53 research outputs found

    Broadband phase shifter design for phased array radar systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Passive and active components development for broadband applications

    Get PDF
    Recently, GaN HEMTs have been proven to have numerous physical properties, resulting in transistors with greatly increased power densities when compared to the other well-established FET technologies. This advancement spurred research and product development towards power-band applications that require both high power and high efficiency over the wide band. Even though the use of multiple narrow band PAs covering the whole band has invariably led to better performance in terms of efficiency and noise, there is an associated increase in cost and in the insertion loss of the switches used to toggle between the different operating bands. The goal, now, of the new technology is to replace the multiple narrow band PAs with one broadband PA that has a comparable efficiency performance. In our study here, we have investigated a variety of wide band power amplifiers, including class AB PAs and their implementation in distributed and feedback PAs.Additionally, our investigation has included switching-mode PAs as they are well-known for achieving a relatively high efficiency. Besides having a higher efficiency, they are also less susceptible to parameter variations and could impose a lower thermal stress on the transistors than the conventional-mode PAs. With GaN HEMTs, we have demonstrated: a higher than 37 dBm output power and a more than 30% drain efficiency over 0.02 to 3 GHz for the distributed power amplifier; a higher than 30 dBm output power with more than a 22% drain efficiency over 0.1 to 5 GHz for the feedback amplifier; and at least a 43 dBm output power with a higher than 63% drain efficiency over 0.05 to 0.55 GHz for the class D PA. In many communication applications, however, achieving both high efficiency and linearity in the PA design is required. Therefore, in our research, we have evaluated several linearization and efficiency enhancement techniques.We selected the LInear amplification with Nonlinear Components (LINC) approach. Highly efficient combiner and novel efficiency enhancement techniques like the power recycling combiner and adaptive bias LINC schemes have been successfully developed and verified to achieve a combined high efficiency with a relatively high linearity

    Distributed Circuit Analysis and Design for Ultra-wideband Communication and sub-mm Wave Applications

    Get PDF
    This thesis explores research into new distributed circuit design techniques and topologies, developed to extend the bandwidth of amplifiers operating in the mm and sub-mm wave regimes, and in optical and visible light communication systems. Theoretical, mathematical modelling and simulation-based studies are presented, with detailed designs of new circuits based on distributed amplifier (DA) principles, and constructed using a double heterojunction bipolar transistor (DHBT) indium phosphide (InP) process with fT =fmax of 350/600 GHz. A single stage DA (SSDA) with bandwidth of 345 GHz and 8 dB gain, based on novel techniques developed in this work, shows 140% bandwidth improvement over the conventional DA design. Furthermore, the matrix-single stage DA (M-SSDA) is proposed for higher gain than both the conventional DA and matrix amplifier. A two-tier M-SSDA with 14 dB gain at 300 GHz bandwidth, and a three-tier M-SSDA with a gain of 20 dB at 324 GHz bandwidth, based on a cascode gain cell and optimized for bandwidth and gain flatness, are presented based on full foundry simulation tests. Analytical and simulation-based studies of the noise performance peculiarities of the SSDA and its multiplicative derivatives are also presented. The newly proposed circuits are fabricated as monolithic microwave integrated circuits (MMICs), with measurements showing 7.1 dB gain and 200 GHz bandwidth for the SSDA and 12 dB gain at 170 GHz bandwidth for the three-tier M-SSDA. Details of layout, fabrication and testing; and discussion of performance limiting factors and layout optimization considerations are presented. Drawing on the concept of artificial transmission line synthesis in distributed amplification, a new technique to achieve up to three-fold improvement in the modulation bandwidth of light emitting diodes (LEDs) for visible light communication (VLC) is introduced. The thesis also describes the design and application of analogue pre-emphasis to improve signal-to-noise ratio in bandwidth limited optical transceivers

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Semiconductor Optical Amplifiers and mm-Wave Wireless Links for Converged Access Networks

    Get PDF
    Future access networks are converged optical-wireless networks, where fixed-line and wireless services share the same infrastructure. In this book, semiconductor optical amplifiers (SOA) and mm-wave wireless links are investigated, and their use in converged access networks is explored: SOAs compensate losses in the network, and thereby extend the network reach. Millimeter-wave wireless links substitute fiber links when cabling is not economical

