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Abstract 

This paper discusses outer raceway fault detection and localization for rolling element bearings by means of 

thermal imaging. In particular, deep groove ball bearings have been monitored. Whereas bearings in industrial 

applications are usually fully covered, the used test setup allows to monitor the uncovered bearings to understand 

their heat increase and propagation. The main contribution of this paper is the methodology to process and 

analyse the thermal data of the bearings. The presented methodology is applied on both a healthy bearing and a 

bearing with outer raceway fault. By revealing significantly higher temperatures for the faulty bearing than for 

the healthy bearing, thermal imaging enables fault detection. Additionally, the stationary characteristic of the 

outer ring allows to locate the outer raceway fault by means of its thermal impact. 
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1.  Introduction 
 

Cost-efficient operation of remote industrial machinery such as drive trains of offshore wind 

turbines has to meet several challenges. Limited accessibility makes maintenance more 

expensive, requires efficient scheduling and turbine operation to be interrupted for visual 

inspection by specialist staff. Therefore, a sensor-based real-time condition monitoring is 

required to keep downtime and maintenance costs low and guarantee energy generation [1, 2]. 

As multiple sensors are needed to monitor a drive train and their installation requires to stop 

operation, choosing the right sensor types is crucial. The complexity of drive trains, such as 

different gearbox configurations or usage of different bearing types in accordance to loading 

conditions, makes it difficult to develop a global and cost-effective solution [3].  

 

The tribological drive train components such as bearings and gearboxes are naturally affected 

by friction and wear, causing increased vibrations, acoustic emissions and heat as well as 

particles that may contaminate the lubricant [4, 5]. Faults in the drive trains, especially in 

gearbox and bearings, are the main cause for downtime [6, 7]. Bearing failures belong to the 

major issues in wind turbine drive train reliability, as the bearings must deal with cyclic and 

transient loading as well as alignment issues [5]. The majority of wind turbine gearbox 

failures also appear to initiate in the bearings. They may later propagate into the gear teeth 

because bearing debris and excess clearances cause surface wear and misalignments [8]. 

 

Present condition monitoring of industrial machinery may include vibration analysis, acoustic 

emissions and lubricant analysis. All present techniques still show shortcomings for real-time 

measurements and data processing [3, 9]. In particular, vibrations and acoustic emissions 

propagate through the structure which can make fault localization difficult. Other techniques 
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such as lubricant analysis require onshore sample analysis in order to identify the faulty 

component, which itself is already costly in terms of time and financing and requires a system 

stop in order to take probes [10]. 

  

Bearings show temperature changes for a variety of faults [11, 12], further raising potential 

for thermal imaging. To examine the feasibility of thermal imaging for monitoring drive-train 

components, deep groove ball bearings, which are used in larger size in wind turbine 

generators to provide current isolation, have been monitored. After discussing the state of the 

art of thermal imaging on rotating machinery and introducing the used test setup, the 

remainder of this paper discusses a methodology for processing the thermal data of the 

bearings. The presented methodology is then applied on both healthy and faulty bearings to 

discuss and compare their thermal characteristics.  

 

2.  State of the art 
 

Thermal imaging already is commonly used on test rigs and also real environments such as 

pipelines, underground reservoirs and electric components. Monitoring of test rigs and 

manual inspections in industry are widely performed by active thermography. For active 

thermography, the target to be monitored gets stimulated by a source of heat or cooling to 

allow its thermal characteristics to be monitored [13, 14], such as for manual inspection of 

airplane turbines and composites after landing [15]. Passive thermography for automatic 

monitoring can be applied if the targets are naturally showing heat increase without the need 

of further stimulation. In industrial applications, uniform components such as rollers or 

bearings on conveyor belts affected by friction can be easily monitored for fault detection as 

well as pipelines or reservoirs for leak detection based on heat loss. As wind turbine drive 

trains are remote and complex systems, manual inspection is inefficient and costly. Wind 

turbine drive trains require reliable and automated real-time monitoring. As thermal imaging 

is a non-contacting and non-intrusive technique, it enables drive train condition monitoring 

without stopping its operation. 

 

Despite its potential, thermal imaging has not received wide application on rotating machinery 

yet and requires further research to be established in real-time online condition monitoring 

[16, 17]. As the same heat increase might be caused for different reasons, the measurements 

need to be confirmed by another technique such as vibration analysis. In contrast to 

vibrations, the temperature rise caused by a fault is a more local phenomenon. Furthermore, 

thermal imaging allows spatial visualization of a monitored area and its heat propagation and 

therefore can support fault localization based on heat increase in a multi-sensor solution.  

