744 research outputs found

    Glacier motion estimation using SAR offset-tracking procedures

    Get PDF
    Two image-to-image patch offset techniques for estimating feature motion between satellite synthetic aperture radar (SAR) images are discussed. Intensity tracking, based on patch intensity cross-correlation optimization, and coherence tracking, based on patch coherence optimization, are used to estimate the movement of glacier surfaces between two SAR images in both slant-range and azimuth direction. The accuracy and application range of the two methods are examined in the case of the surge of Monacobreen in Northern Svalbard between 1992 and 1996. Offset-tracking procedures of SAR images are an alternative to differential SAR interferometry for the estimation of glacier motion when differential SAR interferometry is limited by loss of coherence, i.e., in the case of rapid and incoherent flow and of large acquisition time intervals between the two SAR images. In addition, an offset-tracking procedure in the azimuth direction may be combined with differential SAR interferometry in the slant-range direction in order to retrieve a two-dimensional displacement map when SAR data of only one orbit configuration are available

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    Advanced Multitemporal Phase Unwrapping Techniques for DInSAR Analyses

    Get PDF

    Sentinel-1 data exploitation for terrain deformation monitoring

    Get PDF
    Persistent Scatterer interferometry (PSI) is a group of advanced differential interferometric Synthetic Aperture Radar (SAR) techniques used to measure and monitor terrain deformation. Sentinel-1 has improved the data acquisition throughout and, compared to previous sensors, increased considerably the Differential Interferometric SAR (DInSAR) and PSI deformation monitoring potential. The effect of the refractive atmosphere on the interferometric phase and phase unwrapping ambiguity are two critical issues of InSAR. The low density of Persistent Scatterer (PS) in non-urban areas, another critical issue, has inspired the development of alternative approaches and refinement of the PS chains. Along with the efforts to develop methods to mitigate the three above-mentioned problems, the work presented in this thesis also deals with the presence of a new signal in multilooked interferograms which cannot be explained by noise, atmospheric or earth surface topography changes. This paper describes a method for atmospheric phase screen estimation using rain station weather data and three different data driven procedures to obtain terrain deformation maps. These approaches aim to exploit Sentinel-1 highly coherent interferograms and their short revisit time. The first method called the splitting makes uses of the power spectrum of the interferograms to split the signals into high and low frequency, and following a mutually exclusive consecutive processing chain for the two sets. This approach has resulted in greater density of PSs with decreased phase unwrapping errors. The second approach, called Direct Integration (DI), aims at providing a very fast and straightforward approach to screen wide areas and easily detect active areas. This approach fully exploits the coherent interferograms from the consecutive images provided by Sentinel-1 resulting in a very high sampling density. However, it lacks robustness and its usability lays on the operator experience. The third method, called PSIG (Persistent Scatterer Interferometry Geomatics) short temporal baseline, provides a constrained application of the PSIG chain, the CTTC approach to the PSI. It uses short temporal baseline interferograms and do not assume any deformation model for point selection. It is also quite a straightforward approach and a perfect complement to the direct integration approach. It improves the performances of the standard PSIG approach, increasing the PS density and providing robust measurements. The effectiveness of the approaches is illustrated through analyses performed on different test sites.La técnica Persistent Scatterer Interferometry (PSI) es un grupo de técnicas avanzadas de radar de apertura sintética interferométrica diferencial (SAR) que se utiliza para medir y monitorear losmovimientos del terreno. Sentinel-1 ha mejorado sensiblemente la adquisición de datos y, en comparación con los sensores SAR anteriores, ha aumentado considerablemente el potencial uso de la interferometría diferencial SAR y del PSI para medir y monitorizar desplazamientos del terreno. El efecto de la atmósfera sobre la fase interferométrica y la naturaleza ambigua de esta son dos cuestiones críticas de InSAR. Además, la baja densidad de Persistent Scatterer (PSs) en áreas no urbanas, es otro tema crítico que ha inspirado el desarrollo de enfoques alternativos y el refinamiento de las cadenas PS existentes. Junto con los esfuerzos por desarrollar métodos para mitigar los tres problemas antes mencionados, el trabajo presentado en esta tesis también aborda la presencia de una nueva señal en interferogramas multilooked que no puede explicarse por cambios de ruido, atmosféricos o topográficos de la superficie terrestre. Esta tesis describe un método para la estimación de la fase atmosférica utilizando datos meteorológicos adquiridos in-situ y tres aproximaciones diferentes basadas en datos Sentinel-1 para obtener mapas de deformación del terreno. Estos enfoques tienen como objetivo explotar los interferogramas altamente coherentes proporcionados por Sentinel-1 gracias a su corto tiempo de revisita. El primer método llamado división hace uso de filtros en el dominico frecuencial de los interferogramas para dividir las señales en alta y baja frecuencia, y siguiendo una cadena de procesamiento consecutiva independiente para cada clase. Este enfoque ha dado como resultado una mejora substancial de PS minimizando los errores debidos al desenrollado de fase. El segundo enfoque, llamado Integración Directa (DI), tiene como objetivo proporcionar un enfoque muy rápido y sencillo para examinar áreas amplias y detectar fácilmente áreas activas. Este enfoque aprovecha al máximo los interferogramas coherentes de las imágenes consecutivas proporcionadas por Sentinel-1, lo que da como resultado una densidad de muestreo muy alta. Sin embargo, carece de robustez y su usabilidad depende de la experiencia del operador. El tercer método, llamado PSIG (Persistent Scatterer Interferometry Geomatics) de línea de base temporal corta, proporciona una aplicación restringida de la cadena PSIG, el enfoque CTTC para el PSI. Utiliza interferogramas de línea base temporales cortos y no asume ningún modelo de deformación para la selección de puntos. Su uso es complementario al enfoque de integración directa proporcionando robustez en las zonas. Mejora el rendimiento del enfoque estándar de PSIG, aumentando la densidad de PS y proporcionando mediciones robustas. La efectividad de los enfoques se ilustra a través de análisis realizados en diferentes sitios de prueba.Postprint (published version