    Vidutinių dažnių 5G belaidžių tinklų galios stiprintuvų tyrimas

    Get PDF
    This dissertation addresses the problems of ensuring efficient radio fre-quency transmission for 5G wireless networks. Taking into account, that the next generation 5G wireless network structure will be heterogeneous, the device density and their mobility will increase and massive MIMO connectivity capability will be widespread, the main investigated problem is formulated – increasing the efficiency of portable mid-band 5G wireless network CMOS power amplifier with impedance matching networks. The dissertation consists of four parts including the introduction, 3 chapters, conclusions, references and 3 annexes. The investigated problem, importance and purpose of the thesis, the ob-ject of the research methodology, as well as the scientific novelty are de-fined in the introduction. Practical significance of the obtained results, defended state-ments and the structure of the dissertation are also included. The first chapter presents an extensive literature analysis. Latest ad-vances in the structure of the modern wireless network and the importance of the power amplifier in the radio frequency transmission chain are de-scribed in detail. The latter is followed by different power amplifier archi-tectures, parameters and their improvement techniques. Reported imped-ance matching network design methods are also discussed. Chapter 1 is concluded distinguishing the possible research vectors and defining the problems raised in this dissertation. The second chapter is focused around improving the accuracy of de-signing lumped impedance matching network. The proposed methodology of estimating lumped inductor and capacitor parasitic parameters is dis-cussed in detail provi-ding complete mathematical expressions, including a summary and conclusions. The third chapter presents simulation results for the designed radio fre-quency power amplifiers. Two variations of Doherty power amplifier archi-tectures are presented in the second part, covering the full step-by-step de-sign and simulation process. The latter chapter is concluded by comparing simulation and measurement results for all designed radio frequency power amplifiers. General conclusions are followed by an extensive list of references and a list of 5 publications by the author on the topic of the dissertation. 5 papers, focusing on the subject of the discussed dissertation, have been published: three papers are included in the Clarivate Analytics Web of Sci-ence database with a citation index, one paper is included in Clarivate Ana-lytics Web of Science database Conference Proceedings, and one paper has been published in unreferred international conference preceedings. The au-thor has also made 9 presentations at 9 scientific conferences at a national and international level.Dissertatio

    Adaptive Power Amplifiers for Modern Communication Systems with Diverse Operating Conditions

    Get PDF
    In this thesis, novel designs for adaptive power amplifiers, capable of maintaining excellent performance at dissimilar signal parameters, are presented. These designs result in electronically reconfigurable, single-ended and Doherty power amplifiers (DPA) that efficiently sustain functionality at different driving signal levels, highly varying time domain characteristics and wide-spread frequency bands. The foregoing three contexts represent those dictated by the diverse standards of modern communication systems. Firstly, two prototypes for a harmonically-tuned reconfigurable matching network using discrete radio frequency (RF) microelectromechanical systems (MEMS) switches and semiconductor varactors will be introduced. Following that is an explanation of how the varactor-based matching network was used to develop a high performance reconfigurable Class F-1 power amplifier. Afterwards, a systematic design procedure for realizing an electronically reconfigurable DPA capable of operating at arbitrary centre frequencies, average power levels and back-off efficiency enhancement power ranges is presented. Complete sets of closed-form equations are outlined which were used to build tunable matching networks that compensate for the deviation of the Doherty distributed elements under the desired deployment scenarios. Off-the-shelf RF MEMS switches are used to realize the reconfigurability of the adaptive Doherty amplifiers. Finally, based on the derived closed-form equations, a tri-band, monolithically integrated DPA was realized using the Canadian Photonics Fabrication Centre (CPFC®) GaN500 monolithic microwave integrated circuit (MMIC) process. Successful integration of high power, high performance RF MEMS switches within the MMIC process paved the way for the realization of the frequency-agile, integrated version of the adaptive Doherty amplifier

    AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications

    Get PDF
    This work has arisen out of the strong demand for a superior power-added efficiency (PAE) of AlGaN/GaN high electron mobility transistor (HEMT) high-power amplifiers (HPAs) that are part of any advanced wireless multifunctional RF-system with limited prime energy. Different concepts and approaches on device and design level for PAE improvements are analyzed, e.g. structural and layout changes of the GaN transistor and advanced circuit design techniques for PAE improvements of GaN HEMT HPAs
    corecore