1,807 research outputs found

    Miniaturization Trends in Substrate Integrated Waveguide (SIW) Filters: A Review

    Get PDF
    This review provides an overview of the technological advancements and miniaturization trends in Substrate Integrated Waveguide (SIW) filters. SIW is an emerging planar waveguide structure for the transmission of electromagnetic (EM) waves. SIW structure consists of two parallel copper plates which are connected by a series of vias or continuous perfect electric conductor (PEC) channels. SIW is a suitable choice for designing and developing the microwave and millimetre-wave (mm-Wave) radio frequency (RF) components: because it has compact dimensions, low insertion loss, high-quality factor (QF), and can easily integrate with planar RF components. SIW technology enjoys the advantages of the classical bulky waveguides in a planar structure; thus is a promising choice for microwave and mm-Wave RF components

    Investigation of dualband fan-shaped microstrip bandpass filter

    Get PDF
    In this study, design and simulation of microtrip bandpass filter is presented using RT/Duroid 6010.2 lm substrate. This filter has fan-shaped topology with small dimensions of 12x12 mm2, designed for dual band frequencies at 3.41 and 6.14 GHz. The insertion loss and return loss of initial band at 3.41 GHz are -0.7 and -38.224 dB respectively and its bandwidth ranged from 3.3561 to 3.48 GHz. On the other hand, for 2nd band at 6.14 GHz, the insertion loss and return loss have been -1.377 and -14 dB respectively with bandwidth ranged from 6.0951 to 6.1782 GHz

    Analysis and Design of Low-Cost Waveguide Filters for Wireless Communications

    Get PDF
    The area of research of this thesis is built around advanced waveguide filter structures. Waveguide filters and the waveguide technology in general are renowned for high power capacity, low losses and excellent electromagnetic shielding. Waveguide filters are important components in fixed wireless communications as well as in satellite and radar systems. Furthermore, their advantages and utilization become even greater with increase in frequency, which is a trend in modern communication systems because upper frequency bands offer larger channel capacities. However, waveguide filters are relatively bulky and expensive. To comply with more and more demanding miniaturization and cost-cutting requirements, compactness and economical design represent some of the main contemporary focuses of interest. Approaches that are used to achieve this include use of planar inserts to build waveguide discontinuities, additive manufacturing and substrate integration. At the same time, waveguide filters still need to satisfy opposed stringent requirements like small insertion loss, high selectivity and multiband operation. Another difficulty that metal waveguide components face is integration with other circuitry, especially important when solid-state active devices are included. Thus, improvements of interconnections between waveguide and other transmission interfaces are addressed too. The thesis elaborates the following aspects of work: Further analysis and improved explanations regarding advanced waveguide filters with E-plane inserts developed by the Wireless Communications Research Group, using both cross coupled resonators and extracted pole sections (Experiments with higher filter orders, use of tuning screws, degrees of freedom in design, etc. Thorough performance comparison with competing filter technologies) - Proposing novel E-plane filter sections with I-shaped insets - Extension of the E-plane filtering structures with metal fins to new compact dual band filters with high frequency selectivity and miniaturized diplexers. - Introduction of easy-to-build waveguide filters with polymer insert frames and high-performance low-profile cavity filters, taking advantage of enhanced fabrication capabilities when using additive manufacturing - Developing new substrate integrated filters, as well as circuits used to transfer signals between different interfaces Namely, these are substrate integrated waveguide to metal waveguide planar transitions that do not require any modifications of the metal waveguides. Such novel transitions have been designed both for single and orthogonal signal polarizations

    Silicon Nano-Photonic Devices

    Get PDF

    A Review: Substrate Integrated Waveguide Antennas and Arrays

    Get PDF
    This study aims to provide an overview and deployment of Substrate-Integrated Waveguide (SIW) based antenna and arrays, with different configurations, feeding mechanisms, and performances. Their performance improvement methods, including bandwidth enhancement, size reduction, and gain improvement are also discussed based on available literature. SIW technology, which acts as a bridge between planar and non-planar technology, is a very favorable candidate for the development of components operating at microwave and millimeter wave band. Due to this, SIW antennas and array take the advantages of both classical metallic waveguide, which includes high gain, high power capacity, low cross polarization, and high selectivity, and that of planar antennas which comprises low profile, light weight, low fabrication cost, conformability to planar or bent surfaces, and easy integration with planar circuits

