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Programs written in a subset of occam are automatically translated 
into delay-insensitive circuits using syntax-directed techniques. The 
resulting circuits are improved using semantics-preserving circuit-to
circuit transformations. Since each step of the translation process can 
be proven correct, the resulting circuit behavior is a faithful copy of 
the original program behavior. A compiler has been constructed that 
automatically performs the translation and transformation. 

1 Introduction 

As VLSI systems become larger and more complicated, managing 
their very complexity becomes a major part of the design process. 
One method for taming their complexity is to use automatic methods 
for generating circuits from behavioral descriptions. This allows the 
designer to abstract away details of the low-level circuits and think 
of system behavior in terms of high level programs. In addition to 
making system design easier, formal proof techniques can be used 
to verify that the program meets Ihe system specification. Since Ihe 
generated circuits faithfully mimic the behavior of Ihe program, Ihe 
resulting circuits are correct by construction. At Ihe same time, if 
a programmer is to design efficient systems in this way, Ihen there 
must be a way for Ihe programmer to reason about Ihe resulting 
circuit based on the program text. The translation process must be 
sufficiently transparent to give the programmer some idea of how 
different program alternatives will affect the compiled circuit. 

This paper presents a melhod for automatically translating a con
current program into an asynchronous circuit. The translation pro
cedure involves a simple syntax-directed translation from program 
constructs into initial asynchronous circuits. The resulting circuits 
are improved with correctness-preserving circuit-to-circuit transfor
mations similar to peephole optimization in conventional compilers. 
Because Ihese steps can be proven to be correct, the programmer is 
guaranteed that any specification met by Ihe program will also be 
met by Ihe circuit A system has been constructed to perform Ihe 
translation automatically. This paper gives a very brief description 
of the method followed by two examples of programs translated into 
circuits. A more complete description can be found in [3]. 
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2 Related Work 

Olher groups apply different techniques to achieve Ihe same objective 
of translating programs into asynchronous circuits. Martin [4,10] at 
CalTech has had good success compiling a language based on CSP [8] 
into gate-level circuits. Initial programs are first decomposed into 
many smaller processes initiated by signals on new communication 
channels. These simpler processes are expanded to include details of 
the four-phase handshake used for control signals and then mapped 
into a set of production rules Ihat define when Ihe handshake signals 
are set and reset. These productions are strenglhened to enforce 
sequencing, and then mapped to a library of gates to construct the 
circuit. 

A group at Philips Labs [11,17] has also compiled a similar CSP 
based language into circuits by translating Ihe initial program into 
an intermediate representation Ihat include:; details of the four-phase 
control signals, and then implementing the circuit wilh a library of 
simple circuits. 

Our target language is not a circuit of individual transistors, or 
even gates, but ralher a collection of data and control modules, wired 
appropriately. The modules are like standard cells, each of which 
may be implemented wilh a small number of transistors and which 
correspond closely to programming constructs. Modules of this type 
trace their ancestry to Macromodules [5,12], designed at Washington 
University in Ihe late 1960's. 

3 Translation Method 

The source language for Ihis translation is a subset of occam [9], a 
language based on CSP [8]. Occam describes computation as a set of 
concurrent processes Ihat interact by communication over fixed links 
called channels. Control over concurrent and sequential aspects of 
communication is explicit. The syntax for occam code in this paper 
is very similar to that in [9] except that parenthesis are used for block 
structuring instead of indentation alone. 

The target for Ihe translation is an asynchronous circuit. In particu
lar, the target circuits are delay-insensitive control circuits using two
phase transition signalling [14] combined with bundled data palhs. A 
circuit is delay-insensitive if the correct operation of Ihe circuit does 
not depend on any assumptions about delay in wires or operators 
of the circuit. This property guarantees that any correctly function
ing subcircuits may be composed together and continue to operate 
correctly. It also cleanly separates performance-related timing issues 
from functionality issues. Changes in relative delays of the system 
can affect performance, but not functionality. 

A bundled data path uses a single set of control wires to indicate 
Ihe validity of a "bundle" of data wires. This requires that Ihe data 
bundle and the control wires be constructed such that the value on 
Ihe data bundle is stable at the receiver before a signal appears on 
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Figure 1: Initial Transformation of the Parallel Construct 

the control wire. This condition is similar"to, but weaker than, the 
equipotential constraint [14]. ~ 

The main step in translating occam programs into circuits is the 
initial substitution of circuit structures for occam language constructs. 
The circuit modules used in the initial substitution are like those 
described in [2,16] and are implemented as a set of standard cells 
using the MOSIS scalable CMOS design rules. The modules used in 
the following examples include a Merge module that implements the 
"or" function for transitions, a C-Element that is the "and" function 
for transitions, a Call module that acts as a hardware subroutine call 
allowing multiple access to a shared subcircuit, a Select module that 
steers a transition to one of two outputs based on the value of a 
"select" signal, an Enable element that enables bundled data at the 
output in response to transition control signals, and a Register that 
latches bundled data in response to transition control signals. 