 

3.  Experimental setup and procedure 
 

For the tests, the Machinery Fault Simulator Lite
1
 by SpectraQuest was used. This setup is 

schematically shown in Figure 1 and designed to study bearing faults as well as balancing, 

alignment, resonance, crack shafts, fan and mechanical rub. In particular, this setup allows to 

directly monitor the inner ring of the bearing whereas the outer ring and the outer part of the 

seal are covered by the aluminium housing. This allows to receive insight in the thermal 

behaviour of the bearings which are usually completely covered and sealed in industrial 

applications. The test setup also includes two rotors to add axial load to the bearings. 
 

                                                 
1
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Figure 1. Scheme of Machinery Fault Simulator Lite 

 

ER10K deep groove ball bearings
2
 by Rexnord have been used, having an outside diameter of 

47.00mm and a shaft diameter of 15.86mm. Figure 2 shows a three-dimensional cross-section 

of such a bearing, indicating its main parts. The bearing is mounted to the shaft by means of a 

screw locking. The rolling elements are covered by a single lip seal. The seal protects the 

rolling elements and raceways from contamination by water or hard-particles but also 

prohibits a direct monitoring of the rolling elements.  
 

 

bearing parts 

1 screw locking 

2 rolling elements 

3 inner raceway 

4 cage 

5 outer raceway 

6 outer ring 

7 inner ring 

8 inner ring bore 

9 single lip seal 
 

 

Figure 2. 3D scheme of deep groove ball bearing 

 

The bearings have been running at a rotational speed of 1,500 rotations per minute, which is a 

standard rotational speed for high-speed components of wind turbine drive trains in Europe. 

The thermal imaging was performed by a FLIR A655sc uncooled long-wave infrared camera
3
. 

The measurements discussed in this paper focus on the heat increase over time and less on the 

general impact of the rotational movement. Therefore, the images have been taken at a frame 

rate of one frame per second.  

 

4.  Methodology 
 

Both, healthy and faulty bearings have been monitored by a thermal camera. Before the start 

of each measurement, the setup was cooled down to ambient temperature. Each measurement 

has been performed for a period of fifty minutes. Trend analysis is applied as a first step in 

order to examine the over-time heat increase of the bearing components. 

 

Figure 3 shows a bearing mounted within its housing, schematically indicating the parts that 

can be monitored from the chosen camera location. The same scheme has been added to the 

thermal images discussed in this paper to facilitate their interpretability. In order to simplify 

the comparability of healthy and faulty bearing discussed in this paper, the thermal images are 

                                                 
2
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shown in a fixed relative temperature range. The chosen temperature limits result from the 

relative minimum temperature of the healthy bearing and the relative maximum temperature 

of the bearing with outer raceway fault. 

 

As the non-uniform surfaces of the single bearing parts cause differences in the distance to the 

camera, reading of the thermal measurements has to be performed carefully. The different 

surfaces show different temperature ranges which can strongly affect statistical features such 

as mean temperatures. Therefore, the analysis focusses on the maximum temperatures of the 

single bearings parts. In addition, consistent results independent of the ambient temperatures 

measured by thermocouples, are obtained by using relative temperatures. A calibration effect 

caused by the camera occurred for the original absolute temperatures of both the bearing parts 

and the thermocouples, and is excluded as well by using the relative temperatures. The 

resulting trend graphs show the relative maximum temperatures of the bearing components, 

being the differences between the maximum temperatures of the single bearing parts and the 

ambient temperature. The trends of the single bearing components have been matched with 

first-order systems to determine their time constants. The time constant of the system 

response is the time it takes the step response to rise to 63% of its final value [18].  

 

Beside the heat increase over time, the trend graphs reveal individual frames, or thermal 

images, of interest, for example a steady-state or temperature peaks. For further analysis such 

as of heat propagation, temperature profiles are created for single frames. Figure 4 shows the 

directions of the profile lines. In general, both a horizontal and a vertical temperature profile 

line are added to the thermal image to examine the temperatures of the bearing parts and to 

compare healthy and faulty bearings. The profile lines are always taken from bottom to top 

for the vertical profile, and from left to right side for the horizontal profile.  
 

 

bearing parts 

1 outer ring 

2 single lip seal 

3 inner ring 

4 shaft 
 

 

Figure 3. Frontal image of mounted deep groove ball bearing 

with schematic overlay of the bearing parts 

 
Figure 4. Temperature profile directions 

 

 

The stationary characteristic of the outer ring can support localization of outer raceway faults. 

