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ABSTRACT

Developing distributed real-time and embedded (DRE) systems require effective strate-

gies to simultaneously handle the challenges of networked systems, enterprise systems, and

embedded systems. Component-based model is gaining prominence for the development

of DRE systems because of its emphasis on composability, reuse, excellent support for

separation of concerns, and explicit staging of development phases. Despite the advances

in component technology, developing highly available DRE systems remains challenging

because of several reasons; First, availability concerns crosscut functional, deployment,

and other QoS concerns of DRE systems, which makes reasoning about simultaneous QoS

requirements extremely difficult. Second, fault-tolerance provisioning affects nearly all

the phases of system lifecycle including specification, design, composition, deployment,

configuration, and run-time. Codifying the availability requirements in system artifacts

corresponding to the various lifecycle phases remains challenging due to lack of a coherent

approach. Finally, multi-tier architecture and non-deterministic behavior of DRE systems

combined with the need to meet end-to-end deadlines even during failures give rise to

unique end-to-end reliability issues. General-purpose middleware infrastructures often do

not support such highly domain-specific end-to-end reliability and failure recovery require-

ments.

This dissertation presents a model-driven framework to coherently address the issues

arising during the development of highly available component-based DRE systems. First, a

domain-specific modeling language called Component QoS Modeling Language (CQML)

is presented that separates systemic concerns, such as composition, deployment, and QoS

to enhance comprehension and design-time reasoning. Second, a multi-stage model-driven

process named GeneRative Aspects for Fault Tolerance (GRAFT) is presented that syn-

thesizes various system artifacts to provision domain-specific end-to-end reliability and

recovery semantics using model-to-model, model-to-text, model-to-code transformations.
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Finally, the orphan request problem arising due to the side-effects of replication in the

context of non-deterministic stateful components is addressed. This dissertation presents

Group-failover protocol that ensures that the data in multi-tier real-time systems is both

consistent and timely even in the case of failures.

Although model-driven engineering (MDE) is used extensively in this dissertation, ef-

fective techniques for a key step in MDE, model traversal, are still maturing. In the course

of this research, limitations in the current model traversal approaches were addressed in

Language for Embedded Query and Traversal (LEESA), which is presented here as a

language-centric solution for writing succinct, generic, reusable model traversals.
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CHAPTER I

INTRODUCTION

I.1 Emerging Trends and Technologies

The software systems in several mission-critical domains, such as shipboard comput-

ing environments [120], avionics mission computing [124], multi-satellite missions [135],

and intelligence, surveillance and reconnaissance missions [123] are known as Distributed

Real-time and Embedded (DRE) systems. Such systems combine the challenges of net-

worked systems (e.g., distribution, dynamic environments, and non-determinism), enter-

prise systems (e.g., high throughput, high availability, and security), and embedded systems

(e.g., resource constrained and stringent quality of service (QoS) such as low latency and

jitter). Moreover, these systems exhibit static as well as dynamic variations in their QoS

requirements in response to the planned and unplanned events in their mission. Examples

of planned events include mission mode changes whereas unplanned events include failure

of resources and transient overloads.

To develop such DRE systems, quality of service (QoS)-enabled middleware based on

standards like Real-time Common Object Request Broker Architecture (RT-CORBA) [96]

and the Real-Time Specification for Java (RTSJ) [22] have been used. More recently,

QoS-enabled component middleware, such as the Lightweight CORBA Component Model

(CCM) [98] and PRiSm [125], have been used [124] to build DRE systems.

Component-based development model [61, 138] is particularly suitable for large-scale

DRE systems because of its emphasis on composability, reuse, excellent support for sep-

aration of concerns, and explicit staging of the development phases. Composability en-

ables the reuse of commodity-off-the-shelf (COTS) software components. Separation of

concerns, particularly QoS concerns, simplifies the development of mission-critical func-

tionality while provisioning QoS strictly via configuration of the underlying middleware
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in the subsequent stages of system development. As a result, the ability to provision the

QoS transparently (i.e., without affecting component source code) becomes one of the most

sought after features of QoS-enabled component middleware such as CCM and PRiSm.

The support for composability in contemporary component middleware allows system

integrators to realize the functionality by orchestrating the components in a workflow and

wiring them together by means of configuration metadata. In the case of QoS-intensive

DRE sytems, this workflow of components gives rise to a so-called operational string

model [77]. An example operational string is shown in Figure 1.

Figure 1: An operational string

The operational string model is a form of multi-tier distributed computing that is fo-

cused on end-to-end QoS. More formally, the operational strings model can be expressed as

end-to-end task chains [82]. The functionality in an operational string is distributed across

multiple components and the execution of the functionality often has a soft real-time dead-

line that must be met. For instance, the operational string in Figure 1 has a domain-imposed

deadline for the sequence of execution from the Detectors to Effectors. The deadline is con-

sidered a soft deadline because unlike the hard deadline, the consequences of missing a soft
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deadline are not catastrophic. Instead, missing a soft deadline diminishes the value to the

client gradually to zero. After a deadline is missed (say due to failures), earlier completion

of the request has higher value to the client than later completion.

To satisfy the end-to-end response time, not only the end-to-end schedulability [134]

of computing resources is ensured but also the network-level QoS via bandwidth reserva-

tions [31]. DRE systems often involve dozens of distinct operations strings, which execute

various domain-functionalities at different QoS requirements. Resources in such systems

are managed at the granularity of operational strings as opposed to individual components.

As a consequence, the operational strings become the foci of functionality, deployment,

and QoS configuration management.

I.2 High-availability Requirements of DRE Systems

To ensure the end-to-end response time at run-time, DRE systems need to plan for po-

tential failures and also recover in a timely fashion when failures actually occur. Anything

that compromises the end-to-end response time of the deployed operational strings is a

threat to the system’s reliability and must be resolved at run-time. Several factors such as

fail-stop failures of processes, computing resources, and lack of network resources may

halt the execution of an end-to-end operational string. Likewise, an abrupt increase in the

dynamic workload may cause network and/or CPU overload leading to missed deadlines.

Realizing reliable DRE systems requires addressing these problems at the level of op-

erational strings as they are the unit of functionality, deployment, and QoS management.

Clearly, the fault-tolerance requirements and network-level resource also need to be man-

aged at the same level of abstraction so that the distributed functionality, its end-to-end

QoS, and its reliability can be reasoned about, configured, and managed coherently.

Reasoning about fault-tolerance of an operational string is significantly harder than

that of a single component for the following reasons. With distribution, the probability

of a complete failure reduces but the probability of a partial failure increases [69]. A
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partial execution of a client’s request due to a failure in a middle-tier component may

render the state across the operational string inconsistent. Upon recovery, the state in the

subset of components that executed the client’s request must be made consistent with the

components that did not execute the request at all. The problem is exacerbated when one or

more components in an operational string are non-deterministic. Recovering such a group

of distributed components involves messaging overhead, which is often not permissible in

real-time systems with stringent timeliness requirements.

To meet the soft real-time deadlines, client components need to failover to one of

the surviving replicas of the operational string. Such failover of a group of components

may be triggered even if the primary operational string is not able to satisfy its end-to-end

response-time requirements due to resource overloads or unavailabilities. Moreover, group

failover has to happen atomically to ensure state consistency of the group of components

that failover. Contemporary fault-tolerant middleware infrastructures often lack the support

for a failover unit that is larger than a single component and therefore lacks support for the

recovery of the same.

Finally, supporting application-transparent failover of a group of components is im-

portant to extend the benefits of separation of concerns [37] provided by component-based

middleware to highly available operational strings. Separation of concerns not only expe-

dites the development of individual software components but also simplifies QoS planning

necessary in the later stages of the DRE system lifecycle. DRE systems require such flex-

ibility because it simplifies planning for a graceful degradation in their QoS as opposed to

an abrupt denial of service. For instance, redundant operational strings could be deployed

in a surveillance system differing only in their QoS. A primary operational string and its

underlying resources could have been configured for high-resolution, low-latency image

processing whereas one or more alternate operational strings could be configured using

gradually inferior QoS to be used only if the primary operational string fails.
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In summary, transparent fault-tolerance provisioning for operational strings with strin-

gent QoS requirements is a hard problem, which requires resolution of several research

challenges described next.

I.3 Overview of Research Challenges

The research challenges in provisioning fault-tolerance for component-based DRE sys-

tems are encountered in all stages (e.g., specification, composition, deployment, and run-

time) of the development lifecycle. Some of the key research issues include:

I.3.1 Crosscutting High-availability Concerns

Replication [60] is the most fundamental approach for provisioning high-availability in

software-based systems. Multiple identical instances of system functionality are deployed

so that the system can switch to the surviving functionality in case of failures. Replicated

functionality has an impact on the non-replicated functionality because the client com-

ponents (presumably non-replicated) need to failover (transparently or otherwise) on the

surviving functionality in case of failures. Consequently, system availability concern is

tangled with the system composition concerns. Replication is often applicable at multiple

levels of granularity such as single component, group of components, an operational sub-

string, the whole operational string, and hierarchical operational strings. Moreover, design

decisions such as the degree of replication, which consists of the initial, minimum, and

maximum number of replicas also affect the composition of the overall system.

Highly available distributed systems also require fault-monitoring infrastructure that

detects failures in subparts of the system and help initiate recovery. Depending upon the

types of faults, the monitoring infrastructure also scales in granularity from component-

level to operational string level. Therefore, the monitoring infrastructure must also be

composed with the original functionality.
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High-availability provisioning also implies careful planning of the placement of sys-

tem functionality across CPU and network resources so that the overall availability of the

system improves while reducing the probability of simultaneous failure. Clearly, the avail-

ability concern crosscuts the deployment decisions. Deployment further affects how the

CPU and network resources are allocated to ensure the end-to-end QoS of all the redundant

instances of system functionality. To ensure QoS upon failure, the surviving operational

strings also require predictable CPU and network-level resource availability. Therefore,

static and dynamic resource management [71, 87] also need to consider the impact of repli-

cation on the scheduling of resources.

The resource allocation concern is also affected by the style of replication involved.

Active and passive replication [60] are the two predominant ways of implementing high-

availability for software systems. Active replication often consumes more resources than

passive replication because redundant computations are performed concurrently, often at

different hosts. Network resources must also be reserved for these redundant computations.

Due to the resource-intensive nature of active replication, DRE systems often favor passive

replication, which does not involve concurrent execution but need to recover the failed

functionality by reconstituting the application-level state. Passive replication trades recov-

ery time to improve resource consumption and utilization of limited resources. However,

even in the case of passive replication network-level resource reservations are necessary

to ensure timely synchronization of application-state from the primary operation string to

their replicas.

Clearly, to prevent the scattering of availability concerns across other concerns, novel

modularization mechanisms are necessary.
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I.3.2 Reconciling High-availability Semantics in System Architecture

An instance of a component-based DRE system can be partitioned into two subparts: (1)

the component instances that implement the functionality of the system and (2) the meta-

data for deploying, inter-connecting, and configuring the components prior to the activation

of the system. To achieve transparent provisioning of fault-tolerance for component-based

DRE systems, both kinds of artifacts must be instrumented automatically in a coherent

fashion. Automatic instrumentation of the components masks the faults from the program-

mer and improves the client-perceived availability of the system.

Fault-masking must be achieved with with minimal impact on the end-to-end QoS (i.e.,

response time). Depending upon the style of replication, the fault-masking strategy varies.

For instance, passive replication often requires re-invocations of the remote call if it fails.

In the case operational strings, however, the failure of the operational string may not be

immediately apparent to the client components that are not directly connected to the failing

component. Such indirectly connected components need to failover to the replica function-

ality in a timely manner to begin re-execution of the failed invocation. As a result, enabling

transparent failover of a group of components requires coordination between fault-masking

and fault-detector modules unlike single component failover.

Interception is a dominant technique applied to achieve application-transparent failover.

Several flavors of interception such as linker-level [89], ORB-level [93], container-level [26],

service-level [103], and aspect-oriented [68] have been used in the past. However, in the

case of QoS-intensive component-based DRE systems, a low-overhead interception mech-

anism that can be integrated seamlessly and automatically in the fabric of deployment in-

frastructure is needed.

To realize the availability requirements transparently, the metadata used by the under-

lying component middleware must also be instrumented automatically. The metadata de-

termines how the components are deployed and how their interconnections are setup for
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remote invocations. As noted earlier, the placement of the operational strings and their par-

ticipant components must be designed carefully to improve the probability of survival of

the overall system. The decisions of the intelligent placement algorithms must be codified

in the deployment descriptors. Furthermore, non-replicated parts of the system need to es-

tablish redundant connections to the replicated functionality it may failover to upon failure.

Codifying these decisions manually is often error-prone and time-consuming. Therefore,

automated support is highly desirable.

Finally, the configuration metadata not directly related to the availability of an opera-

tional string may need manipulation to ensure proper CPU and network resource allocations

for the redundant functionality. Therefore, a multi-QoS-aware mechanism is needed that

provides opportunities to manipulate metadata throughout the development lifecycle.

I.3.3 Run-time Side-effects of Replicated Invocation in Non-deterministic Systems

Component-based DRE systems often exhibit non-determinism and maintain internal

state across invocations. Moreover, systems based on operational strings are multi-tier in

the sense that a component that serves as a provider of an interface itself acts as a client of

another component. Such functional dependencies give rise to a nested chain of invocations

at run-time.

Stateful multi-tier systems, when replicated for high availability, must be guarded against

the side-effects of replication. Depending upon the style of replication the side-effects may

vary. For instance, in active replication where a request is concurrently executed at mul-

tiple replicas, multiple nested invocations as well as multiple replies to the client must be

suppressed. Moreover, consistency of the state of each replica must be ensured particularly

in the case of non-deterministic behavior of replicated components. Slember et al. [128]

present a way of compensating effects of non-determinism on state using per-request ad-

justment to the state.

Passive [23] replication (a.k.a. primary-back replication) is widely considered as a
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silver bullet to address the problems in active replication arising from non-determinism.

However, prior work [44, 69, 133] has shown that passive replication is not a cure-all for

non-determinism particularly in the case of replicated multi-tier environment. Failures in

the middle-tier are often responsible for the side effects, which manifest themselves in the

forms: (1) multiple invocations of partially completed executions, (2) orphan request [69,

133] and orphan state in the system, and (3) loss of global state consistency due to re-

executions of non-idempotent operations.

As operational strings are essentially stateful multi-tier systems, they are also subject

to the side-effects of replication due to various sources [108] of non-determinism (e.g.,

load balancing, sensors, clocks, timeouts, thread scheduling and preemption). The state of

the components of DRE systems often evolves in non-deterministic fashion as the mission

progresses. The state of an operational string, which is distributed across multiple compo-

nents, must be synchronized with the replica operational string without violating the global

replica state consistency in fault-free and faulty situations.

Existing solutions [36, 44, 46, 69, 133] that address this problem rely on transactions as

supported by Object Transaction Service (OTS) [99] to ensure state consistency. Transac-

tion service, however, poses an overhead which adversely affects the end-to-end deadline.

Moreover, fault-recovery becomes more complex due to rollback operations across mul-

tiple components to ensure system consistency. Ensuring schedulability of these rollback

operations in case of failures further increases the tangling of timeliness and availability

concerns.

I.4 Research Approach

To address the challenges identified in Section I.3, this dissertation describes: (1) a QoS

modeling and modularization framework for fault-tolerant component-based DRE systems
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to address the problem of crosscutting availability concerns, (2) a multi-stage model trans-

formation process to support application-transparent failover of a group of stateless com-

ponents, and (3) design and implementation of a group-failover protocol to rectify orphan

components and maintain system timeliness and data consistency without the overhead

of transactions. A brief summary of the different aspects of this dissertation is presented

below.

1. QoS modeling and modularization framework uses model-driven engineering [119]

(MDE) methodology to provide higher level declarative abstractions for capturing

various QoS concerns such as granularity of replication, degree of replication, and

network bandwidth reservations. The QoS framework is implemented as a domain-

specific modeling language named Component QoS Modeling Language (CQML).

CQML modularizes the QoS concerns away from the system’s composition concerns.

To weave the concerns in system artifacts, aspect-oriented transformations have been

developed. Chapter II describes the QoS modeling framework in detail.

2. Application-transparent group failover of stateless components has been demon-

strated using the component QoS modeling capabilities of CQML and generation

of aspect-oriented code for fault-masking. The generative tools are implemented in

Generative Aspects for Fault Tolerance (GRAFT), which is a multi-stage process for

model-to-model, model-to-text, model-to-code transformations. Availability require-

ments of operational strings modeled using CQML are automatically transformed by

GRAFT into component-specific fault-detection and recovery advice, which are later

weaved into component stubs using AspectC++ [131]. Chapter III describes the ap-

proach in detail.
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3. A protocol for end-to-end reliability of stateful non-deterministic components

has been discussed, which addresses the state consistency issues of a stateful non-

deterministic components that participate in replicated nested invocations. The de-

sign of the protocol ensures state consistency in fault-free and faulty scenarios with-

out the overhead of transactions. It is implemented in the context of Component

Integrated ACE ORB [64] (CIAO) middleware. The middleware transparently man-

ages fault-masking, fault-correlation, globally consistent state synchronization, while

rectifying orphan components. Chapter IV describes the group-failover protocol in

detail.

I.5 Resolving Solution Domain Challenges: Object Structure Traversal

MDE has been used extensively in this dissertation to address the systemic issues of

distributed real-time and embedded systems. MDE allows developers to express the sys-

tem requirements at higher level of abstraction using domain-specific models [53]. These

models are often represented in memory using heterogeneously typed hierarchical object

structures in the form of either a tree (e.g., XML document) or a graph. The necessary

type information that governs such object structures is encoded in a schema. For example,

metamodels [137] serve as schema for domain-specific models.

The programs (e.g., model interpreters and transformations) that accept the domain-

specific models as input need to perform several operations, such as traversal, iteration,

selection, accumulation, sorting, and transformation on the objects in the model. Existing

techniques [39] to write these programs often use language-specific data binding [70, 83]

tools to generate object-oriented API for traversal and manipulation of the models. Unfor-

tunately, such object structure traversals are often verbose due to schema-specificity of the

API. Intuitive and succinct traversal notations, such as XPath [154] can not be used with-

out sacrificing the type-safety of the generated object-oriented API. Traversal programming
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idioms (e.g., XPath child/parent axes and wildcards) are not natively supported in general-

purpose programming languages. Moreover, the traversal logic and type-specific com-

putations are tightly coupled due to the lack of generic, reusable mechanisms to express

traversal over in memory object structures represented in third generation programming

languages.

To address these limitations, this dissertation presents a multi-paradigm programming [27,

150] approach to develop a domain-specific language (DSL) for specifying traversals over

object graphs governed by a schema. An expression-based [29] pure embedded (C++) DSL

called Language for Embedded quEry and traverSAl (LEESA) is presented in Chapter V.

LEESA demonstrates how generic programming, static metaprogramming [3], generative

programming [28], and strategic programming [75, 147] in combination with C++ operator

overloading can coexist in a single framework to resolve the gap between XPath-like no-

tation and the type-safety of object-oriented programing. LEESA addresses the challenges

in MDE identified during the course of the research work on model-driven fault-tolerance

provisioning for distributed real-time and embedded systems.

I.6 Dissertation Organization

The remainder of this dissertation is organized as follows: each chapter describes a

single focus area, describes the related research, the unresolved challenges, our research

approach to solve these challenges, and evaluation criteria for this research. Chapter II de-

scribes aspect-oriented modeling (AOM) techniques for modularizing QoS requirements of

DRE systems. Chapter III presents a multi-stage model transformation approach to auto-

matically synthesize models, code, and configuration to weave the availability requirements

into system artifacts. Chapter IV presents the group-failover protocol to rectify the unde-

sirable side effects of replication in the context of multi-tier, stateful, non-deterministic

components. Chapter V describes how the challenges encountered in the solution domain

of MDE are addressed using a novel domain-specific embedded language that simplifies

12



object structure traversal commonly needed in model-driven tool chains. Finally, Chap-

ter VI presents the concluding remarks.
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CHAPTER II

ASPECT-ORIENTED MODELING FOR MODULARIZING QOS CONCERNS

This chapter addresses the first challenge outlined in Chapter I – capturing crosscutting

QoS concerns of enterprise DRE systems. First, an overview of the existing research in

the field of QoS modeling for component-based distributed systems is presented. Second,

unresolved challenges in the existing research are identified. Finally, a solution approach

that captures QoS requirements of enterprise DRE systems using domain-specific modeling

is discussed.

II.1 Related Research

The related research has been categorized across the following dimensions: (1) QoS

modeling using the Unified Modeling Language (UML) [105] and (2) QoS modeling using

domain-specific modeling (DSM) [53, 119].

1. QoS modeling using UML: Lightweight and heavyweight extensions for UML are

possible to create QoS profiles using extensibility mechanisms provided by UML.

Lightweight extensions use only the mechanism of stereotypes, tagged values, and

constraints. Heavyweight extensions require modification to the UML metamodel,

which is naturally more intrusive than lightweight approaches. The OMG has adopted

the UML profile for schedulability, performance, and time (SPT) [97] specification,

which is based on lightweight extensibility mechanisms of UML. OMG has also

adopted a more general profile for modeling QoS&FT [102]. This UML profile pro-

vides a way to specify the QoS ontology with QoS characteristics. It has support for

annotating UML activity diagrams with QoS requirements.
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Espinoza et al. [43] compare the SPT and QoS&FT profiles and proposes to com-

bine the simplicity of the SPT profile with the generality of the QoS&FT profile for

the “UML Profile for Modeling and Analysis of Real-Time and Embedded Systems”

(MARTE) [104] profile. The MARTE profile extends UML using its lightweight

mechanisms with concepts for modeling and quantitative analysis of real-time and

embedded systems (specifically, for schedulability and performance analysis). MARTE

provides a general analysis framework called the General Quantitative Analysis Model

(GQAM), which can be specialized for quantitative schedulability and performance

analysis. A through literature survey of UML profiles that facilitate quantitative anal-

yses using formalisms such stochastic Petri nets, Markov chains, and timed automata

are presented in [21].

Another prior effort called Component Quality Modeling Language [2], developed

by Aagadel et al. is a platform-independent, general-purpose language for defining

QoS properties. It allows both interface annotation as well as component type an-

notation. Moreover, it has support for UML integration based on a lightweight QoS

profile and has QoS negotiation capabilities. Previous work on QoS specification

languages including QML [47] (QoS Modeling Language) and QuO [158] (Quality

Objects) is superseded by [2]. This language allows QoS annotations at the type

level (IDL interface and component definition) only and therefore, cannot be used to

specify QoS requirements on components on a per-instance basis.

Michotte et al. [85] present an aspect-oriented approach for modeling recovery blocks

generalized to component architectures represented using UML. The functional view

is separated from the fault-tolerance aspect view, which can be composed later using

composition directives. In this approach, however, every client component that needs

fault masking requires manual instantiation of the componentized recovery block pat-

tern. Moreover, it does not appear to support important fault-tolerance concerns such

as state synchronization, deployment, and grouping of components.
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With the advent of Service-oriented Architecture [42] (SOA), many researchers have

developed UML profiles for modeling SOA non-functional concerns. A thorough

survey is presented by Wada et al. [149]. They propose a UML profile to graphi-

cally specify SOA non-functional aspects in an implementation independent manner

and an MDE tool that accepts UML models defined with the proposed profile and

transforms them into application code and deployment descriptors.

The research on software systems reliability [58] using model driven architecture

(MDA) [94] focuses on a platform-independent means to support reliability design

following the principles of MDA. The research aims to systematically address de-

pendability concerns from the early to the late stages of software development by

expressing dependability architectures using profiles. Design profiles are mapped

to deployment domains, where the reliability configurations of how the components

communicate and are distributed is explained.

UML has also been used to perform model-driven dependability analysis [157] for

composite web services. The UML representation is based on Business Process Exe-

cution Language (BPEL), and extensions are added to characterize the fault behavior

of the elements comprising the web services. Model transformations are used to map

the UML models to Block Diagrams, Fault Trees and Markov models to analyze the

dependability characteristics of the composite web services.

2. QoS modeling using domain-specific languages: The SysWeaver [35] approach is

an MDE-based technique for developing real-time systems. It supports design-time

timing behavior verification of real-time systems and also supports automatic code

generation and weaving for multiple target platforms. SysWeaver, however, does not

address tangling of availability concerns into structural concerns. The replicas of

protected components need to be explicitly modeled in the functional view of the

Simulink model.
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The Embedded Systems Modeling Language (ESML) [67] used for avionics mission

computing provides modeling support for fault management and mitigation strate-

gies that are not unlike passive replication. However, the fault model is restricted

to processor failures only and the modeling language requires explicit modeling of

replicated functionality, which is an example of cross-cutting fault-tolerance con-

cerns. JReplica [63] proposes Disguise Replication, which is a Java extension to

capture object-level replication aspects such as state, guards, execute-around actions

to customize replication. It is not application transparent but allows programmer-

defined extensions to recovery strategies. A UML extension is also proposed using

stereotypes. However, it is restricted to the object-oriented paradigm.

Bajohr et al. [9, 10] present a model-driven approach for self-reconfiguration of

highly available enterprise services. Behavior of services is encoded using service

logic graphs – a domain-specific behavior modeling language with deterministic fi-

nite state automaton as its underlying model of computation. A graph-transformation-

based technique is used to enhance the behavioral models of services with high-

availability blocks for reading/writing checkpoints and managing failover. The ap-

proach is being used for enterprise systems where primary-backup replication of a

single service (e.g., email, news, www) is built using a cluster of nodes. Although

the overall system is multi-tier, the business-tier does not have deeply nested invoca-

tions as found in the operational strings of enterprise DRE systems. Also, it is not

clear whether the high-availability transformation is customizable via some sort of

parameter mechanism.

Architecture Analysis and Design Language (AADL) [143] provides a standardized

textual and graphical notation for describing software and hardware system architec-

tures and their functional interfaces. The AADL Error Model Annex [144] has also

been standardized to be used for describing dependability related characteristics in

AADL models (faults, failure modes, repair policies, error propagations). The AADL

17



Error Model Annex mentions that stochastic automata such as fault trees and Markov

chains can be generated from AADL specifications enriched with dependability-

related information.

Modeling of reliable messaging in Service Oriented Architectures (SOA) is shown

in [49] where messages can be annotated with specifications such as needsAck, fil-

terDuplicates, and timeout values. A graph transformation is used to generate en-

velopes that wrap the original messages with necessary reconfigurations for reliable

delivery mechanisms.

