10,843 research outputs found

    A feature selection approach for identification of signature genes from SAGE data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One goal of gene expression profiling is to identify signature genes that robustly distinguish different types or grades of tumors. Several tumor classifiers based on expression profiling have been proposed using microarray technique. Due to important differences in the probabilistic models of microarray and SAGE technologies, it is important to develop suitable techniques to select specific genes from SAGE measurements.</p> <p>Results</p> <p>A new framework to select specific genes that distinguish different biological states based on the analysis of SAGE data is proposed. The new framework applies the bolstered error for the identification of strong genes that separate the biological states in a feature space defined by the gene expression of a training set. Credibility intervals defined from a probabilistic model of SAGE measurements are used to identify the genes that distinguish the different states with more reliability among all gene groups selected by the strong genes method. A score taking into account the credibility and the bolstered error values in order to rank the groups of considered genes is proposed. Results obtained using SAGE data from gliomas are presented, thus corroborating the introduced methodology.</p> <p>Conclusion</p> <p>The model representing counting data, such as SAGE, provides additional statistical information that allows a more robust analysis. The additional statistical information provided by the probabilistic model is incorporated in the methodology described in the paper. The introduced method is suitable to identify signature genes that lead to a good separation of the biological states using SAGE and may be adapted for other counting methods such as Massive Parallel Signature Sequencing (MPSS) or the recent Sequencing-By-Synthesis (SBS) technique. Some of such genes identified by the proposed method may be useful to generate classifiers.</p

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Integrative analysis identifies candidate tumor microenvironment and intracellular signaling pathways that define tumor heterogeneity in NF1

    Get PDF
    Neurofibromatosis type 1 (NF1) is a monogenic syndrome that gives rise to numerous symptoms including cognitive impairment, skeletal abnormalities, and growth of benign nerve sheath tumors. Nearly all NF1 patients develop cutaneous neurofibromas (cNFs), which occur on the skin surface, whereas 40-60% of patients develop plexiform neurofibromas (pNFs), which are deeply embedded in the peripheral nerves. Patients with pNFs have a ~10% lifetime chance of these tumors becoming malignant peripheral nerve sheath tumors (MPNSTs). These tumors have a severe prognosis and few treatment options other than surgery. Given the lack of therapeutic options available to patients with these tumors, identification of druggable pathways or other key molecular features could aid ongoing therapeutic discovery studies. In this work, we used statistical and machine learning methods to analyze 77 NF1 tumors with genomic data to characterize key signaling pathways that distinguish these tumors and identify candidates for drug development. We identified subsets of latent gene expression variables that may be important in the identification and etiology of cNFs, pNFs, other neurofibromas, and MPNSTs. Furthermore, we characterized the association between these latent variables and genetic variants, immune deconvolution predictions, and protein activity predictions

    Establishment of the epithelial-specific transcriptome of normal and malignant human breast cells based on MPSS and array expression data

    Get PDF
    INTRODUCTION: Diverse microarray and sequencing technologies have been widely used to characterise the molecular changes in malignant epithelial cells in breast cancers. Such gene expression studies to identify markers and targets in tumour cells are, however, compromised by the cellular heterogeneity of solid breast tumours and by the lack of appropriate counterparts representing normal breast epithelial cells. METHODS: Malignant neoplastic epithelial cells from primary breast cancers and luminal and myoepithelial cells isolated from normal human breast tissue were isolated by immunomagnetic separation methods. Pools of RNA from highly enriched preparations of these cell types were subjected to expression profiling using massively parallel signature sequencing (MPSS) and four different genome wide microarray platforms. Functional related transcripts of the differential tumour epithelial transcriptome were used for gene set enrichment analysis to identify enrichment of luminal and myoepithelial type genes. Clinical pathological validation of a small number of genes was performed on tissue microarrays. RESULTS: MPSS identified 6,553 differentially expressed genes between the pool of normal luminal cells and that of primary tumours substantially enriched for epithelial cells, of which 98% were represented and 60% were confirmed by microarray profiling. Significant expression level changes between these two samples detected only by microarray technology were shown by 4,149 transcripts, resulting in a combined differential tumour epithelial transcriptome of 8,051 genes. Microarray gene signatures identified a comprehensive list of 907 and 955 transcripts whose expression differed between luminal epithelial cells and myoepithelial cells, respectively. Functional annotation and gene set enrichment analysis highlighted a group of genes related to skeletal development that were associated with the myoepithelial/basal cells and upregulated in the tumour sample. One of the most highly overexpressed genes in this category, that encoding periostin, was analysed immunohistochemically on breast cancer tissue microarrays and its expression in neoplastic cells correlated with poor outcome in a cohort of poor prognosis estrogen receptor-positive tumours. CONCLUSION: Using highly enriched cell populations in combination with multiplatform gene expression profiling studies, a comprehensive analysis of molecular changes between the normal and malignant breast tissue was established. This study provides a basis for the identification of novel and potentially important targets for diagnosis, prognosis and therapy in breast cancer

