326 research outputs found

    Penumbra maps: approximate soft shadows in real-time

    Get PDF
    Journal ArticleGenerating soft shadows quickly is difficult. Few techniques have enough flexibility to interactively render soft shadows in scenes with arbitrarily complex occluders and receivers. This paper introduces the penumbra map, which extends current shadow map techniques to interactively approximate soft shadows. Using object silhouette edges, as seen from the center of an area light, a map is generated containing approximate penumbral regions. Rendering requires two lookups, one into each the penumbra and shadow maps. Penumbra maps allow arbitrary dynamic models to easily shadow themselves and other nearby complex objects with plausible penumbrae

    Feature-based tracking of multiple people for intelligent video surveillance.

    Get PDF
    Intelligent video surveillance is the process of performing surveillance task automatically by a computer vision system. It involves detecting and tracking people in the video sequence and understanding their behavior. This thesis addresses the problem of detecting and tracking multiple moving people with unknown background. We have proposed a feature-based framework for tracking, which requires feature extraction and feature matching. We have considered color, size, blob bounding box and motion information as features of people. In our feature-based tracking system, we have proposed to use Pearson correlation coefficient for matching feature-vector with temporal templates. The occlusion problem has been solved by histogram backprojection. Our tracking system is fast and free from assumptions about human structure. We have implemented our tracking system using Visual C++ and OpenCV and tested on real-world images and videos. Experimental results suggest that our tracking system achieved good accuracy and can process videos in 10-15 fps.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .A42. Source: Masters Abstracts International, Volume: 45-01, page: 0347. Thesis (M.Sc.)--University of Windsor (Canada), 2006

    System Characterizations and Optimized Reconstruction Methods for Novel X-ray Imaging

    Get PDF
    In the past decade there have been many new emerging X-ray based imaging technologies developed for different diagnostic purposes or imaging tasks. However, there exist one or more specific problems that prevent them from being effectively or efficiently employed. In this dissertation, four different novel X-ray based imaging technologies are discussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahedron beam computed tomography (TBCT). System characteristics are analyzed or optimized reconstruction methods are proposed for these imaging modalities. In the first part, we investigated the unique properties of propagation-based phase-contrast imaging technique when combined with the X-ray tomosynthesis. Fourier slice theorem implies that the high frequency components collected in the tomosynthesis data can be more reliably reconstructed. It is observed that the fringes or boundary enhancement introduced by the phase-contrast effects can serve as an accurate indicator of the true depth position in the tomosynthesis in-plane image. In the second part, we derived a sub-space framework to reconstruct images from few-view D-XPCT data set. By introducing a proper mask, the high frequency contents of the image can be theoretically preserved in a certain region of interest. A two-step reconstruction strategy is developed to mitigate the risk of subtle structures being oversmoothed when the commonly used total-variation regularization is employed in the conventional iterative framework. In the thirt part, we proposed a practical method to improve the quantitative accuracy of the projection-based dual-energy material decomposition. It is demonstrated that applying a total-projection-length constraint along with the dual-energy measurements can achieve a stabilized numerical solution of the decomposition problem, thus overcoming the disadvantages of the conventional approach that was extremely sensitive to noise corruption. In the final part, we described the modified filtered backprojection and iterative image reconstruction algorithms specifically developed for TBCT. Special parallelization strategies are designed to facilitate the use of GPU computing, showing demonstrated capability of producing high quality reconstructed volumetric images with a super fast computational speed. For all the investigations mentioned above, both simulation and experimental studies have been conducted to demonstrate the feasibility and effectiveness of the proposed methodologies

    Packet-based Hierarchal Soft Shadow Mapping

    Get PDF
    International audienceRecent soft shadow mapping techniques based on back-projection can render high quality soft shadows in real time. However, real time high quality rendering of large penumbrae is still challenging, especially when multi-layer shadow maps are used to reduce single light sample silhouette artifact. In this paper, we present an efficient algorithm to attack this problem. We first present a GPU-friendly packet-based approach rendering a packet of neighboring pixels together to amortize the cost of computing visibility factors. Then, we propose a hierarchical technique to quickly locate the contour edges, further reducing the computation cost. At last, we suggest a multi-view shadow map approach to reduce the single light sample artifact. We also demonstrate its higher image quality and higher efficiency compared to the existing depth peeling approaches