II.2 Unresolved Challenges

Despite a large body of existing research described in Section II.1, designing oper-

ational QoS-intensive DRE systems remains a significantly hard problem due to multi-

ple crosscutting non-functional characteristics such as fault-tolerance, timeliness, authen-

tication, authorization and network level QoS that must be decoupled from the system’s

functional composition concerns. Moreover, existing work lacks support for capturing

QoS requirements of enterprise DRE systems that consider fault-tolerance, timeliness, and

network-level QoS holistically. In the next section we highlight the prevailing gap.

II.2.1 Tight coupling of functional and QoS concerns

To assist in designing systems where non-functional concerns crosscut with structural

concerns, DSM tools are promising but they must provide strong decoupling between the

system’s structural and non-functional concerns and must combine them when the final

system is realized. Such decoupling should not only provide different views for different

concerns (view-per-concern) but should also enable independent evolution of the modeling

capabilities of each view. Evolution of the modeling capabilities of a concern view often

requires enhancements to the metamodel of the view. Supporting independent evolution of

metamodels of each concern view shortens the development lifecycle by allowing parallel
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enhancements to the modeling capabilities (i.e., the metamodel) and models pertaining to

the view.

Platform-independent notion of QoS requirements is largely independent of the struc-

tural capabilities of the chosen implementation platform. Despite QoS being a platform-

agnostic concept, DSM tools tend to tightly couple QoS with the structural characteristics.

However, the variability in the structural capabilities of the contemporary component plat-

forms need not prevent their corresponding DSM tools from having platform-independent

modeling support for QoS. However, contemporary DSM tools are based on ad-hoc designs

of metamodels for modeling QoS that couple them tightly with structural capabilities, pre-

venting their reuse in other component platforms and limiting extensibility.

II.2.2 Lack of support for variable failover granularity

In enterprise DRE systems, traditional approaches to fault tolerance that rely on repli-

cation and recovery of a single server process or a single host are not sufficient since the

fault management schemes must account for the timely and simultaneous failover of groups

of entities while also improving the system availability by minimizing the risk of simulta-

neous failures of groups of replicated entities. Fault-tolerance requirements of operational

strings may be specified at several different levels of granularity, such as per component,

across a group of components, and across nested component groups.

II.2.3 Lack of support for mixed-mode replication strategies

Enterprise DRE systems require support for mixed-mode availability wherein parts of

the system that can not tolerate the recovery time needed for passive replication, may re-

quire high-availability solutions based on active replication schemes. On the other hand,

some parts of the system may demand passive form of replication to overcome issues

19



with non-determinism. Standardized middleware solutions to fault-tolerance, such as FT-

CORBA [92], provide a one-size-fits-all approach, which do not support mixed-mode de-

pendability semantics.

II.2.4 Lack of intuitive mechanisms for network-level QoS specification

Each operational string in an enterprise DRE system can specify a required level of

network QoS (e.g., high priority vs. low priority), the source and destination IP and port

addresses, and bandwidth and delay requirements. This information is used to allocate and

configure network resources to provide the required QoS. These network QoS requirements

can change depending on the deployment context. Conventional techniques, such as hard-

coded API approaches [33] are not application transparent. Writing this code manually to

specify network QoS requirements is tedious, error-prone, and non-scalable.

II.3 Solution Approach: Component QoS Modeling Language (CQML)

II.3.1 Overview of CQML

This section describes a novel solution to address the limitations of DSM design tools

for CBSE. Component QoS Modeling Language (CQML) is a reusable, aspect-oriented

modeling (AOM) [54] framework developed using the Generic Modeling Environment

(GME) [78]. CQML is designed to be superimposed on a wide range of structural com-

position modeling languages as long as they conform to a small set of invariant structural

properties defined by CQML. Based on these invariant properties, CQML defines an ab-

stract join point [68] model for associating QoS aspects to the structural elements. The join

point model defines where the QoS aspects meet structural elements.

Around its abstract join point model, CQML has an extensible QoS modeling frame-

work that allows declarative QoS requirements to be associated with structural component

models. The QoS requirements are modularized using what we call declarative QoS as-

pects. They bind the QoS advice to the join points of the underlying structural modeling
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language. This chapter demonstrates how abstract syntax of purely structural modeling

languages can be retroactively enhanced with the QoS modeling capabilities of CQML by

superimposing CQML’s join point model. CQML’s capabilities are evaluated using three

different structural modeling languages for component-based systems.

II.3.2 Identifying Invariant Properties of Component-based Structural Modeling

Languages

Our focus is on general component-based systems, which are composed using multiple

components orchestrated to form application workflows. Contemporary component models

often have first-class support for primitives, such as components, connectors, and methods.

The structural artifacts of a component-based system can be realized using these primitives

in a language specifically designed for modeling system structure.

Figure 2: Process Model for Reusing CQML for QoS Modularization and Weaving

Since CQML is aimed specifically at modularizing non-functional concerns of component-

based systems in a platform-independent manner, CQML requires an underlying base com-

position modeling language that allows construction and manipulation of platform-specific

structural models. Many platform-specific as well as platform-independent component
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structural modeling languages, such as Embedded Systems Modeling Language(ESML) [67]

for embedded systems, J2EEML [152] for Enterprise Java Beans, and Platform-Independent

Component Modeling Language (PICML) [14] for Light-weight CORBA Component Model

(LwCCM) [98] exist today with the capability to capture various composition semantics.

In this chapter we have focused on languages developed using GME because CQML is also

developed using GME. However, the concepts behind CQML can be applied in other tool

environments.

Figure 3: A Feature Model of Composition Modeling Language

We refer to such a structural modeling language as a system composition modeling

language (or base language in short.) We formalize the features of a base language in a

feature model [28] shown in Figure 3. CQML is designed taking into account the manda-

tory and optional features present in such languages. The base language should have first-

class modeling support for components, connectors, and remotely invocable methods at the

minimum. ESML, J2EEML, and PICML support all the mandatory entities mentioned in

Figure 3 and therefore these languages can play the role of a base language for CQML as

shown in Figure 2 (Step 1). In step 2, metamodel composition [16] techniques are used

to mix-in the metamodel of CQML with that of the base composition modeling language

producing a composite language, which has the capabilities of both constituent languages.
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In step 3, the composite language is used to model component-based systems with QoS

aspect modeling capabilities of CQML.

II.3.3 Extensible Design of CQML

Based on the feature model of component-based modeling languages, CQML builds

an extensible QoS modeling layer. CQML associates declarative QoS aspects to one or

more of the invariant properties of the underlying base language. We have designed sev-

eral declarative QoS aspects that are applicable to a general class of component-based

systems. We have developed (1) FailOverUnit [141], which modularizes fault-tolerance

requirements of components and assemblies, (2) SecurityQoS, which modularizes role-

based access control policies of port-based communication between components, and (3)

NetworkQoS [11], which modularizes network-level QoS requirements while invoking re-

mote methods. Some examples of the above concrete QoS characteristics are shown in

Figure 4. A FailOverUnit is used to annotate component A as a fault-tolerant component.

For connections between components B and C, network level QoS attributes (e.g., priority

of communication traffic) are associated using a NetworkQoS modeling element.

Figure 4: Declarative QoS Aspect Modeling Capability of CQML
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To support extensions of a QoS metamodel, CQML defines a set of abstract QoS el-

ements: Component-QoS, Connection-QoS, Port-QoS, Assembly-QoS and Method-QoS.

CQML can be extended with new concrete declarative QoS modeling capabilities by inher-

iting from these basic abstract QoS elements. To enhance CQML with a concrete QoS as-

pect, a language designer has to extend the metamodel of CQML at the well-defined points

of extension represented by the five abstract QoS elements. By doing so, the concrete mod-

eling aspects inherit the (1) abstract syntax, (2) associations, (3) cardinality constraints, and

(4) visualization constraints of the abstract QoS entities. For example, as shown in Figure 5,

FailOverUnit inherits association constraints from the abstract ComponentQoS and Assem-

blyQoS. Therefore, FailOverUnit can be associated with components and assemblies only

and never with ports or connections.

Figure 5: Metamodel of CQML.

Separation of structural concerns and QoS concerns is achieved using separate views for

QoS and structural elements (view-per-concern). The visibility of concrete QoS modeling
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elements is controlled using visualization constraints defined on abstract QoS elements.

CQML defines visibility constraints on them such that they project QoS concerns in the

QoS view of the GME model editor, which is different from the view where structural con-

cerns are edited and manipulated. These constraints are inherited by all the concrete QoS

elements that are derived from one or more abstract QoS elements as shown in Figure 5.

Due to inheritance of these constraints, the concrete QoS elements are also projected and

manipulated in the QoS view. Thus, CQML metamodel not only provides QoS modeling

capability, it does so while achieving separation of concerns at the modeling level.

II.3.4 An Abstract Join Point Model for Component Modeling Languages

Along with the abstract QoS elements in the previous section, CQML defines an ab-

stract representation of the mandatory and optional features of a generic structural mod-

eling language. For example, CQML defines AbstractComponent, AbstractConnection,

AbstractMethod, AbstractPort, and AbstractAssembly. These abstract types do not have

semantics of their own except being able to associate QoS aspects with them. Moreover,

the abstract nature stems from the fact that they cannot exist without a concrete instantia-

tion in the underlying base modeling language. In the following section we describe how a

concrete instantiation is done using a technique called metamodel composition.

II.3.5 Instantiating Abstract Join Point Model Using A Concrete Structural Model-

ing Language

CQML’s support for QoS aspect modeling can be superimposed on a structural mod-

eling language by composing the metamodel of CQML with the metamodel of the base

language to create a composite language as described by Step 2 in Figure 2. Domain

abstractions in the base language (e.g., component, assembly, port) inherit from the cor-

responding abstract elements in CQML. Due to such inheritance, the domain abstractions

in the base language inherit all the QoS related associations and constraints from CQML
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elements. Models of the new composite language can use the associations defined in the

original language and also the associations inherited from CQML. Thus, all the concrete

QoS aspects and their constraints are mixed-in with the underlying structural modeling

language.

Note that the abstract join point model achieves a strong decoupling between structural

and CQML metamodels. The structural metamodel of the base language can be enhanced

without affecting the CQML metamodel and vice-versa. Therefore, the abstract join point

model is the key to support independent evolution of the structural as well as CQML meta-

model. Moreover, using the abstract join point model, multiple composite languages can

be created by composing CQML with different structural modeling languages using the

same process. Figure 6 shows an example of how CQML is composed with PICML to cre-

ate a composite language using inheritance. After composition, PICML’s component and

assembly can be associated with everything that CQML’s abstract component and abstract

assembly can be associated with (e.g., FailOverUnit).

Figure 6: Composing CQML’s Abstract Component Model with a Base Language
Using Inheritance

An important benefit of our approach is that CQML introduces QoS modeling capabil-

ity in a base language without affecting its original syntax and semantics. CQML can be

composed flexibly with the underlying base language even though it does not support some

optional features shown in Figure 3. Using CQML with a base language that supports less
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number of primitives gives rise to a smaller concrete QoS model. On the other hand, com-

posing CQML with a base language with all the mandatory as well as optional primitives

gives rise to a larger QoS model.

Later in this chapter we show how CQML is composed with three different base lan-

guages (PICML, J2EEML, and ESML) that have different structural modeling capabili-

ties. Composing CQML with them gives rise to different QoS modeling capabilities in

each composite language: PICML′, J2EEML′, and ESML′. Reuse promoted by CQML’s

generic QoS entities and its design thus lends itself to easier development of component-

based systems modeling languages with QoS support. It reduces the need of reinventing

previously designed artifacts for every new QoS aspect that is added.

II.4 Modeling Fault-tolerance Requirements using CQML

In this section, we describe the design considerations and the CQML-based solution for

a transparent fault-tolerance provisioning tool for enterprise DRE systems.

II.4.1 Design Considerations

• Variable granularity of system protection. Enterprise DRE systems are composed

of several independently deployable assemblies of components that communicate

together in a workflow fashion to carry out the system’s functionality. Quite often the

unit of modularity in the system design is larger than a single deployed component

and results in some critical functionality of the system being spread across multiple

components and/or assemblies. In terms of the availability perspective, the entire

critical functionality which is spread across multiple components must be protected

from failures. Moreover, failure of any one component in the workflow implies the

failure of the entire flow. In such a situation, the system must failover to a redundant

workflow as opposed to a single component. One strategy for the failover mechanism

could be to allow graceful degradation. The functionality of the replica components
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may not be the exact duplicate of the original. For example, the replica component

can possibly implement an algorithm that is less resource hungry compared to the

primary.

A design-time tool must allow the specification of these requirements of enterprise

DRE system. Section II.4.2 describes how MDDPro provides intuitive abstractions

to capture these fault-tolerance requirements of enterprise DRE systems.

• Mixed-mode dependability requirements. Enterprise DRE systems are large-scale

and comprise several different components, each of which accomplish specific tasks

of the entire system functionality. Some parts of the system may require fast fail-

ure recovery mandating active replication schemes. However, due to the overhead

associated with active replication and the non-determinism issues [45, 90], it may

be necessary to restrict the use of active replication to a small part of the enterprise

DRE systems. Other parts of the system may then use other forms of replication,

such as passive replication, or depend on simple restart mechanisms depending on

the criticality of the component and available resources in the system.

The design-time tool must enable enterprise DRE system developers to capture these

mixed-mode dependability semantics of the system. When combined with the gran-

ularity of protection units and other performance requirements of the system, this

provisioning task becomes complex to perform manually using ad hoc and program-

matic techniques. Section II.4.2 describes how MDDPro provides intuitive abstrac-

tions to capture mixed-mode dependability requirements of enterprise DRE systems.

• Effective replica deployment for maximizing availability. Redundancy in the sys-

tem improves system availability, however, high levels of reliability are realized only

when replicas are placed in such a way that the risk of simultaneous failures of repli-

cas is minimized. Effective replica placement also impacts several other performance

characteristics of the entire system. For example, effective replica placement may be

necessary to maintain a bounded and fast state synchronization among the replicas.
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A design-time tool can be used to ensure that the system simultaneously satisfies

multiple QoS requirements such as performance, predictability and availability, by

incorporating deployment state space search algorithms that automatically find ef-

fective deployments. This problem is known as the constraint satisfaction problem.

Optimality is a harder problem than constraint satisfaction, however, we do not con-

sider it yet in our design. Chapter III describes how we have designed our tool that

can plug in different replica placement algorithms that find effective deployments for

enterprise DRE systems.

• Transparent provisioning of fault-tolerance. Even though the modeling techniques

can help capture dependability requirements while replica placement algorithms can

provide effective deployment decisions, these must ultimately be realized in the con-

text of the underlying hosting platforms, such as the component middleware. Com-

ponent middleware often use XML metadata that describes how components of an

enterprise DRE system should be hosted in the middleware and how they must be

connected to each other. For large-scale systems, the amount of metadata becomes

very large and ad hoc techniques, such as handcrafting these descriptors, becomes

infeasible and error prone.

Dependability provisioning makes this task harder because the metadata must ac-

count for the protection units and provisioning the multiple replication schemes

within the enterprise DRE system. This requires a substantial degree of middle-

ware configuration by allocating different resources end-to-end. Replication adds to

the number of connections that must be established between the different protection

units and their replicas. The replication style makes this task even harder. For ex-

ample, when active replication is used, the middleware must be configured to use a

group communication substrate that is used by the communication between replicas.

On the other hand, in passive replication, the secondary replicas must be provisioned

on the middleware to accept periodic state updates from the primary. Chapter III
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describes how generative programming [28] techniques used within our tool auto-

mates the metadata generation to provision dependability for enterprise DRE systems

within the middleware platforms.

II.4.2 Modeling Notation

CQML allows an enterprise DRE system deployer to model the fault-tolerance require-

ments in the QoS view of the DRE system as shown in Figure 7. The QoS view leverages

the basic structure of the DRE system in terms of the component instances in an assembly,

component ports and their interconnections. CQML allows FT elements to be modeled

orthogonally to the system components and therefore achieves separation of dependability

concerns from the primary system composition and functionality concerns. The following

fault-tolerance modeling elements are supported in CQML:

Figure 7: Availability Requirements Modeling in CQML
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• Failover units (FOUs), which enable control over the granularity of protected sys-

tem components, such as software components, component assemblies, or entire

component workflows. Failure of any one element belonging to a FOU is treated

equivalent to the failure of all the elements in the FOU and the system effectively

fails over to another replica of the FOU. This modeling abstraction not only captures

the failover granularities of system entities, but also the degree of replication for each

FOU and other systemic requirements, such as the period of liveness monitoring for

FOUs. The degree of replication is represented as a pair of numbers representing

minimum and maximum number of replicas. The programming language artifacts

that implement the replica components could be different from that of the primary

components allowing graceful degradation of the functionality if the dependability

solution requires it.

Frequently, the liveness of distributed components is monitored using a heart beat

protocol. The frequency of the heartbeat is one configurable parameter in the liveness

monitoring, which can be configured in CQML. The heartbeat itself is configurable

in two ways: push model or pull model. Thus, the directionality of the heartbeat can

also be configured in CQML. In Chapter III we show how modeling of FOUs enable

us to automatically synthesize and configure liveness monitoring components as well

as heartbeat producing components. Conceptually, a FOU is an abstraction to capture

the availability requirements at the control plane of the dependability solution.

• Replication groups (RGs), which allows capturing the replication requirements of

software components within a FOU. These models specify replication strategies,

such as active, passive or other variants, and the state synchronization policies for

components. A replication group captures the configuration parameters related to

the data plane of the deployment solution. Multiple replicas of the system com-

ponents synchronize their state with each other as per the configuration of the data

plane. For example, data synchronization frequency of the replicas is configurable.
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Moreover, the topology of state synchronization among replicas is also a data plane

level configuration issue handled in MDDPro.

• Shared Risk Groups (SRGs), provide a way of grouping resources in the target net-

work of the applications that share a risk of simultaneous failure. Application compo-

nents share a risk of simultaneous failure by virtue of the failure of the resources they

share, such as processes, nodes, racks or even data centers on which they are hosted.

Risk factors are determined by assigning the metrics, such as co-failure probabilities

to a hierarchy of the network resources in a risk group that affects the availability of

the system. The computation of the co-failure probabilities is assumed to be done a

priori using reliability engineering methodologies.

The primary purpose behind modeling the shared risk groups and their respective

co-failure probabilities is to facilitate automated deployment decisions of the com-

ponents in the system such that the probability of failure of the entire system is

minimized thereby increasing the availability. One way of reducing the co-failure

probability is to increase the physical distance between the nodes where the com-

ponents are deployed. Here, the physical distance can be thought of as the distance

from a remote host, a remote blade or a remote data center. An advantage of using

the distance metric is that it is simpler and quite intuitive compared to the co-failure

probability. In Chapter III we show how the shared risk group model is used by the

CQML model interpreter to determine a suitable and effective deployment that sat-

isfies the availability requirements and minimizes risks of simultaneous failures. In

our prototype implementation of the algorithm we use the simpler distance metric to

guide the decision of the replica placement.

Figure 8 shows a model of the Shared Risk Group hierarchy. Hosts 1 to 5 are part

of a domain and are contained under a common “RootRiskGroup” at the top. A

RootRiskGroup represents comparatively larger structures such as a ship or an en-

tire building. All the hosts in the domain share a common risk of failure of the
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Figure 8: Shared Risk Group Hierarchy Modeling in CQML

largest composing structure represented by a RootRiskGroup. We limit the scope of

our dependability solution at that level. The RootRiskGroup is further divided into

smaller units of Shared Risk Groups as shown in the figure. For example, Host1,

Host4 and Host5 share a common risk of a failure of the NodeGroup1, but failure of

NodeGroup2 that consists of Host4 and Host 5 does not affect Host1.

The distance between hosts is simply computed as the number of tree edges between

two hosts. For example, the distance between Host2 and Host3 is 2. Similarly, the

distance between Host2 and the Host4 or Host5 is 5. Based on such a Shared Risk

Group hierarchy, deployment decisions are taken to maximize the distance between

the primary component and its replicas, as shown in Figure 8.

II.5 Modeling Network-level QoS Requirements using CQML

CQML provides a QoS modeling annotation called the Network QoS (NetQoS). DRE

system developers can use NetQoS to declaratively specify the following deployment context-

specific network QoS requirements on the modeled application flows: (a) network QoS
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classes, such as HIGH PRIORITY (HP), HIGH RELIABILITY (HR), MULTIMEDIA (MM), and

BEST EFFORT (BE), (b) bi-directional bandwidth and delay requirements, and (c) selection

of transport protocol.

NetQoS’s network QoS classes correspond to the DiffServ levels of service provided

by our Bandwidth Broker [30].1 For example, the HP class represents the highest impor-

tance and lowest latency traffic. The HR class represents traffic with low drop rate (e.g.,

surveillance data). NetQoS also supports the MM class for sending multimedia data and the

BE class for sending traffic with no QoS requirements.

NetQoS supports two models for controlling the Diffserv markings: (1) the CLIENT_PROPAGATED

network priority model that allows the clients to dictate the bi-directional priorities, and

(2) the SERVER_DECLARED network priority model that allows servers to dictate the bi-

directional priorities. Figure 9 shows a NetQoS model that highlights many of its key

capabilities.

Multiple instances of the same reusable application components can be annotated with

different QoS attributes using an intuitive drag and drop technique. This method of spec-

ifying QoS requirements is thus much simpler than modifying application code for each

deployment context, as demonstrated later in this chapter. Moreover, the same QoS at-

tribute (e.g., HR_1000 in Figure 9) can be reused across multiple connections. NetQoS

thus increases the scalability of expressing requirements for large numbers of connections

that are prevalent in enterprise DRE systems.

II.6 Evaluating Composability of CQML

This section describes our evaluation of CQML. We demonstrate how purely struc-

tural modeling languages can be enhanced with QoS annotation capabilities by composing

them with CQML. We show this capability with three different component-based structural

modeling languages.

1NetQoS’s capabilities can be extended to provide requirements specification conforming to a different
network QoS mechanism, such as IntServ.
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Figure 9: Network-level QoS Modeling Capabilities of CQML

To evaluate composability of CQML we chose three component-based structural com-

position languages: the Platform Independent Component Modeling Language (PICML) [14]

for Light-weight CORBA Component Model (LW-CCM) [98], J2EEML [152] for Enter-

prise Java Beans (EJB), and the Embedded Systems Modeling Language (ESML) [67] for

embedded systems.

There are many commonalities and differences among these languages that stem from

the differences in the underlying component model that they model. Table 1 summa-

rizes the similarities and the differences between these three languages. All of them are

component-based system modeling languages, which treat components as first class enti-

ties and have varying degree of support for assemblies (nesting of components and assem-

blies.) For example, J2EEML and PICML support hierarchical composition of assemblies

but ESML has a flat, single level structure of components. All the three languages sup-

port the notion of a connection. The notion of provided interfaces (an implementation of a

particular interface) is present in PICML and ESML but not quite explicit in J2EEML. It
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manifests itself in a weaker form of just a set of invocable methods on a bean. Similarly,

the notion of required interfaces2 is present in PICML and ESML but is absent in EJB and

hence in J2EEML. In summary, the PICML′ feature set turns out to be a super-set of the

features of the other two languages.

Supported Features PICML J2EEML ESML
Component, Methods, Yes Yes Yes

and Connections
Provided Interface Ports Yes No Yes
Required Interface Ports Yes No Yes

Assemblies Yes Yes No

Table 1: Comparison of Capabilities of Selected Three Modeling Languages

Using specializations to the join point model, we composed CQML with the above three

languages giving rise to three composite languages: PICML′, J2EEML′, and ESML′. The

concrete join point model of the three composite languages varies because of the varying

structural capabilities of the underlying base languages. The richness of the join point

model determines the ability of the composite language to attach declarative QoS aspect to

the structural elements in a model.

Table 2 summarizes the enhanced QoS aspect modeling capabilities of the composite

languages. All three composite languages had new support for modeling FailOverUnits,

which are associated with components. However, J2EEML′ could not support the QoS

advice association with required interfaces like PICML′ and ESML′ because J2EEML has

no support for ports built into it. Similarly, in ESML, FailOverUnit cannot be associated

with assemblies because assemblies are not supported.

All the above QoS modeling enhancements are projected into and manipulated from

the QoS view. This graphical view of the model is separate from the structural view where

2It describes an ability of a component to use an interface implementation supplied by some external
component.
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Structural PICML′ J2EEML′ ESML′

Elements
Component FailOverUnit FailOverUnit FailOverUnit
Assembly FailOverUnit FailOverUnit N.A.

Connections NetworkQoS NetworkQoS NetworkQoS
Provided SecurityQoS N.A. SecurityQoS

Interface Ports
Required SecurityQoS N.A. SecurityQoS

Interface Ports

Table 2: Enhanced QoS Aspect Modeling Capabilities of Composite Languages
PICML′, J2EEML′, and ESML′

hierarchical systems are composed using components. This feature provides visual separa-

tion of structural concerns from QoS concerns. Moreover, the metamodel of the structural

view and CQML can be enhanced in parallel, if needed, and can be composed again as

shown in Figure 2.

The results indicate that CQML can be composed with a variety of component-based

structural composition languages to introduce QoS modeling support in them while sup-

porting strong separation and independent evolution of QoS and structural concerns.
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CHAPTER III

WEAVING DEPENDABILITY CONCERNS IN SYSTEM ARTIFACTS

The previous chapter proposed aspect-oriented domain-specific modeling techniques

to modularize crosscutting fault-tolerance concerns. Even though the modeling techniques

can help capture availability requirements, these must ultimately be realized in the context

of the underlying hosting platforms, such as the component middleware. Realizing the

requirements transparently requires instrumentation in several system components such as

source code, connection and deployment metadata.

This chapter addresses the second challenge outlined in Section I – weaving depend-

ability concerns in system artifacts. First, an overview of the existing research in the field of

transparent fault-tolerance provisioning is presented. Second, a list of challenges that are

still unresolved is presented. Finally, a solution approach that automatically synthesizes

system artifacts from high-level requirements models is presented.

III.1 Related Research

Alexandersson et al. [6] recognizes the benefits of applying aspect-oriented program-

ming (AOP) techniques to modularize the crosscutting fault-tolerance concerns and also

identifies the limitations of existing AOP languages (e.g. AspectC++ [131]) to do the same.

AspectC++ language is extended to support five fault tolerance mechanisms including re-

covery cache, time redundant execution, recovery blocks, run-time checks, and control-

flow checking. The mechanisms proposed here could be used for incremental checkpoint-

ing to reduce state synchronization overhead.

