147 research outputs found

    A review of technologies and design techniques of millimeter-wave power amplifiers

    Get PDF
    his article reviews the state-of-the-art millimeter-wave (mm-wave) power amplifiers (PAs), focusing on broadband design techniques. An overview of the main solid-state technologies is provided, including Si, gallium arsenide (GaAs), GaN, and other III-V materials, and both field-effect and bipolar transistors. The most popular broadband design techniques are introduced, before critically comparing through the most relevant design examples found in the scientific literature. Given the wide breadth of applications that are foreseen to exploit the mm-wave spectrum, this contribution will represent a valuable guide for designers who need a single reference before adventuring in the challenging task of the mm-wave PA design

    System-Level Analysis for Integrated Power Amplifier Design in mmWave Consumer Wireless Communications

    Get PDF
    System-level specifications for the design of integrated power amplifiers in mmWave wireless communications are derived in the paper. To this aim emerging standards for consumer applications such as wireless ultra-high definition (UHD) multimedia streaming or Gbit wireless LAN are considered (WirelessHD, WiGig, ECMA387, IEEE.802.11.ad, IEEE802.15.3c and upcoming 5G). A power amplifier design in 65 nm CMOS Silicon on Insulator (SOI) technology, targeting a 9 GHz UWB window from 57 to 66 GHz, is also proposed. To increase the power delivered to the antenna up to 18 mW, being still in the limit of maximum 1 dB compression point, multiple PA cores have been combined through a Wilkinson power combiner, but other solutions can be also explored for a better power efficiency and linearity

    A 28 GHz 0.18-μm CMOS cascade power amplifier with reverse body bias technique

    Get PDF
    A 28 GHz power amplifier (PA) using CMOS 0.18 μm Silterra process technology is reported. The cascade configuration has been adopted to obtain high Power Added Efficiency (PAE). To achieve low power consumption, the input stage adopts reverse body bias technique. The simulation results show that the proposed PA consumes 32.03mW and power gain (S21) of 9.51 dB is achieved at 28 GHz. The PA achieves saturated power (Psat) of 11.10 dBm and maximum PAE of 16.55% with output 1-dB compression point (OP1dB) 8.44 dBm. These results demonstrate the proposed power amplifier architecture is suitable for 5G applications

    Efficient and Linear CMOS Power Amplifier and Front-end Design for Broadband Fully-Integrated 28-GHz 5G Phased Arrays

    Get PDF
    Demand for data traffic on mobile networks is growing exponentially with time and on a global scale. The emerging fifth-generation (5G) wireless standard is being developed with millimeter-wave (mm-Wave) links as a key technological enabler to address this growth by a 2020 time frame. The wireless industry is currently racing to deploy mm-Wave mobile services, especially in the 28-GHz band. Previous widely-held perceptions of fundamental propagation limitations were overcome using phased arrays. Equally important for success of 5G is the development of low-power, broadband user equipment (UE) radios in commercial-grade technologies. This dissertation demonstrates design methodologies and circuit techniques to tackle the critical challenge of key phased array front-end circuits in low-cost complementary metal oxide semiconductor (CMOS) technology. Two power amplifier (PA) proof-of-concept prototypes are implemented in deeply scaled 28- nm and 40-nm CMOS processes, demonstrating state-of-the-art linearity and efficiency for extremely broadband communication signals. Subsequently, the 40 nm PA design is successfully embedded into a low-power fully-integrated transmit-receive front-end module. The 28 nm PA prototype in this dissertation is the first reported linear, bulk CMOS PA targeting low-power 5G mobile UE integrated phased array transceivers. An optimization methodology is presented to maximizing power added efficiency (PAE) in the PA output stage at a desired error vector magnitude (EVM) and range to address challenging 5G uplink requirements. Then, a source degeneration inductor in the optimized output stage is shown to further enable its embedding into a two-stage transformer-coupled PA. The inductor helps by broadening inter-stage impedance matching bandwidth, and helping to reduce distortion. Designed and fabricated in 1P7M 28 nm bulk CMOS and using a 1 V supply, the PA achieves +4.2 dBm/9% measured Pout/PAE at −25 dBc EVM for a 250 MHz-wide, 64-QAM orthogonal frequency division multiplexing (OFDM) signal with 9.6 dB peak-to-average power ratio (PAPR). The PA also achieves 35.5%/10% PAE for continuous wave signals at saturation/9.6dB back-off from saturation. To the best of the author’s knowledge, these are the highest measured PAE values among published K- and K a-band CMOS PAs to date. To drastically extend the communication bandwidth in 28 GHz-band UE devices, and to explore the potential of CMOS technology for more demanding access point (AP) devices, the second PA is demonstrated in a 40 nm process. This design supports a signal radio frequency bandwidth (RFBW) >3× the state-of-the-art without degrading output power (i.e. range), PAE (i.e. battery life), or EVM (i.e. amplifier fidelity). The three-stage PA uses higher-order, dual-resonance transformer matching networks with bandwidths optimized for wideband linearity. Digital gain control of 9 dB range is integrated for phased array operation. The gain control is a needed functionality, but it is largely absent from reported high-performance mm-Wave PAs in the literature. The PA is fabricated in a 1P6M 40 nm CMOS LP technology with 1.1 V supply, and achieves Pout/PAE of +6.7 dBm/11% for an 8×100 MHz carrier aggregation 64-QAM OFDM signal with 9.7 dB PAPR. This PA therefore is the first to demonstrate the viability of CMOS technology to address even the very challenging 5G AP/downlink signal bandwidth requirement. Finally, leveraging the developed PA design methodologies and circuits, a low power transmit-receive phased array front-end module is fully integrated in 40 nm technology. In transmit-mode, the front-end maintains the excellent performance of the 40 nm PA: achieving +5.5 dBm/9% for the same 8×100 MHz carrier aggregation signal above. In receive-mode, a 5.5 dB noise figure (NF) and a minimum third-order input intercept point (IIP₃) of −13 dBm are achieved. The performance of the implemented CMOS frontend is comparable to state-of-the-art publications and commercial products that were very recently developed in silicon germanium (SiGe) technologies for 5G communication

