2,996 research outputs found

    An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics

    Full text link
    The numerical simulation of acoustic waves in complex 3D media is a key topic in many branches of science, from exploration geophysics to non-destructive testing and medical imaging. With the drastic increase in computing capabilities this field has dramatically grown in the last twenty years. However many 3D computations, especially at high frequency and/or long range, are still far beyond current reach and force researchers to resort to approximations, for example by working in 2D (plane strain) or by using a paraxial approximation. This article presents and validates a numerical technique based on an axisymmetric formulation of a spectral finite-element method in the time domain for heterogeneous fluid-solid media. Taking advantage of axisymmetry enables the study of relevant 3D configurations at a very moderate computational cost. The axisymmetric spectral-element formulation is first introduced, and validation tests are then performed. A typical application of interest in ocean acoustics showing upslope propagation above a dipping viscoelastic ocean bottom is then presented. The method correctly models backscattered waves and explains the transmission losses discrepancies pointed out in Jensen et al. (2007). Finally, a realistic application to a double seamount problem is considered.Comment: Added a reference, and fixed a typo (cylindrical versus spherical

    Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves

    Get PDF
    A method is proposed for accurately describing arbitrary-shaped free boundaries in single-grid finite-difference schemes for elastodynamics, in a time-domain velocity-stress framework. The basic idea is as follows: fictitious values of the solution are built in vacuum, and injected into the numerical integration scheme near boundaries. The most original feature of this method is the way in which these fictitious values are calculated. They are based on boundary conditions and compatibility conditions satisfied by the successive spatial derivatives of the solution, up to a given order that depends on the spatial accuracy of the integration scheme adopted. Since the work is mostly done during the preprocessing step, the extra computational cost is negligible. Stress-free conditions can be designed at any arbitrary order without any numerical instability, as numerically checked. Using 10 grid nodes per minimal S-wavelength with a propagation distance of 50 wavelengths yields highly accurate results. With 5 grid nodes per minimal S-wavelength, the solution is less accurate but still acceptable. A subcell resolution of the boundary inside the Cartesian meshing is obtained, and the spurious diffractions induced by staircase descriptions of boundaries are avoided. Contrary to what occurs with the vacuum method, the quality of the numerical solution obtained with this method is almost independent of the angle between the free boundary and the Cartesian meshing.Comment: accepted and to be published in Geophys. J. In

    The fictitious domain method and applications in wave propagation

    Get PDF
    International audienceThis paper deals with the convergence analysis of the fictitious domain method used for taking into account the Neumann boundary condition on the surface of a crack (or more generally an object) in the context of acoustic and elastic wave propagation. For both types of waves we consider the first order in time formulation of the problem known as mixed velocity-pressure formulation for acoustics and velocity-stress formulation for elastodynamics. The convergence analysis for the discrete problem depends on the mixed finite elements used. We consider here two families of mixed finite elements that are compatible with mass lumping. When using the first one which is less expensive and corresponds to the choice made in a previous paper, it is shown that the fictitious domain method does not always converge. For the second one a theoretical convergence analysis was carried out in [7] for the acoustic case. Here we present numerical results that illustrate the convergence of the method both for acoustic and elastic waves

    Use of reciprocity considerations for the two-dimensional BEM analysis of wave propagation in an elastic half-space with applications to acoustic emission

    Get PDF
    A simple numerical treatment of the infinite boundary in the BEM analysis of two-dimensional wave propagation problems in elastic half-spaces is proposed to avoid the spurious reflections of non-decaying Rayleigh waves introduced by the truncation of the boundary. The proposed method exploits the knowledge of the far-field asymptotic behavior of the solution to adequately correct the BEM displacement system matrix for the truncated problem to account for the contribution of the omitted part of the boundary. The reciprocal theorem of elastodynamics is used for a convenient computation of this contribution exclusively in terms of the boundary integrals of the original BEM system. The method is applied to the study of the acoustic emission from nucleating and propagating surface-breaking and buried cracks in a two-dimensional elastic half-space. It is shown to be particularly advantageous since it allows for an accurate calculation of the generated signal even when the observation point is located far from the acoustic emission source
    • …
    corecore