Sevilla et al. [122] propose an aspect-oriented code generation approach for transpar-

ently providing fault-tolerance and load-balancing in CORBA-LC component model. Code

is generated from annotations in higher level graphical models of system composition.

38



Their technique uses active replication but does not propose any way to deal with non-

determinism. Also, they do not discuss how fault-monitoring, passive replication, state-

synchronization infrastructure can be synthesized and deployed.

Polze et. al., [110] propose a framework that uses design-time and configuration-time

information for automatic distributed, replicated instantiation of components. The require-

ments are specified declaratively using a graphical textual interface. The proposed aspect

weaver needs to combine fault-tolerance, timing, and consensus aspects at or before run-

time. However, the details of AOP mechanisms that compose multiple, possibly overlap-

ping, non-functional aspects is not discussed.

The CORRECT [20, 24] project describes a project that is looking at applying step-wise

refinement and OMG’s Model Driven Architecture [94] to automatically generate Java code

used in a fault tolerant distributed system. The project uses UML to describe the software

architecture in both a platform-independent and platform-specific form. Model-to-model

transformations are used to incrementally enrich the models with platform-specific artifacts

until the Java skeleton code is generated.

Automatic aspect generation is used in [136] to shift method call logging from FT-

CORBA [103] middleware to application level to improve performance. Thread-level syn-

chronization aspects are automatically weaved into the application code from a textual com-

ponent description provided by the developer. Finer granularity of thread synchronization

is shown to improve performance than method-call level synchronization of FT-CORBA.

JReplica [63] uses AOP to modularize the replication aspect of fault-tolerance. JReplica

replication primitives extend the Java language so that modularized fault-tolerance aspects

can be weaved around the classes implementing the business functionality. It ensures that

only the required method invocation paths are intercepted as opposed to all. However this

optimization is not possible while being completely application-transparent.

Afonso et al. [4] propose an AOP-based approach for modularizing fault tolerance code

from threaded applications in distributed embedded systems. Their approach is used to
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inject fault tolerance at the application thread level and considers several fault tolerant

mechanisms (e.g., recovery blocks, distributed recovery blocks, and N-version program-

ming [8]). Although they provide “base” aspect with reusable pointcuts, concrete aspect

implementation must be provided by the application developer.

Meta-object protocols (MOP) have been used [116, 139] to introduce fault-tolerance

transparently in dependable systems. Taiani et al. [139] propose a MOP for communication

of context information from middleware to the operating system using thread-local storage

(TLS). They exploit the introspection and interception capabilities of the operating system

to coordinate operations on mutex for ensuring determinism on actively replicated multi-

threaded servers.

Rubel et al. [115] demonstrate the applicability of a group communication protocol

(Spread [156]) for fault-tolerant hierarchical DRE systems developed using component

middleware. Their choice of active replication (and hence group communication) is pri-

marily due to rapid recovery requirements. While their approach appears to be application-

transparent, it requires costly modifications to MEAD [90] as well as CIAO [64] middle-

ware. Also, it is not clear how non-determinism issues of active replication are handled.

III.2 Unresolved Challenges

Despite a large body of existing research described in Section III.1, transparent provi-

sioning of fault-tolerance for DRE operational strings remains a significantly hard problem

due to the following reasons.

III.2.1 Lack of support for incremental model refinement for multi-QoS-aware mod-

eling

Prior work on automatic provisioning of fault-tolerance from models consider fault-

tolerance as the only dominant non-functional concern in the system. Moreover, they as-

sume that the replica is structurally identical to the primary mainly because their lack of

40



support for different levels of granularity of failover. These modeling tools do not consider

the possibility of non-isomorphic replication of operational strings, which is a valuable

fault-tolerance provisioning technique based on the principle of diversity.

Replica operational strings are often not the exact clones of the primary. Potential ways

they might be different are: (1) the replica operational string may have different imple-

mentation of components to allow graceful degradation in case of failures, (2) number of

components might be fewer or more than the primary, (3) end-to-end deadline might be

different and as a consequence, network-level QoS requirements could be different. There-

fore, the existing modeling techniques fail to incorporate not only the structural diversity

of fault-tolerant operational strings but also their simultaneous QoS requirements.

A desirable solution should not only automate fault-tolerance provisioning from the

models, but also provide an opportunity to the system designers to incrementally refine

other QoS concerns in the model. This requires a more step-wise approach as suggested in

OMG’s MDA [94], where the system is incrementally obtained by instantiating and refining

a specification of system structure, behavior, and QoS requirements.

III.2.2 Lack of middleware support for domain-specific recovery semantics

General purpose middleware have limitations in how many diverse domain-specific se-

mantics can they readily support out-of-the-box. Since different application domains may

impose different variations in fault tolerance (or for that matter, other forms of quality

of service) requirements, these semantics cannot be supported out-of-the-box in general-

purpose middleware since they are developed with an aim to be broadly applicable to a

wide range of domains. Developing a proprietary middleware solution for each application

domain is not a viable solution due to the high development and maintenance costs. The

modifications necessary to the middleware are seldom restricted to a small portion of the
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middleware. Instead they tend to impact multiple different parts of the middleware. Nat-

urally, a manual approach consumes significant development efforts and requires invasive

and permanent changes to the middleware.

Realizing these capabilities at application level impacts all the lifecycle phases of the

application. First, application developers must modify their interface descriptions speci-

fied in IDL files to specify new types of exceptions, which indicate domain-specific fault

conditions. Naturally, with changes in the interfaces, application developers must repro-

gram their application to conform to the modified interfaces. Modifying application source

code to support failure handling semantics is not scalable as multiple components need to

be modified to react to failures and provision failure recovery behavior. Further, such an

approach results in crosscutting of failure handling code with that of the normal behavior

across several component implementation modules.

Resolving this tension requires answering two important questions. First, how can

solutions to domain-specific fault tolerance requirements can be realized while leveraging

low cost, general-purpose middleware without permanently modifying it? An approach

based on aspect-oriented programming (AOP) [68] can be used to modularize the domain-

specific semantics as aspects, which can then be woven into general-purpose middleware

using aspect compilers. This creates specialized forms of general-purpose middleware that

support the domain-imposed properties.

Many such solutions to specialize middleware exist [66, 86], however, these solutions

are often handcrafted, which require a thorough understanding of the middleware design

and implementation. The second question therefore is how can these specializations be

automated to overcome the tedious, error-prone, and expensive manual approaches? Gen-

erative programming [28] offers a promising choice to address this question.
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III.2.3 Lack of support for auto-generation of full spectrum of fault-tolerance in-

frastructure

Transparent fault-tolerance provisioning for component-based DRE systems requires

more than just code synthesis for fault-masking done in the prior work. As described in

Section II.4.1, the design considerations for transparent fault-tolerance provisioning must

account for automation of a broad range of concerns.

First, an effective placement of the component replicas must be determined to increase

the overall availability of the system. Resource-aware algorithms such as [13, 34, 50, 59,

132] automate the placement decisions based on techniques such as response time analysis

and CPU schedulability. Modeling tools need a framework that can use different constraint-

based algorithms to determine an effective replica placement. In this chapter we discuss

a heuristics-based placement algorithm for operational strings as well as a framework that

can incorporate multiple algorithms.

Second, automatic instrumentation of the components is needed to achieve fault-masking.

Fault-masking hides system failures from the clients with minimal impact on the end-to-

end QoS (i.e., response time). They are also the point where client-specific recovery actions

are performed (e.g., redirect call to the backup replica). In the case operational strings, the

failure of the operational string may not be immediately apparent to the client components

that are not directly connected to the failing component. Such indirectly connected compo-

nents need to failover to the replica functionality in a timely manner to begin re-execution

of the failed invocation. As a result, enabling transparent failover of a group of components

requires complex coordination between fault-masking and recovery modules unlike single

component failover.

Third, to realize the dependability requirements transparently, the metadata used by the

underlying component middleware must also be instrumented automatically. The metadata

determines how the components are deployed and how their interconnections are setup

for remote invocations. The decisions of the intelligent placement algorithms must be
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codified in the deployment descriptors. Furthermore, non-replicated parts of the system

need to establish redundant connections to the replicated functionality it may failover to

upon failure. Codifying these decisions manually is often error-prone and time-consuming.

Therefore an automated support is highly desirable.

Finally, an important responsibility of a fault-tolerant system is to monitor the running

system for faults and when faults are detected they must be reported to higher level compo-

nents so that appropriate recovery procedure can be initiated. Developers of fault-tolerant

DRE systems must also reason about how the monitoring subsystem will be deployed and

configured so that failure of business components can be detected and reported in a timely

and reliable way. This additional responsibility of designing, deploying, and configuring

monitoring subsystem delays developers’ main task of developing business logic. There-

fore, an automated support for generating, deploying, configuring liveness monitoring in-

frastructure is highly desirable.

III.2.4 Lack of support for deployment-time network QoS provisioning

DRE systems must allocate and configure network resources based on the QoS require-

ments specified on their application flows so that network QoS assurance can be provided at

runtime. Advanced network QoS mechanisms such as DiffServ Bandwidth Broker [31] had

been used in the past by application developers to request a network service level and allo-

cate and manage network resources for their remote invocations. However, in component-

based systems, allocation of network-level resources must be transparent to application

components to ensure separation of concerns.

Two steps must be executed successfully two ensure availability of bandwidth at run-

time. First, the bandwidth requirements must be communicated to the programmatic net-

work QoS provisioning mechanisms, such as DiffServ bandwidth broker. The bandwidth

broker in turn configures the edge routers to provide differentiated service to packets marked

44



with specific code-points. Second, the application flows that desire the differentiated ser-

vice, must ensure the proper code-points in every packet sent over the network. Clearly, the

transport protocol sockets at the the source host must be configured with proper code-points

at the time of connection establishment.

To ensure transparent execution of the above two steps requires sophisticated middle-

ware infrastructures for resource allocation, deployment, and configuration. Prior work on

integrating network QoS mechanisms with middleware [41, 113, 117, 151] focused on pro-

viding middleware APIs to shield applications from directly interacting with complex net-

work QoS mechanism APIs. Middleware frameworks converted the specified application

QoS requirements into lower-level network QoS mechanism APIs and provided network

QoS assurances. These techniques, however, are not application transparent.

III.3 Solution Approach: GeneRative Aspects for Fault Tolerance

III.3.1 Overview of GRAFT

GRAFT is an automated multi-stage model-driven process to specialize middleware for

provisioning of domain-specific fault-tolerance requirements. Figure 10 shows the steps in

GRAFT in the form of a flowchart. At every successive stage, structural models of the

component-based DRE system are refined into more concrete models ultimately realizing

all the artifacts needed to deploy a transparent fault-tolerant component-based DRE sys-

tem. The challenges identified in Section III.2 are addressed using overlapping stages,

which involve automated model-to-model, model-to-code, and model-to-text transforma-

tions. Network QoS and end-to-end deadline requirements can also be specified manually

on the intermediate models generated using the automated transformations resulting into a

semi-automated approach.

Stage 1 in GRAFT leverages existing structural models of applications modeled as

component assemblies, and annotates them with domain-specific fault tolerance require-

ments using CQML language. The C-SAW [130] aspect-oriented model weaver is then
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Figure 10: GRAFT’s Multi-stage Process for Weaving Fault-tolerance Concerns in
System Architecture Models

used to transform the annotated models into models comprising new structural elements

corresponding to the replication degree requirements. This model-to-model transformation

step is necessary because it allows system developers to further refine the model with po-

tentially non-isomorphic replication of operational strings, network QoS, and end-to-end

deadline requirements.

Stage 2 in GRAFT leverages the pluggable component placement framework to deter-

mine the placement of replicated components in the system. The outcome of the placement

algorithm is reflected back in the model. Once again it is possible to override the automated

decisions by manual decisions due to the availability of the intermediate models.
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Stage 3 in GRAFT is another model-to-model transformation that generates the struc-

tural models of the monitoring infrastructure. This model transformation takes into account

the placement of the primary as well as backup components and collocates the monitoring

components. Generation of structural models is necessary to obtain platform-specific meta-

data (e.g., XML deployment descriptors) for deployment and configuration engines from

the output model of the transformation.

Stage 4 in GRAFT is a model-to-code transformation that generates client-specific

fault-masking code that otherwise would have been written manually to carry out spe-

cialization of the middleware. The generated code is modularized using AspectC++ [131]

language – an aspect-oriented extension to the traditional C++ language. Finally, GRAFT

uses the AspectC++ [131] compiler to weave in the specialized code into the middleware.

Finally, stage 5 in GRAFT is a model-to-text transformation carried out by model inter-

preters that traverse the refined structural models and generate the platform-specific meta-

data. The metadata contains component deployment configuration, connection establish-

ment configuration, and network QoS requirements for primary and backup components

and the monitoring infrastructure.

Because GRAFT is a design-time process, it can not be used to deployment-time net-

work QoS provisioning. Therefore a separate Network Resource Allocator Framework

(NetRAF) has been developed to configure network resources based on the network QoS

metadata generated by GRAFT for bandwidth assurance at runtime.

III.3.2 Stage 1: M2M transformation for multi-QoS-aware refinement of availability

models

Although CQML modularizes recovery semantics using the FailOverUnit, CQML is

at a higher level of abstraction than that of the existing modeling language tools, such as

deployment and configuration and packaging tools that understand structural models only.
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For this reason, high-level CQML models with fault tolerance requirements must be trans-

formed into purely structural models, automatically, so that GRAFT can leverage existing

generators for deployment and configuration metadata. Such a transformation requires sev-

eral steps, including (1) duplicating models of the primary components participating in a

FailOverUnit, and (2) duplicating their interconnections so that the necessary connections

can be established at deployment time for the replica DPU.

Figure 11: Automated Model Weaving Using C-SAW and FailOverUnit Replication Specifi-
cation Using ECL

GRAFT uses aspect-oriented model weaving [52] support provided by Constraint-Specification

Aspect Weaver (C-SAW) [130] tool. The C-SAW weaver is a generalized model-to-model

transformation engine for manipulating domain-specific models. C-SAW uses Embedded

Constraint Language (ECL) to specify transformations. C-SAW is used to instrument struc-

tural changes within the model according to some higher-level requirement that represents
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a crosscutting concern. As shown in Figure 11, we developed a model-to-model trans-

formation using C-SAW that takes a CQML model having a clear separation of structural

design and the fault tolerance requirements as an input model and generates a structural

output model in response to the fault tolerance requirements.

1: aspect FailOverUnit() {
2: // Apply FailOverUnit aspect on all the component assemblies
3: rootFolder().models("ComponentAssembly")->copyAndWeave();
4: }
5: strategy copyAndWeave() {
6: // Local declarations.
7: declare assembly : model;
8: declare fail_over_unit_list : modelList;
9:
10: // "self" is equivalent to "this" in Java and C++.
11: fail_over_unit_list := self.models("FailOverUnit");
12:
13: // Weave aspect only if there is at least one failover-unit.
14: if fail_over_unit_list->size() > 0 then
15:
16: // Make a clone of the original assembly (self) and rename it.
17: assembly := self.clone(self.parent());
18: assembly.setName(self.name() + "_Weaved_Assembly");
19:
20: // For each failover-unit, weave the aspect
21: fail_over_unit_list->createReplicas();
22:
23: endif;
24: }
25: strategy createReplicas() {
26: // Local declarations
27: declare r : integer;
28: declare par_list : objectList; // List of participants.
29:
30: // Get the desired number of replicas given as an attribute.
31: r := self.getAttribute("Replica");
32:
33: // Find the components participating in the failover-unit (self)
34: par_list := self.parent().connections("Participates")
35: ->select (c | c.destination() == self)
36: ->source();
37:
38: // Replicate the components followed by the connections.
39: par_list->replicateComponent(r, 1);
40: par_list->replicateConnections(par_list, r, 1);
41: }

Listing 1: ECL Specification of FailOverUnit Aspect

We used Embedded Constraint Language (ECL) to specify the transformation because
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it supports better modularization of the structural changes than an equivalent transforma-

tion written in third generation imperative languages such as Java and C++. Step 1 in Fig-

ure 11 represents a CQML model, which has fault-tolerance requirements modeled along

with system’s structure. Step 2 in Figure 11 show how a CAML model is automatically

enriched using a transformation written using ECL. The transformation specification is pa-

rameterized and accepts the number of desired replicas as a parameter, which is specified

as an integer attribute of a FailOverUnit in step 1.

The transformation is divided into multiple ECL strategies (shown in Listing 1 that

perform two important steps. First, it creates clones of the participant components of a

FailOverUnit. Second, it replicates the interconnections between the primary components

into replica components. The result of these two steps is that structurally identical copies

of the primary component models are created. This is necessary because the deployment

and configuration tools do not distinguish between the primary components and the replica

components. Therefore, structurally equivalent replicas of the primary compoenent models

are created using automated ECL transformation.

As mentioend before, in component-based DRE systems based on operational string

model may require non-isomorphic replication of the application workflow. The outcome

of the above model-to-model transformation can be used as a starting point for making the

necessary changes assuming that the replica operational string is not vastly different from

the primary. At this stage, network level QoS requirement can also be specified on the

primary as well as backup operational string models.

III.3.3 Stage 2: Automated replica placement for high-availability

High-availability solution for enterprise DRE systems must minimize the risk of simul-

taneous failures of replicated functionality. This requires effective replica placement algo-

rithms, where replication is provided for protection units that are modeled as FailOverUnits.

GRAFT uses GME’s plugin capabilities to add model interpreters. One such model
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interpreter addresses the replica placement problem. The placement model interpreter pro-

vides a strategizable framework that can use different constraint-based algorithms to de-

termine an effective replica placement plan to minimize the co-failure probability of the

system as a whole.

Formulation of replica placement problem instance in GRAFT. In one instantia-

tion of the formulation of the replica placement problem within our strategizable model

interpreter, we use mathematical vectors to represent the distance of the replicas from the

primary component. If the primary component has N replicas, then we form N orthogonal

vectors, where each vector represents the distance from the primary component node in

terms of hops captured in the shared risk group hierarchy. The magnitude of the resultant

vector of the N orthogonal vectors is used to compare different deployment configurations

and to find the one that satisfies the constraints.

In this formulation of the placement problem algorithm, we have taken care to avoid

generation of some obviously undesirable deployment configurations of the system. For

example, it does not allow deployment configuration where all the replicas of a component

are located in the same host. This is obviously undesirable in dependable enterprise DRE

systems because placing multiple replicas in the same host increases the risk of simultane-

ous failure of replicas.

Prototype heuristic algorithm using the distance metric. The prototype placement

algorithm that we have developed maximizes the distance of the replicas from the primary

replica but the pair-wise distance between replicas themselves can be small. In other words,

the replicas themselves can group together in closely located hosts that are farthest from

the primary host. Such a deployment configuration is skewed and undesirable. To alle-

viate the problem we apply a penalty function to the resultant magnitude of the vector.

The penalty function gives more precedence to uniform deployments than highly skewed

deployments. The penalty function that we have used is a simple standard deviation of

the distances of individual replicas from the primary component. We can generate better
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configurations by penalizing highly skewed deployment configurations heavily compared

to the more uniform deployment configurations.

1. Compute the distance from each of the replicas to the primary for a placement.

2. Record each distance as a vector, where all vectors are orthogonal.

3. Add the vectors to obtain a resultant.

4. Compute the magnitude of the resultant.

5. Use the resultant in all comparisons (either among placements or against a threshold)

6. Apply a penalty function to the composite distance (e.g. pairwise replica distance)

Listing 2: Replica Placement Heuristics

For example, consider two resultant vectors v1{4,4,4} and v2{1,1,8} having 3 dimen-

sions. Although the magnitude of v2 is much greater than v1, the deployment configura-

tion captured in v1 is more desirable than v2 because the replicas are spread across more

uniformly around the primary unlike v2. The heuristic algorithm for the prototype imple-

mentation of the deployment algorithm is illustrated in Listing 2.

III.3.4 Stage 3: M2M transformation for weaving monitoring infrastructure

in this section we present an AOM solution to automatically generate, deploy, and con-

figure liveness monitoring infrastructure for fault-tolerant component-based systems from

their requirements. We use CQML’s FailOverUnit modeling capability to capture fault-

tolerance requirements of one or more components.

Our solution uses Constraint Specification Aspect Weaver (C-SAW) [130], which is a

generalized model-to-model transformation engine for manipulating domain-specific mod-

els, which is implemented as a plug-in for the Generic Modeling Environment. It can also

be used to instrument structural changes within the model according to some higher-level

requirement that represents a crosscutting concern.
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Figure 12: Automatic Weaving of Monitoring Components Using Embedded Con-
straint Language Specification

As shown in Figure 12, we have developed model transformation specifications for

CQML models using C-SAW’s input language: Embedded Constraint Language (ECL).

These specifications transform CQML models (shown by (1) in Figure 12) with FailOverUnit

into structural models (shown by (2) in Figure 12) containing monitoring components,

their interconnections, and their deployment information. The model-to-model transfor-

mation bridges the gap between the higher-level fault-tolerance requirements captured us-

ing FailOverUnit and lower-level structural models used by existing modeling tools, such

as deployment, configuration and packaging tools that generate platform-specific metadata

based on structural models. Such a transformation requires several steps, including (1)

53



generating models of monitoring components, (2) generating the necessary interconnec-

tions between the instances of monitoring components, and (3) generate deployment and

configuration models for instances of monitoring components so that they are deployed

along with the business components when the system is deployed.

Algorithm 1: Transformation Algorithm for Generating Monitoring Infrastructure
1: M : Systems’s structural model with annotations.
2: D : Deployment model of the system
3: Me : Extended M with monitoring components
4: De : Deployment model of Me
5: c : A business component
6: Sc : A set of collocated components such that c ∈ Sc
7: HBc : Heartbeat component monitoring c
8: F : Fault Detector component.

9: Input: M, D
10: Output: Me, De (Initially empty)

11: begin
12: Me := M
13: De := D
14: SF := /0
15: F := New fault detector component
16: Me := Me∪F
17: SF := SF ∪F
18: De := De∪SF
19: for each component c in M do
20: if a FailOverUnit is associated with c
21: let HBc := New heartbeat component for c.
22: Me := Me∪HBc
23: let i := New connection from F to HBc.
24: Me := Me∪ i
25: let c ∈ Sc and Sc ∈ D
26: Sc := Sc∪HBc
27: De := De∪Sc
28: endif
29: end for
30: end

The algorithm behind the transformation is shown in Algorithm 1. The transformation
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accepts system’s structural model and a deployment model as input and produces an ex-

tended structural model with monitoring components and an extended deployment model

with placement of monitoring components as output. A deployment model can be viewed

as a simple mapping of components to physical hosts in a system. Components are called

collocated components when they are hosted in the same process on the same host. When

a process or a host dies, all the components hosted in that process/host become unavailable,

which can be detected remotely using monitoring infrastructure.

The algorithm begins with a copy of system’s structural and deployment model in the

corresponding extended models. For every structural model, a new Fault Detector com-

ponent is added in the extended model along with its placement in the deployment model.

Followed by that, for every business component in the original structural model, a new

Heartbeat component is added that is collocated with the business component. The col-

located components are placed in the same process as that of the business component at

run-time. A connection from the FaultDetector component to every new Heartbeat com-

ponent is created so that the former can poll the liveness of the later at runtime. As a

result of the algorithm, monitoring components are weaved-in the original structural and

deployment models of the system.

module Monitor { // A module defines a namespace.
interface Monitorable { // An interface for checking liveness.

bool isAlive(void); // Returns true if component is alive.
};
component Heartbeat { // Implements Monitorable interface.

provides Monitorable alive; // Used by the FaultDetector.
};
component FaultDetector { // Polls liveness

requires Monitorable poll; // Uses Heartbeat components.
};
}

Listing 3: OMG’s IDL 3.0 Interfaces Used by The Fault Monitoring Infrastructure
Generated by ECL Transformation

The actual implementation of the Heartbeat and FaultDetector components is provided
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as a library using Component Integrated ACE ORB (CIAO), which is our open-source im-

plementation of OMG’s Light-weight CORBA Component Model specification. The com-

ponent library uses the OMG’s IDL 3.0 interfaces shown in Listing 3. The FaultDetector

component periodically invokes isAlive remote method on all the instances of the Heart-

beat component. The implementation of isAlive method in Heartbeat component returns

true indicating the fact that it is “alive”. If a Heartbeat component does not respond within

a configurable timeout period, the FaultDetector concludes that the Heartbeat component

and the collocated business component have failed. It initiates a recovery procedure after

detecting the failure.

III.3.5 Stage 4: Automatic weaving of code for fault-masking and recovery

The MDE tools assist in deploying the entire system and configuring the middleware,

however, they do not specialize the middleware. It is necessary for the middleware to

be specialized using the domain-specific fault tolerance semantics specified in the MDE

tools, without expending any manual effort. To address this challenge, GRAFT uses a

deployment-time generative approach that augments general-purpose middleware with the

desired specializations.

GRAFT specializes the client-side middleware stubs. Client-side middleware stubs are

used to communicate exceptions to client-side applications so that they can initiate ap-

propriate recovery procedure in response to that. As mentioned in Section III.4.1, these

exceptions could be raised because of (1) hardware faults detected by the server or (2)

software failure of the server side component itself. Both are examples of catastrophic

exceptions, in response to which clients must initiate group recovery. To simplify devel-

opers’ job, GRAFT generates code at deployment-time that augments the behavior of the

middleware-generated stubs to catch failure exceptions, and initiate domain-specific failure

recovery actions.

56



Figure 13: Automated Generation of Failure Detection and Handling Code

GRAFT provides a model interpreter, which (1) traverses the CAML model, (2) identi-

fies the components that participate in FailOverUnits, (3) identifies the components that are

clients of the FailOverUnit participant components, and (4) generates modularized source

code that provides failure detection and recovery as shown by Step 1 in Figure 13. Depend-

ing upon the role of the component, two different types of behaviors are generated by the

interpreter.

We have identified two different roles of components with respect to a FailOverUnit:

(1) participants of a FailOverUnit (e.g., FC component) and (2) non-participant client com-

ponents that are directly communicating with one or more participants of the FailOverUnit

(e.g., MFC component). The participants of a DPU do not failover, however, clients of a

DPU fail over to a replica FailOverUnit. To allow this difference in the behavior, failover
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code is generated only for the client components whereas the code for FailOverUnit partic-

ipant components do not perform failover; instead they trigger failover in the client com-

ponents of the FailOverUnit.