    Gene expression signatures of morphologically normal breast tissue identify basal-like tumors

    Get PDF
    INTRODUCTION: The role of the cellular microenvironment in breast tumorigenesis has become an important research area. However, little is known about gene expression in histologically normal tissue adjacent to breast tumor, if this is influenced by the tumor, and how this compares with non-tumor-bearing breast tissue. METHODS: To address this, we have generated gene expression profiles of morphologically normal epithelial and stromal tissue, isolated using laser capture microdissection, from patients with breast cancer or undergoing breast reduction mammoplasty (n = 44). RESULTS: Based on this data, we determined that morphologically normal epithelium and stroma exhibited distinct expression profiles, but molecular signatures that distinguished breast reduction tissue from tumor-adjacent normal tissue were absent. Stroma isolated from morphologically normal ducts adjacent to tumor tissue contained two distinct expression profiles that correlated with stromal cellularity, and shared similarities with soft tissue tumors with favorable outcome. Adjacent normal epithelium and stroma from breast cancer patients showed no significant association between expression profiles and standard clinical characteristics, but did cluster ER/PR/HER2-negative breast cancers with basal-like subtype expression profiles with poor prognosis. CONCLUSION: Our data reveal that morphologically normal tissue adjacent to breast carcinomas has not undergone significant gene expression changes when compared to breast reduction tissue, and provide an important gene expression dataset for comparative studies of tumor expression profiles

    Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach

    Get PDF
    Understanding the biological factors that are characteristic of metastasis in melanoma remains a key approach to improving treatment. In this study, we seek to identify a gene signature of metastatic melanoma. We configured a new network-based computational pipeline, combined with a machine learning method, to mine publicly available transcriptomic data from melanoma patient samples. Our method is unbiased and scans a genome-wide protein-protein interaction network using a novel formulation for network scoring. Using this, we identify the most influential, differentially expressed nodes in metastatic as compared to primary melanoma. We evaluated the shortlisted genes by a machine learning method to rank them by their discriminatory capacities. From this, we identified a panel of 6 genes, ALDH1A1, HSP90AB1, KIT, KRT16, SPRR3 and TMEM45B whose expression values discriminated metastatic from primary melanoma (87% classification accuracy). In an independent transcriptomic data set derived from 703 primary melanomas, we showed that all six genes were significant in predicting melanoma specific survival (MSS) in a univariate analysis, which was also consistent with AJCC staging. Further, 3 of these genes, HSP90AB1, SPRR3 and KRT16 remained significant predictors of MSS in a joint analysis (HR = 2.3, P = 0.03) although, HSP90AB1 (HR = 1.9, P = 2 × 10−4) alone remained predictive after adjusting for clinical predictors

    Refining gene signatures: a Bayesian approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In high density arrays, the identification of relevant genes for disease classification is complicated by not only the curse of dimensionality but also the highly correlated nature of the array data. In this paper, we are interested in the question of how many and which genes should be selected for a disease class prediction. Our work consists of a Bayesian supervised statistical learning approach to refine gene signatures with a regularization which penalizes for the correlation between the variables selected.</p> <p>Results</p> <p>Our simulation results show that we can most often recover the correct subset of genes that predict the class as compared to other methods, even when accuracy and subset size remain the same. On real microarray datasets, we show that our approach can refine gene signatures to obtain either the same or better predictive performance than other existing methods with a smaller number of genes.</p> <p>Conclusions</p> <p>Our novel Bayesian approach includes a prior which penalizes highly correlated features in model selection and is able to extract key genes in the highly correlated context of microarray data. The methodology in the paper is described in the context of microarray data, but can be applied to any array data (such as micro RNA, for example) as a first step towards predictive modeling of cancer pathways. A user-friendly software implementation of the method is available.</p

    Exploring the Intersection of Multi-Omics and Machine Learning in Cancer Research