    Design and analysis of miniaturized substrate integrated waveguide reconfigurable filters for mm-wave applications.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Microwave filters are an integral part of communication systems. With the advent of new technologies, microwave devices, such as filters, need to have superior performance in terms of power handling, selectivity, size, insertion loss etc. During the past decade, many applications have been added to the communication networks, resulting in communication systems having to operate at high frequencies in the region of THz to achieve the stringent bandwidth requirements. To achieve the requirements of the modern communication system, tunability and reconfigurability have become fundamental requirements to reduce the footprint of communication devices. However, the communication systems that are more prevalent such as planar circuits have either a large footprint or are not able to handle large amounts of power due to radiation leakage. In this thesis, Substrate Integrated Waveguide (SIW) technology has been employed. The SIW has the same properties as the conventional rectangular waveguide; hence it benefits from the high quality (Q) factor and can handle large powers with small radiation loss. The Half-mode (HMSIW), Quarter-mode (QMSIW), and Eighth-mode (EMSIW) cavity resonators have been designed and used for the miniaturization of the microwave filters. The coupling matrix method was used to implement a filter that uses cross-coupled EMSIW and HMSIW cavity resonators to improve the selectivity of the filter. Balanced circuit techniques have been used to design the circuits that preserve communication systems integrity whereby the Common Mode (CM) signal was suppressed using Deformed Ground Structure (DGS) and a center conductor patch with meandered line. For the designed dual-band filter, the common mode signal was suppressed to -90 dB and - 40 dB for the first and second passband, respectively. The insertion loss observed is 2.8 dB and 1.6 dB for the first and second passband, respectively. For tunability of the filter, a dual-band filter utilizing triangular HMSIW resonators has been designed and reconfigurability is achieved by perturbing the substrate permittivity by dielectric rods. The dielectric rods’ permittivity was changed to achieve tunability in the first instance, and then the rods’ diameter changed in the second instance. For the lowerband, frequency is tunable from 8.1 GHz to 9.15 GHz, while the upper band is tuned from 14.61 GHz to 16.10 GHz. A second order SIW filter with a two layer substrate was then designed to operate in the THz region. For reconfigurability, Graphene was sandwiched between the Silicon Di-Oxide substrate and the top gold plate of the filter, and the chemical potential of Graphene was then varied by applying a dc bias voltage. With a change in dc voltage the chemical potential of Graphene changes accordingly. From the results, a chemical potential change of 0.1 eV to 0.6 eV brings about a frequency change from 1.289 THz to 1.297 THz

    Recent Trends on Dual- and Triple-Band Microwave Filters for Wireless Communications

    Get PDF
    In the past few years, several designs of dual- and triple-band microwave filters satisfying various objectives have been proposed for wireless communication. Several designs are new concepts, whereas others are inspired from previous works. The development trends of these designs can be reviewed from this compilation of studies. This paper begins with an explanation of dual- and triple-band microwave filters, followed by a discussion on several designs in terms of size, measurement, performance, and technology use. Among various designs, microstrip band-pass filters are extensively used because of their simple design procedures and because they can be integrated into circuits easily. Furthermore, most researchers use low frequencies in their designs because of the demands of current wireless applications. Finally, designs are proposed to produce compact microwave filters with good performance

    Integrated dye lasers for all-polymer photonic Lab-on-a-Chip systems

    Get PDF
    Basierend auf integrierten Farbstofflasern wurden zwei optische Lab-on-a-Chip Systeme entwickelt. Zur effizienten Anregung von Fluoreszenzmarkern wurden optofluidische Farbstofflaser mit verteilter Rückkopplung (DFB Laser) untersucht. Für die markerfreie Moleküldetektion wurden Mikrokelchlaser entwickelt, die auf Flüstergaleriemoden basieren. Besonderes Augenmerk lag auf einer möglichen Großserienfertigung der Chips als kostengünstige Einwegartikel und auf einer einfachen Handhabung
    corecore