In order to  identify hot spots, which indicate potential fault locations, each thermal image of 

a measurement period has been overlaid with a circle having its diameter matched with the 

outer bearing diameter. By monitoring the area within the circle, minimum and maximum 

temperatures can be monitored over time. After detecting a hot spot, which is continuously 

showing the highest temperature, an additional profile line is added and analysed, passing 

through the hot spot and the center of shaft and bearing.  

 

5.  Thermal characterization of a healthy bearing 
 

The trend graphs in Figure 5 show the relative maximum temperatures for the main parts of 

the healthy bearing. All graphs start from a temperature higher than the ambient temperature 



as the stationary bearing in the beginning is strongly affected by noise effects such as 

reflection of light. Especially for the inner ring, the impact of reflection of light was observed 

in non-operating state but became less with heating up of the setup. The highest temperatures 

occur at the contact surfaces of the inner ring with both shaft and rolling elements. At the end 

of the measurement period, the maximum temperature is 9.55°C above ambient temperature 

for the contact surface of inner ring and shaft, and 8.31°C for the contact surface between 

inner ring and rolling elements.  
 

 
 

Figure 5. Trend graphs showing the relative maximum temperatures for healthy deep groove ball bearing 

 

Figure 6 shows the thermal image for the healthy bearing with relative temperature scale after 

fifty minutes. The dark representation results from the maximum temperature limit being 

increased to the maximum temperature limit of the faulty bearing to support comparison. The 

single bearing parts such as inner ring and seal can be identified by their different 

temperatures. As already indicated in the trend graphs, both contact surfaces of the inner ring 

show the highest temperatures. 
 

 
 

Figure 6. Thermal image of healthy deep groove ball bearing, indicating both vertical and horizontal 

temperature profile axes and two thermocouples (TC) 

 

For the temperatures of the healthy bearing, a mirror effect in accordance to its symmetry 

might be expected but different loading and heat transfer conditions in lower and upper 

bearing have to be considered. The rolling elements are in direct contact with both raceways 

in the loaded bottom part of the bearing, but they are pushed against the outer ring in the 

upper unloaded part by centrifugal force. As it is shown in Figure 7, the horizontal profile line 

shows symmetric characteristics, whereas the vertical profile line reveals slightly higher 

temperatures for the upper inner ring than for the lower inner ring. Whereas the highest 

temperatures would be expected at the raceways, a relative maximum temperature of 9.55°C 



was measured at the contact surface of the inner ring with the shaft. This part of the healthy 

bearing consistently showing the highest temperatures may indicate a second origin of heat 

such as bending of the shaft, propagating from shaft to inner ring. As the shaft sticks out from 

the bearing for a length of 5mm, the outer shaft part being visible from the chosen camera 

location is affected by a cooling effect and shows lower temperatures than the contact surface 

between inner ring and shaft. Additionally, outer shaft and central shaft show significant 

temperature differences. These temperature differences are caused by a bore-hole in the shaft 

center which is revealing its inside temperature. 
 

 
Figure 7. Temperature profiles for the healthy bearing 

 

6.  Thermal characterization of a bearing with outer raceway fault 
 

The trend graphs in Figure 8 show the relative maximum temperatures for the bearing with 

outer raceway fault. The graphs reveal a higher temperature level for the outer raceway fault 

than for the healthy bearing. In contrast to the healthy bearing, not the contact surface 

between inner ring and shaft shows the highest temperature over time, but the contact surface 

between inner ring and rolling elements. Its relative maximum temperature after fifty minutes 

is 21.03°C. A more in-depth analysis of the heat increase is provided in Section 7, including 

the time constants of first-order systems that have been matched with the measurements.  
 

 
 

Figure 8. Trend graphs showing the relative maximum temperatures for deep groove ball bearing with 

outer raceway fault 

 

The thermal image in Figure 9 shows the faulty bearing with relative temperature scale after 



fifty minutes. For both the healthy bearing and the outer raceway fault, the same temperature 

range has been chosen for visualization. The more bright appearance of the faulty bearing in 

opposition to the healthy bearing reveals an overall higher temperature, as also indicated in 

the trend graphs. Both horizontal and vertical temperature profiles reveal maximum 

temperatures in the upper right of the bearing. Therefore, the third profile line is added which 

marks the hot spot caused by the outer raceway fault to the contact surface between inner ring 

and rolling elements. 

 

 
 

Figure 9. Thermal image of deep groove ball bearing with outer raceway fault, indicating vertical, 

horizontal and hot spot temperature profile axes as well as two thermocouples (TC) 

 

Figure 10 shows the horizontal and vertical temperature profiles, whereas the hot spot profile 

is discussed in Section 7. The contact surface between inner ring and rolling elements 

showing the highest temperatures indicates heat propagation from the faulty outer raceway 

towards the inner raceway by means of convection, as also stated in [19]. Furthermore, inner 

ring and shaft show significant increase as well, indicating further heat propagation from the 

inner raceway towards the shaft by means of conduction. In opposition to the healthy bearing, 

the temperatures between the housing part covering the outer ring and the lip seal are more 

distinct. Additionally, the outer lip seal connected to the outer ring shows higher temperatures 

than the inner lip seal. The temperature profiles show an asymmetric behaviour with higher 

temperatures on top and at the right half of the bearing. 

