932 research outputs found

    The Sketch of a Polymorphic Symphony

    Full text link
    In previous work, we have introduced functional strategies, that is, first-class generic functions that can traverse into terms of any type while mixing uniform and type-specific behaviour. In the present paper, we give a detailed description of one particular Haskell-based model of functional strategies. This model is characterised as follows. Firstly, we employ first-class polymorphism as a form of second-order polymorphism as for the mere types of functional strategies. Secondly, we use an encoding scheme of run-time type case for mixing uniform and type-specific behaviour. Thirdly, we base all traversal on a fundamental combinator for folding over constructor applications. Using this model, we capture common strategic traversal schemes in a highly parameterised style. We study two original forms of parameterisation. Firstly, we design parameters for the specific control-flow, data-flow and traversal characteristics of more concrete traversal schemes. Secondly, we use overloading to postpone commitment to a specific type scheme of traversal. The resulting portfolio of traversal schemes can be regarded as a challenging benchmark for setups for typed generic programming. The way we develop the model and the suite of traversal schemes, it becomes clear that parameterised + typed strategic programming is best viewed as a potent combination of certain bits of parametric, intensional, polytypic, and ad-hoc polymorphism

    Scrap your boilerplate with object algebras

    Get PDF
    htmlabstractTraversing complex Abstract Syntax Trees (ASTs) typically requires large amounts of tedious boilerplate code. For many operations most of the code simply walks the structure, and only a small portion of the code implements the functional- ity that motivated the traversal in the first place. This paper presents a type-safe Java framework called Shy that removes much of this boilerplate code. In Shy Object Algebras are used to describe complex and extensible AST structures. Using Java annotations Shy generates generic boilerplate code for various types of traversals. For a concrete traversal, users of Shy can then inherit from the generated code and over- ride only the interesting cases. Consequently, the amount of code that users need to write is significantly smaller. Moreover, traversals using the Shy framework are also much more structure shy, becoming more adaptive to future changes or extensions to the AST structure. To prove the effectiveness of the approach, we applied Shy in the implementation of a domain-specific questionnaire language. Our results show that for a large number of traversals there was a significant reduction in the amount of user-defined code

    Programming errors in traversal programs over structured data

    Get PDF
    Traversal strategies \'a la Stratego (also \'a la Strafunski and 'Scrap Your Boilerplate') provide an exceptionally versatile and uniform means of querying and transforming deeply nested and heterogeneously structured data including terms in functional programming and rewriting, objects in OO programming, and XML documents in XML programming. However, the resulting traversal programs are prone to programming errors. We are specifically concerned with errors that go beyond conservative type errors; examples we examine include divergent traversals, prematurely terminated traversals, and traversals with dead code. Based on an inventory of possible programming errors we explore options of static typing and static analysis so that some categories of errors can be avoided. This exploration generates suggestions for improvements to strategy libraries as well as their underlying programming languages. Haskell is used for illustrations and specifications with sufficient explanations to make the presentation comprehensible to the non-specialist. The overall ideas are language-agnostic and they are summarized accordingly

    Scrap your boilerplate with object algebras

    Get PDF
    International audienceTraversing complex Abstract Syntax Trees (ASTs) typically requires large amounts of tedious boilerplate code. For many operations most of the code simply walks the structure, and only a small portion of the code implements the functional- ity that motivated the traversal in the first place. This paper presents a type-safe Java framework called Shy that removes much of this boilerplate code. In Shy Object Algebras are used to describe complex and extensible AST structures. Using Java annotations Shy generates generic boilerplate code for various types of traversals. For a concrete traversal, users of Shy can then inherit from the generated code and over- ride only the interesting cases. Consequently, the amount of code that users need to write is significantly smaller. Moreover, traversals using the Shy framework are also much more structure shy, becoming more adaptive to future changes or extensions to the AST structure. To prove the effectiveness of the approach, we applied Shy in the implementation of a domain-specific questionnaire language. Our results show that for a large number of traversals there was a significant reduction in the amount of user-defined code

    LEESA: Embedding Strategic and XPath-Like Object Structure Traversals in C++

    Full text link
    Abstract. Traversals of heterogeneous object structures are the most common operations in schema-first applications where the three key is-sues are (1) separation of traversal specifications from type-specific ac-tions, (2) expressiveness and reusability of traversal specifications, and (3) supporting structure-shy traversal specifications that require min-imal adaptation in the face of schema evolution. This paper presents Language for Embedded quEry and traverSAl (LEESA), which pro-vides a generative programming approach to address the above issues. LEESA is an object structure traversal language embedded in C++. Using C++ templates, LEESA combines the expressiveness of XPath’s axes-oriented traversal notation with the genericity and programmabil-ity of Strategic Programming. LEESA uses the object structure meta-information to statically optimize the traversals and check their compat-ibility against the schema. Moreover, a key usability issue of domain-specific error reporting in embedded DSL languages has been addressed in LEESA through a novel application of Concepts, which is an upcoming C++ standard (C++0x) feature. We present a quantitative evaluation of LEESA illustrating how it can significantly reduce the development efforts of schema-first applications.