GRAFT encodes this difference in behavior by generating different AspectC++ code for

each component associated with a FailOverUnit depending upon whether the component is

a participant or a client. For participant components, for every method in the interface that

can potentially raise a catastrophic exception, an around advice is generated that catches

exceptions representing catastrophic failure and initiates a shutdown procedure for all the

participant components. For the client components, however, a different around advice is

generated that not only detects the failure and initiates a group shutdown procedure but also

performs an automatic failover to a replica FailOverUnit.

To modularize and transparently weave the failure detection and recovery functional-

ity within the stubs, GRAFT leverages Aspect-oriented Programming (AOP) [68] support

provided by the AspectC++ [131] compiler. The CAML model interpreter generates As-

pectC++ code,1 which is then woven by the AspectC++ compiler into stubs at the client

side producing specialized stub implementations as shown by Step 2 in Figure 13. Finally,

the specialized source code of the stubs are compiled using a traditional C++ compiler.

III.3.6 Stage 5: Automatic synthesis of deployment metadata for high-availability

The model interpreters and generative tools in GRAFT use the dependability require-

ments captured in the models for synthesizing metadata used to provision dependability for

enterprise DRE systems. In order to realize such an automation in the provisioning process

several artifacts of dependability must be addressed: (a) the designer of the dependable

system has to annotate the desired degree of replication of the protected components in

the model, (b) the generative tools have to process the replication requirements and pro-

duce deployment metadata that reflects the number of physical software components that

1Due to space restrictions we are not showing the generated aspect code.
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will actually be deployed, and (c) derive the complex connection topology interconnecting

the generated components, which is dictated by the degree and style of replication of the

primary component as well as replication requirements of the components it interacts with.

Deployment metadata generation framework As noted earlier, the component middle-

ware platforms used to host the enterprise DRE systems use standardized XML-based

metadata descriptors to describe the deployment plans of the entire system, which the run-

time system uses to actually deploy the different components of the system. Our challenge

involved enhancing the metadata descriptors to include high availability provisioning deci-

sions. For this goal to realize, GRAFT’s generative capabilities had to be integrated with

the existing generators available in CQML without obtrusive changes to existing capabil-

ities. This approach ensures that generators for QoS issues beyond dependability, such as

network QoS, security, can seamlessly be integrated with CQML.

To address these concerns, we have developed an extensible framework called The De-

ployment Plan Framework that allows augmentation of metadata generation “on-the-fly”

as it is being generated. The framework exposes a fixed set of hooks to be filled in by

the developer of the existing and any new CQML model interpreters including the GRAFT

model interpreters. The main job of the deployment framework is to generate the standard-

ized metadata describing the components, their implementations, their inter-connections

and so on. Additionally, it invokes predefined hook methods implemented by different

QoS model interpreters of CQML. The GRAFT model interpreter implements a subset of

a large set of different possible hook methods. The hook methods “inject” auto-generated

standardized metadata in response to the availability requirements captured in the model.

The metadata generated on-the-fly blends into the other standardized metadata.

This architecture allows large scale reuse of earlier code base that deals with the basic

structure and composition capabilities of PICML/CQML. The developer producing QoS

enhancements to the existing modeling capabilities of CQML need not be concerned with

the other complexity of the framework and the format of the standardized descriptors, but
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simply add/modify the metadata for the QoS dimension they are addressing. Our GRAFT

model interpreter exploits these capabilities of the Deployment Plan Framework to ”inject”

three different kinds of metadata.

• Replica component instances of the primary protected component depending upon

replication degree annotated in the model. For example, if replication degree of an

FOU is 3, then two replicas of the primary FOU are created. Thus, two replicas of

each component in the FOU are effectively added by the interpreter.

• Component connection metadata is injected based on the replication style and

degree of replication. The incoming connections to the protected components are

marked with special annotations so that the run-time system can use suitable imple-

mentations to realize them. One such possible annotation is IOGR, i.e. Interoperable

Object Group Reference. IOGR is a part of the FT-CORBA [92] standard.

• Deployment metadata is the assignment of components to computing resources

available in the system. This metadata includes information for all the primary pro-

tected components, their replicas and the monitoring infrastructure components (e.g.

Heartbeat components).

Handling complex connections. As shown in Figure 14, shows the effect of the replication

style and the degree of replication on the complexity of the connection establishment. In

the original system, the Processor component and the Planner component have exactly

one connection between them. The Figure 14 captures the multiplicative increase in the

number of connections when both, the Processor component and the Planner component,

are protected using active replication. Each Processor component, primary as well as its

replica has to make three connections to each member of the Planner replica group because

the degree of replication of the Planner fail over unit (FOU) is three. In general, if the

source component of the connection is replicated M times and the destination component

is replicated N times then the number of connections grow by a factor of M x N.
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Figure 14: Complexity of connection generation

Note that the diagram only indicates the necessary number of connections the middle-

ware has to establish when components are deployed. These connection may or may not

actually be used to send requests across because it really depends upon where request/reply

suppression is in place. Nevertheless, the component container has to prepare for any un-

foreseen failures and has to establish connections apriori in order to avoid the latency of

connection establishment later when failures occur. The model interpreter that we have

developed completely hides away the complexity of modeling the component replica in-

stances and the connections between them.
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III.4 Evaluation of GRAFT

In this section we evaluate the model-to-model, model-to-text transformation capabili-

ties of GRAFT. First we present a representative case-study and later evaluate GRAFT by

measuring the efforts saved to specialize middleware in the context of the case-study. Ad-

ditionally we also qualitatively validate the runtime behavior of the specialized middleware

in meeting the fault tolerance requirements of the MHS case study.

III.4.1 Case-study for GRAFT

To better present our GRAFT solution, we illustrate a case study that benefits from

GRAFT to realize its fault tolerance requirements. Our case study is a warehouse material

handling system (MHS). A MHS provides automated monitoring, management, control,

and flow of warehouse goods and assets. A MHS represents a class of conveyor systems

used by couriers (e.g., UPS, DHL, and Fedex), airport baggage handling, retailers (e.g.,

Walmart and Target), food processing and bottling.

Architecture. The software components in the MHS architecture can be classified as (1)

management components, which make decisions such as where to store incoming goods,

(2) material flow control (MFC) components, which provide support for warehouse man-

agement components by determining the routes the goods have to traverse, and (3) hard-

ware interface layer (HIL) components, which control MHS hardware, such as conveyor

belts and flippers.

Figure 15 shows a subset of the MHS operations, where a MFC component directs

goods within the warehouse using the route BELT A→BELT B or the route BELT A→BELT

C. Flippers F and F′ assist in directing goods from BELT A to BELT B and BELT C, re-

spectively. Further, as shown in Figure 15, HIL components, such as Motor Controllers

(MC1, MC2, MC1′, MC2′) and the Flipper Controller (FC, FC′), control the belt motors

and flippers, respectively. The MFC component instructs the Flipper Controller component
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to flip, which in turn instructs the Motor Controller components to start the motors and

begin transporting goods.

Figure 15: A Distributed Processing Unit Controlling Conveyor Belts

Domain-specific Fault Model. As goods are transported using different conveyor belts,

faults could occur. Two broad kinds of faults are possible in the MHS system: (1) hardware

faults, (e.g., jamming of the flipper) and (2) software faults, (e.g., MC or FC component

crashes). Hardware faults in the MHS system are detected by their associated HIL compo-

nents and communicated using application-specific software exceptions. Software faults,

such as software component crashes, are detected by the clients of those components using

system-level software exceptions generated by the underlying middleware. Both types of

faults affect the reliable and correct operation of the MHS system, and are classified as

catastrophic faults.

Domain-specific Failure Handling and Recovery Semantics. Failure recovery actions

in MHS are based on warm-passive replication semantics. When catastrophic faults are
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detected in a MHS, the desired system response is to shutdown the affected hardware as-

sembly and activate a backup hardware assembly automatically. For example, when one of

the motors of BELT B or flipper F fails, the MFC component should stop using the BELT B

and route the packages via BELT C instead. The consequence of such a decision means that

the HIL components associated with BELT B should be deactivated and those with BELT C

as well as flipper F′ need to be activated.

The MHS thus imposes a group-based fault tolerance semantics on the software com-

ponents controlling the physical hardware. If any one component of the group fails, the

failure prevents the whole group from functioning and warrants a failover to another group.

We call this group of components as a distributed processing unit (DPU) – in this case

MC1, MC2 and FC for BELT B. Further, the clients of a DPU (e.g., the MFC component)

must failover to an alternative DPU if any of the components in the primary DPU fails.

Fault-tolerance Modeling Efforts
Component # of original # of replica # of replica

Name connections components connections
Material Flow Control 1 / 1 0 / 0 2 / 0

Flipper Controller 2 / 2 2 / 0 4 / 0
Motor Controller 1 1 / 1 2 / 0 2 / 0
Motor Controller 2 2 / 1 2 / 0 2 / 0

Table 3: Savings in Fault-tolerance Modeling Efforts in Developing MHS Casestudy
Without/With GRAFT

III.4.2 Evaluating savings in effort to specialize middleware

Table 3 shows the manual efforts saved by adopting GRAFT’s approach in designing

and developing the MHS case study described in earlier. The table shows that there is

reduction in the efforts of modeling replica components and connections for all the four
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Fault-tolerance Programming Efforts
Component # of try # of catch Total # of

Name blocks blocks lines
Material Flow Control 1 / 0 3 / 0 45 / 0

Flipper Controller 2 / 0 6 / 0 90 / 0
Motor Controller 1 0 / 0 0 / 0 0 / 0
Motor Controller 2 0 / 0 0 / 0 0 / 0

Table 4: Savings in Fault-tolerance Programming Efforts in Developing MHS Cas-
estudy Without/With GRAFT

components. The declarative nature of CQML’s FailOverUnit annotations and the auto-

mated model-to-model transformation thereafter, obviates the need for modeling the replica

components and connections explicitly, resulting in a modular design of the MHS system.

A significant reduction in programming efforts is achieved due to automatic generation

of code that handles failure conditions at runtime in the MHS system. Listing 4 shows a

sample generated AspectC++ code from the CAML model of our MHS case-study. The

generated code for each component is different depending upon the number of remote inter-

faces used by a component, the number of methods in each remote interface, and the types

of exceptions raised by the methods. The number of try blocks in Table 3 corresponds

to the number of remote methods whereas the number of catch blocks correspond to the

number of exceptions.

For example, when MFC component invokes a method of the FC component, 45 lines

of aspect code is generated to handle group recovery semantics for that one function call

alone. GRAFT’s approach yields higher savings in modeling and programming efforts for

larger, more complex systems, which may have hundreds of components with tens of them

requiring fault-tolerance capabilities.
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1: aspect FailOverUnit_Client {
2: // Auto-generated array of names of FailOverUnit participants.
3: char * FOU_Participants[] = { "FlipperController",
4: "MotorController1",
5: "MotorController2",
6: 0 };
7: size_t failure_count_; // Initialized to zero.
8:
9: // Contains remote object reference of the replica.
10: HIL::IFlipperController_var replica_ref_;
11:
12: // Weave advice around local stub of the flip() method of MFC.
13: advice execution ("void HIL::IFlipperController::flip()")
14: : around () // The advice is applied around the flip method.
15: {
16: do {
17: // Use the remote reference of the backup FlipperController
18: // component only if the primary component has failed.
19:
20: if (failure_count_ > 0)
21: // "_that" is used to change "this" pointer before proceeding.
22: // Use live object reference of the replica.
23: tjp->action()._that = replica_ref_.in();
24:
25: try {
26: // Continue the flip() function call as usual.
27: tjp->proceed ();
28: break;
29: }
30: catch(HIL::FlipperJamException & e) {
31: handle_exception(e); // deactivates FailOverUnit participants
32: }
33: catch(CORBA::COMM_FAILURE & e) {
34: handle_exception(e); // deactivates FailOverUnit participants
35: }
36: catch(CORBA::TRANSIENT & e) {
37: handle_exception(e); // deactivates FailOverUnit participants
38: }
39: // Application-specific non-catastrophic exceptions are passed.
40: } while (replica_ref_.in() != NULL_POINTER);
41: }
42: // For other functions of the IFlipperController interface, similar
43: // around advices are generated with corresponding execution
44: // pointcuts and catastrophic exceptions.
45: };

Listing 4: Generated AspectC++ code for Transparent Fault Masking
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III.4.3 Qualitative validation of runtime behavior

Figure 16 shows how the specialized stubs generated by GRAFT react to failures at run-

time and provide group recovery semantics. To control the lifecycle of the components, the

aspect code communicates with domain application manager (DAM), which is a standard

deployment and configuration infrastructure service defined in LwCCM. It provides high-

level application programming interface (API) to manage lifecycle of application compo-

nents. Below, we describe the steps taken by GRAFT when a catastrophic exception is

raised.

Figure 16: Runtime Steps Showing Group Recovery Using GRAFT

1. As shown in Figure 16, MFC component directly communicates with the FC component,

which in turn communicates with MC1 and MC2 components. Consider a scenario where

FC makes a call on MC1 and MC1 detects a motor failure and raises MotorFailureEx-

ception. The exception is caught by the generated aspect code in FC indicated by (1) in

Figure 16.
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2. The specialized stubs in FC, initiate shutdown of the primary DPU by instructing the

DAM to remove participating components of the primary DPU (FC, MC1, and MC2),

including itself.

3. DAM instructs the containers hosting the primary DPU components (FC, MC1, and MC2)

to passivate and remove the components.

4. Removal of FC component triggers a system-level exception at the MFC component,

which is again caught by the specialized stub at MFC-side.

5. The specialized stubs for MFC fetch a reference of FC′ from the naming service. The

naming service is assumed to be pre-configured at deployment-time with lookup infor-

mation for all the components in the system.

6. MFC successfully fails over to the replica DPU (FC′, MC1′, and MC2′) and resumes the

earlier incomplete remote function call. Finally, FC′ communicates with MC1′ and MC2′

to drive the belt motors of the backup BELT C and continues the operation of MHS system

without interruption.

III.5 Deployment-time Network QoS Provisioning Framework

Network Resource Allocator Framework (NetRAF) is a resource allocator engine that

allocates network resources for DRE systems using a variety of network QoS mechanisms,

such as DiffServ and IntServ. As shown in Figure 17, the NetQoS modeling capabilities in

CQML capture the modeled per-flow network QoS requirements in the form of a deploy-

ment plan that is input to NetRAF.

When using NetQoS, application developers only annotate the connection between the

component instances. Since NetRAF operates on the deployment plan that captures this

modeling effort, network QoS mechanisms are used only for the connection on which QoS

attributes are added. NetRAF thus improves conventional approaches [117] that modify ap-

plication source code to work with network QoS mechanisms, which can become complex

when source code is reused in a wide range of deployment contexts.
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Figure 17: NetRAF’s Network Resource Allocation Capabilities

NetRAF’s Network Resource Allocator Manager accepts application QoS requests at

pre-deployment-time and determines the network QoS mechanism (e.g., DiffServ or IntServ)

to use to serve the requests. As shown in Figure 17, NetRAF’s Network Resource Allocator

Manager works with QoS mechanism-specific allocators (e.g., DiffServ Allocator), which

shields it from interacting directly with complex APIs for network QoS mechanisms (e.g.,

DiffServ Bandwidth Broker), thereby enhancing NetQoPE’s flexibility.

Multiple allocators (e.g., IntServ Allocator and DiffServ Allocator) can be used by

NetRAF’s Network Resource Allocator Manager to serve the needs of small-scale deploy-

ments (where IntServ and DiffServ are both suitable) and large-scale deployments (where

DiffServ often provides better scalability). For example, the shaded cloud connected to the

Network Resource Allocator Manager in Figure 17 shows how NetRAF can be extended to

work with other network QoS mechanisms, such as IntServ.

NetRAF invokes the Bandwidth Broker’s admission control capabilities [31] by feeding
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it one application flow at a time. If all flows cannot be admitted, NetRAF allows devel-

opers an option to modify the deployment context since applications have not yet been

deployed. Example modifications include changing component implementations to con-

sume fewer resources or change the source and destination nodes. As demonstrated in later

in this chapter, this capability helps NetRAF incur lower overhead than conventional ap-

proaches [117, 151] that perform validation decisions when applications are deployed and

operated at runtime.

NetRAF’s DiffServ Allocator instructs the Bandwidth Broker to reserve bi-directional

resources in the specified classes. The Bandwidth Broker determines the bi-directional

DSCPs and NetRAF encodes those values as connection attributes in the deployment plan.

In addition, the Bandwidth Broker uses its Flow Provisioner [31] to configure the routers to

provide appropriate per-hop behavior when they receive IP packets with the specified DSCP

values. Component containers are auto-configured to add these DSCPs when applications

invoke remote operations.

III.6 Evaluation of Network QoS Provisioning Framework

III.6.1 Case-study for NetQoS

Figure 18 shows a representative DRE system in an office enterprise security and hazard

sensing environment, which we use as a case study to demonstrate and evaluate NetQoPE’s

model-driven, middleware-guided network QoS provisioning capabilities.

Enterprises often transport network traffic using an IP network over high-speed Eth-

ernet. Network traffic in an enterprise can be grouped into several classes, including (1)

e-mail, videoconferencing, and normal business traffic, and (2) sensory and imagery traffic

of the safety/security hardware (such as fire/smoke sensors) installed on office premises.

Our case study makes the common assumption that safety/security traffic is more critical

than other traffic, and thus focuses on model-driven, middleware-guided mechanisms to
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assure the specified QoS for this type of traffic in the presence of other traffic that shares

the same network.

As shown in Figure 18, our case study uses software controllers to manage hardware

devices, such as sensors and monitors. Each sensor/camera software controller filters the

sensory/imagery information and relays them to the monitor software controllers that dis-

play the information. These software controllers were developed using Lightweight CCM

(LwCCM) [98] and the traffic between these software controllers uses a bandwidth bro-

ker [31] to manage network resources via DiffServ network QoS mechanisms. Although

the case study in this chapter focuses on DiffServ and LwCCM, NetQoPE is designed for

use with other network QoS mechanisms (e.g., IntServ) and component middleware tech-

nologies (e.g., J2EE).

Figure 18: Network Configuration in an Enterprise Security and Hazard Sensing
Environment
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Component-based applications in our case study use bandwidth broker services via

the following middleware-guided steps: (1) network QoS requirements are specified on

each application flow, along with information on the source and destination IP and port

addresses, (2) the bandwidth broker is invoked to reserve network resources along the net-

work paths for each application flow, configure the corresponding network routers, and

obtain per-flow DSCP values to help enforce network QoS, and (3) remote operations are

invoked with appropriate DSCP values added to the IP packets so that configured routers

can provide per-flow differentiated performance.

III.6.2 Evaluating Model-driven Network QoS Provisioning

Rationale. NetQoPE is designed to provide network QoS to applications in an extensi-

ble manner. This experiment evaluates NetQoPE’s application-transparent network QoS

provisioning capabilities.

Methodology. We first define a taxonomy for evaluating technologies that provide network

QoS assurances to end-to-end DRE application flows. Conventional approaches can be

classified as being (1) object-oriented [40, 113, 117, 151], (2) aspect-oriented [38], and (3)

component middleware-based [33, 123]. We now describe how each approach provides the

following functionality needed to leverage network QoS mechanism capabilities:

•Requirements specification. In conventional approaches applications use (1) middleware-

based APIs [40, 151], (2) contract definition languages [113, 117], (3) runtime aspects [38],

or (4) specialized component middleware container interfaces [33] to specify network QoS

requirements. Whenever the deployment context and the associated QoS requirements

change, however, application source code must also change, thereby limiting reusability. In

contrast NetQoS provides domain-specific, declarative techniques that increase reusability

across different deployment contexts and alleviate the need to programatically specify QoS

requirements.

• Network resource allocation. Conventional approaches require the deployment of
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applications before their per-flow network resource requirements can be provisioned by

network QoS mechanisms. If the required resources cannot be allocated for those applica-

tions they must be stopped, new resource requirements must be specified, and the resource

reservation process must be restarted. This approach is tedious since it involves deploying

and re-deploying applications multiple times (potentially on different nodes). In contrast,

NetRAF handles deployment changes through NetQoS models and allocates resources dur-

ing pre-deployment before applications have been deployed. This reduces the effort needed

to change deployment topology or application QoS requirements.

• Network QoS enforcement. Conventional approaches modify application source

code [113] or programming model [33] to instruct the middleware to enforce runtime QoS

for their remote invocations. Applications must therefore be designed to handle two differ-

ent usecases—to enforce QoS and when no QoS is required—thereby limiting application

reusability. In contrast NetCON uses a container programming model that transparently

enforces runtime QoS for applications without changing their source code or programming

model.

Using the conventional approaches and the NetQoPE approach, we now compare the

manual effort required to provide network QoS to the 4 end-to-end application flows de-

scribed in the case-study. We decompose the manual effort across the following general

steps: (1) implementation, where software developers write code, (2) deployment, where

system deployers map (or stop) application components on their target nodes, and (3) mod-

eling tool use, where application developers use NetQoPE to model a DRE application

structure and specify per-flow QoS requirements. In our evaluation, a complete QoS pro-

visioning lifecycle consists of specifying requirements, allocating resources, deploying ap-

plications, and stopping applications when they are finished.

To compare NetQoPE with manual efforts, we devised a realistic scenario for the 4 end-

to-end application flows described the case-study. In this scenario, three sets of experiments

were conducted with the following deployment variants:
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• In the first variant, all 4 end-to-end application flows were configured with the QoS

requirements specified in the case-study.

• In the second variant, to demonstrate the effect of changes in QoS requirements on

manual efforts we modified the bandwidth requirements from 20 Mbps to 12 Mbps for each

end-to-end flow.

• In the third variant, we demonstrate the effect of changes in QoS requirements and

resource (re)reservations taken together on manual efforts. We modified bandwidth re-

quirements of all flows from 12 Mbps to 16 Mbps. We also changed temperature sensor

controller component to use the high reliability (HR) class instead of the best effort BE class,

as described the case-study. Finally, we increased the background HR class traffic across the

blades so that the resource reservation request for the flow between temperature sensor and

monitor controller components fails. In response, deployment contexts (e.g., bandwidth

requirements, source and destination nodes) were changed and resource re-reservation was

performed.

For the first deployment, the manual effort required using conventional approaches in-

volved 10 steps: (1) modify source code for each of the 4 components to specify their QoS

requirements (8 implementation steps), (2) deploy all components (1 deployment step),

and (3) shutdown all components (1 deployment step). Conversely, the effort required us-

ing NetQoPE involved the following 4 steps: (1) model the DRE application structure of

all 4 end-to-end application flows using NetQoS (1 modeling step), (2) annotate QoS spec-

ifications on each end-to-end application flow (1 modeling step), (3) deploy all components

(1 deployment step), and (4) shutdown all components (1 deployment step).

For the second deployment, the effort required using a conventional approach is also 10

steps since source code modifications are needed as the deployment contexts changed (in

this case, the bandwidth requirements changed across 4 different deployment contexts). In

contrast, the effort required using NetQoPE involves 3: (1) annotate QoS specifications on
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each end-to-end application flow (1 modeling step), (2) deploy all components (1 deploy-

ment step), and (3) shutdown all components (1 deployment step). Application developers

also reused NetQoS’s application structure model created for the initial deployment, which

helped reduce the required efforts by a step.

For the third deployment, the effort required using a conventional approach is 13 steps:

(1) modify source code of each of the 8 components to specify their QoS requirements

(8 implementation steps), (2) deploy all components (1 deployment step), (3) shutdown

the temperature sensor component (1 deployment step – resource allocation failed for the

component), (4) modify source code of temperature sensor component back to use BE

network QoS class (deployment context change) (1 implementation step), (5) redeploy the

temperature sensor component (1 deployment step), and (6) shutdown all components (1

deployment step).

In contrast, the effort required using NetQoPE for the third deployment is 4 steps: (1)

annotate QoS specifications on each end-to-end application flow (1 modeling step), (2)

begin deployment of the all components, but NetRAF’s pre-deployment-time allocation

capabilities determined the resource allocation failure and prompted the NetQoPE appli-

cation developer to change the QoS requirements (1 pre-deployment step) (3) re-annotate

QoS requirements for the temperature sensor component flow (1 modeling step) (4) de-

ploy all components successfully (1 deployment step), and (5) shutdown all components (1

deployment step).

Table 5 summarizes the step-by-step analysis described above. These results show that

Approaches # Steps in Experiment Variants
First Second Third

NetQoPE 4 3 5
Conventional 10 10 13

Table 5: Comparison of Manual Efforts Incurred in Conventional and Model-driven
NetQoS Approaches
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conventional approaches incur roughly an order of magnitude more effort than NetQoPE

to provide network QoS assurance for end-to-end application flows. Closer examination

shows that in conventional approaches, application developers spend substantially more

effort developing software that can work across different deployment contexts. More-

over, this process must be repeated when deployment contexts and their associated QoS

requirements change. Moreover, implementations are complex since the requirements are

specified using middleware [151] and/or network QoS mechanism APIs [72].

Moreover, application (re)deployments are required whenever reservation requests fail.

In this experiment, only one flow required re-reservation and that incurred additional effort

of 3 steps. If there are a large number of flows—and enterprise DRE systems like our case

study often have dozens or hundreds of flows—the amount of effort required is significantly

more than for conventional approaches.
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CHAPTER IV

END-TO-END RELIABILITY OF NON-DETERMINISTIC STATEFUL
COMPONENTS

The previous two chapters discussed the techniques for modeling fault-tolerance re-

quirements and weaving them into system artifacts to transparently achieve highly avail-

able component-based DRE systems. Although the presented techniques significantly re-

duce the efforts needed to provision fault-tolerance, they do not adequately address the

run-time state consistency issues that arise when operational strings of non-deterministic

stateful components are replicated to achieve high availability. This chapter presents the

challenges and a novel solution that ensures that the data in operational strings remains

consistent and timely despite failures.

IV.1 Introduction

Operational strings are inherently multi-tier systems where server components act as

clients of other components giving rise to nested invocations. The systems that combine

replication and nested invocation must deal with the side-effects of replicated invocations.

A replicated invocation is a (nested) request from a replicated server to another (possibly

replicated) server [133].

