480 research outputs found

    Using Answer Set Programming for pattern mining

    Get PDF
    Serial pattern mining consists in extracting the frequent sequential patterns from a unique sequence of itemsets. This paper explores the ability of a declarative language, such as Answer Set Programming (ASP), to solve this issue efficiently. We propose several ASP implementations of the frequent sequential pattern mining task: a non-incremental and an incremental resolution. The results show that the incremental resolution is more efficient than the non-incremental one, but both ASP programs are less efficient than dedicated algorithms. Nonetheless, this approach can be seen as a first step toward a generic framework for sequential pattern mining with constraints.Comment: Intelligence Artificielle Fondamentale (2014

    An efficient closed frequent itemset miner for the MOA stream mining system

    Get PDF
    Mining itemsets is a central task in data mining, both in the batch and the streaming paradigms. While robust, efficient, and well-tested implementations exist for batch mining, hardly any publicly available equivalent exists for the streaming scenario. The lack of an efficient, usable tool for the task hinders its use by practitioners and makes it difficult to assess new research in the area. To alleviate this situation, we review the algorithms described in the literature, and implement and evaluate the IncMine algorithm by Cheng, Ke, and Ng (2008) for mining frequent closed itemsets from data streams. Our implementation works on top of the MOA (Massive Online Analysis) stream mining framework to ease its use and integration with other stream mining tasks. We provide a PAC-style rigorous analysis of the quality of the output of IncMine as a function of its parameters; this type of analysis is rare in pattern mining algorithms. As a by-product, the analysis shows how one of the user-provided parameters in the original description can be removed entirely while retaining the performance guarantees. Finally, we experimentally confirm both on synthetic and real data the excellent performance of the algorithm, as reported in the original paper, and its ability to handle concept drift.Postprint (published version

    A review of associative classification mining

    Get PDF
    Associative classification mining is a promising approach in data mining that utilizes the association rule discovery techniques to construct classification systems, also known as associative classifiers. In the last few years, a number of associative classification algorithms have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associative classification techniques with regards to the above criteria. Finally, future directions in associative classification, such as incremental learning and mining low-quality data sets, are also highlighted in this paper

    Reductions for Frequency-Based Data Mining Problems

    Full text link
    Studying the computational complexity of problems is one of the - if not the - fundamental questions in computer science. Yet, surprisingly little is known about the computational complexity of many central problems in data mining. In this paper we study frequency-based problems and propose a new type of reduction that allows us to compare the complexities of the maximal frequent pattern mining problems in different domains (e.g. graphs or sequences). Our results extend those of Kimelfeld and Kolaitis [ACM TODS, 2014] to a broader range of data mining problems. Our results show that, by allowing constraints in the pattern space, the complexities of many maximal frequent pattern mining problems collapse. These problems include maximal frequent subgraphs in labelled graphs, maximal frequent itemsets, and maximal frequent subsequences with no repetitions. In addition to theoretical interest, our results might yield more efficient algorithms for the studied problems.Comment: This is an extended version of a paper of the same title to appear in the Proceedings of the 17th IEEE International Conference on Data Mining (ICDM'17

    Frequent Item Set Mining Using INC_MINE in Massive Online Analysis Frame Work

    Get PDF
    Frequent Pattern Mining is one of the major data mining techniques, which is exhaustively studied in the past decade. The technological advancements have resulted in huge data generation, having increased rate of data distribution. The generated data is called as a ‘data stream’. Data streams can be mined only by using sophisticated techniques. The paper aims at carrying out frequent pattern mining on data streams. Stream mining has great challenges due to high memory usage and computational costs. Massive online analysis frame work is a software environment used to perform frequent pattern mining using INC_MINE algorithm. The algorithm uses the method of closed frequent mining. The data sets used in the analysis are Electricity data set and Airline data set. The authors also generated their own data set, OUR-GENERATOR for the purpose of analysis and the results are found interesting. In the experiments five samples of instance sizes (10000, 15000, 25000, 35000, 50000) are used with varying minimum support and window sizes for determining frequent closed itemsets and semi frequent closed itemsets respectively. The present work establishes that association rule mining could be performed even in the case of data stream mining by INC_MINE algorithm by generating closed frequent itemsets which is first of its kind in the literature

    A genetic algorithm coupled with tree-based pruning for mining closed association rules

    Get PDF
    Due to the voluminous amount of itemsets that are generated, the association rules extracted from these itemsets contain redundancy, and designing an effective approach to address this issue is of paramount importance. Although multiple algorithms were proposed in recent years for mining closed association rules most of them underperform in terms of run time or memory. Another issue that remains challenging is the nature of the dataset. While some of the existing algorithms perform well on dense datasets others perform well on sparse datasets. This paper aims to handle these drawbacks by using a genetic algorithm for mining closed association rules. Recent studies have shown that genetic algorithms perform better than conventional algorithms due to their bitwise operations of crossover and mutation. Bitwise operations are predominantly faster than conventional approaches and bits consume lesser memory thereby improving the overall performance of the algorithm. To address the redundancy in the mined association rules a tree-based pruning algorithm has been designed here. This works on the principle of minimal antecedent and maximal consequent. Experiments have shown that the proposed approach works well on both dense and sparse datasets while surpassing existing techniques with regard to run time and memory
    • …
    corecore