    The Peano software---parallel, automaton-based, dynamically adaptive grid traversals

    Get PDF
    We discuss the design decisions, design alternatives, and rationale behind the third generation of Peano, a framework for dynamically adaptive Cartesian meshes derived from spacetrees. Peano ties the mesh traversal to the mesh storage and supports only one element-wise traversal order resulting from space-filling curves. The user is not free to choose a traversal order herself. The traversal can exploit regular grid subregions and shared memory as well as distributed memory systems with almost no modifications to a serial application code. We formalize the software design by means of two interacting automata—one automaton for the multiscale grid traversal and one for the application-specific algorithmic steps. This yields a callback-based programming paradigm. We further sketch the supported application types and the two data storage schemes realized before we detail high-performance computing aspects and lessons learned. Special emphasis is put on observations regarding the used programming idioms and algorithmic concepts. This transforms our report from a “one way to implement things” code description into a generic discussion and summary of some alternatives, rationale, and design decisions to be made for any tree-based adaptive mesh refinement software

    Graph Processing in Main-Memory Column Stores

    Get PDF
    Evermore, novel and traditional business applications leverage the advantages of a graph data model, such as the offered schema flexibility and an explicit representation of relationships between entities. As a consequence, companies are confronted with the challenge of storing, manipulating, and querying terabytes of graph data for enterprise-critical applications. Although these business applications operate on graph-structured data, they still require direct access to the relational data and typically rely on an RDBMS to keep a single source of truth and access. Existing solutions performing graph operations on business-critical data either use a combination of SQL and application logic or employ a graph data management system. For the first approach, relying solely on SQL results in poor execution performance caused by the functional mismatch between typical graph operations and the relational algebra. To the worse, graph algorithms expose a tremendous variety in structure and functionality caused by their often domain-specific implementations and therefore can be hardly integrated into a database management system other than with custom coding. Since the majority of these enterprise-critical applications exclusively run on relational DBMSs, employing a specialized system for storing and processing graph data is typically not sensible. Besides the maintenance overhead for keeping the systems in sync, combining graph and relational operations is hard to realize as it requires data transfer across system boundaries. A basic ingredient of graph queries and algorithms are traversal operations and are a fundamental component of any database management system that aims at storing, manipulating, and querying graph data. Well-established graph traversal algorithms are standalone implementations relying on optimized data structures. The integration of graph traversals as an operator into a database management system requires a tight integration into the existing database environment and a development of new components, such as a graph topology-aware optimizer and accompanying graph statistics, graph-specific secondary index structures to speedup traversals, and an accompanying graph query language. In this thesis, we introduce and describe GRAPHITE, a hybrid graph-relational data management system. GRAPHITE is a performance-oriented graph data management system as part of an RDBMS allowing to seamlessly combine processing of graph data with relational data in the same system. We propose a columnar storage representation for graph data to leverage the already existing and mature data management and query processing infrastructure of relational database management systems. At the core of GRAPHITE we propose an execution engine solely based on set operations and graph traversals. Our design is driven by the observation that different graph topologies expose different algorithmic requirements to the design of a graph traversal operator. We derive two graph traversal implementations targeting the most common graph topologies and demonstrate how graph-specific statistics can be leveraged to select the optimal physical traversal operator. To accelerate graph traversals, we devise a set of graph-specific, updateable secondary index structures to improve the performance of vertex neighborhood expansion. Finally, we introduce a domain-specific language with an intuitive programming model to extend graph traversals with custom application logic at runtime. We use the LLVM compiler framework to generate efficient code that tightly integrates the user-specified application logic with our highly optimized built-in graph traversal operators. Our experimental evaluation shows that GRAPHITE can outperform native graph management systems by several orders of magnitude while providing all the features of an RDBMS, such as transaction support, backup and recovery, security and user management, effectively providing a promising alternative to specialized graph management systems that lack many of these features and require expensive data replication and maintenance processes

    Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    Get PDF
    corecore