    KEY FRONT-END CIRCUITS IN MILLIMETER-WAVE SILICON-BASED WIRELESS TRANSMITTERS FOR PHASED-ARRAY APPLICATIONS

    Get PDF
    Millimeter-wave (mm-Wave) phased arrays have been widely used in numerous wireless systems to perform beam forming and spatial filtering that can enhance the equivalent isotropically radiated power (EIRP) for the transmitter (TX). Regarding the existing phased-array architectures, an mm-Wave transmitter includes several building blocks to perform the desired delivered power and phases for wireless communication. Power amplifier (PA) is the most important building block. It needs to offer several advantages, e.g., high efficiency, broadband operation and high linearity. With the recent escalation of interest in 5G wireless communication technologies, mm-Wave transceivers at the 5G frequency bands (e.g., 28 GHz, 37 GHz, 39 GHz, and 60 GHz) have become an important topic in both academia and industry. Thus, PA design is a critical obstacle due to the challenges associated with implementing wideband, highly efficient and highly linear PAs at mm-Wave frequencies. In this dissertation, we present several PA design innovations to address the aforementioned challenges. Additionally, phase shifter (PS) also plays a key role in a phased-array system, since it governs the beam forming quality and steering capabilities. A high-performance phase shifter should achieve a low insertion loss, a wide phase shifting range, dense phase shift angles, and good input/output matching.Ph.D

    CMOS MESFET Cascode Amplifiers for RFIC Applications

    Get PDF
    abstract: There is an ever-increasing demand for higher bandwidth and data rate ensuing from exploding number of radio frequency integrated systems and devices. As stated in the Shannon-Hartley theorem, the maximum achievable data rate of a communication channel is linearly proportional to the system bandwidth. This is the main driving force behind pushing wireless systems towards millimeter-wave frequency range, where larger bandwidth is available at a higher carrier frequency. Observing the Moor’s law, highly scaled complementary metal–oxide–semiconductor (CMOS) technologies provide fast transistors with a high unity power gain frequency which enables operating at millimeter-wave frequency range. CMOS is the compelling choice for digital and signal processing modules which concurrently offers high computation speed, low power consumption, and mass integration at a high manufacturing yield. One of the main shortcomings of the sub-micron CMOS technologies is the low breakdown voltage of the transistors that limits the dynamic range of the radio frequency (RF) power blocks, especially with the power amplifiers. Low voltage swing restricts the achievable output power which translates into low signal to noise ratio and degraded linearity. Extensive research has been done on proposing new design and IC fabrication techniques with the goal of generating higher output power in CMOS technology. The prominent drawbacks of these solutions are an increased die area, higher cost per design, and lower overall efficiency due to lossy passive components. In this dissertation, CMOS compatible metal–semiconductor field-effect transistor (MESFETs) are utilized to put forward a new solution to enhance the power amplifier’s breakdown voltage, gain and maximum output power. Requiring no change to the conventional CMOS process flow, this low cost approach allows direct incorporation of high voltage power MESFETs into silicon. High voltage MESFETs were employed in a cascode structure to push the amplifier’s cutoff frequency and unity power gain frequency to the 5G and K-band frequency range. This dissertation begins with CMOS compatible MESFET modeling and fabrication steps, and culminates in the discussion of amplifier design and optimization methodology, parasitic de-embedding steps, simulation and measurement results, and high resistivity RF substrate characterization.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    A linear high-efficiency millimeter-wave CMOS Doherty radiator leveraging on-antenna active load-modulation