Control modules are interconnected with signals that obey transi
tion signalling conventions, in which a transition from low to high or 
from high to low signals an event [14]. Each module responds to a 
global clear signal by forcing its outputs to a known state and clearing 
any internal state. The environment issues a transition signal called 
start after a global clear to get things started. This is connected to the 
request input of process obtained by translating the single top-level 
occam process. 

An example of a circuit substitution can be seen in Figure 1. An 
occam parallel (PAR) construct is implemented by sending the request 
signal to all of the component processes. The acknowledgments are 
combined in a C-element so that the PAR construct acknowledges 
after all the component processes acknowledge. Circuit substitutions 
for the other occam language constructs are shown in [3]. 

Once the initial translation from program constructs to circuit con
structs has been carned out, a variety of interesting transformations, 
similar to peephole optimizations in software compilers, may be ap
plied to the resulting circuit A transformation is described as an 
initial circuit and a replacement circuit. The circuit is a graph made 
up of modules (nodes) and connections (arcs). This circuit graph is 
searched to find a match with the initial circuit graph of a transfor
mation. When a circuit topology is matched with a template it is 
replaced with a new structure that retains the behavior of the original 
but improves its performance. The behavior of a circuit module can 
be described using trace theory [18]. and automatic methods can be 
used to verify that the behavior of the replacement is an acceptable 
substitute for the original circuit [7]. An example of a transforma
tion is shown in Figure 2. If the acknowledgments from all inputs 
of a call element are combined in a merge, then the circuit may be 
simplified by eliminating the call element as shown. 

4 Examples 

4.1 Fifo Buffer 

The two-place fifo buffer shown in Figure 3 is the first example. A 
single place buffer that copies its input to its output is defined as 
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Figure 2: An Example Circuit Transformation 

(PROC buffer «CHAN A Bll 
(WHILE TRUE 

(SEQ «VAR temp<8>)) 
(1 A temp) 
(I 8 temp)))) 

; Define a single-place buffer ... 
; Repeat forever 
; Sequential composition 
; store from channel A into temp 
; send from temp to channel B 

(PAR «CHAN input mid output» ; Parallel compos~ion 
(buffer input mid) ; makes a two-place buffer 
(buffer mid output» 

Figure 3: Code for a Two Place Fifo Buffer 

a macro. This macro can be used to make a two-place fifo buffer 
by combining two single-place buffers operating concurrently. The 
initial translation of the occam program for the single-place buffer 
macro into a circuit is shown in Figure 4. First the WHILE construct 
is expanded. The component process of the WHILE construct is a 
sequential (SEQ) construct with two component processes: an input 
(7) and an output (!) statement. Notice that the single-place buffer 
macro begins operation upon receipt of a start signal and signals 
completion with an ack signaL There are two channels, one input 
and one output. The C-element that performs the synchronization at 
the channel is included as part of the circuit for the input channel. 
Two single-place buffers may be combined to operate concurrently 
by using the parallel construct shown in Figure 1. 

Optimizing the circuit removes a great many components, to yield 
the final result shown in Figure 5. Most of the optimizations are 
readily apparent in Figure 4: a CALL module with only one client 
can be removed and replaced by wires; an ENABLE (EN) module 
whose outputs are the only drivers of a data bus can be removed; 
a MERGE (M) module with one input can be removed; a SELECT 
(SEL) module whose select condition is true can be removed. These 
steps, plus the removal of the start signal, yield the final circuit, 
which is the best circuit known for a FIFO using bundled data paths 
and transition signalling. 

4.2 Torus Routing Chip 

The last example is a switch for cut-through packet routing in a multi
processor interconnection network similar to the Torus Routing Chip 
(TRC) described by Dally and Seitz [6]. Each processor in the system 
has an associated routing circuit. The processor communicates to the 
routing circuit through the Pin and Pout channels. Each routing cir
cuit routes packets in two dimensions through the Xin, Xout, Yin, and 
Yout channels as shown in Figure 6. The circuit must accept packets 
on any of the three input ports and route them to the appropriate 
output port depending on address information in the packet header. 

The code for the routing process is shown in Figure 7 with the top
level macro mesh-element. Like the TRC, this process uses byte-wide 
data paths on all channels, but this version uses an additional tag bit 
to indicate the end of a packet. Address information, contained in the 
first two bytes of a data packet, specifies relative addresses in the X 
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; send data from in to out while tag is non-zero 
(PROC send-data ((CHAN In Out)) 

(WHILE (not data<8» 
(lOut data) 
(1 In data)) 

(I Out data)) 

;while tag bit is not zero 
;send data out 
;and get the next byte 
;send last byte 

; switch data from in to one of two outputs depending on first byte 
(PROC switch-data ((CHAN In Aout Bout)) 

(IF ((notzero data) 
(send-data In Aout)) 

(TRUE 
(1 In data) 
(send-data In Bout)))) 