In replicated invocation, care must be taken with stateful components so that the client’s

invocation of a service appears to have executed exactly once despite partial failures. Exactly-

once semantics are highly desirable because it simplifies client-side programming. More-

over, it improves the perceived availability of the system in the client’s view. Even if the

request or its subcomponents are physically executed more than once due to failures, the

modifications to the state and the reply to the client must be as if it was executed only once

without failures.
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The exact solution to provide exactly-once semantics in the presence of replicated invo-

cations depends on whether the system admits non-determinism or not. For deterministic

components, simple caching of request and replies is sufficient [32]. Duplicate invoca-

tions are suppressed and the cached reply from the previous computation is returned in-

stead. Real-time systems, however, exhibit several [108] forms of non-determinism such

as local information (e.g., sensors and clocks), timers and timeouts, multi-threading (e.g.,

dynamic scheduling, preemption), load-balancing, time-dependent sensor calibration, and

non-deterministic program constructs such as true random number generators. Reusing

cached results to avoid side-effects of replication is not acceptable because the result of

the re-invocation after failure may not be identical to the earlier execution. If the nested

invocations have one or more non-deterministic components in the call-chain, the problem

of orphan request [69, 133] may arise if one of them fails.

An orphan request is a request received by a component that is no longer valid due

to failure of the client component. Note that the client component itself acts like a server

to another component forming a chain of nested invocations. If the failing component is

non-deterministic, it is not guaranteed that the reinvocation of the request will lead to the

same nested invocation. Thus leaving the earlier partially completed request an orphan.

Figure 19: An orphan request caused by the failure of non-deterministic component
A
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Figure 19 shows how a non-deterministic component causes an orphan request in an-

other component. The client invokes an operation on component A, which in turn calls

another component B. Component A, however, crashes before returning the reply to the

client. The client reinvokes the request on the replica of component A. As component A is

a non-deterministic, there are three possible outcomes: (1) no invocation, (2) an invocation

with different parameters, and (3) an identical invocation on component B. The lattermost,

however, is not guaranteed all the time. If the replica 2 of component A makes no invo-

cation on component B, the earlier request is considered an orphan. If an invocation with

different parameters is made, then the state of component B may become inconsistent with

respect to the rest of the system. Both of the above conditions violate the exactly-once

semantics.

Note that orphan computations are an instantaneous consequence of a failure in the

non-deterministic middle tier. Before the failure, the requests sent by the middle tier com-

ponents are potential orphan requests (as shown in Figure 19). Upon failure of the sender,

however, they instantaneously become orphans. Therefore, orphan computations can not

be prevented but rather must be rectified because they waste resources, may hold locks

delaying other computations, and may lead to system inconsistency.

In this chapter, we present a novel approach to the problem of orphan elimination

for systems that must meet both real-time and fault-tolerance requirements. We present

a group-failover protocol, which ensures that replicated data is both consistent and timely.

Group-failover protocol supports exactly-once execution semantics in the presence of repli-

cated invocations and non-deterministic stateful components. It ensures strong state consis-

tency between the primary components and their replicas while avoiding the use of trans-

actions. Moreover, programmers do not have to implement application-specific prepare,

commit, and rollback methods. We present two variations of the protocol which have dif-

ferent overheads during fault-free and failure scenarios.

The work presented in this chapter differs from our earlier work on FLARe [12] and
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CORFU [153]. FLARe provides real-time, fault-tolerance to client-server applications

and not end-to-end task chains. Moreover, FLARe provides only weak state consistency.

CORFU exposes FLARe’s capabilities at the component abstraction level thereby allow-

ing end-to-end task chains. However, CORFU does not handle the orphan request problem.

Nevertheless, our work leverages the infrastructure provided in FLARe and CORFU, which

themselves are part of the CIAO framework.

The chapter is organized as follows. Section IV.2 presents the related work in detail

and describes why existing approaches are not suitable for real-time systems; Section IV.4

describes the system model; Section IV.5 presents the group-failover protocol and its two

variations; Section IV.6 evaluates the protocol and shows its suitability for distributed real-

time systems.

IV.2 Related Research

We categorize the existing research work on addressing the issues of non-determinism

in replicated invocation in two categories. The first set of work admits non-determinism

but compensates for the side effects of replicated invocation using transactions. The second

set of work focuses on enforcing determinism and thereby avoiding the side effects.

IV.2.1 Integrated transaction and replication services

Replication and transactions are two separate techniques for achieving fault-tolerance

in reliable systems. Replication represents roll-forward recovery where an incomplete re-

quest is re-executed at another replica. On the other hand, transactions represent roll-back

recovery where a failed parent transaction forces undo of all the sub-transactions. The two

reliability mechanisms are different in the sense that the prior protects processing whereas

the later protects data to ensure system consistency. Note that transactions provide all-

or-nothing (atomicity) guarantee whereas replication provides at-least-once guarantee as

long as there are fewer failures than the available replicas. Neither provide exactly-once
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guarantee, which is stronger than both. Therefore, the solutions that depend on both repli-

cation and transactions to provide exactly-once semantics must integrate the two services

in a non-trivial way.

Felber et al. [44] reconcile CORBA’s transaction service (OTS) [91] and the replication

service (FT-CORBA) [103] to protect both data and processing to provide consistent end-

to-end reliable operation. Their approach restarts execution of a failed sub-transaction on a

backup and aborts sub-transactions where a parent has failed. This reconciliation, however,

does not handle the intricate details of transaction completion in failure scenarios, which

are handled in [133].

Pleisch et al. [133] describe two alternatives to handle non-determinism; one pes-

simistic and one optimistic, which is an improvement over [44]. The first forces the sub-

transaction to wait for the commit of the parent, while the latter allows subtransactions to

commit before its parent. Information about how to undo the changes is sent to the backups

before making the nested invocation. In the pessimistic case, orphan subtransactions are

aborted whereas in the optimistic case they are compensated by undo transactions.

Frølund et al. [46] present an approach to integrate replication and transactions for

three-tier applications. However, their support is limited to stateless middle-tier servers,

where all state is forced in the end-tier databases. ITRA [36] handles the side effects of

replication by propagating the result of each non-deterministic operation to the backups.

ITRA supports replicated transactions by replicating the start, join, prepare, commit, and

abort operations.

Kolltveit et al. [69] present an approach where a passively replicated transaction man-

ager is allowed to break replication transparency to abort orphan requests, thus handling

non-determinism. The transaction manager is aware of the replication and able to see the

individual replicas of the transaction participants instead of the set of replicas as an opaque

group.
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Although the prior work addresses the orphan request problem in the context of transac-

tional enterprise systems, the use of transactions becomes a significant source of overhead

in the critical path for most real-time systems. During failure recovery, orphan compo-

nents are identified and rolled-back using undo information, which causes unpredictable

increase in the client-response time. Moreover, transactions are not transparent because

programmers are required to implement application-specific prepare, commit, and rollback

operations.

IV.2.2 Enforcing determinism

Considerable research efforts have been expended in designing strategies to enforce

replica determinism and to circumvent specific sources of nondeterminism. Slember et

al. [128, 129] apply program analysis to discover the sources of non-determinism. They

target the instances of nondeterminism that can be compensated automatically and highlight

the remaining instances that must be manually rectified. Work on deterministic schedul-

ing algorithms [18, 65] handles the non-determinism of multi-threading. A deterministic

schedule is ensured either by multicasting the scheduling decisions to the replicas or by

assuming shared state between all threads of the same replica.

The fault-tolerant real-time MARS system [109] requires deterministic behavior in

highly responsive automotive applications which exhibit nondeterminism due to time-triggered

event activation and preemptive scheduling. Replica determinism is enforced using a

combination of timed messages and a communication protocol for agreement on external

events.

Finally, timestamp-based orphan elimination techniques [62, 81] have been developed

to remove crash and abort orphans from the system. Closely synchronized real-time clocks

are required for timely elimination of orphans.
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IV.3 Unresolved Challenges

Despite significant prior work, the orphan request problem for DRE systems remains

unresolved due to the simultaneous QoS and stringent timeliness requirements.

Limitations of Transactional Approaches. Distributed transactions are unsuitable for

real-time systems because they cause significant messaging overhead in the fault-free exe-

cution of the critical path: (1) A server must initiate a transaction by sending a create mes-

sage to the transaction manager; (2) Every object that participates in the transaction must

register itself with the transaction manager using a join message; (3) Non-deterministic

components must transfer undo information to their replicas to either abort or commit the

subtransactions in case of a failure; (4) The server must finish the transaction using a com-

mit message; (5) While finishing a transaction, the transaction manager initiates a two

phase commit (2PC) protocol that sends prepare messages to all the transaction partici-

pants in the first phase, which if acknowledged positively, sends commit messages to all

the participants in the second phase; (6) Each participant object sends its vote to the replica

before sending it to the transaction manager; Finally, (7) the reply is sent to the client only

when the transaction manager indicates successful completion of the 2PC to the initiating

server.

While the above steps are needed in every fault-free execution, in case of a failure,

not only the orphans must be eliminated by sending the abort messages (or compensating

transactions) to every orphan, all the above steps must be repeated to re-execute the aborted

subtransactions. Note that with the increase in the tiers in the system, the number of orphans

that must be eliminated increases. Clearly, the client has to block during this time and may

miss the deadline during recovery. Empirical evaluations in [69] confirm that response time

may suffer up to 200% increase in the failure-free case whereas client-perceived failover

delay could vary from 200 to 400 ms. Contemporary real-time systems often have more

stringent performance requirements.

Some optimizations are possible in the above protocols. For instance, in the optimistic
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approach of [133], 2PC is not required whereas in the pessimistic case, only the second

phase of 2PC is sufficient. In [69], there is no need to send undo information to the repli-

cas, instead, votes must be synchronized with the replicas. The transaction manager must

be extended to support join messages with view-id of the underlying group communica-

tion system thereby loosing the transparency of replication. Additionally, all the above

approaches also require objects to implement prepare, commit, and rollback methods to

participate in the 2PC.

Finally, ensuring end-to-end schedulabilty of the system in the presence of transactions

is a complex problem. The number of orphans that must be rolled-back varies depending

upon the tier where the failure occurs. Although the number of orphans are bounded by the

number of tiers, the transaction services are often not designed with real-time applications

in mind.

Limitations of Enforcing Determinism. The approaches based on enforcing determinism

target only a small subset of the sources of non-determinism out of many that are possi-

ble in contemporary real-time systems. The approach provided by Slember et al. [128,

129] cannot be completely automated. Human intervention is needed to address the non-

determinism that cannot be automatically rectified. The solutions for deterministic schedul-

ing [18, 65] add significant overhead in the critical path due to the need to communicate

the non-deterministic decisions.

Finally, timestamp-based orphan elimination techniques [62, 81] incur additional mes-

saging overhead of periodic system-wide refresh. This overhead is similar to the periodic

garbage collection phase in [133].

IV.4 System and Fault Models

System Model. We consider systems in which applications are composed of multiple tiers

(n-tier) of components/processes that communicate over a network of computing nodes.

All or a (non-null) subset of the components may be non-deterministic and may maintain
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volatile state across mulitple client invocations (session). The services in the system are

invoked by clients periodically via remote operation requests. Every service has a soft real-

time deadline, which if missed, reduces the value to the client gradually down to zero. If a

deadline is missed (say, due to failures), earlier completion of the request has higher value

to the client than later completion. More formally, the nested invocation of components

can be understood as end-to-end task chains [82].

One particular way of realizing end-to-end task chains is the operational strings [77]

model. The operational string model is a form of component-based multi-tier distributed

computing that is focused on end-to-end Quality-of-Service (QoS). To satisfy the end-to-

end response time, the end-to-end schedulability [134] of computing resources is ensured

based on the deployment of components.

We assume that we have access to the deployment and composition information of the

components. Deployment and composition information is readily available in component

technologies (e.g. CORBA Component Model (CCM) [106]) that make use of standards-

based meta-data (e.g., XML descriptors) to describe the structure of the system. Standard-

based deployment and configuration [100] services are used to deploy the components

and their replicas, if any. The meta-data becomes the foci of configuring functionality,

deployment, and QoS of an operational string. In Section IV.5 we show how group-failover

is applicable for not only orphan elimination in operational strings, but also other higher-

level availability requirements.

Fault Model. Processors and processes may experience fail-stop [118] failures. Passive

replication [23] (primary-backup) approach is used for high-availability and roll-forward

recovery because it tolerates non-determinism better than active replication and consumes

less resources. The state updates in the primary are transmitted to the backups upon com-

pletion of each request. However, the state updates are absorbed in the backups as dictated

by the group-failover protocol described in Section IV.5. If a replica crashes and restarts, it

joins the group of backups.
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We assume that networks provide bounded communication latency and do not fail or

partition. This assumption is reasonable for many soft real-time systems, such as SCADA

systems, where nodes are connected by highly redundant high-speed networks. We further

assume that due to the synchronous environment, perfect failure detection in the sense of

[25] is possible. It bounds the delay for a failure detection and eliminates false suspicions.

A minimum of f + 1 replicas will be required in a given tier to tolerate f replica failures.

We use an implementation of failure detectors based on per-node daemon and periodic

heart-beat beacon.

IV.5 The Architecture of the Group-failover Protocol

In this section we present the group-failover protocol that provides exactly-once se-

mantics to the clients while rectifying orphan components in case of the failures of non-

deterministic server components. During a client session, non-determinism of one or more

components in the nested invocation causes the state updates in the components unique to

that particular execution. These state updates become orphan as a consequence of the fail-

ure involving a non-deterministic computation. Note that, in multi-tier systems, the orphan

components often form a group. For instance, consider a nested invocation among state-

ful components A, B, C, and D as shown in Figure 20. Just before the non-deterministic

component A returns the reply to the client, a failure in A renders components B, C, and D

orphan, forming a group.

Figure 20: A group of orphan components
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To ensure exactly-once semantics, three things must take place as part of the recovery:

1. Transparent failover. To ensure forward recovery, the client must transparently

failover to the replica of component A (A’) and must quickly resume execution of the

original request to meet the deadline.

2. Eliminate orphans. The orphan state (and any unfinished orphan computations)

must be eliminated to avoid inconsistencies in the system and conserve resources. In

Figure 20 the orphan state is bounded in the group of primary components B, C and

D.

3. Ensure state consistency. Exactly-once semantics require that the state of all the

components that participate in the reexecution of the client’s request (e.g., A’, B’, C’,

and D’) must be the same as the state of the respective primary components before

the execution of the request that caused the failure. Ensuring state consistency is

challenging due to lack of transactional semantics for components.

IV.5.1 Transparent failover

Several existing techniques can be employed to achieve transparent failover of the

client. Like most contemporary middleware, CORBA supports a standard client-side re-

quest interceptor, which enables interception of the call-path at the client-side. Protocol-

specific code can be executed in response to various events such as remote function call re-

turn or exceptional return (e.g., standard CORBA exceptions such as OBJECT_NOT_EXIST,

COMM_FAILURE). The code may also invoke other remote services to obtain a failover

replica reference. A standard CORBA exception called LOCATION_FORWARD is raised

locally, which then redirects the client to the failover target replica.

Techniques based on Aspect-oriented programming (AOP) are presented in Chapter III

to achieve transparent client failover. A protocol-specific advice is weaved around client-

side stubs, which masks the server failures from the client. An advantage of AOP-based
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techniques over the client-side request interceptor is that the advice is invoked only while

communicating with a remote object implementing a specific interface. The client-side re-

quest interceptors suffer from higher overhead because they are invoked for all the outgoing

requests, which may be undesirable.

We use client-side request interceptors because they are sufficient for the group-failover

protocol and can be portably implemented for standard compliant CORBA clients. Note

that programmers do not need to implement the interceptors. Only requirement is to inte-

grate them in the client build process.

IV.5.2 Eliminating orphans

Lack of well-defined transactional semantics prevents us from rolling the orphan com-

ponents back to the state before the non-deterministic execution. Orphan state (and com-

putations), however, must be eliminated from the system to prevent inconsistencies and to

conserve resources. As noted earlier, the orphan state is bounded inside a group of orphan

components. This group of orphan components is simply discarded to save time during

recovery.

The components can be discarded by invoking life-cycle operations on them. Com-

ponent technologies often require programmers to implement component life-cycle oper-

ations, which are invoked during system deployment, configuration, and startup. For in-

stance, activate and passivate are two life-cycle operations supported by all CCM [106]

session components. Passivating a component discards all its application-specific state as

well as middleware state (it is no longer remotely addressable and can no longer initiate

remote invocations).

Group-failover protocol uses passivation as the way of eliminating orphan state from the

system, which depends on three steps. First, failure must be accurately detected. Second,

the group of orphan components must be identified. Finally, the server processes hosting

the orphan components must be notified to passivate the select hosted components.
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IV.5.2.1 Accurate Failure Detection

To detect process or processor failures and to initiate recovery actions, we use a mon-

itoring infrastructure consisting of dedicated host-monitor daemons in every node where

the components are deployed. The daemons send a periodic heart-beat to a central repli-

cation manager (RM) process. In case of a server process failure, the daemons notify the

RM about the failure whereas processor failures can be accurately detected by RM when

periodic heart-beat from a host-monitor ceases. Upon detection of a failure, RM initiates

the process of identifying orphans, which is described next.

IV.5.2.2 Identifying Orphans

Orphans are components to which a non-deterministic component has directly or in-

directly communicated before its failure. The number of orphan components varies de-

pending upon where the non-deterministic component lies in the nested invocation and

how many components have executed non-deterministic computations in response to the

client’s request. As mentioned in Section IV.4, we assume that the RM has access to the

system composition meta-data, which is cached in RM during deployment of the server

components. Composition meta-data describe static connections between the provided and

required interfaces implemented by the components. We assume that no additional con-

nections are established dynamically. As a result, RM is aware of the complete topology

(directed graph) of the components in the system. Using the meta-data and the failure noti-

fications from the host-monitor daemons, RM can determine orphan components after the

failure. For instance, if host-monitor informs RM that component A in Figure 20 has failed,

the RM can determine that components B, C, and D are orphans and must be eliminated.

The lack of the run-time information about the stage of a nested invocation limits the

accuracy of our static technique of identifying orphans. Due to the inherent asynchronous

nature of failures, RM may falsely identify some components as orphans. For instance, if

component A fails before invoking nested request to component B, then components B, C,
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and D do not become orphan. In general, it is impossible to determine the stage of nested

invocation without adding significant overhead1 in the critical path.

In response to this inherent difficulty, we propose two strategies to identify the span of

orphan components.

(A) The entire operational string. This strategy is the most pessimistic of all and des-

ignates the entire connected group of (server-side) components as orphan in the case of a

failure. The strategy does not need component-specific knowledge of whether it is deter-

ministic or non-deterministic. Pessimistically, it considers the entire group of components

as an atomic failover unit of non-deterministic components. If any one of them fails, the

whole unit is considered as failed.

These failure atomicity semantics are desirable in certain systems based on the op-

erational strings model that employ N-version programming to achieve reliability though

diversity. N-version programming [8] is an effective technique to avoid Bohr-bugs, which

are predictably repeated when the same set of conditions reappear in the system. To avoid

Bohr-bugs, operational strings often use dissimilar replicas of the fault-tolerant multi-tier

applications. The replicas could be dissimilar in various ways, such as structure, implemen-

tation, deployment, resource and QoS requirements, end-to-end deadlines, and priorities.

Due to their differences, such non-isomorphic operational strings often need granularity of

failover larger than a single component, which can be provided using failover units com-

prising multiple components.

Figure 21: A failover unit spanning two components (B and C).

1Transaction allow us to achieve precisely this capability at the cost of significant overhead.
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(B) Dataflow-aware component grouping. Accurate meta-information about system com-

position, such as dataflow and component behavior (deterministic/non-deterministic) could

be used to optimize orphan elimination. For instance, consider Figure 21, which shows

dataflow between components A, B, and C while component B is non-deterministic. Fail-

ure of component B may make component C an orphan but not component A. Therefore,

the span of the failover unit consists of components B and C. The static meta-information

can be obtained from annotated system composition models. Our earlier work [142] shows

a technique based on domain-specific modeling languages to allow system developers to

specify component properties using intuitive annotations. Ad-hoc grouping of components

is supported using failover units (FOU). Such application-specific meta-information is em-

bedded in standards-based deployment meta-data, which is used by RM to eliminate or-

phans at run-time.

IV.5.2.3 Passivating Orphan Components

Using the static meta-data RM can communicate with the host server processes to pas-

sivate the suspected orphan components and thereby eliminating them from the system.

Passivated components can be activated again and may join the group of replicas to receive

state updates from the then-active primary. A subsequent activation phase after recovery is

conceivable to maintain the desired level of replication in the system.

IV.5.3 Ensuring state consistency

In the group-failover protocol, client’s original request is re-executed by allowing the

client to failover on a group of replica components, which must have the state client ex-

pects. As per the exactly-once semantics, the client expects the state updates from its

previous successful execution to be available at the replicas where the session continues

after the failure. The replica state synchronization must be managed carefully so that the

state updates during the entire nested invocation ensure exactly-once semantics.
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To ensure state consistency, we present two significant variations of the state synchro-

nization strategies: eager and lag-by-one. The eager state synchronization strategy has

overhead during fault-free execution but no overhead during failure recovery. On the other

hand, lag-by-one state synchronization strategy has no overhead during fault-free execution

but recovery takes longer than the eager strategy.

IV.5.3.1 The eager state synchronization strategy

In the eager strategy, the state of all the nested components is synchronized with their

respective replicas only after the client-side interceptor has received the result of the non-

deterministic computation. The state that builds up at the server-side during execution

of the client’s request is a potential orphan state because any subsequent failure in the

upstream component renders these state changes orphaned. Therefore, it is only after the

client-side interceptor has received the reply, the server-side state changes can be made

permanent in the system.

In case of a failure, the orphan state is eliminated as described in Section IV.5.2. There-

fore, a client’s request must be reexecuted on replica components with the state of the last

successful execution. Eager state synchronization strategy ensures that the state in the repli-

cas is indeed from the last successful execution. Replication manager (RM) in Figure 22

has the responsibility of maintaining state consistency. State from the last successful ex-

ecution can be maintained at the replicas if state synchronization completes in an atomic

way. Either all the primary components synchronize their state with respective replicas or

none at all. This atomicity is guaranteed by a variation of the two-phase commit (2PC)

protocol.

Figure 22 shows how the eager strategy works. A client is requesting a service from

a non-deterministic set of components A, B, and C. Consider that the kth execution has

completed and the reply has arrived at the client-side. Although the execution has com-

pleted, replica components (A’, B’, and C’) do not yet have the state updates resulting from
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Figure 22: Eager state synchronization strategy

the kth execution. The client-side request interceptor detects successful execution and be-

fore returning to the client application, initiates the eager state synchronization strategy by

sending a finish message to the RM.

In response to the finish message, RM initiates the two-phase process to synchronize

the state atomically. It sends a precommit message to each state synchronization agent

(sa) located in the server processes hosting the primary components. The intent of the

precommit message is to persist the application-specific state by sending it to the replicas.

The state is retrieved by using the predefined interface (e.g., get_state) implemented by

the primary components. The state synchronization agents collocated with the primary

components transfer the state to the state synchronization agents in the process hosting the

replica components. The state is maintained in a temporary buffer untill the second phase.

RM initiates the second phase only if the first phase completes successfully. In the

second phase, RM sends commit messages to the state synchronization agents collocated

with the replicas. In response to the commit message, the state in the temporary buffers
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is pushed in the replica components by means of a predefined interface such as set_state.

When both the phases complete, RM returns an error value indicating success to the client-

side interceptor allowing the client to process the reply.

If some primary component is unable to send the state to its replicas, RM detects the

failure during the first phase, skips the second phase, eliminates the orphans as described

in Section IV.5.2, and returns an error value indicating failure to the client-side interceptor.

The client-side interceptor does a transparent failover to the replica group and reinvokes the

same request to ensure that there is exactly-one non-deterministic execution of the request.

The resulting state is persisted in the system in the form of volatile memory of the replica

components. Note that a failure of the second phase (say, due to a failure of a replica) does

not affect state consistency because primary components can serve the subsequent requests.

Failed replicas may be restarted to maintain a desired level of replication degree.

IV.5.3.2 The lag-by-one state synchronization strategy

In this section we present an optimization of the eager strategy, which has no overhead

during the fault-free execution but incurs recovery messaging overhead in the failure sce-

nario. We call this technique lag-by-one state synchronization strategy because the state in

the replicas is always lagging by exactly one state update than that of the primary compo-

nents. A schematic of the lag-by-one strategy is shown in Figure 23.

The lag-by-one strategy eliminates the need for explicit two phases of state synchro-

nization found in the eager approach. Instead, the potential orphan state is transferred to

the temporary buffers of the state synchronization agents collocated with the replica com-

ponents immediately after the completion of a request at every primary nested component.

This is shown in Figure 23 by double-dashed lines. This state synchronization is initiated

lazily after sending the reply back to the calling non-deterministic component eliminating

overhead in the critical path. Note that the transferred state is considered a potential or-

phan until the client receives the reply. The transferred state is maintained in the temporary
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Figure 23: Lag-by-one state synchronization strategy

buffer at the replica side. Unlike the eager approach, however, no finish message is sent

to the RM at the end of successful invocation. Instead, invocation and execution of the

subsequent request from the client is interpreted as the successful completion of the earlier

request. As a result, when the kth state update arrives at the replica state synchronization

agent, the (k−1)th state update (stored in the temporary buffer) is pushed into the replica

component. The explicit commit phase of the eager strategy is replaced by the implicit

arrival of new potential orphan state from the primary components.

In case of a failure, the replica components are not ready for an instantaneous client

failover because the state that client expects lies in the temporary buffers of the state syn-

chronization agents. In other words, when the kth invocation completes successfully, the

temporary buffers at the replica side contain the corresponding potential orphan state but

the replicas themselves have the state at the end of the (k−1)th execution. If the kth request
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fails due to a failure of one of the primary components, the replica components must be

prepared to accept the client’s reinvocation.

When the system is configured to follow the lag-by-one strategy, the client-side inter-

ceptor and the RM must also be configured likewise. Consider the client is invoking the kth

request. Upon detection of failure the client-side interceptor sends a prepare(k) message to

the RM requesting it to prepare the replicas for the kth invocation. In response to the pre-

pare message, RM eliminates the orphans because prepare message is possible only after

a failure. Subsequently, it sends commit(k-1) message to the state synchronization agents

collocated in the replicas, which push the state in the temporary buffers into the replicas.

RM returns to the client-side interceptor indicating success by an appropriate return value.

The client-side interceptor does transparent failover to the replica group and reinvokes the

kth request.

