520 research outputs found

    Prognosis of Bearing Acoustic Emission Signals Using Supervised Machine Learning

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Acoustic emission (AE) technique can be successfully utilized for condition monitoring of various machining and industrial processes. To keep machines function at optimal levels, fault prognosis model to predict the remaining useful life (RUL) of machine components is required. This model is used to analyze the output signals of a machine whilst in operation and accordingly helps to set an early alarm tool that reduces the untimely replacement of components and the wasteful machine downtime. Recent improvements indicate the drive on the way towards incorporation of prognosis and diagnosis machine learning techniques in future machine health management systems. With this in mind, this work employs three supervised machine learning techniques; support vector machine regression, multilayer artificial neural network model and gaussian process regression, to correlate AE features with corresponding natural wear of slow speed bearings throughout series of laboratory experiments. Analysis of signal parameters such as signal intensity estimator and root mean square was undertaken to discriminate individual types of early damage. It was concluded that neural networks model with back propagation learning algorithm has an advantage over the other models in estimating the RUL for slow speed bearings if the proper network structure is chosen and sufficient data is provided.Peer reviewe

    Outer raceway fault detection and localization for deep groove ball bearings by using thermal imaging

    Get PDF
    This paper discusses outer raceway fault detection and localization for rolling element bearings by means of thermal imaging. In particular, deep groove ball bearings have been monitored. Whereas bearings in industrial applications are usually fully covered, the used test setup allows to monitor the uncovered bearings to understand their heat increase and propagation. The main contribution of this paper is the methodology to process and analyse the thermal data of the bearings. The presented methodology is applied on both a healthy bearing and a bearing with outer raceway fault. By revealing significantly higher temperatures for the faulty bearing than for the healthy bearing, thermal imaging enables fault detection. Additionally, the stationary characteristic of the outer ring allows to locate the outer raceway fault by means of its thermal impact

    Trends in condition monitoring of pitch bearings

    Get PDF
    The value of wind power generation for energy sustainability in the future is undeniable. Since operation and maintenance activities take a sizeable portion of the cost associated with offshore wind turbines operation, strategies are needed to decrease this cost. One strategy, condition monitoring (CM) of wind turbines, allows the extension of useful life for several parts, which has generated great interest in the industry. One critical part are the pitch bearings, by virtue of the time and logistics involved in their maintenance tasks. As the complex working conditions of pitch bearings entail the need for diverse and innovative monitoring techniques, the classical bearing analysis techniques are notsuitable. This paper provides a literature review of several condition monitoring techniques, organized as follows: first, arranged according to the nature of the signal such as vibration, acoustic emission and others; second, arranged by relevant authors in compliance with signal nature. While little research has been found, an outline is significant for further contributions to the literature.Postprint (published version

    Remaining Useful Life Prediction of Rolling Element Bearings Using Supervised Machine Learning

    Get PDF
    Components of rotating machines, such as shafts, bearings and gears are subject to performance degradation, which if left unattended could lead to failure or breakdown of the entire system. Analyzing condition monitoring data, implementing diagnostic techniques and using machinery prognostic algorithms will bring about accurate estimation of the remaining life and possible failures that may occur. This paper proposes a combination of two supervised machine learning techniques; namely, the regression model and multilayer artificial neural network model, to predict the remaining useful life of rolling element bearings. Root mean square and Kurtosis were analyzed to define the bearing failure stages. The proposed methodology was validated through two case studies involving vibration measurements of an operational wind turbine gearbox and a split cylindrical roller bearing in a test rig

    Exploiting SCADA system data for wind turbine performance monitoring.

    Get PDF
    This paper presents the results of a short study into utilising wind farm supervisory control and data acqui- sition (SCADA) system data for performance monitoring of large utility-scale wind turbines. The general approach taken is to model the turbine power output of each turbine during fault-free operation and to subsequently use the trained model to identify performance degradation by analysing the residual between the predicted and observed power values for each turbine. Historical data from a large wind farm is used to train and test the turbine models. The trained models are then tested on historical turbine failure examples. The results suggest that the data collected by wind farm SCADA systems, which are typically installed as standard on most modern wind farms, can be exploited for gaining an insight into wind turbine performance and maintenance condition

    New Tendencies in Wind Energy Operation and Maintenance

    Get PDF
    [Abstract] Both the reduction in operating and maintenance (O&M) costs and improved reliability have become top priorities in wind turbine maintenance strategies. O&M costs typically account for 20% to 25% of the total levelized cost of electricity (LCOE) of current wind power systems. This paper provides a general review of the state of the art of research conducted on wind farm maintenance in recent years. It shows the new methods and techniques, focusing on trends and future challenges. In addition to this, this work includes a review of the following items: (i) operation and maintenance, (ii) failure rate, (iii) reliability, (iv) condition monitoring, (v) maintenance strategies, (vi) maintenance and life cycle and (vii) maintenance optimization As for offshore wind turbines, it is crucial to limit the maximum faults, since the maintenance of these wind farms is more complex both technically and logistically. Research into wind farm maintenance increased by 87% between 2007 and 2019, with more than 38,000 papers (Scopus) including “wind energy” as the main topic and some keywords related to O&M costs. The LCOE in onshore wind projects has decreased by 45%, while in offshore projects it has decreased by 28%. The O&M costs of onshore wind projects fell 52%, while in the case of offshore projects, they have declined 45%. Thus, the results obtained in this paper suggest that there is a change in research on wind farm operation and maintenance, as in recent years, scientific interest in failure has been increasing, while interest in the various techniques of wind farm maintenance and operation has been decreasing.This research was funded by the University of A Coruña (Spain) (Grant No. 64900)