 

 
Figure 10. Vertical and horizontal temperature profiles for bearing with outer raceway fault 

 



 

7.  Opportunities for fault detection and localization 
 

The ambient temperature measured by the thermocouples has shown only little differences, 

being 1.49°C higher for the outer raceway fault test than for the healthy bearing test, whereas 

the camera accuracy is 1°C. Although the ambient temperature is almost the same, the relative 

maximum temperatures of the single bearing parts clearly differ for the outer raceway fault 

and the healthy bearing. In contrast to the healthy bearing, a more distinct temperature 

difference is shown between the housing part covering the outer ring and the lip seal. 

Furthermore, the outer raceway fault overall causes the temperatures to rise faster than for the 

healthy bearing. After fifty minutes, the relative temperature difference between the healthy 

bearing and the bearing with outer raceway fault is 12.69°C at the contact surface between 

inner ring and rolling elements, and 2.86°C at the housing part covering the outer ring. 

 

Table 1 shows the time constants for subcomponents of both healthy and faulty bearing. The  

subcomponents include the contact surface of the inner ring towards the shaft as well as the 

covered outer ring and show significant difference for both visible and covered components. 

The hole in the central shaft allows measurements of the actual shaft temperature and is 

therefore also shown. The time constants clearly indicate a more rapid increase in temperature 

for the bearing with outer raceway fault than for the healthy bearing. 
 

Table 1. Time constants for subcomponents of both healthy and faulty bearing 

 

bearing healthy outer raceway fault 

housing part covering the outer ring 8.0 2.4 

contact surface of inner ring with shaft 3.9 1.6 

central shaft 2.8 2.0 
 

Figure 11 exemplarily shows the matching of the trend graph for the contact surface between 

inner ring of the healthy deep groove ball bearing and shaft with its first-order step response. 

The fit of trend graph and step response support the validity of the chosen time constants. 
 

 
Figure 11. Trend graph and first-order step response for contact surface between inner ring and shaft of 

healthy deep groove ball bearing 

 

As the temperature rise caused by the outer raceway fault propagates through the rolling 

elements to the inner raceway, a hotspot occurs in the upper right of the bearing. This hotspot 



appears after the starting and heating up process of the setup and remains for the rest of the 

measurement period. As shown in Figure 9, the hot spot profile line indicates the hot spot 

with a relative maximum temperature of 21.03°C at the contact surface between inner ring 

and rolling elements. 

 

The hot spot profile is shown in Figure 12 together with the same profile line taken for the 

healthy bearing. Both profiles cross the location of the hot spot monitored for the outer 

raceway fault at the contact surface of inner ring and rolling elements, and show distinct 

peaks for both contact surfaces of the inner ring.  The temperature profile for the bearing with 

outer raceway fault shows generally higher temperatures than for the healthy bearing, and a 

significantly higher peak for the upper right of the inner ring than for the lower left side. 

Increased temperatures also occur for the housing part covering the faulty outer ring. 
 

 
Figure 12. Hot spot temperature profiles for both healthy and faulty bearing 

 

8.  Conclusions and future work 
 

A methodology has been proposed for processing and analysing the thermal data of healthy 

and faulty rolling element bearings. Different temperature rises have been monitored for both 

a healthy deep groove ball bearing and a bearing with outer raceway fault.  With the inner 

ring not being covered in the used setup, it was possible to localize the outer raceway fault by 

means of its thermal impact on the contact surface of inner ring and rolling elements. 

Furthermore, the outer raceway fault leads to a faster and higher heat increase of the visible 

bearing parts as well as the housing part covering the outer ring in the used setup. As the fault 

impact could be monitored on both stationary components such as outer ring and seal as well 

as rotating components such as inner ring and shaft, thermal imaging shows potential for 

monitoring rotating machinery. The differences in heat increase on the housing can be 

promising for monitoring completely covered bearings in industrial applications. 

 

As drive train components such as bearings and gearbox are usually fully covered and sealed 

in order to protect them from water- and hard-particle contamination, the feasibility of 

thermal imaging to detect faults of fully covered components has to be further examined. The 

higher temperatures of the bearing housing covering the faulty outer ring as well as their more 

rapid increase can be first indications.  
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