11,927 research outputs found

    Gamification in higher education and stem : a systematic review of literature

    Get PDF
    In recent years, gamification, the use of game elements in non-game contexts, has drawn the attention of educators due to the possibility of making learning more motivating and engaging; this led to an increase of research in the field. Despite the availability of literature reviews about gamification and its effects, no work to this date has focused exclusively on Higher Education (HE). Next, worldwide there is an increasing demand for skilled Science, Technology, Engineering and Mathematics (STEM) professionals that meet the challenges related to scientific and technological innovations of the 21st Century. This lead to the need of strengthening STEM Higher Education. This brings us to the purpose of this work: presenting a systematic literature review of empirical studies about gamification STEM related Higher Education. This review study started from a systematic mapping design of 'Web of Science' articles, with following inclusion criteria: empirical gamification studies set up in HE, published between 2000 and 2016; focusing on undergraduate or graduate students; in the STEM knowledge field, and set up in authentic settings. An initial search resulted in 562 potentially relevant articles. After applying all selection criteria, only 18 studies could be retained. 12 additional articles were included by analyzing references from earlier literature reviews, resulting in 30 studies to be included. Analysis results show how a combination of game elements (e.g. leaderboards, badges, points and other combinations) positively affects students' performance, attendance, goal orientation and attitude towards mostly computer science related subjects. The analysis results also point at a lack of studies in certain STEM areas, a lack of studies that identify the particular game element associated with the positive differential impact on student performance; a lack of validated psychometric measurements, and lack of focus on student variables that could/should be taken into account as mediating/moderating variables clarifying the impact of gamification in the HE focus on STEM learning and teaching

    Training Competences in Industrial Risk Prevention with Lego® Serious Play®: A Case Study

    Get PDF
    This paper proposes the use of the Lego® Serious Play® (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017–2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of “gamification” dynamics with Lego® Serious Play®. In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams.Spanish Ministry of Science, Innovation and Universities / European Social Fund: Ramón y Cajal contract (RYC-2017-22222

    Training Competences in Industrial Risk Prevention with Lego (R) Serious Play (R): A Case Study

    Get PDF
    This paper proposes the use of the Lego (R) Serious Play (R) (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017-2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of "gamification" dynamics with Lego (R) Serious Play (R). In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams

    Using Gameplay Patterns to Gamify Learning Experiences

    Get PDF
    Gamification refers to the use of gaming elements to enhance user experience and engagement in non-gaming systems. In this paper we report the design and implementation of two higher education courses in which ludic elements were used to enhance the quality of the learning experience. A game can be regarded as a system of organised gameplay activities, and a course can be regarded as a system of organised learning activities. Leveraging this analogy, analysing games can provide valuable insights to organise learning activities within a learning experience. We examined a sample of successful commercial games to identify patterns of organisation of gameplay activities that could be applied to a course design. Five patterns were identified: quest structure, strategic open-endedness, non-linear progression, orientation, and challenge-based reward. These patterns were then used to define the instructional design of the courses. As a result, courses were organised as systems of quests that could be tackled through different strategies and in a non-linear way. Students received frequent feedback and were rewarded according to the challenges chosen, based on mechanics common in quest-based games. The courses involved two lecturers and 70 students. Learning journals were used throughout the term to collect data regarding student perceptions on the clarity and usefulness of the gamified approach, level of motivation and engagement in the courses, and relevance of the activities proposed. Results show that students felt challenged by the activities proposed and motivated to complete them, despite considering most activities as difficult. Students adopted different cognitive and behavioural strategies to cope with the courses’ demands. They had to define their own team project, defining the objectives, managing their times and coordinating task completion. The regular and frequent provision of feedback was highly appreciated. A sense of mastery was promoted and final achievement was positively impacted by the gamified strategy

    A Social-Centred Gamification Approach to Improve Household Water Use Efficiency

    Get PDF
    The research community is showing a growing interest in gamification and there are works showing the usefulness of gamification in different problem domains. Recently, a special interest has been given to the gamification design on systems addressing natural resource consumption issues such as to encourage efficient household water consumption. Despite the potential benefits, the gamification design method for such system is not conclusive. In this paper, we proposed a social-centred gamification approach to improve household water use efficiency. The approach firstly identified the water use related social network activities based upon existing popular social network activities. The approach then gamified each identified activity in terms of traditional instruments for improving water use efficiency and gamification rewards. The approach also used a set of indicators to explicitly detect and monitor both online social network activities and offline water use activities. With this approach the gamification effectiveness can be better traced and evaluated.ISS-EWATUS, Integrated Support System for Efficient Water Usage and Resources Management, FP7 project (grant no. 619228), funded by the European Communit

    Use of Role-play and Gamification in a Software Project Course

    Get PDF
    Soft skills are increasingly important to the engineering profession and course modifications are often needed to ensure students have opportunities to practice them prior to graduation. This suggests that engineering programs need to go beyond simply offering industry-based capstone courses and internships. Role-play has a long history as a tool for learning. It can be used to simulate real world practices in environments where consequences can be mitigated safely. In this paper, we discuss the use of team role-play activities to simulate the experience of working in a professional, game development studio as a means of enhancing an advanced undergraduate game design course. In conjunction with the role-play, a gamification framework was used within the course to allow students to customize their course participation. Gamification was used to reward students for compliance with software process steps and for taking the initiative to improve their “soft skills”. In this project, allowing students to negotiate the nature of their activities and rewards helped them develop those skills. We are using student feedback and our own lessons learned to plan the next iteration of this course

    SLR - Análisis del Aprendizaje Basado en Juegos Serios en las Prácticas de los Estudios de Ingeniería

    Get PDF
    Este trabajo se trata de un Análisis Sistemático de la Literatura del uso de los juegos serios en los estudios de ingeniería.15 página

    Reuse potential assessment framework for gamification-based smart city pilots

    Get PDF
    The paper proposes a unified framework for assessing the re-use potential for the Smart Engagement Pilot currently being realized in the city of Ghent (Belgium). The pilot aims to stimulate the digital engagement in users (citizens) by involving them in online and offline communities, and increasing the social capital through the use of ICT (Information and Communications Technology). To engage the citizens, the pilot makes use of Gamification based entities (intelligent wireless sensors) embedded in public hardware, through which innovative games are organized in places of interest (neighbourhood, parks, schools, etc.). Once finished, this pilot will be re-used in other European cities under the context of CIP SMART IP project. Since, the success of a pilot in one city doesn't guarantee its success in the other, an objective socio-economic-organizational reuse assessment becomes critical. To do this assessment, we propose a framework, which uses a Key Performance Indicator (KPI) based scorecard to determine the roadblocks and battlefields that could deter such a transition
    • …
    corecore