    Prognostic Algorithms for Condition Monitoring and Remaining Useful Life Estimation

    Get PDF
    To enable the benets of a truly condition-based maintenance philosophy to be realised, robust, accurate and reliable algorithms, which provide maintenance personnel with the necessary information to make informed maintenance decisions, will be key. This thesis focuses on the development of such algorithms, with a focus on semiconductor manufacturing and wind turbines. An introduction to condition-based maintenance is presented which reviews dierent types of maintenance philosophies and describes the potential benets which a condition- based maintenance philosophy will deliver to operators of critical plant and machinery. The issues and challenges involved in developing condition-based maintenance solutions are discussed and a review of previous approaches and techniques in fault diagnostics and prognostics is presented. The development of a condition monitoring system for dry vacuum pumps used in semi- conductor manufacturing is presented. A notable feature is that upstream process mea- surements from the wafer processing chamber were incorporated in the development of a solution. In general, semiconductor manufacturers do not make such information avail- able and this study identies the benets of information sharing in the development of condition monitoring solutions, within the semiconductor manufacturing domain. The developed solution provides maintenance personnel with the ability to identify, quantify, track and predict the remaining useful life of pumps suering from degradation caused by pumping large volumes of corrosive uorine gas. A comprehensive condition monitoring solution for thermal abatement systems is also presented. As part of this work, a multiple model particle ltering algorithm for prog- nostics is developed and tested. The capabilities of the proposed prognostic solution for addressing the uncertainty challenges in predicting the remaining useful life of abatement systems, subject to uncertain future operating loads and conditions, is demonstrated. Finally, a condition monitoring algorithm for the main bearing on large utility scale wind turbines is developed. The developed solution exploits data collected by onboard supervisory control and data acquisition (SCADA) systems in wind turbines. As a result, the developed solution can be integrated into existing monitoring systems, at no additional cost. The potential for the application of multiple model particle ltering algorithm to wind turbine prognostics is also demonstrated

    Failure mode identification and end of life scenarios of offshore wind turbines: a review

    Get PDF
    In 2007, the EU established challenging goals for all Member States with the aim of obtaining 20% of their energy consumption from renewables, and offshore wind is expected to be among the renewable energy sources contributing highly towards achieving this target. Currently wind turbines are designed for a 25-year service life with the possibility of operational extension. Extending their efficient operation and increasing the overall electricity production will significantly increase the return on investment (ROI) and decrease the levelized cost of electricity (LCOE), considering that Capital Expenditure (CAPEX) will be distributed over a larger production output. The aim of this paper is to perform a detailed failure mode identification throughout the service life of offshore wind turbines and review the three most relevant end of life (EOL) scenarios: life extension, repowering and decommissioning. Life extension is considered the most desirable EOL scenario due to its profitability. It is believed that combining good inspection, operations and maintenance (O&M) strategies with the most up to date structural health monitoring and condition monitoring systems for detecting previously identified failure modes, will make life extension feasible. Nevertheless, for the cases where it is not feasible, other options such as repowering or decommissioning must be explored

    Automatically identifying and predicting unplanned wind turbine stoppages using SCADA and alarms system data: case study and results

    Get PDF
    Using 10-minute wind turbine SCADA data for fault prediction offers an attractive way of gaining additional prognostic capabilities without needing to invest in extra hardware. To use these data-driven methods effectively, the historical SCADA data must be labelled with the periods when the turbine was in faulty operation as well the sub-system the fault was attributed to. Manually identifying faults using maintenance logs can be effective, but is also highly time consuming and tedious due to the disparate nature of these logs across manufacturers, operators and even individual maintenance events. Turbine alarm systems can help to identify these periods, but the sheer volume of alarms and false positives generated makes analysing them on an individual basis ineffective. In this work, we present a new method for automatically identifying historical stoppages on the turbine using SCADA and alarms data. Each stoppage is associated with either a fault in one of the turbine's sub-systems, a routine maintenance activity, a grid-related event or a number of other categories. This is then checked against maintenance logs for accuracy and the labelled data fed into a classifier for predicting when these stoppages will occur. Results show that the automated labelling process correctly identifies each type of stoppage, and can be effectively used for SCADA-based prediction of turbine fault
    corecore