IV.5.3.3 Middleware implementation of the two strategies

We extended the client-side interceptor logic and the RM from our prior work on

FLARe [12]. In particular, the RM is now strategizable. When using the eager strategy, the

RM is equipped with the messaging logic for the two phases. When using the lag-by-one

strategy, the RM gets involved only during failure recovery and orphan elimination. Sim-

ilarly, the client-side interceptor is also strategizable. For the eager state synchronization

strategy, it is refined to include the additional logic for ensuring atomicity. In the lag-by-one

strategy, the client interceptor performs additional work during failure recovery.

The state synchronization agents are leveraged from our prior work on CORFU [153].

For this work, we introduce a new temporary buffer with the agents. Additionally we

introduce new logic into the agents on when to permanently accept the state into the backup

replicas.

Our implementation of the eager synchronization strategy uses CORBA asynchronous

messaging interface (AMI) in both phases to exploit parallelism during state transfer (Step
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#2 and #4 in Figure 22). RM uses AMI to send the precommit to all the primary state

synchronization agents in parallel and waits for all of them to complete state transfer in

parallel. The second phase also uses AMI. The use of AMI allows the eager state syn-

chronization strategy to be (nearly) insensitive to the number of components involved in

the group. For lag-by-one, AMI is used to lazily transfer state (see double dashed lines in

Figure 23) thereby eliminating the overhead of state transfer in the critical path.

Finally, all the deployment and configuration activities, including activating and passi-

vating the components is seamlessly handled by the existing CIAO middleware.

Implementing new capabilities and adding extensions to entities of the existing mid-

dleware code base without making invasive changes is easily feasible through the use of

elegant design patterns, such as Strategy and Factory.

IV.6 Evaluating the Merits of the Group-failover Protocol

We implemented the eager and lag-by-one variations of the group-failover protocol us-

ing the open-source Component Integrated ACE ORB (CIAO) [64] middleware, which is

an implementation of Lightweight CORBA Component Model [95] (LwCCM). We lever-

aged a number of infrastructure elements from our prior work on FLARe and CORFU,

however, a number of extensions were implemented for this research. The state synchro-

nization agent was refined to include a temporary buffer, while the replication manager

design was refined to support the two state synchronization strategies. Host monitors were

used directly from prior work. All these elements were implemented as CORBA objects

and integrated into the deployment process of components.

We empirically evaluated our implementation of the group-failover protocol at ISISlab

(www.isislab.vanderbilt.edu) on a testbed of up to 6 blades. Each blade has two 2.8 GHz

CPUs, 1GB memory and they are connected by a Gigabit LAN.

Methodology and Rationale. We evaluated the overhead and the client-perceived failover

latency in fault-free and failure scenarios, respectively. In every experiment we varied the
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number of nested components from 2 to 5 to show that both state synchronization strate-

gies have bounded overhead independent of the task chain size. Dummy computations,

calibrated to consume 200ms (+/- 3%) of CPU time, were performed on every component

in response to the client request. As a result, the server-side execution time varies from

400ms to 1000ms (+/- 3%) with the number of components varied from 2 to 5. In both

fault-free and failure scenarios, we measured the client-perceived execution time, which

includes the actual server-side execution time, overhead of the state synchronization phases

(if any), and the communication latency. Per node host-monitors and a single instance of

replication manager were also deployed.2

As discussed earlier, we used asynchronous method invocation (AMI) to exploit con-

currency during state transfer and the various phases of the state synchronization strategies.

With every asynchronous call a callback handler is registered, which is invoked upon com-

pletion of the remote request. It is also possible to abort waiting for a callback based on a

timeout.

IV.6.1 Overhead measurements in fault-free scenarios

Nesting level 2 3 4 5
Actual 412.9 624.9 831.2 1040.1

execution time (ms)
Client-perceived 423.3 637 843.1 1056.6

execution time (ms)
Overhead (ms) 8.2 12.1 11.9 10.6

Overhead 13 23 26.1 32.7
without AMI (ms)

Table 6: Overhead of the eager strategy (fault-free) (jitter +/- 3%)

Table 6 shows the overhead of the eager strategy during fault-free executions, which is

2Fault tolerance of the replication manager can also be achieved through replication.
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Nesting level 2 3 4 5
Client-perceived 419.1 624.9 840.9 1048.3

execution time (ms)
Actual 411.5 620.1 831.2 1040.1

execution time (ms)
Difference (ms) 7.6 4.8 9.7 8.2

Table 7: Difference in the actual and perceived execution times in the lag-by-one
strategy (fault-free) (jitter +/- 3%)

computed using a high resolution timer around the finish method invocation from the client-

side request interceptor to the replication manager. The overhead was bounded between

8.2 ms and 12.1 ms (with low jitter) for the two phases of the eager strategy. The client-

perceived execution time is more than the summation of actual execution time and the

overhead of the phases due to the unavoidable communication latency. To better understand

the benefits of AMI, we implemented the two phases of eager strategy without AMI. From

the results in Table 6, it is evident that without AMI the overhead is sensitive to the number

of nested components.

Table 7 shows the difference between the actual execution time and the client-perceived

execution time for the lag-by-one strategy during fault-free executions. Due to the lack of

any explicit phases in the lag-by-one strategy, we did not use high resolution timers. The

difference, computed by subtracting the actual execution time from the client-perceived

execution time, includes a small overhead of initiating the lazy state transfer at every com-

ponent and the unavoidable communication latency.

These results indicate that the overhead of both the strategies is extremely low compared

to the protocols that integrate transactions and replication, and that the additional work

performed is bounded irrespective of the size of the task chain.
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IV.6.2 Client-perceived failover latency in failure scenarios

The objective of this experiment is to find the failover latency that a client will expe-

rience when the server component that the client is communicating with (i.e., head of the

chain) fails just before returning the reply to the client. This is the worst possible case for

the client in terms of meeting its deadline because the client needs to wait for the entire

execution not only on the primary components but also on the backup replica components.

Nesting level 2 3 4 5
Primary 411.5 620.1 831.2 1040.1

execution time (ms)
Replica 419.1 623.3 840.6 1060.2

execution time (ms)
Client-perceived 856.8 1310.2 1710.1 2134.5

failover latency (ms)
Lag-by-one’s prepare 4.1 7.2 6.2 5.3

phase latency (ms)
Eager protocol’s 0 0 0 0

failover latency (ms)

Table 8: Client-perceived failover latency of the state synchronization strategies

Table 8 shows the client-perceived failover latency for different nesting levels (2 to 5).

We observe that the execution times on the replica components are larger than that of the

primary components because of the higher cache misses during the first execution after

failover. We also measured the overhead of the prepare phase of the lag-by-one protocol

using a high resolution timer in the client-side interceptor. During the prepare phase, the

replication manager exploits concurrency by sending the commit messages using AMI. As

a result, we see that the overhead of the prepare phase is not dependent on the nesting

level. These results indicate that the performance of group-failover protocols is acceptable

in failure scenarios, and that the latencies are bounded irrespective of the task chain size

(i.e., nesting level).
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CHAPTER V

RESOLVING SOLUTION DOMAIN CHALLENGES: OBJECT STRUCTURE
TRAVERSAL

Model-driven engineering (MDE) has been used extensively in this dissertation to ad-

dress the systemic issues of distributed real-time and embedded systems. The discipline of

MDE is still maturing and limitations of the contemporary tools and techniques for MDE

were identified during the course of the research work on model-driven fault-tolerance pro-

visioning described in chapters II to IV. This chapter is dedicated to the novel solutions

addressing the deficiencies of the existing tools for a key step in MDE: object structure

traversal.

V.1 Introduction

Compound data processing is commonly required in applications, such as program

transformation, XML document processing, model interpretation and transformation. The

data to be processed is often represented in memory as a heterogeneously typed hierar-

chical object structure in the form of either a tree (e.g., XML document) or a graph (e.g.,

models). The necessary type information that governs such object structures is encoded in a

schema. For example, XML schema [145] specifications are used to capture the vocabulary

of an XML document. Similarly, metamodels [137] serve as schema for domain-specific

models. We categorize such applications as schema-first applications because at the core

of their development lie one or more schemas.

The most widespread technique in contemporary object-oriented languages to organize

these schema-first applications is a combination of the Composite and Visitor [48] design

patterns where the composites represent the object structure and visitors traverse it. Along

with traversals, iteration, selection, accumulation, sorting, and transformation are other
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common operations performed on these object structures. In this chapter, we deal with the

most general form of object structures, i.e., object graphs, unless stated otherwise.

Existing techniques [39] to write traversals often use language-specific data binding [70,

83] tools to generate an object-oriented API for manipulating the models. Such object

structure traversals are often verbose due to schema-specificity of the API. Intuitive and

succinct traversal notations, such as XPath [154], can not be used without sacrificing

the type-safety of the generated object-oriented API. Traversal programming idioms (e.g.,

XPath child/parent axes and wildcards) are not natively supported in general-purpose pro-

gramming languages.

Moreover, in many programming paradigms, object structure traversals are often im-

plemented in a way such that the traversal logic and type-specific computations are entan-

gled. Tangling in the functional programming paradigm has been identified in [75]. In

object-oriented programming, when different traversals are needed for different visitors,

the responsibility of traversal is imposed on the visitor class coupled with the type-specific

computations. Such a tight coupling of traversal and type-specific computations adversely

affects the reusability of the visitors and traversals equally.

V.2 Related Research

To overcome the pitfalls of the Visitor [48] pattern, domain-specific languages (DSL)

that are specialized for the traversals of object structures have been proposed [51, 107].

These DSLs separate traversals from the type-specific computations using external repre-

sentations of traversal rules and use a separate code generator to transform these rules into a

conventional imperative language program. This two step process of obtaining executable

traversals from external traversal specifications, however, has not enjoyed widespread use.

Among the most important reasons [17, 29, 84, 121] hindering its adoption are (1) high

upfront cost of the language and tool development, (2) their extension and maintenance

overhead, and (3) the difficulty in integrating them with existing code-bases. For example,

102



development of language tools such as a code generator requires the development of at least

a lexical analyzer, parser, back-end code synthesizer and a pretty printer. Moreover, Mernik

et al. [84] claim that language extension is hard to realize because most language proces-

sors are not designed with extension in mind. Finally, smooth integration with existing

code-bases requires an ability of not only choosing a subset of available features but also

incremental addition of those features in the existing code-base. External traversal DSLs,

however, lack support for incremental addition as they tend to generate code in bulk rather

than small segments that can be integrated at a finer granularity. Therefore, programmers

often face an all-or-nothing predicament, which limits their adoption. Pure embedding is a

promising approach to address these limitations of external DSLs.

Other prominent research on traversal DSLs have focused on Strategic Programming

(SP) [74, 75, 148] and Adaptive Programming (AP) [79, 80] paradigms, which support

advanced separation of traversal concerns from type-specific actions. SP is a language-

independent generic programming technique that provides a design method for programmer-

definable, reusable, generic traversal schemes. AP, on the other hand, uses static meta-

information to optimize traversals and check their conformance with the schema. Both

the paradigms allow structure-shy programming to support traversal specifications that are

loosely coupled to the object structure. We believe that the benefits of SP and AP are crit-

ical to the success of a traversal DSL. Therefore, an approach that combines them in the

context of a pure embedded DSL while addressing the integration challenge will have the

highest potential for widespread adoption.

A more through survey of related research is presented in Section V.8.

V.3 Unresolved Challenges and Overview of the Solution Approach

To address the limitations in the current state-of-the-art, this chapter presents a multi-

paradigm programming [27, 150] approach to develop a domain-specific language (DSL)

for specifying traversals over object graphs governed by a schema. An expression-based [29]
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pure embedded (in C++) DSL called Language for Embedded quEry and traverSAl (LEESA)

is presented. LEESA combines generic programming, static metaprogramming [3], gen-

erative programming [28], and strategic programming [75, 147] paradigms together with

C++ operator overloading to provide an intuitive notation for writing type-safe traversals.

• It provides a notation for traversal along several object structure axes, such as child,

parent, sibling, descendant, and ancestor, which are akin to the XML programming

idioms in XPath [154] – an XML query language. LEESA additionally allows com-

position of type-specific behavior over the axes-oriented traversals without tangling

them together.

• It is a novel incarnation of SP using C++ templates, which provides a combinator

style to develop programmer-definable, reusable, generic traversals akin to the clas-

sic SP language Stratego [147]. The novelty of LEESA’s incarnation of SP stems

from its use of static meta-information to implement not only the regular behavior of

(some) primitive SP combinators but also their customizations to prevent traversals

into unnecessary substructures. As a result, efficient descendant axis traversals are

possible while simultaneously maintaining the schema-conformance aspect of AP.

• One of the most vexing issues in embedded implementations of DSLs is the lack

of mechanisms for intuitive domain-specific error reporting. LEESA addresses this

issue by combining C++ template metaprogramming [3] with concept checking [57,

126] in novel ways to provide intuitive error messages in terms of concept violations

when incompatible traversals are composed at compile-time.

• Finally, its embedded approach allows incremental integration of the above capabili-

ties into the existing code-base. During our evaluation of LEESA’s capabilities, small

segments of verbose traversal code were replaced by succinct LEESA expressions in

a step by step fashion. We are not aware of any external C++ code generator that

allows integration at comparable granularity and ease.
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V.4 Language for Embedded Query and Traversal (LEESA)

In this section we formally describe the syntax of LEESA and its underlying semantic

model in terms of axes traversals. To better explain its syntax and semantics, we use a

running example of a domain-specific modeling language for a hierarchical finite state

machine (HFSM) described next.

V.4.1 Hierarchical Finite State Machine (HFSM) Language: A Running Example

Figure 24 shows a metamodel of a HFSM language using a UML-like notation. Our

HFSM metamodel consists of StateMachines with zero or more States having di-

rectional edges between them called Transitions. States can be marked as a “start

state” using a boolean attribute. States may contain other states, transitions, and option-

ally a Time element. A Transition represents an association between two states,

where the source state is in the srcTransition role and the destination state is in the

dstTransition role with respect to a Transition as shown in Figure 24. Time is

an indivisible modeling element (hence the stereotype�Atom�), which represents a user-

definable delay in seconds. If it is absent, a default delay of 1 second is assumed. Delay

represents the composition role of a Time object within a State object. All other com-

position relationships do not have any user-defined composition roles but rather a default

role is assumed. The Root is a singleton that represents the root level model.

To manipulate the instances of the HFSM language, C++ language bindings were ob-

tained using a code generator. The generated code consists of five C++ classes: Root,

StateMachine, State, Transition, and Time that capture the vocabulary and the

relationships shown in the above metamodel. We use these classes throughout the chapter

to specify traversals listings.
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Figure 24: Meta-model of Hierarchical Finite State Machine (HFSM) language (left)
and a simple HFSM model (right)

V.4.2 An Axes-Oriented Notation for Object Structure Traversal

Designing an intuitive domain-specific notation for a DSL is central to achieving pro-

ductivity improvements as domain-specific notations are closer to the problem domain in

question than the notation offered by general-purpose programming languages (GPLs).

The notation should be able to express the key abstractions and operations in the domain

succinctly so that the DSL programs become more readable and maintainable than the pro-

grams written in GPLs. For object structure traversal, the key abstractions are the objects

and their typed collections while the basic operations performed are the navigation of as-

sociations and execution of type-specific actions.

When designing a notation for an embedded DSL, an important constraint imposed

by the host language is to remain within the limits of the programmer-definable operator

syntax offered by the host language. Quite often, trade-offs must be made to seek a balance

between the expressiveness of the embedded notation against what is possible in a host

language.

Listing 5 shows LEESA’s syntax represented in the form of a grammar. Statement

marks the beginning of a LEESA expression, which usually contains a series of types,

actions, and visitor objects separated by operators. The first type in a LEESA statement
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Statement : Type { (Operator Type) | (LRShift visitor-object) |
(LRShift Action) | (>> Members) |
(>> | >>= Association) }+

Type : class-name ’(’ ’)’
Operator : LRShift | >>= | <<=
LRShift : >> | <<
Action : "Select" | "Sort" | "Unique" | "ForEach" | (and more ...)
Association : "Association" ’(’ class-name :: role-name ’)’
Members : "MembersOf" ’(’ Type { ’,’ Statement }+ ’)’

Listing 5: Grammar of LEESA expressions

determines the type of object where the traversal should begin. The four operators (�,

�,�=,�=) are used to choose between children and parent axes and variations thereof.

This traversal notation of LEESA resembles XPath’s query syntax, however, unlike XPath,

the LEESA expressions can be decorated with visitor objects, which modularize the type-

specific actions away from the traversals.

The association production in Listing 5 represents traversal along user-defined associ-

ation roles (captured in the metamodel) whereas members represent traversal along sibling

axis. Actions are generic functions used to process the results of intermediate traversals.

The parameters accepted by these actions, which are implemented as C++ function tem-

plates, are not shown. Instead, only the string literals sufficient for illustration are shown.

Finally, instances of programmer-defined visitor classes can be added in the place of visitor-

object that simply dispatch the type-specific actions. It conveniently allows accumulation

of information during traversal without tangling the type-specific computations and the

traversal specifications.

We now present concrete examples of LEESA expressions with their semantics in the

context of the HFSM language case-study in Section V.4.1.

107



Axes LEESA expressions and their semantics
(A) Child Root()� StateMachine()� v� State()� v
(breadth Visit all state machines followed by all their immediate children states.

first)
(B) Child Root()�= StateMachine()� v�= State()� v

(depth Visit a state machine and all its immediate children states.
first) Repeat this for the remaining state machines.

(C) Parent Time()� v� State()� v� StateMachine()� v
(breadth Visit a given set of time objects followed by their immediate parent states

first) followed by their immediate parent state machines.
(D) Parent Time()� v�= State()� v�= StateMachine()� v

(depth For a given set of time objects, visit a Time object followed by visit its
first) parent state followed by visit its parent state machine. Repeat this for

the remaining time objects.

Table 9: Child and parent axes traversal using LEESA (v can be replaced by an in-
stance of a programmer-defined visitor class.)

V.4.2.1 Child and Parent Axes.

Child and parent axes traversals are one of the most common operations performed on

object structures. LEESA provides a succinct and expressive syntax in terms of “�” and

“�” operators for child and parent axes traversals, respectively. Two variations, breadth-

first and depth-first, of both the axes are also supported. Presence of the “=” operator after

the above operators turns a breadth-first strategy into a depth-first.1 Table 9 shows four

LEESA traversal expressions using child and parent axes notations. Figure 25 illustrates

the graphical outlines corresponding to the examples shown in Table 9.

Breadth-first and depth-first variations of the axes traversal strategies are of particular

interest here because of the ease of control over traversal provided by them. The breadth-

first strategy, if applied successively (as in examples (a) and (c) in Table 9), visits all the

instances of the specified type in a group before moving on to the next group of objects

along an axis. Essentially, this strategy simulates multiple looping constructs in a sequence.

The depth-first strategy, on the other hand, selects a single object of the specified type at

a time, descends into it, executes the remaining traversal expression in the context of that

single object, and repeats the same with the next object, if any. Therefore, successive

1In C++, “�=” and “�=” are bitwise shift left & assign and shift right & assign operators, respectively.
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Figure 25: Outlines of child/parent axes traversals (Squares are statemachines, cir-
cles are states, triangles are time objects, and shaded shapes are visited.)

application of the depth-first strategy (as in examples (b) and (d) in Table 9), traverses the

edges of the object tree unlike the breadth-first strategy. Essentially, the depth-first strategy

simulates nested looping constructs.

LEESA uses the Visitor [48] design pattern to organize the type-specific behavior while

restricting traversals to the LEESA expressions only. To invoke type-specific computa-

tions, LEESA expressions can be decorated with instances of programmer-defined visitor

classes as shown in Table 9. If a visitor object v is written after type T, LEESA invokes

v.Visit(t) function on every collected object t of type T. LEESA expressions can be

used not only for visitor dispatch but also for obtaining a collection of the objects of the

type that appears last in the expression. Such a collection of objects can be processed using

conventional C++. For instance, example (a) in Table 9 returns a set of States whereas

example (c) returns a set of StateMachines.

V.4.2.2 Descendant and Ancestor Axes.

LEESA supports descendant and ancestor axes traversal seamlessly in conjunction with

child/parent axes traversals. For instance, Listing 6 shows a LEESA expression to obtain
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a set of Time objects that are recursively contained inside a StateMachine. This ex-

pression supports a form of structure-shy traversal in the sense that it does not explicitly

specify the intermediate structural elements between the StateMachine and Time.

Root() >> StateMachine() >> DescendantsOf(StateMachine(), Time())

Listing 6: A LEESA expression showing descendant axis traversal

Two important issues arise in the design and implementation of the structure-shy traver-

sal support described above. First, how are the objects of the target type located efficiently

in a hierarchical object structure? and second, at what stage of development is the pro-

grammer notified of impossible traversal specifications? In the first case, for instance, it is

inefficient to search for objects of the target type in composites that do not contain them.

Whereas in the second case, it is erroneous to specify a target type that is not reachable

from the start type. Section V.5.3 and Section V.6 present solutions to the efficiency and

the error reporting issues, respectively.

V.4.2.3 Sibling Axis.

Composition of multiple types of objects in a composite object is commonly observed

in practice. For example, the HFSM language has a composite called StateMachine that

consists of two types of children that are siblings of each other: State and Transition.

Support for object structure traversal in LEESA would not be complete unless support is

provided for visiting multiple types of siblings in a programmer-defined order.

Listing 7 shows an example of how LEESA supports sibling traversal. The sample

expression visits all the States in a StateMachine before all the Transitions.

The types of visited siblings and their order is programmer-definable. The MembersOf

notation is designed to improve readability as its first parameter is the common parent type
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ProgrammerDefinedVisitor v;
Root()>> StateMachine() >> MembersOf(StateMachine(), State() >> v,

Transition() >> v)

Listing 7: A LEESA expression for traversing siblings: States and Transitions

(i.e., StateMachine) followed by a comma separated list of LEESA subexpressions for

visiting the children in the given order. It effectively replaces multiple for loops written in

a sequence where each for loop corresponds to a type of sibling.

V.4.2.4 Association Axis.

LEESA supports traversals along two different kinds of user-defined associations. First,

named composition roles, which use user-defined roles while traversing composition in-

stead of the default composition role. For instance, in our HFSM modeling language,

Time objects are composed using the delay composition role inside States. Sec-

ond, named associations between different types of objects turn tree-like object struc-

tures into graphs. For example, Transition is a user-defined association possible be-

tween any two States in the HFSM language described in Section V.4.1. Moreover,

srcTransition and dstTransition are two possible roles a State can be in with

respect to a Transition.

LEESA provides a notation to traverse an association using the name of the association

class (i.e., class-name in Listing 5) and the desired role (i.e., role-name in Listing 5). List-

ing 8 shows two independent LEESA expressions that traverse two different user-defined

associations. The first expression returns a set of Time objects that are composed immedi-

ately inside the top-level States. The expression traverses the delay composition role

defined between states and time objects. This feature allows differentiation (and selection)

of children objects that are of the same type but associated with their parent with different

composition roles.
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Root()>> StateMachine() >> State() >> Association(State::delay)...(1)
Root()>> StateMachine() >> Transition()

>> Association(Transition::dstTransition)...(2)

Listing 8: Traversing user-defined associations using LEESA.

The second expression returns all the top-level states that have at least one incoming

transition. Such a set can be conceptually visualized as a set of states that are at the destina-

tion end of a transition. The second expression in Listing 8 up to Transition() yields

a set of transitions that are the immediate children of StateMachines. The remaining

expression to the right of it traverses the user-defined association dstTransition and

returns States that are in the destination role with respect to every Transition in the

previously obtained set.

In the above association-based traversals, the operator “�” does not imply child axis

traversal but instead represents continuation of the LEESA expression in a breadth-first

manner. As described before, breadth-first strategy simulates loops in sequence. Use of

“�=” turns the breadth-first strategy over association axis into a depth-first strategy, which

simulates nested loops. Expressions with associations can also be combined with visitor

objects if role-specific actions are to be dispatched.

V.4.3 Programmer-defined Processing of Intermediate Results Using Actions

Writing traversals over object structures often requires processing the intermediate re-

sults before the rest of the traversal is executed (e.g., filtering objects that do not satisfy

a programmer-defined predicate, or sorting objects using programmer-defined comparison

functions). LEESA provides a set of actions that process the intermediate results produced

by the earlier part of the traversal expression. These actions are in fact higher-order func-

tions that take programmer-defined predicates or comparison functions as parameters and

apply them on a collection of objects.
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int comparator (State, State) { ... } // A C++ comparator function
bool predicate (Time) { ... } // A C++ predicate function
Root() >> StateMachine() >> State() >> Sort(State(), comparator)

>> Time() >> Select(Time(), predicate)

Listing 9: A LEESA expression with actions to process intermediate results

Listing 9 shows a LEESA expression that uses two predefined actions: Sort and

Select. The Sort function, as the name suggests, sorts a collection using a programmer-

defined comparator. Select filters out objects that do not satisfy the programmer-defined

predicate. The result of the traversal in Listing 9 is a set of Time objects, however, the

intermediate results are processed by the actions before traversing composition relation-

ships further. Sort and Select are examples of higher-order functions that accept con-

ventional functions as parameters as well as stateful objects that behave like functions,

commonly known as functors.

LEESA supports about a dozen different actions (e.g., Unique, ForEach) and more

actions can be defined by the programmers and incorporated into LEESA expressions if

needed. The efforts needed to add a new action are proportional to adding a new class

template and a global overloaded operator function template.

V.4.4 Generic, Recursive, and Reusable Traversals Using Strategic Programming

Although LEESA’s axes traversal operators (�,�,�=,�=) are reusable for writing

traversals across different schemas, they force the programmers to commit to the vocab-

ulary of the schema and therefore the traversal expressions (as whole) cannot be reused.

Moreover, LEESA’s axes traversal notation discussed so far lacked support for recursive

traversal, which is important for a wide spectrum of domain-specific modeling languages

that support hierarchical constructs. For example, our case study of HFSM requires recur-

sive traversal to visit deeply nested states.
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A desirable solution should not only support recursive traversals but also enable higher-

level reuse of traversal schemes while providing complete control over a traversal. Traver-

sal schemes are higher level control patterns (e.g., top-down, bottom-up, depth-first, etc.)

for traversal over heterogeneously typed object structures. Strategic Programming (SP) [74,

75, 148] is a well-known generic programming idiom based on programmer-definable (re-

cursive or otherwise) traversal abstractions that allow separation of type-specific actions

from reusable traversal schemes. SP also provides a design method for developing reusable

traversal functionality based on so called strategies. Therefore, based on the observation

that LEESA shares this goal with that of SP, we adopted the SP design method and created

a new incarnation of SP on top of LEESA’s axes traversal notation. Next, we describe how

LEESA leverages the SP design method to meet its goal of supporting generic, recursive,

and reusable traversals. For a detailed description of the foundations of SP, we suggest

[74, 75, 148].