    Get PDF
    Cancer biology and machine learning represent two seemingly disparate yet intrinsically linked fields of study. Cancer biology, with its complexities at the cellular and molecular levels, brings up a myriad of challenges. Of particular concern are the deviations in cell behaviour and rearrangements of genetic material that fuel transformation, growth, and spread of cancerous cells. Contemporary studies of cancer biology often utilise wide arrays of genomic data to pinpoint and exploit these abnormalities with an end-goal of translating them into functional therapies. Machine learning allows machines to make predictions based on the learnt data without explicit programming. It leverages patterns and inferences from large datasets, making it an invaluable tool in the modern era of large scale genomics. To this end, this doctoral thesis is underpinned by three themes: the application of machine learning, multi-omics, and cancer biology. It focuses on employment of machine learning algorithms to the tasks of cell annotation in single-cell RNA-seq datasets and drug response prediction in pre-clinical cancer models. In the first study, the author and colleagues developed a pipeline named Ikarus to differentiate between neoplastic and healthy cells within single-cell datasets, a task crucial for understanding the cellular landscape of tumours. Ikarus is designed to construct cancer cell-specific gene signatures from expert-annotated scRNA-seq datasets, score these genes, and distribute the scores to neighbouring cells via network propagation. This method successfully circumvents two common challenges in single-cell annotation: batch effects and unstable clustering. Furthermore, Ikarus utilises a multi-omic approach by incorporating CNVs inferred from scRNA-seq to enhance classification accuracy. The second study investigated how multi-omic analysis could enhance drug response prediction in pre-clinical cancer models. The research suggests that the typical practice of panel sequencing — a deep profiling of select, validated genomic features — is limited in its predictive power. However, incorporating transcriptomic features into the model significantly improves predictive ability across a variety of cancer models and is especially effective for drugs with collateral effects. This implies that the combined use of genomic and transcriptomic data has potential advantages in the pharmacogenomic arena. This dissertation recapitulates the findings of two aforementioned studies, which were published in Genome Biology and Cancers journals respectively. The two studies illustrate the application of machine learning techniques and multi-omic approaches to address conceptually distinct problems within the realm of cancer biology.Die Krebsbiologie und das maschinelle Lernen sind zwei scheinbar konträre, aber intrinsisch verbundene Forschungsbereiche. Insbesondere die Krebsbiologie ist auf zellul ̈arer und molekularer Ebene hoch komplex und stellt den Forschenden vor eine Vielzahl von Herausforderungen. Zu verstehen wie abweichendes Zellverhalten und die Umstrukturierung genetischer Komponente die Transformation, das Wachstum und die Ausbreitung von Krebszellen antreiben, ist hierbei eine besondere Herausforderung. Gleichzeitig bestrebt die Krebsbiologie diese Abnormalitäten zu nutzen zu machen, Wissen aus ihnen zu gewinnen und sie so in funktionale Therapien umzusetzen. Maschinelles Lernen ermöglicht es Vorhersagen auf der Grundlage von gelernten Daten ohne explizite Programmierung zu treffen. Es erkennt Muster in großen Datensätzen, erschließt sich so Erkenntnisse und ist deswegen ein unschätzbar wertvolles Werkzeug im modernen Zeitalter der Hochdurchsatz Genomforschung. Aus diesem Grund ist maschinelles Lernen eines der drei Haupthemen dieser Doktorarbeit, neben Multi-Omics und Krebsbiologie. Der Fokus liegt hierbei insbesondere auf dem Einsatz von maschinellen Lernalgorithmen zum Zweck der Zellannotation in Einzelzell RNA-Sequenzdatensätzen und der Vorhersage der Arzneimittelwirkung in präklinischen Krebsmodellen. In der ersten, hier präsentierten Studie, entwickelten der Autor und seine Kollegen eine Pipeline namens Ikarus. Diese kann zwischen neoplastischen und gesunden Zellen in Einzelzell-Datensätzen unterscheiden. Eine Aufgabe, die für das Verst ̈andnis der zellulären Landschaft von Tumoren entscheidend ist. Ikarus ist darauf ausgelegt, krebszellenspezifische Gensignaturen aus expertenanotierten scRNA-seq-Datensätzen zu konstruieren, diese Gene zu bewerten und die Bewertungen über Netzwerkverbreitung auf benachbarte Zellen zu verteilen. Diese Methode umgeht erfolgreich zwei häufige Herausforderungen bei der Einzelzellannotation: den Chargeneffekt und die instabile Clusterbildung. Darüber hinaus verwendet Ikarus, durch das Einbeziehen von scRNA-seq abgeleiteten CNVs, einen Multi-Omic-Ansatz der die Klassifikationsgenauigkeit verbessert. Die zweite Studie untersuchte, wie Multi-Omic-Analysen die Vorhersage der Arzneimittelwirkung in präklinischen Krebsmodellen optimieren können. Die Forschung legt nahe, dass die übliche Praxis des Panel Sequenzierens - die umfassende Profilierung ausgewählter, validierter genomischer Merkmale - in ihrer Vorhersagekraft begrenzt ist. Durch das Einbeziehen transkriptomischer Merkmale in das Modell konnte jedoch die Vorhersagefähigkeit bei verschiedenen Krebsmodellen signifikant verbessert werden, ins besondere für Arzneimittel mit Nebenwirkungen. Diese Dissertation fasst die Ergebnisse der beiden oben genannten Studien zusammen, die jeweils in Genome Biology und Cancers Journalen veröffentlicht wurden. Die beiden Studien veranschaulichen die Anwendung von maschinellem Lernen und Multi-Omic-Ansätzen zur Lösung konzeptionell unterschiedlicher Probleme im Bereich der Krebsbiologie
    corecore