;if data is non-zero 
;send it out on Aout 
;otherwise 
;drop it, get new byte 
;and send out on Bout 

; Take data from whichever input channel is ready and route it to 
; either of the two output channels. 
(PROC router ((CHAN Ain Bin Aout Bout)) 

(SEQ ((VAR data<9>)) 
(WHILE TRUE 

(FAIR-ALT 
((TRUE (1 Ain data)) 

(SET data (deer data)) 
(switch-data Ain Aout Bout)) 

((TRUE (? Bin data)) 
(SET data (deer data)) 
(switch-data Bin Aout Bout)))))) 

;define a local variable 
;do forever 
;choose fairly 
;data on the A input 
;decrement address 
;send out data 
;data on the B input 
;decrement address 
;send it on out 

; The router element. Route data streams first in the X and then 
; in the V direction based on information in header bytes 
(PROC mesh-element ((CHAN Xin Vin Pin Xout Vout Pout)) 

(PAR ((CHAN mid)) 
(router Pin Xin Xout mid) 
(router mid Vin Vout Pout))) 

;route in X direction 
;route in V direction 

Figure 7: A Simple Routing Process 

and Y directions. Our example does not include the virtual channels 
used in the TRC, although they are important in a real implementation 
to insure deadlock-free routing. 

The mesh-element macro is actually made up of two router macros 
operating in parallel. One accepts packets from the processor and 
from the X direction and routes them along the X direction, or to 
the other router. The other router takes packets from the first router 
or from the Y direction, and routes them along the Y direction or 
to the attached processor. Note that a single mesh element can be 
routing a packet along the X direction and a different packet along 
the Y direction at the same time. Packets are routed first in X and 
then in Y. The first byte is used as the current address byte and 
decremented as the process reads it. IT the result is non-zero, the 
packet is forwarded in the same direction it came from, if the result 
is zero, the byte is dropped and the packet changes direction. When 
the Y address is decremented to zero, the packet has arrived at its 
destination and is routed to the attached processor. 

The initial translation of a complete mesh element uses 120 mod
ules. Optimization reduces this number to 66, unfortunately too com
plex to illustrate in this paper. An version of this circuit with 5-bit 
data paths has been generated so that the circuit will fit in a standard 
40-pin package and is currently in fabrication. 

5 Conclusion 

The methods of translating occam programs into asynchronous cir
cuits and then optimizing the circuits have been embedded in a silicon 



compiler. The examples in this paper, as well as many others, have 
been successfully compiled. The resulting circuits have been simu
lated, using a switch-level simulator, to demonstrate their correctness. 
Some of the examples have been laid out on chips, using the MOSIS 
FUSION place-and-route service and fabricated [I]. The fabricated 
examples have all been fully functional on the first fabrication run. 

We have found that occam is an excellent way to describe 
asynchronous systems, especially pipelined data processors or mi
cropipelines [15]. Almost all of the circuits we designed by hand 
using the standard control modules can be expressed simply in oc
cam. The occam programs are clear, easy to manipulate, and easy 
to simulate by compiling and executing with a conventional occam 
compiler. The occam style of programming with collections of small 
concurrent processes mirrors exactly the style of asynchronous sys
tem design we have been exploring in hardware. Because there is 
a clear relationship between the occam programs and the resulting 
circuits, the programmer or system designer has a good idea how 
modifications will affect the performance or size of the result. 

There are several ways in which the current silicon compiler can 
be improved. The most important limitation on the performance of 
the circuits we obtain is the time required for data delivery, i.e., 
to enforce the bundling constraint by waiting for the outputs of a 
register to propagate through all combinatorial circuitry connected 
to the register. Techniques can be applied to the occam program or 
to the resulting circuit which can establish that some data-delivery 
delays are not required, or so that in so far as possible, data-delivery 
delay is overlapped by control delay. It may seem odious to deal 
with delays, since one of the reasons for using self-timed techniques 
is to avoid timing constraints. However, improving the data-delivery 
performance requires reasoning about delays only in local regions: 
each occam process can be compiled independently of others. So the 
requirements of one part of a design do not constrain other parts of 
the design. In particular, no timing requirements need to propagate 
across a communication channel. No matter what approach is used 
to satisfy local timing constraint, the silicon compiler can produce 
estimates of the resulting performance. 

A number of variations are possible in the target language for the 
translation of occam programs. Rather than using the module li
brary, an occam process could be implemented as a Q-module [13]. 
Control signalling might use four-phase rather than transition conven
tions. Fully self-timed data, rather than bundling conventions, could 
be used. And, of course, the translation could use a globally syn
chronous implementation rather than asynchronous techniques. These 
areas represent avenues for further research. 

The silicon compiler we have built suggests that a principal weak
ness of asynchronous systems-the difficulty of their design~an be 
largely overcome by compilation from a clear specification such as 
an occam program. Such techniques may make asynchronous tech
niques more accessible and let designers exploit some of the benefits 
of the techniques, such as composition of components that operate at 
different speeds. 
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