Primitive Description
combinators
Identity Returns its input datum without change.
Fail Always throws an exception indicating a failure.
Sequence<S1,S2> Invokes strategies S1 and S2 in sequence on its input datum.
Choice<S1,S2> Invokes strategy S2 on its input datum only if the invocation of S1

fails.
All<S> Invokes strategy S on all the immediate children of its input datum.
One<S> Stops invocation of strategy S after its first success on one of the

children of its input datum.

Table 10: The set of basic class template combinators

LEESA’s incarnation of the SP design method is based on a small set of combinators

that can be used to construct new combinators from the given ones. By combinators we

mean reusable C++ class templates capturing basic functionality that can be composed in

different ways to obtain new functionality. The basic combinators supported in LEESA are
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summarized in Table 10. This set of combinators is inspired by the strategy primitives of

the term rewriting language Stratego [147].

FullTD<Strategy> = Sequence<Strategy, All<FullTD> >
FullBU<Strategy> = Sequence<All<FullBU>, Strategy>

Listing 10: Pseudo-definitions of the class templates of the predefined traversal
schemes (Strategy = Any primitive combinator or combination thereof, TD = top-down, BU
= bottom-up)

All and One are one-layer traversal combinators, which can be used to obtain full

traversal control, including recursion. Although none of the basic combinators are recur-

sive, higher-level traversal schemes built using the basic combinators can be recursive. For

instance, Listing 10 shows a subset of predefined higher-level traversal schemes in LEESA

that are recursive. The (pseudo-) definition of FullTD (full top-down) means that the pa-

rameter Strategy is applied at the root of the incoming datum and then it applies itself

recursively to all the immediate children of the root, which can be of heterogeneous types.

Figure 26 shows a graphical illustration of FullTD and FullBU (full bottom-up) traver-

sal schemes. Section V.5.3 describes the actual C++ implementation of the primitives and

the recursive schemes in detail.

Figure 26: Graphical illustration of FullTD and FullBU traversal schemes. (Squares,
circles, and triangles represent objects of different types)
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Root() >> StateMachine()
>> FullTD(StateMachine(), VisitStrategy(v), LeaveStrategy(v));

Listing 11: Combining axes-oriented traversal, strategic programming, and hierar-
chical visitor in LEESA. (v can be replaced by a programmer-defined visitor.)

Listing 11 shows how the FullTD recursive traversal scheme can be used to perform

full top-down traversal starting from a StateMachine. Note that the heterogeneously

typed substructures (State, Transition, and Time) of the StateMachine are not

mentioned in the expression. However, they are incorporated in the traversal automatically

using the static meta-information in the metamodel. This is achieved by externalizing the

static meta-information in a form that is understood by the C++ compiler and in turn the

LEESA expressions. Later in Section V.5.2 we describe a process of externalizing the

static meta-information from the metamodel (schema) and in Section V.5.3 we show how

it is used for substructure traversal.

Finally, the VisitStrategy and LeaveStrategy in Listing 11 are predefined

LEESA strategies that can not only be configured with programmer-defined visitor objects,

but can also be replaced by other programmer-defined strategies. We envision that the

combination of VisitStrategy and LeaveStrategy will be used predominantly

because it supports the hierarchical visitor [111] pattern to keep track of depth during

traversal. This pattern is based on a pair of type-specific actions: Visit and Leave. The

Visit action is invoked while entering a non-leaf node and the Leave action is invoked

while leaving it. To keep track of depth, the visitor typically maintains an internal stack

where the Visit function does a “push” operation and Leave function does a “pop.”

V.4.5 Schema Compatibility Checking

Every syntactically correct traversal expression in LEESA is statically checked against

the schema for type errors and any violations are reported back to the programmer. Broadly,
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LEESA supports four kinds of checks based on the types and actions participating in the

expression. First, only the types representing the vocabulary of the schema are allowed in

a LEESA expression. The visitor instances are an exception to this rule. Second, impos-

sible traversal specifications are rejected where there is no way of reaching the elements

of a specified type along the axis used in the expression. For example, the child-axis op-

erators (�, �=) require (immediate) parent/child relationship between the participating

types whereas DescendantsOf requires a transitive closure of the child relationship.

Third, the argument type of the intermediate results processing actions must match that of

the result returned by the previous expression. Finally, the result type of the action must

be a type from the schema if the expression is continued further. Table 11 summarizes

the LEESA’s assertions for checking schema conformance of child and parent axes ex-

pressions. Section V.6 describes in detail how we have implemented schema compatibility

checking using C++ Concepts.

Notation
A, B : Intermediate result processing actions
L, R : Compound LEESA expressions (e.g., L� R)
Result(x) = The right-most type in the expression when x is a LEESA expression.

= The result type of the action when x is an action.
Arg(x) = The left-most type in the expression when x is a LEESA expression.

= The argument type of the action when x is an action.
Assertions
For L� R and L�= R, Result(L) must be parent of Arg(R)
For L� R and L�= R, Result(L) must be child of Arg(R)
For L� A and L� A, Result(L) must be same as Arg(A)
For A� R and A� R, Result(A) must be same as Arg(R)
For A� B and A� B, Result(A) must be same as Arg(B)

Table 11: Assertions in LEESA for checking schema compatibility
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V.5 The Implementation of LEESA

In this section we present LEESA’s layered software architecture, the software process

of obtaining the static meta-information from the schema, and how we have implemented

the strategic traversal combinators in LEESA.

V.5.1 The Layered Architecture of LEESA

Figure 27 shows LEESA’s layered architecture. At the bottom is the in-memory ob-

ject structure, which could be a tree or a graph. An object-oriented data access layer

is a layer of abstraction over the object structure, which provides schema-specific, type-

safe interfaces for iteratively accessing the elements in the object structure. Often, a code

generator is used to generate language bindings (usually a set of classes) that model the vo-

cabulary. Several different types of code generators such as XML schema compilers [127]

and domain-specific modeling tool-suites [39] are available that generate a schema-specific

object-oriented data access layer from the static meta-information.

Figure 27: Layered View of LEESA’s Architecture (Shading of blocks shown for aes-
thetic reasons only.)

To support generic traversals, the schema-specific object-oriented data access layer
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must be adapted to make it suitable to work with the generic implementation of LEESA’s

C++ templates. The parameterizable data access layer is a thin generic wrapper that

achieves this. It treats the classes that model the vocabulary as type parameters and hides

the schema-specific interfaces of the classes. This layer exposes a small generic inter-

face, say, getChildren, to obtain the children of a specific type from a composite ob-

ject and say, getParent, to obtain the parent of an object. For example, using C++

templates, obtaining children of type T of an object of type U could be implemented2 as

U.getChildren<T>(), where U and T could be any two classes modeling the vocab-

ulary that have a parent/child relationship. This layer can also be generated automatically

from the object structure schema.

Expression Templates [146] is the key idea behind embedding LEESA’s traversal ex-

pressions in C++. Using operator overloading, expression templates enable lazy evaluation

of C++ expressions, which is otherwise not supported natively in C++. Lazy evaluation

allows expressions – rather than their results – to be passed as arguments to functions to

extract results lazily when needed. LEESA overloads the �, �, �=, and �= operators

using the design method of expression templates to give embedded traversal expressions

a look and feel of XPath’s axes-oriented traversal specifications. Moreover, LEESA ex-

pressions can be passed to other generic functions as arguments to extract results lazily.

LEESA’s expression templates map the traversal expressions embedded in a C++ program

onto the parameterizable data access layer. They raise the level of abstraction by hid-

ing away the iterative process of accessing objects and instead focus only on the relevant

types in the vocabulary and different strategies (breadth-first and depth-first) of traversal.

LEESA’s expression templates are independent of the underlying vocabulary. Schema-

specific traversals are obtained by instantiating them with schema-specific classes. For

more details on LEESA’s expression templates, including an example, the readers are di-

rected to our previous work [140].

2A widely supported, standard C++ feature called “template explicit specialization” could be used.
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Finally, LEESA programmers use the axes traversal expressions and strategic traversal

combinators and schemes to write their traversals. The axes traversal expressions are based

on LEESA’s expression templates. The strategic traversal combinators use an externalized

representation of the static meta-information for their generic implementation. Below we

describe the process of externalizing the static meta-information.

V.5.2 Externalizing Static Meta-information.

Figure 28 shows the software process of developing a schema-first application using

LEESA. The object-oriented data access layer, parameterizable data access layer, and the

static meta-information are generated from the schema using a code generator. Conven-

tional [39, 127] code generators for language-specific bindings generate the object-oriented

data access layer only, but for this work we extended the Universal Data Model (UDM) [39]

– a tool-suite for developing domain-specific modeling languages (DSML) – to generate

the parameterizable data access layer and the static meta-information. The cost of ex-

tending UDM is amortized over the number of schema-first applications developed using

LEESA. While the static meta-information is used for generic implementations of the prim-

itive strategic combinators, C++ Concepts [57, 126] shown in Figure 28 are used to check

the compatibility of LEESA expressions with the schema and report the errors back to the

programmer at compile-time. C++ Concepts allow the error messages to be succinct and

intuitive. Such a diagnosis capability is of high practical importance as it catches program-

mer mistakes much earlier in the development lifecycle by providing an additional layer of

safety.

The Boost C++ template metaprogramming library (MPL) [3] has been used as a ve-

hicle to represent the static meta-information in LEESA. It provides easy to use, readable,

and portable mechanisms for implementing metaprograms in C++. MPL has become a de-

facto standard for metaprogramming in C++ with a collection of extensible compile-time

algorithms, typelists, and metafunctions. Typelists encapsulate zero or more C++ types
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Figure 28: The software process of developing a schema-first application using
LEESA. (Ovals are tools whereas shaded rectangular blocks represent generated code)

(programmer-defined or otherwise) in a way that can be manipulated at compile-time using

MPL metafunctions.

V.5.2.1 Using Boost MPL to Externalize the Static Meta-information.

The static meta-information (partial) of the HFSM metamodel (Section V.4.1) captured

using Boost MPL typelists is shown below.

class StateMachine {

typedef mpl::vector < State, Transition > Children;

};

class State {

typedef mpl::vector < State, Transition, Time > Children;

};

class Transition { // Same as class Time

typedef mpl::vector < > Children // empty

};

mpl::contains <StateMachine::Children,State>::value //...(1) true

mpl::front <State::Children>::type //...(2) class State

mpl::pop_front<State::Children>::type //...(3) mpl::vector<Transition,Time>
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Each class has an associated type called Children, which is a MPL typelist imple-

mented using mpl::vector. The typelist contains a list of types that are children of

its host type. A MPL metafunction called mpl::contains has been used to check exis-

tence of a type in a MPL typelist. For example, the statement indicated by (1) above checks

whether typelist StateMachine::Children contains type State. It results in a

compile-time constant true value. Metafunctions mpl::front and mpl::pop_front,

indicated by (2) and (3), are semantically equivalent to “car” and “cdr” list manipulation

functions in Lisp. While mpl::front returns the first type in the typelist, mpl::pop_front

removes the first type and returns the remaining typelist.

We leverage this metaprogramming support provided by MPL to represent children,

parent, and descendant axes meta-information in C++. We have extended the UDM tool-

suite to generate Boost MPL typelists that capture the static meta-information of these axes.

V.5.3 The Implementation of Strategic Traversal Schemes.

In LEESA’s implementation of SP, All and One are generative one-layer combinators

because their use requires mentioning the type of only the start element where the strategy

application begins. The children and descendant (in case of recursive traversal schemes)

types of the start type are automatically incorporated into the traversal using the external-

ized static meta-information and the LEESA’s metaprograms that iterate over it.

Listing 12 shows the C++ implementation of the All and Sequence primitive com-

binators and the FullTD recursive traversal scheme in LEESA. All is a class template

that accepts Strategy as a type parameter, which could be instantiations of other com-

binators or other instantiations of All itself. Execution of All begins at the apply func-

tion, which delegates execution to another member template function called children.

All::children is instantiated as many times as there are children of type T. From

the T::Children typelist, repeated instantiation of the children member template
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template <class Strategy>
class All {

Strategy strategy_;
public:

All (Strategy s) : strategy_(s) { } // Constructor
template <class T>
void apply (T arg) { // Every strategy implements this member template function.

// If T::Children typelist is empty, calls (B) otherwise calls (A)
children(arg, typename T::Children());

}
private:

template <class T, class Children>
void children(T arg, Children) { // ............ (A)

typedef typename mpl::front<Children>::type Head; // ...(1)
typedef typename mpl::pop_front<Children>::type Tail; // ...(2)
for_each c in arg.getChildren<Head>() // ...(3)

strategy_.apply(c);
children(arg, Tail()); // ...(4)

}
template <class T>
void children(T, mpl::vector<> /* empty typelist */) { } // ............ (B)

};
-----------------------------------------------------------------------------------------
template <class S1, class S2> template <class Strategy>
class SEQ { class FullTD {

S1 s1_; S2 s2_; Strategy st_;
public: public:

SEQ(S1 s1, S2 s2) FullTD(Strategy s) : st_(s) {}
: s1_(s1), s2_(s2) {} template <class T>

template <class T> void apply (T arg) {
void apply (T arg) { All<FullTD> all(*this);

s1_.apply(arg); SEQ<Strategy, All<FullTD> > seq(st_, all);
s2_.apply(arg); seq.apply(arg);

} }
}; };

Listing 12: C++ implementations of All and SEQ (Sequence) primitive combinators
and the FullTD recursive traversal scheme

function are obtained using the metaprogram indicated by statements (1), (2), and (4) in

Listing 12.

Similar to list processing in functional languages, statement (1) yields the first type

(Head) in the typelist whereas statement (2) yields the remaining typelist (Tail). State-

ment (4) is a compile-time recursive call to itself but with Tail as its second parameter.

This compile-time recursion terminates only when Tail becomes empty after successive

application of mpl::pop_front metafunction. When Tail is an empty typelist, the

children function marked by (B) is invoked terminating the compile-time recursion.
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Figure 29 shows a graphical illustration of this recursive instantiation process. Multiple re-

cursive instantiations of function children are shown in the order they are created with

a progressively smaller typelist as its second parameter. Finally, the statement marked as

(3) is using the parameterizable data access interface T::getChildren, which returns

all the Head type children of arg.

Figure 29: Compile-time recursive instantiations of the children function starting
at All<Strategy>::apply<State>(arg) when arg is of type State.

We apply a sophistication of C++ template metaprogramming technique called loop

unrolling [28] in the above generative one-layer combinators to alleviate the complexity

of mentioning all the children and descendant types of the start type. Note that immediate

children types of a given type T in the schema are obtained at compile-time using the

associated type T::Children as described in Section V.5.2. The primitive combinator

templates that encapsulate the traversal strategies are instantiated repeatedly using LEESA’s

template metaprograms iterating over T::Children typelists. These typelists are finite

in length and therefore repeated instantiation is guaranteed to terminate. Finally, these

automatically instantiated templates are responsible for run-time traversal.

V.5.3.1 Efficient Descendant Axis Traversal.

Compile-time customizations of the primitive combinator All and in turn FullTD

traversal scheme are used for efficient implementation of the descendant axis traversal.
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LEESA can prevent traversals into unnecessary substructures by controlling the types that

are visited during recursive traversal of FullTD and FullBU schemes. LEESA cus-

tomizes the behavior of the All primitive combinator using the descendant types informa-

tion that is obtained from the schema. The T::Children typelist in the All::apply

function is manipulated using C++ template metaprogramming such that the schema types

that have no way of reaching the objects of the target type are eliminated before invoking

the All::children function. This is achieved using compile-time boolean queries over

the list of descendant types implemented using MPL’s metafunction mpl::contains as

described in Section V.5.2. All these metaprograms are completely encapsulated inside the

C++ class templates that implement recursive traversal schemes and are not exposed to the

programmers.

While static meta-information can be used for efficient traversal, the same meta-information

can be used to check the LEESA expressions for their compatibility with the schema. We

describe that next.

V.6 Domain-specific Error Reporting using C++ Concepts

In DSL literature [29, 84], embedded DSLs have been criticized for their lack of support

for domain-specific error reporting. The importance of intuitive error messages should not

be underestimated as it directly affects the programmer’s effectiveness in locating and cor-

recting errors in a DSL program. This issue is all the more important for embedded DSLs

since their compiler is the same as the host language compiler, and hence the error reports

are often in terms of the host language artifacts instead of domain-specific artifacts that

are relevant to the problem. Moreover, for embedded DSLs in C++ that are implemented

using templates, the problem is further exacerbated because templates lack early modular

(separate) type-checking. As a result, extremely long error messages pointing deep into

the implementation details are produced even for minor syntactical inconsistencies. We
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leverage C++ Concepts [57] to produce significantly shorter and intuitive error messages

when a LEESA expression violating the schema is identified at compile-time.

V.6.1 Early Type-checking of C++ Templates using Concepts

C++ Concepts [57] have been developed to address the problem of late type-checking

of templates during compilation. Concepts express the syntactic and semantic behavior of

types and constrain the type parameters in a C++ template, which are otherwise uncon-

strained. Concepts allow separate type-checking of template definitions from their uses,

which makes templates easier to use and easier to compile. The set of constraints on one or

more types are referred to as Concepts. Concepts describe not only the functions and op-

erators that the types must support but also other accessible types called associated types.

The types that satisfy the requirements of a concept are said to model that concept. When a

concept constrained C++ template is instantiated with a type that does not model the con-

cept, an error message indicating the failure of the concept and the type that violates it are

shown at the call site in the source code. An experimental support for C++ Concepts has

been implemented in the ConceptGCC [55] compiler.

V.6.2 Schema Compatibility Checking Using Concepts and Metaprogramming

We have defined several C++ Concepts in LEESA that must be satisfied by different

types participating in a LEESA expression. These Concepts are related primarily to child,

parent, descendant, and ancestor axes traversals and the invocation of actions for interme-

diate results processing. For example, each type in a child axis traversal expression must

model a ParentChildConcept with respect to its preceding type. An implementation

of the ParentChildConcept is shown below.

concept ParentChildConcept <typename Parent, typename Child> {

typename Children = typename Parent::Children;

typename IsChild = typename mpl::contains<Children, Child>::type;
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requires std::SameType<IsChild, true_type>;

};

The concept is parameterized with two types and essentially requires that the Child

type be present in the list of children of the Parent type. This is achieved by (1) obtaining

the result of the application of MPL metafunction contains on Parent’s associated

type Children and (2) enforcing the type of the result to be the same as true_type,

which signifies success. If the Concept does not hold, a short error message is produced

stating the failure of the Concept and the types that violate it. The error is reported at the

first occurrence of the type that violates it regardless of the length of the expression. As

the length of the erroneous LEESA expression grows, the error output grows linearly due

to increasing size of the recursively constructed type using expression templates. However,

the reason and location are always stated distinctly in the form of concept violation.

For example, consider a LEESA expression, “StateMachine() � Time()”, which

is incorrect with respect to the metamodel of the HFSM modeling language because Time

is not an immediate child of StateMachine and therefore, does not satisfy the Parent-

ChildConcept described before. Below, we have shown the actual error message pro-

duced by the ConceptGCC [55] compiler, which is only four lines long, and clearly states

the reason and the location (both on the fourth line) of the error. The line numbers in the

error message map to the programmer-written traversal expressions and not in the imple-

mentation of LEESA.

t.cc: In function ’int main()’:

t.cc:99: error: no match for ’operator>>’ in ’StateMachine() >> Time()’

t.cc:85: note: candidates are: R LEESA::operator>>(const L&, const R&)

[with L = StateMachine, R = Time] <requirements>

t.cc:99: note: no concept map for requirement

’LEESA::ParentChildConcept<StateMachine, Time>’
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Similar to the ParentChildConcept, DescendantConcept has also been de-

fined, which depends on the automatically generated list of descendant types.

V.7 Evaluation of LEESA

In this section, we present two case-studies evaluating the capabilities of LEESA. In the

first case study, we present quantitative results on LEESA’s effectiveness in reducing efforts

while programming traversals compared to the third generation object-oriented languages.

The second case-study measures the compile-time and run-time performance of LEESA on

contemporary C++ compilers and platfroms.

V.7.1 Case-study 1: Evaluating Programmer Productivity

Experimental setup. We conducted the experiments using our open-source domain-

specific modeling tool-suite: CoSMIC.3 CoSMIC is a collection of domain-specific model-

ing languages (DSML), interpreters, code generators, and model-to-model transformations

developed using Generic Modeling Environment (GME) [78], which is a meta-programmable

tool for developing DSMLs. CoSMIC’s DSMLs are used for developing distributed appli-

cations based on component-based middleware. For instance, the Platform Independent

Component Modeling Language (PICML) [15] is one of the largest DSMLs in CoSMIC

for modeling key artifacts in all the life-cycle phases of a component-based application,

such as interface specification, component implementation, hierarchical composition of

components, and deployment. A PICML model may contain up to 300 different types of

objects. Also, PICML has over a dozen model interpreters that generate XML descriptors

pertaining to different application life-cycle stages. All these interpreters are implemented

in C++ using UDM as the underlying object-oriented data access layer.

Methodology. The objective of our evaluation methodology is to show the reduction

3http://wwww.dre.vanderbilt.edu/cosmic
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Traversal Pattern Axis Occurrences Original #lines #Lines using
(average) LEESA (average)

A single loop iterating Child 11 8.45 1.45
over a list of objects Association 6 7.50 1.33
5 sequential loops Sibling 3 41.33 6

iterating over siblings
2 Nested loops Child 2 16 1

Traversal-only visit Child 3 11 0
functions

Leaf-node accumulation Descendant 2 43.5 4.5
using depth-first

Total traversal code - All 414 53
(absolute) (absolute)

Table 12: Reduction in code size (# of lines) due to the replacement of common
traversal patterns by LEESA expressions.

in programming efforts needed to implement commonly observed traversal patterns using

LEESA over traditional iterative constructs.

To enable this comparison, we refactored and reimplemented the traversal related parts

of PICML’s deployment descriptor generator using LEESA. This generator exercises the

widest variety of traversal patterns applicable to PICML. It amounts to little over 2,000

lines4 of C++ source code (LOC) out of which 414 (about 21%) LOC perform traversals. It

is organized using the Visitor [48] pattern where the accept methods in the object structure

classes are non-iterating and the entire traversal logic along with the type-specific actions

are encapsulated inside a monolithic visitor class. Table 12 shows the traversal patterns we

identified in the generator. We replaced these patterns with their equivalent constructs in

LEESA. This procedure required some refactoring of the original code.

Analysis of results. Table 12 shows a significant reduction in the code size due to

LEESA’s succinct traversal notation. As expected, the highest reduction (by ratio) in code

size was observed when two ad-hoc implementations of depth-first search (e.g., search-

ing nested components in a hierarchical component assembly) were replaced by LEESA’s

4The number of lines of source code is measured excluding comments and blank lines.
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adaptive expressions traversing the descendant axis. However, the highest number of re-

duction in terms of the absolute LOC (114 lines) was observed in the frequently occurring

traversal pattern of a single loop. Cumulatively, leveraging LEESA resulted in 87.2% re-

duction in traversal code in the deployment descriptor generator. We expect similar results

in other applications of LEESA.

V.7.1.1 Incremental Adoption of LEESA.

It is worth noting here that due to its pure embedded approach, applying LEESA in the

existing model traversal programs is considerably simpler than external DSLs that generate

code in bulk. Incremental refactoring of the original code-base was possible by replacing

one traversal pattern at a time while being confident that the replacement is not changing

the behavior in any unexpected ways. Such incremental refactoring using external traversal

DSLs that use a code generator would be extremely hard, if not impossible. Our pure em-

bedded DSL approach in LEESA allows us to distance ourselves from such all-or-nothing

predicament, which could potentially be a serious practical limitation. We expect that a

large number of existing C++ applications that use XML data-binding [127] can start bene-

fiting from LEESA using this incremental approach provided their XML schema compilers

are extended to generate the parameterizable data access layer and the meta-information.

V.7.2 Case-study 2: Evaluating Compile- and Run-time Performance

Rationale. LEESA relies heavily on C++ meta-programming but C++ compilers are of-

ten not optimized for it. This motivates us to evaluate the effect of LEESA’s meta-programs

on the edit-compile-test cycle, which directly affects the productivity of professional pro-

grammers using the contemporary development environments for compiled languages. We

also evaluate the effect of generative programming on the object code size and the abstrac-

tion penalty incurred by LEESA in terms of its run-time performance.

Experimental setup. We experimented with an open-source XML data binding [114]
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<xs:element name="catalog">
<xs:complexType> <xs:sequence>
<xs:element name="book" maxOccurs="unbounded">
<xs:complexType> <xs:sequence>
<xs:element name="name" type="xs:string" />
<xs:element name="author" maxOccurs="unbounded">
<xs:complexType> <xs:sequence>
<xs:element name="name" type="xs:string" />
<xs:element name="born" type="xs:date" />
<xs:element name="died" type="xs:date" minOccurs="0"/>
</xs:sequence> </xs:complexType>

</xs:element>
</xs:sequence> </xs:complexType>
</xs:element>
</xs:sequence> </xs:complexType>
</xs:element>

Listing 13: XML Schema Definition (XSD) of the catalog XML

<catalog>
<book>

<title>Hamlet</title>
<price>9.99</price>
<author>
<name>William Shakespeare</name>
<country>England</country>

</author>
</book>
<book>...</book>

...
</catalog>

Listing 14: An XML document containing a book catalog.
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tool for C++ called XSD [1]. XSD generates vocabulary-specific C++ classes from an

XML schema, which describes the structure of domain-specific XML document instances.

We developed a Python script to generate the generic data access layer to hide the schema-

specific C++ interfaces. Moreover, the script is also used to externalize the meta-information

and embed it in the generated C++ classes. For experimentation we used the XML schema

shown in Listing 13 and the corresponding XML instance is shown in Listing 14. The C++

classes generated by XSD are shown in Listing 15 whereas the generic data access layer

generated by our Python script is shown in Listing 16.

class title {...};
class price {...};
class name {...};
class country {...};
class author { // Constructors are not shown.
private: name name_;

country country_;
public: name get_name() const;

void set_name(name const &);
country get_country() const;
void set_country(country const &);

};
class book { // Constructors are not shown.
private: title title_;

price price_;
std::vector<author> author_sequence_;

public: title get_title() const;
void set_title(title const &);
price get_price() const;
void set_price(price const &);
std::vector<author> get_author() const;
void set_author(std::vector<author> const &);

};
class catalog {...}; // Contains a std::vector of books.