    Get PDF
    This thesis presents a Doherty Radiator architecture that explores multi-feed antennas to achieve an on-antenna Doherty load modulation network and demonstrate high-speed high-efficiency transmission of wideband modulated signals. On the passive circuits, we exploit the multi-feed antenna concept to realize compact and high-efficiency on-antenna active load modulation for close-to-ideal Doherty operation, on-antenna power combining, and mm-Wave signal radiation. Moreover, we analyze the far-field transmission of the proposed Doherty Radiator and demonstrate its wide Field-of-View (FoV). On the active circuits, we employ a GHz-bandwidth adaptive biasing at the Doherty Auxiliary power amplifier (PA) path to enhance the Main/Auxiliary Doherty cooperation and appropriate turning-on/-off of the Auxiliary path. A proof-of-concept Doherty Radiator implemented in a 45nm CMOS SOI process over 62-68GHz exhibits a consistent 1.45-1.53× PAE enhancement at 6dB PBO over an idealistic class-B PA with the same PAE at P1dB. The measured Continuous-Wave (CW) performance at 65GHz demonstrates 19.4/19.2dBm PSAT/P1dB and achieves 27.5%/20.1% PAE at peak/6dB PBO, respectively. For single-carrier 1Gsym/s 64-QAM modulation, the Doherty Radiator shows average output power of 14.2dBm with an average 20.2% PAE and -26.7dB EVM without digital predistortion. Consistent EVMs are observed over the entire antenna FoV, demonstrating spatially undistorted transmission and constant Doherty PBO efficiency enhancement.M.S

    Automatic Tuning of Silicon Photonics Millimeter-Wave Transceivers Building Blocks

    Get PDF
    Today, continuously growing wireless traffic have guided the progress in the wireless communication systems. Now, evolution towards next generation (5G) wireless communication systems are actively researched to accommodate expanding future data traffic. As one of the most promising candidates, integrating photonic devices in to the existing wireless system is considered to improve the performance of the systems. Emerging silicon photonic integrated circuits lead this integration more practically, and open new possibilities to the future communication systems. In this dissertation, the development of the electrical wireless communication systems are briefly explained. Also, development of the microwave photonics and silicon photonics are described to understand the possibility of the hybrid SiP integrated wireless communication systems. A limitation of the current electrical wireless systems are addressed, and hybrid integrated mm-wave silicon photonic receiver, and silicon photonic beamforming transmitter are proposed and analyzed in system level. In the proposed mm-wave silicon photonic receiver has 4th order pole-zero silicon photonic filter in the system. Photonic devices are vulnerable to the process and temperature variations. It requires manual calibration, which is expensive, time consuming, and prone to human errors. Therefore, precise automatic calibration solution with modified silicon photonic filter structure is proposed and demonstrated. This dissertation demonstrates fully automatic tuning of silicon photonic all-pass filter (APF)-based pole/zero filters using a monitor-based tuning method that calibrates the initial response by controlling each pole and zero individually via micro-heaters. The proposed tuning approach calibrates severely degraded initial responses to the designed elliptic filter shapes and allows for automatic bandwidth and center frequency reconfiguration of these filters. This algorithm is demonstrated on 2nd- and 4th-order filters fabricated in a standard silicon photonics foundry process. After the initial calibration, only 300ms is required to reconfigure a filter to a different center frequency. Thermal crosstalk between the micro-heaters is investigated, with substrate thinning demonstrated to suppress this effect and reduce filter calibration to less than half of the original thick substrate times. This fully automatic tuning approach opens the possibility of employing silicon photonic filters in real communication systems. Also, in the proposed beamforming transmitter, true-time delay ring resonator based 1x4 beamforming network is imbedded. A proposed monitor-based tuning method compensates fabrication variations and thermal crosstalk by controlling micro-heaters individually using electrical monitors. The proposed tuning approach successfully demonstrated calibration of OBFN from severely degraded initial responses to well-defined group delay response required for the targeted radiating angle with a range of 60â—¦ (-30â—¦ to 30â—¦ ) in a linear beamforming antenna array. This algorithm is demonstrated on OBFN fabricated in a standard silicon photonics foundry process. The calibrated OBFN operates at 30GHz and provide 2GHz bandwidth. This fully automatic tuning approach opens the possibility of employing silicon OBFN in real wideband mm-wave wireless communication systems by providing robust operating solutions. All the proposed photonic circuits are implemented using the standard silicon photonic technologies, and resulted in several publications in IEEE/OSA Journals and Conferences
    • …
    corecore