)
(I 8 temp))))

; Define a single-place buffer ...
; Repeat forever
; Sequential composition
; store from channel A into temp
; send from temp to channel B

(PAR «CHAN input mid output» ; Parallel compos~ion
(buffer input mid) ; makes a two-place buffer
(buffer mid output»

Figure 3: Code for a Two Place Fifo Buffer

a macro. This macro can be used to make a two-place fifo buffer
by combining two single-place buffers operating concurrently. The
initial translation of the occam program for the single-place buffer
macro into a circuit is shown in Figure 4. First the WHILE construct
is expanded. The component process of the WHILE construct is a
sequential (SEQ) construct with two component processes: an input
(7) and an output (!) statement. Notice that the single-place buffer
macro begins operation upon receipt of a start signal and signals
completion with an ack signaL There are two channels, one input
and one output. The C-element that performs the synchronization at
the channel is included as part of the circuit for the input channel.
Two single-place buffers may be combined to operate concurrently
by using the parallel construct shown in Figure 1.

Optimizing the circuit removes a great many components, to yield
the final result shown in Figure 5. Most of the optimizations are
readily apparent in Figure 4: a CALL module with only one client
can be removed and replaced by wires; an ENABLE (EN) module
whose outputs are the only drivers of a data bus can be removed;
a MERGE (M) module with one input can be removed; a SELECT
(SEL) module whose select condition is true can be removed. These
steps, plus the removal of the start signal, yield the final circuit,
which is the best circuit known for a FIFO using bundled data paths
and transition signalling.

4.2 Torus Routing Chip

The last example is a switch for cut-through packet routing in a multi
processor interconnection network similar to the Torus Routing Chip
(TRC) described by Dally and Seitz [6]. Each processor in the system
has an associated routing circuit. The processor communicates to the
routing circuit through the Pin and Pout channels. Each routing cir
cuit routes packets in two dimensions through the Xin, Xout, Yin, and
Yout channels as shown in Figure 6. The circuit must accept packets
on any of the three input ports and route them to the appropriate
output port depending on address information in the packet header.

The code for the routing process is shown in Figure 7 with the top
level macro mesh-element. Like the TRC, this process uses byte-wide
data paths on all channels, but this version uses an additional tag bit
to indicate the end of a packet. Address information, contained in the
first two bytes of a data packet, specifies relative addresses in the X

... -.-------------------.----.-------------------,
: Acll:

Start

<--I

+-~-!----,

In:
Channel:

: Out

i<hnno'
~-

: __ !.np~ ________ :=~~.~~===========~_: : Output :::

, :-~---------------- -----------------~~~~~~~~-j i L ~1':. ___ :

Figure 4: Initial Transformation of Single-Place Buffer Macro

Buffert Buffer 2

Figure 5: Optimized Two-Place Fifo Buffer

Figure 6: Routing Circuit Block Diagram

264

; send data from in to out while tag is non-zero
(PROC send-data ((CHAN In Out))

(WHILE (not data<8»
(lOut data)
(1 In data))

(I Out data))

;while tag bit is not zero
;send data out
;and get the next byte
;send last byte

; switch data from in to one of two outputs depending on first byte
(PROC switch-data ((CHAN In Aout Bout))

(IF ((notzero data)
(send-data In Aout))

(TRUE
(1 In data)
(send-data In Bout))))

;if data is non-zero
;send it out on Aout
;otherwise
;drop it, get new byte
;and send out on Bout

; Take data from whichever input channel is ready and route it to
; either of the two output channels.
(PROC router ((CHAN Ain Bin Aout Bout))

(SEQ ((VAR data<9>))
(WHILE TRUE

(FAIR-ALT
((TRUE (1 Ain data))

(SET data (deer data))
(switch-data Ain Aout Bout))

((TRUE (? Bin data))
(SET data (deer data))
(switch-data Bin Aout Bout))))))

;define a local variable
;do forever
;choose fairly
;data on the A input
;decrement address
;send out data
;data on the B input
;decrement address
;send it on out

; The router element. Route data streams first in the X and then
; in the V direction based on information in header bytes
(PROC mesh-element ((CHAN Xin Vin Pin Xout Vout Pout))

(PAR ((CHAN mid))
(router Pin Xin Xout mid)
(router mid Vin Vout Pout)))

;route in X direction
;route in V direction

Figure 7: A Simple Routing Process

and Y directions. Our example does not include the virtual channels
used in the TRC, although they are important in a real implementation
to insure deadlock-free routing.

The mesh-element macro is actually made up of two router macros
operating in parallel. One accepts packets from the processor and
from the X direction and routes them along the X direction, or to
the other router. The other router takes packets from the first router
or from the Y direction, and routes them along the Y direction or
to the attached processor. Note that a single mesh element can be
routing a packet along the X direction and a different packet along
the Y direction at the same time. Packets are routed first in X and
then in Y. The first byte is used as the current address byte and
decremented as the process reads it. IT the result is non-zero, the
packet is forwarded in the same direction it came from, if the result
is zero, the byte is dropped and the packet changes direction. When
the Y address is decremented to zero, the packet has arrived at its
destination and is routed to the attached processor.

The initial translation of a complete mesh element uses 120 mod
ules. Optimization reduces this number to 66, unfortunately too com
plex to illustrate in this paper. An version of this circuit with 5-bit
data paths has been generated so that the circuit will fit in a standard
40-pin package and is currently in fabrication.