Listing 15: C++ classes generated by a typical XML data binding tool for the catalog
object-model

Analysis of Results. Table 13 shows the comparison of code sizes for one small (10

types) and one large (300 types) schema. We evaluated a single LEESA expression of each

query type shown in the table against equivalent programs written using object-oriented

abstractions only.
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name children (author a, name const *) {
return a.get_name();

}
country children (author a, country const *) {
return a.get_country();

}
title children (book b, title const *) {
return b.get_title();

}
price children (book b, price const *) {
return b.get_price();

}
std::vector<author> children (book b, author const *) {
return b.get_author();

}
std::vector<book> children (catalog c, book const *) {
return c.get_book();

}

Listing 16: Automatically generated generic data access layer

Schema Query type Lines of Object code
size code (Megabytes)

(A) (B) (A) (B)

Small
Child-axis,

AllDescendants, 3 13 0.38 0.35
LevelDescendants

Large
Child-axis 3 39 7.42 7.15

AllDescendants 3 136 7.46 7.19
LevelDescendants 4 88 7.49 7.18

Table 13: Comparison of the static metrics. (A) = LEESA and (B) = Object-oriented
solution

The difference in the lines of code (LOC) in Table 13 clearly shows that LEESA ex-

pressions are highly expressive and succinct compared to the OO-centric solution. Data

for the object code sizes reveals that LEESA’s generative programming approach does not

result in object-level code bloat.

Comparisons of the compilation times using the gcc 4.5 compiler and the test programs

based on the large schema are shown in Figure 30. LEESA-based programs consistently

require more time to compile than pure OO solutions because contemporary C++ compil-

ers are not optimized for heavy meta-programming. The increasing compilation-times may
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Figure 30: Comparisons of compilation times with LEESA and the pure object-
oriented solution

lengthen the edit-compile-test cycles. However, we believe that the succinctness and intu-

itiveness of LEESA not only requires fewer key-strokes but also fewer compilations than

the equivalent object-oriented programs.

Figure 31: Comparison of meta-programming performance of different C++ compil-
ers
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Furthermore, variadic templates [56], an upcoming standard C++ language (C++0x [19])

feature that allows arbitrary number of template parameters is a promising solution to re-

duce the compilation overhead dramatically. Figure 31 shows the difference between the

compilation times of three versions of the gcc compiler. The compilers were tested on a

C++ meta-program that computes an intersection of two MPL typelists at compile-time,

which is a frequently executed meta-program in LEESA. With the increase in the size of

the typelist, compilation times of gcc 4.4.3 increases super-linearly whereas compilation

times of gcc 4.5 increases linearly. However, with the variadic template support, size of the

typelist has little or no effect on the compilation time of gcc 4.5 in C++0x mode. These

results indicate that with the advent of C++0x, heavy typelist-oriented meta-programming

may become practical.

Figure 32: Run-time performance comparisons of LEESA and the pure object-
oriented solution

Figure 32 compares the run-time performance of a LEESA query with an optimized
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hand-written object-oriented solution. We compared the time needed to construct a stan-

dard C++ container (e.g., std::vector<T>) of name objects from a set of large book cata-

logs. LEESA’s descendant axis has consistently higher overhead by a factor of 2.5 com-

pared to the hand-written solution. This abstraction penalty stems from the construction,

copying, and destruction of the internal dynamic data structures LEESA maintains.

In practice, however, query execution amounts to a small fraction of the overall XML

processing, which involves I/O, parsing, XML validation, construction of the in-memory

object model, and the execution of business logic. For instance, our 320,000 elements test

took over 36 seconds for XML parsing, validation, and object model construction, which

is nearly two orders of magnitude higher than the query execution time.

V.8 Comparing LEESA with Related Research

In this section we place LEESA in the context of a sampling of the most relevant re-

search efforts in the area of object structure traversal.

XPath 2.0 [154] is a structure-shy XML query language that allows node selection in

a XML document using downward (children, descendant), upward (parent, ancestor), and

sideways (sibling) axes. In general, XPath supports more powerful node selection expres-

sions than LEESA using its untyped unconstrained (i.e. axis::*) axes. XPath’s formal

semantics [155] describe how XML schema could be used for static type analysis to detect

certain type errors and to perform optimizations. However, contemporary XPath program-

ming APIs for C++ use string encoded expressions, which are not checked against the

schema at compile-time. Moreover, unlike XPath, type-specific behavior can be composed

over the axes-oriented traversals using LEESA.

Adaptive Programming (AP) [79, 80] specifies structure-shy traversals in terms of mile-

stone classes composed using predicates, such as from, to, through, and bypass. It uses

static meta-information to optimize traversals as well as to check their compatibility against
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the schema. While LEESA focuses on accumulation of nodes using its axes-oriented no-

tation and programmability of traversals using its strategic combinator style, AP focuses

on a collection of unique paths in the object graph specified using the above mentioned

predicates. The use of visitors in LEESA to modularize type-specific actions is similar in

spirit to the code wrappers in AP.

Strategic Programming (SP) [75, 147], which began as a term rewriting [147] language

has evolved into a language-interparadigmatic style of programming traversals and has

been incarnated in several other contexts, such as functional [74], object-oriented [148],

and embedded [17]. The strategic traversal expressions in LEESA are based on a new

embedded incarnation of SP in an imperative language, C++. Unlike [17], however, no

compiler extension is necessary. Also, all the expressions are statically checked against the

schema, unlike visitor combinators [148].

Scrap++ [88] presents a C++ templates-based approach for implementing Haskell’s

“Scrap Your Boilerplate” (SYB) design pattern, which is remarkably similar to SP. Scrap++’s

approach depends on recursive traversal combinators, a one-layer traversal, and a type ex-

tension of the basic computations. However, LEESA’s approach is different in many signif-

icant ways. First, unlike LEESA, the objective of Scrap++ is to mimic Haskell’s SYB and

therefore does not provide an intuitive axes traversal notation. Second, LEESA presents

a software process for generating schema-specific meta-information that is used during

compilation for generating traversals as well as compatibility checking. Third, SYB lacks

parental and sibling contexts. Finally, no technique is provided in Scrap++ to produce

intuitive error messages.

Lämmel et al. [76] present a way of realizing adaptive programming predicates (e.g.,

from, to, through, and bypass) by composing SP primitive combinators and traversal schemes.
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Due to a lack of static type information, their simulation of AP in terms of SP lacks im-

portant aspects of AP, such as static checking and avoiding unnecessary traversal into sub-

structures. LEESA, on the other hand, uses the externalized meta-information to not only

statically check the traversals but also makes them efficient.

Static meta-information has also been exploited by Cunha et al. [5] in the transformation

of structure-shy XPath and SP programs for statically optimizing them. Both approaches

eliminate unnecessary traversals into substructures, however, no transformation is neces-

sary in the case of LEESA. Instead, the behaviors of All and One primitive combinators

are customized at compile-time to improve efficiency. Moreover, LEESA’s structure-shy

traversals support mutually recursive types, unlike [5].

Lämmel [73] sketches an encoding of XPath-like axes (downward, upward, and side-

ways) using strategic function combinators in the SYB style. LEESA is similar to this work

because both the approaches suggest an improvement of XPath-like set of axes with sup-

port for strategic, recursive traversal abstractions and provide a way of performing schema-

conformance checking. The key differences are the improved efficiency of the descendant

axis traversal in case of LEESA, its domain-specific error reporting capability, and its use of

an imperative, object-oriented language as opposed to Haskell, which is a pure functional

language.

Gray et al. [51] and Ovlinger et al. [107] present an approach in which traversal spec-

ifications are written in a specialized language separate from the basic computations. A

code generator is used to transform the traversal specifications into imperative code based

on the Visitor pattern. This approach is, however, heavyweight compared to the embedded

approach because it incurs high cost of the development and maintenance of the language

processor.

Language Integrated Query (LINQ) [7] is a Microsoft .NET technology that supports

SQL-like queries natively in a program to search, project and filter data in arrays, XML,

relational databases, and other third-party data sources. “LINQ to XSD” promises to add
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much needed typed XML programming support over its predecessor “LINQ to XML.”

LINQ, however, does not support strategic combinator style like LEESA. The Object Con-

straint Language (OCL) [101] is a declarative language for describing well-formedness

constraints and traversals over object structures represented using UML class graphs. OCL,

however, does not support side-effects (i.e., object structure transformations are not possi-

ble).

Czarnecki et al. [29] compare staged interpreter techniques in MetaOCaml with the

template-based techniques in Template Haskell and C++ to implement embedded DSLs.

Two approaches – type-driven and expression-driven – of implementing an embedded DSL

in C++ are presented. Within this context, our previous work [140] presents LEESA’s

expression-driven pure embedding approach. Spirit5 and Blitz++6 are two other prominent

examples of expression-driven embedded DSLs in C++ for recursive descent parsing and

scientific computing, respectively. Although LEESA shares the implementation technique

of expression templates with them, strategic and XPath-like axes-oriented traversals cannot

be developed using Spirit or Blitz++.

5http://spirit.sourceforge.net
6http://www.oonumerics.org/blitz
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CHAPTER VI

CONCLUDING REMARKS

Distributed real-time and embedded (DRE) systems are the backbone of many mission-

critical domains, such as avionic mission computing, air traffic control, multi-satellite mis-

sions, and shipboard computing. The criticality of these domains require the DRE sys-

tems to be highly available and predictable (low latency and jitter) while operating in en-

vironments where network and CPU resources are often fluctuating. To meet the strin-

gent quality-of-service (QoS) requirements of the DRE systems, effective techniques are

required in all phases (specification to run-time) of the development lifecycle. This dis-

sertation presents the research challenges in developing highly-available DRE systems

and resolves them using novel solutions based on contemporary software development

paradigms: component-based software engineering (CBSE) and model-driven engineering

(MDE).

First, it describes the difficulties in reasoning about the DRE systems due to the tangling

of availability concerns with composition, deployment, and timeliness concerns. To sim-

plify reasoning of multiple QoS for DRE systems, it presents a domain-specific modeling

language named Component QoS Modeling Language (CQML), that modularizes time-

liness, fault-tolerance, and network bandwidth allocation decisions of component-based

systems away from composition and deployment concerns. Second, this dissertation iden-

tifies the need for a coherent approach for capturing fault-tolerance requirements through

all phases of the system lifecycle including specification, design, composition, deploy-

ment, configuration, and run-time. This challenge is resolved using a coherent model-

driven process that synthesizes source code and system configuration to deploy a fault-

tolerant component-based system with minimum human intervention. The process is im-

plemented in GeneRative Aspects for Fault-Tolerance (GRAFT), which is a multi-stage
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aspect-oriented model transformation process based on model-to-model, model-to-text,

model-to-code transformations.

Although CQML and GRAFT address the design- and deployment-time issues in fault-

tolerance provisioning satisfactorily, dealing with the side-effects of replication in multi-

tier DRE systems requires run-time solutions. This dissertation shows how the orphan

request problem manifests itself in multi-tier DRE systems due to a variety of sources of

non-determinism in such systems. To address the run-time issues, a group-failover protocol

is presented that ensures consistent and timely data for multi-tier real-time systems with

non-deterministic stateful components. The experimental evaluations of the group-failover

protocol highlight its suitability for real-time systems.

Finally, this dissertation presents the deficiencies in using the object-oriented paradigm

for a key step in model-driven engineering: object structure traversal. The deficiencies stem

from the inability of synthesizing domain-specific abstractions for programming traversals

using object-oriented paradigm alone. To resolve these challenges, a multi-paradigm design

approach that combines generic-, generative-, strategic-, and meta-programming paradigms

is presented. The approach is implemented in Language for Embedded quEry and traver-

SAl (LEESA), which is an embedded domain-specific language for programming reusable,

generic traversals using the multi-paradigm programming capabilities of C++.
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APPENDIX A

UNDERLYING TECHNOLOGIES

This appendix summarizes the various technologies that are used to build the domain-

specific languages and the fault-tolerant middleware solutions that are described in this

thesis.

A.1 Overview of Lightweight CCM

The OMG Lightweight CCM (LwCCM) [98] specification standardizes the develop-

ment, configuration, and deployment of component-based applications. LwCCM uses

CORBA’s distributed object computing (DOC) model as its underlying architecture, so

applications are not tied to any particular language or platform for their implementations.

Components in LwCCM are the implementation entities that export a set of interfaces us-

able by conventional middleware clients as well as other components. Components can

also express their intent to collaborate with other components by defining ports, including

(1) facets, which define an interface that accepts point-to-point method invocations from

other components, (2) receptacles, which indicate a dependency on point-to-point method

interface provided by another component, and (3) event sources/sinks, which indicate a

willingness to exchange typed messages with one or more components. Homes are fac-

tories that shield clients from the details of component creation strategies and subsequent

queries to locate component instances.

Figure 33 illustrates the layered architecture of LwCCM, which includes the following

entities:

• LwCCM sits atop an object request broker (ORB) and provides containers that

encapsulate and enhance the CORBA portable object adapter (POA) demultiplexing

mechanisms. Containers support various pre-defined hooks and strategies, such as
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Figure 33: Layered LwCCM Architecture

persistence, event notification, transaction, and security, to the components it man-

ages.

• A component server plays the role of a process that manages the homes, containers,

and components.

• Each container manages one type of component and is responsible for initializing

instances of this component type and connecting them to other components and com-

mon middleware services.

• The component implementation framework (CIF) consists of patterns, languages

and tools that simplify and automate the development of component implementations

which are called as executors. Executors actually provide the component’s business

logic.
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• Component Implementation Definition Language (CIDL) is a text-based declarative

language that defines the behavior of the components. In order to shield the compo-

nent application developers from many complexities associated with programming

POAs like servant activation and deactivation, a CIDL compiler generates infras-

tructure glue code called servants. Servants (1) activate components within the con-

tainer’s POA, (2) manage the interconnection of a component’s ports to the ports of

other components, (3) provide implementations for operations that allow navigation

of component facets, and (4) intercept invocations on executors to transparently enact

various policies, such as component activation, security, transactions, load balancing,

and persistence.

• To initialize an instance of a component type, a container creates a component home.

The component home creates instances of servants and executors and combines them

to export component implementations to the external world.

• Executors use servants to communicate with the underlying middleware and servants

delegate business logic requests to executors. Client invocations made on the com-

ponent are intercepted by the servants, which then delegate the invocations to the

executors. Moreover, the containers can configure the underlying middleware to add

more specialized services, such as integrating an event channel to allow components

to communicate and add Portable Interceptors to intercept component requests.

A.2 Overview of Component Middleware Deployment and Configuration

After components are developed and component assemblies are defined, they must

be deployed and configured properly by deployment and configuration (D&C) services.

The D&C process of component-based systems usually involves a number of service ob-

jects that must collaborate with each other. Figure 34 gives an overview of the OMG

D&C model, which is standardized by OMG through the Deployment and Configuration
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(D&C) [100] specification to promote component reuse and allow complex applications to

be built by assembling existing components. As shown in the figure, since a component-

based system often consists of many components that are distributed across multiple nodes,

in order to automate the D&C process, these service objects must be distributed across the

targeted infrastructure and collaborate remotely.

Figure 34: An Overview of OMG Deployment and Configuration Model

The run-time of the OMG D&C model standardizes the D&C process into a number of

serialized phases. The OMG D&C Model defines the D&C process as a two-level architec-

ture, one at the domain level and one at the node level. Since each deployment task involves

a number of subtasks that have explicit dependencies with each other, these subtasks must

be serialized and finished in different phases. Meanwhile, each deployment task involves a

number of node-specific tasks, so each task is distributed.
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A.3 Overview of Generic Modeling Environment (GME)

GME is a configurable toolkit for creating DSMLs and program synthesis environ-

ments. Third-generation programming languages, such as C++, Java, and C#, employ

imperative techniques for development, deployment, and configuration of systems. For

example, real-time QoS provisioning with object request brokers is conventionally done

using imperative techniques that specify the QoS policies at the same level of abstraction

as the mechanisms that implement those policies [112].

In contrast, GME-based DSMLs use a declarative approach that clearly separates the

specification of policies from the mechanisms used to enforce the policies. Policy specifica-

tion is done at a higher level of abstraction (and in less amount of detail), e.g., using models

and declarative configuration languages. Declarative techniques help relieve users from the

intricacies of how the policies are mapped onto the underlying mechanisms implementing

them, thereby simplifying policy modifications.

GME-based DSMLs are described using metamodels, which specify the modeling para-

digm or language of the application domain. The modeling paradigm contains all the syn-

tactic, semantic, and presentation information regarding the domain, e.g., which concepts

will be used to construct models, what relationships may exist among those concepts, how

the concepts may be organized and viewed by the modeler, and rules governing the con-

struction of models. The modeling paradigm defines the family of models that can be

created using the resultant modeling environment.

For example, a DSML might represent the different hardware elements of a radar

system and the relationships between them in a component middleware technology like

LwCCM. Likewise, it might represent the different elements, such as EJBComponent, EJB-

Home, EJBContainer and ApplicationServer, that are present in a component middleware

technology like EJB. Developers use DSMLs to build applications using elements of the

type system captured by metamodels and express design intent declaratively rather than

imperatively.
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Figure 35: Overview of GME

To create metamodels and their associated DSMLs, GME uses a modular and compo-

nent-based architecture as shown in Figure 35 (see [78] for a detailed overview of the

GME architecture). Application developers create new DSMLs using the following core

components of GME: (1) GME Editor, (2) Browser, (3) Constraint Manager, (4) Trans-

lator, and Add-ons. To support building large-scale and complex systems, GME’s Editor

and the Browser provide basic building blocks to model different entities of the system

and express the relationships between those different entities. GME’s Constraint Manager

catches errors when models are constructed with incorrect relationships or associations.

GME’s Add-ons provide capabilities to extend the GME Editor, and its Translators sup-

port the analysis of models and synthesize various types of artifacts, such as source code,

deployment descriptors, or simulator input.

A.4 Overview of Constraint-Specification Aspect Weaver (C-SAW)

The Constraint-Specification Aspect Weaver [130] (C-SAW) weaver is a generalized

model-to-model transformation engine for manipulating domain-specific models, which is
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implemented as a plug-in for the Generic Modeling Environment (GME) [78]. It can also

be used to instrument structural changes within the model according to some higher-level

requirement that represents a crosscutting concern. In C-SAW, transformations are spec-

ified at the modeling level using the Embedded Constraint Language (ECL). The aspect

specification defines a set of locations in the domain models; and strategy specifications

describe the transformation behaviors, which can be recursive. ECL provides support for

composing complex transformation behaviors using a library of commonly used operations

such as addition, deletion, selection, searching, and cloning of modeling elements and basic

logical, numerical, and string manipulation operations.

A.5 Overview of C++ Template Metaprogramming

A metaprogram is defined as a program that manipulates/generates another program. A

variation of metaprogramming is available in C++ where the metaprograms are expressed

using C++ templates. Templates make C++ a two-level language where there are static

constructs for metaprogramming and dynamic constructs for conventional run-time of the

program. The language for the static constructs is a low-level, pure functional language

which is interpreted by the C++ compiler at compile-time. Naturally, programming in the

pure functional sub-language of C++ is a shift in paradigm from its conventional imperative

sub-language. Moreover, development of ad-hoc and extremely clever metaprogramming

techniques (hacks) that exploit subtleties of the C++ compilation process have increased

the complexity of C++ metaprogramming over the years.

The Boost C++ template metaprogramming library (MPL) [3] provides easy to use,

readable, and portable mechanisms for implementing metaprograms on top of low-level

pure functional static constructs. MPL is a widely use library for metaprogramming in

C++ with a collection of extensible compile-time algorithms, typelists, and metafunctions.

Typelists encapsulate zero or more C++ types (programmer-defined or otherwise) in a way

that can be manipulated at compile-time using MPL metafunctions.
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A.6 Overview of C++ Concepts

C++ Concepts [57] have been developed to address the problem of late type-checking

of templates during compilation. Concepts express the syntactic and semantic behavior of

types and constrain the type parameters in a C++ template, which are otherwise uncon-

strained. Concepts allow separate type-checking of template definitions from their uses,

which makes templates easier to use and easier to compile. The set of constraints on one or

more types are referred to as Concepts. Concepts describe not only the functions and op-

erators that the types must support but also other accessible types called associated types.

The types that satisfy the requirements of a concept are said to model that concept. When a

concept constrained C++ template is instantiated with a type that does not model the con-

cept, an error message indicating the failure of the concept and the type that violates it are

shown at the call site in the source code. An experimental support for C++ Concepts has

been implemented in the ConceptGCC [55] compiler.

For example, the following concept called LessThanComparable defines a con-

straint that the “less than” operator < be defined for objects of type T.

concept LessThanComparable <typename T> {
bool operator < (T, T);

};
template <typename T>

requires LessThanComparable<T>
void sort (T * begin, T * end) { ... }

A generic function called sort requires this concept to be satisfied by the range of

objects pointed to by the begin and end pointers. If the sort function is instantiated

with a type that does not model the LessThanComparable concept (e.g., the native

void type), a short error message indicating the failure of the concept along with the type

that causes it is shown at the call site in the source code.
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APPENDIX B

LIST OF PUBLICATIONS

Research on CQML, GRAFT, LEESA, and the group-failover protocol has led to the

following journal, conference, and workshop publications.

B.1 Refereed Journal Publications

1. Friedhelm Wolf, Jaiganesh Balasubramanian, Sumant Tambe, Aniruddha Gokhale,

and Douglas C. Schmidt, “Supporting Component-based Failover Units in Middle-

ware for Distributed Real-time and Embedded Systems,” Elsevier Journal of Soft-

ware Architectures: Embedded Software Design, Special Issue on Embedded and

Real-time Systems, 2010.

2. Jules White, James Hill, Jeff Gray, Sumant Tambe, Douglas C. Schmidt, Anirrudha

Gokhale, “Improving Domain-specific Language Reuse through Software Product-

line Configuration Techniques,” IEEE Software Special Issue on Domain-Specific

Languages and Modeling, July-August 2009.

B.2 Refereed Conference Publications

1. Sumant Tambe and Aniruddha Gokhale, “LEESA: Embedding Strategic and XPath-

like Object Structure Traversals in C++,” Proceedings of the IFIP Working Confer-

ence on Domain Specific Languages (DSL WC), 2009.

2. Sumant Tambe, Akshay Dabholkar, Aniruddha Gokhale, “CQML: Aspect-oriented

Modeling for Modularizing and Weaving QoS Concerns in Component-based Sys-

tems,” Proceedings of the 16th Annual IEEE International Conference and Workshop

on the Engineering of Computer Based Systems (ECBS), 2009.
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3. Sumant Tambe, Akshay Dabholkar, and Aniruddha Gokhale, “Fault-tolerance for

Component-based Systems - An Automated Middleware Specialization Approach’,”

Proceedings of the International Symposium on Object/component/service-oriented

Real-time distributed Computing (ISORC), 2009.

4. Jaiganesh Balasubramanian, Sumant Tambe, Chenyang Lu, Aniruddha Gokhale, Christo-

pher Gill, and Douglas C. Schmidt, “Adaptive Failover for Real-time Middleware

with Passive Replication,” Proceedings of the 15th IEEE Real-time and Embedded

Technology and Applications Symposium (RTAS), 2009.

5. Jaiganesh Balasubramanian, Sumant Tambe, Balakrishnan Dasarathy, Shrirang Gad-

gil, Frederick Porter, Aniruddha Gokhale and Douglas C. Schmidt, “NetQoPE: A

Model-driven Network QoS Provisioning Engine for Distributed Real-time and Em-

bedded Systems,” Proceedings of the 14th IEEE Real-time and Embedded Technol-

ogy and Applications Symposium (RTAS), 2008.

6. Sumant Tambe, Jaiganesh Balasubramanian, Aniruddha Gokhale, “MDDPro: Model-

Driven Dependability Provisioning in Enterprise Distributed Real-Time and Em-

bedded Systems,” Proceedings of the International Service Availability Symposium

(ISAS), 2007.

7. James Hill, Sumant Tambe, Aniruddha Gokhale, “Model-driven Engineering for

Development-time QoS Validation of Component-based Software Systems,” Pro-

ceedings of Engineering of Computer Based Systems Conference (ECBS), 2007.

B.3 Refereed Workshop Publications

1. Aniruddha Gokhale, Akshay Dabholkar, and Sumant Tambe, “Towards a Holis-

tic Approach for Integrating Middleware with Software Product Lines Research,”

Proceedings of the GPCE/OOPSLA workshop on Modularization, Composition and

Generative Techniques in Product Line Engineering (McGPLE), 2008.
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2. Sumant Tambe, Aniriddha Gokhale, “An Embedded Declarative Language for Hier-

archical Object Structure Traversal,” 2nd International Workshop on Domain-Specific

Program Development (DSPD), GPCE 2008.

3. Sumant Tambe, Akshay Dabholkar, Aniruddha Gokhale, Amogh Kavimandan, “To-

wards A QoS Modeling and Modularization Framework for Component-based Sys-

tems,” EDOC workshop on Advances in Quality of Service Management (AQuSerM)

2008.

4. Aniruddha Gokhale, Sumant Tambe, Larry Dowdy and Gautam Biswas, “Towards

High Confidence Cyberphysical Systems for Intelligent Transportation Systems,” Po-

sition paper in National Workshop on High-Confidence Automotive Cyber-Physical

Systems, April 2008.

5. Sumant Tambe, Jaiganesh Balasubramanian , Aniruddha Gokhale, “Model-Driven

Engineering of Fault Tolerance in Enterprise Distributed Real-time and Embedded

Systems,” Proceedings of OMG Real-time Systems Workshop (RTWS), 2006.

B.4 Technical Reports

1. Sumant Tambe, Aniruddha Gokhale, “Toward Native XML Processing Using Multi-

paradigm Design in C++,” Technical Report ISIS-10-105, Institute for Software Inte-

grated Systems, Vanderbilt University, April 2010.

B.5 Submitted for Publication

1. Sumant Tambe, Aniruddha Gokhale, “Rectifying Orphan Components using Group-

failover in Distributed Real-time Embedded Systems,” Submitted to the 17th IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS), 2011.
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