    Shadows generation using geometry shaders

    Get PDF
    Algorithms for simulating shadows are considered. A shadow volume method using geometry shaders is proposed

    Real-time tomographic reconstruction

    Get PDF
    With tomography it is possible to reconstruct the interior of an object without destroying. It is an important technique for many applications in, e.g., science, industry, and medicine. The runtime of conventional reconstruction algorithms is typically much longer than the time it takes to perform the tomographic experiment, and this prohibits the real-time reconstruction and visualization of the imaged object. The research in this dissertation introduces various techniques such as new parallelization schemes, data partitioning methods, and a quasi-3D reconstruction framework, that significantly reduce the time it takes to run conventional tomographic reconstruction algorithms without affecting image quality. The resulting methods and software implementations put reconstruction times in the same ballpark as the time it takes to do a tomographic scan, so that we can speak of real-time tomographic reconstruction.NWONumber theory, Algebra and Geometr

    Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology

    Get PDF
    We describe a contactless optical technique selectively enhancing superficial blood vessels below variously pigmented intact human skin by combining images in different spectral bands. Two CMOS-cameras, with apochromatic lenses and dual-band LED-arrays, simultaneously streamed Left (L) and Right (R) image data to a dual-processor PC. Both cameras captured color images within the visible range (VIS, 400–780 nm) and grey-scale images within the near infrared range (NIR, 910–920 nm) by sequentially switching between LED-array emission bands. Image-size-settings of 1280 × 1024 for VIS & 640 × 512 for NIR produced 12 cycles/s (1 cycle = 1 VIS L&R-pair + 1 NIR L&R-pair). Decreasing image-size-settings (640 × 512 for VIS and 320 × 256 for NIR) increased camera-speed to 25 cycles/s. Contrasts from below the tissue surface were algorithmically distinguished from surface shadows, reflections, etc. Thus blood vessels were selectively enhanced and back-projected into the stereoscopic VIS-color-image using either a 3D-display or conventional shutter glasses. As a first usability reconnaissance we applied this custom-built mobile stereoscopic camera for several clinical settings: • blood withdrawal; • vein inspection in dark skin; • vein detection through iodide; • varicose vein and nevi pigmentosum inspection. Our technique improves blood vessel visualization compared to the naked eye, and supports depth perception

    Revealing the Invisible: On the Extraction of Latent Information from Generalized Image Data

    Get PDF
    The desire to reveal the invisible in order to explain the world around us has been a source of impetus for technological and scientific progress throughout human history. Many of the phenomena that directly affect us cannot be sufficiently explained based on the observations using our primary senses alone. Often this is because their originating cause is either too small, too far away, or in other ways obstructed. To put it in other words: it is invisible to us. Without careful observation and experimentation, our models of the world remain inaccurate and research has to be conducted in order to improve our understanding of even the most basic effects. In this thesis, we1 are going to present our solutions to three challenging problems in visual computing, where a surprising amount of information is hidden in generalized image data and cannot easily be extracted by human observation or existing methods. We are able to extract the latent information using non-linear and discrete optimization methods based on physically motivated models and computer graphics methodology, such as ray tracing, real-time transient rendering, and image-based rendering

    Simplifying the Representation of Radiance from Multiple Emitters

    Get PDF
    International audienceIn recent work radiance function properties and discontinuity meshing have been used to construct high quality interpolants representing radiance. Such approaches do not consider the combined effect of multiple sources and thus perform unnecessary discontinuity meshing calculations and often construct interpolants with too fine subdivision. In this research we present an extended structured sampling algorithm that treats scenes with shadows and multiple sources. We then introduce an algorithm which simplifies the mesh based on the interaction of multiple sources. For unoccluded regions an a posteriori simplification technique is used. For regions in shadow, we first compute the maximal umbral/penumbral and penumbral/light boundaries. This construction facilitates the determination of whether full discontinuity meshing is required or whether it can be avoided due to the illumination from another source. An estimate of the error caused by potential simplification is used for this decision. Thus full discontinuitymesh calculation is only incurred in regions where it is necessary resulting in a more compact representation of radiance
    corecore