5 Conclusion

The methods of translating occam programs into asynchronous cir
cuits and then optimizing the circuits have been embedded in a silicon

compiler. The examples in this paper, as well as many others, have
been successfully compiled. The resulting circuits have been simu
lated, using a switch-level simulator, to demonstrate their correctness.
Some of the examples have been laid out on chips, using the MOSIS
FUSION place-and-route service and fabricated [I]. The fabricated
examples have all been fully functional on the first fabrication run.

We have found that occam is an excellent way to describe
asynchronous systems, especially pipelined data processors or mi
cropipelines [15]. Almost all of the circuits we designed by hand
using the standard control modules can be expressed simply in oc
cam. The occam programs are clear, easy to manipulate, and easy
to simulate by compiling and executing with a conventional occam
compiler. The occam style of programming with collections of small
concurrent processes mirrors exactly the style of asynchronous sys
tem design we have been exploring in hardware. Because there is
a clear relationship between the occam programs and the resulting
circuits, the programmer or system designer has a good idea how
modifications will affect the performance or size of the result.

There are several ways in which the current silicon compiler can
be improved. The most important limitation on the performance of
the circuits we obtain is the time required for data delivery, i.e.,
to enforce the bundling constraint by waiting for the outputs of a
register to propagate through all combinatorial circuitry connected
to the register. Techniques can be applied to the occam program or
to the resulting circuit which can establish that some data-delivery
delays are not required, or so that in so far as possible, data-delivery
delay is overlapped by control delay. It may seem odious to deal
with delays, since one of the reasons for using self-timed techniques
is to avoid timing constraints. However, improving the data-delivery
performance requires reasoning about delays only in local regions:
each occam process can be compiled independently of others. So the
requirements of one part of a design do not constrain other parts of
the design. In particular, no timing requirements need to propagate
across a communication channel. No matter what approach is used
to satisfy local timing constraint, the silicon compiler can produce
estimates of the resulting performance.

A number of variations are possible in the target language for the
translation of occam programs. Rather than using the module li
brary, an occam process could be implemented as a Q-module [13].
Control signalling might use four-phase rather than transition conven
tions. Fully self-timed data, rather than bundling conventions, could
be used. And, of course, the translation could use a globally syn
chronous implementation rather than asynchronous techniques. These
areas represent avenues for further research.

The silicon compiler we have built suggests that a principal weak
ness of asynchronous systems-the difficulty of their design~an be
largely overcome by compilation from a clear specification such as
an occam program. Such techniques may make asynchronous tech
niques more accessible and let designers exploit some of the benefits
of the techniques, such as composition of components that operate at
different speeds.

References

[I] R. Ayres. FUSION: A New MOSIS Service. Technical Re
port ISI(fM-87-194, Information Sciences Institute, 1987.

[2] Erik Brunvand. Parts-R-Us: A Chip Aparts ... Technical Re
port CMU-CS-87-119, Carnegie Mellon University, 1987.

[3] Erik Brunvand and Bob Sproull. Translating Concurrent Com
municating Programs into Delay-Insensitive Circuits. Techni-

265

cal Report CMU-CS-89-126, Carnegie Mellon University, April
1989.

[4] Steven Burns and Alain J Martin. Synthesis of self-timed cir
cuits by program transformation. Technical Report 5253:TR:87,
California Institute of Technology, 1987.

[5] Wesley A. Clark. Macromodular computer systems. In Spring
Joint Computer Conference, AFIPS, April 1967.

[6] William J. Dally and Charles L. Seitz. The torus routing chip.
Distributed Computing, 1:187-196, 1986.

[7] David Dill. Trace theory for for the hierarchical verification
of speed independent circuits. PhD thesis, Carnegie Mellon
University, 1987.

[8] C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[9] Occam Programming Manual. Inrnos, 1983.

[10J Alain J. Martin. Compiling communicating processes into delay
insensitive circuits. Distributed Computing, 1(3), 1986.

[11] Cees Niessen, C.H. (Kees) van Berkel, Martin Rem, and
Ronald W.J.J. Saeijs. Vlsi programming and silicon compila
tion; a novel approach from philips research. In ICCD, Rye
Brook, NY, Oct 1988.

[12] S. M. Ornstein, M. J. Stucki, and W. A. Clark. A functional
description of macromodules. In Spring Joint Computer Con
ference, AFIPS, 1967.

[13] Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney,
and Ting-Pien Fang. Q-modules: internally clocked delay
insensitive modules. IEEE Transactions on Computers, 37(9),
Sept 1988.

[14] C. L. Seitz. System timing. In Mead and Conway,Introduction
to VLSI Systems, chapter 7, Addison-Wesley, 1980.

[15] Ivan Sutherland. Micropipelines. CACM, 32(6), 1989.

[16] Ivan E. Sutherland, Robert F. Sproull, and Ian lones. Stan
dard Asynchronous Modules. Technical Memo 4662, Suther
land, Sproull and Associates, 1986.

[17J c.R. (Kees) van Berkel and Ronald W.J.J. Saeijs. Compilation
of communicating processes into delay-insensitive circuits. In
ICCD, Rye Brook, NY, Oct 1988.

[18J J. van de Snepscheut. Trace theory and vlsi design. In Lecture
Notes in Computer Science 200, Springer-Verlag, 1985.