    Ground-based synthetic aperture radar (GBSAR) interferometry for deformation monitoring

    Get PDF
    Ph. D ThesisGround-based synthetic aperture radar (GBSAR), together with interferometry, represents a powerful tool for deformation monitoring. GBSAR has inherent flexibility, allowing data to be collected with adjustable temporal resolutions through either continuous or discontinuous mode. The goal of this research is to develop a framework to effectively utilise GBSAR for deformation monitoring in both modes, with the emphasis on accuracy, robustness, and real-time capability. To achieve this goal, advanced Interferometric SAR (InSAR) processing algorithms have been proposed to address existing issues in conventional interferometry for GBSAR deformation monitoring. The proposed interferometric algorithms include a new non-local method for the accurate estimation of coherence and interferometric phase, a new approach to selecting coherent pixels with the aim of maximising the density of selected pixels and optimizing the reliability of time series analysis, and a rigorous model for the correction of atmospheric and repositioning errors. On the basis of these algorithms, two complete interferometric processing chains have been developed: one for continuous and the other for discontinuous GBSAR deformation monitoring. The continuous chain is able to process infinite incoming images in real time and extract the evolution of surface movements through temporally coherent pixels. The discontinuous chain integrates additional automatic coregistration of images and correction of repositioning errors between different campaigns. Successful deformation monitoring applications have been completed, including three continuous (a dune, a bridge, and a coastal cliff) and one discontinuous (a hillside), which have demonstrated the feasibility and effectiveness of the presented algorithms and chains for high-accuracy GBSAR interferometric measurement. Significant deformation signals were detected from the three continuous applications and no deformation from the discontinuous. The achieved results are justified quantitatively via a defined precision indicator for the time series estimation and validated qualitatively via a priori knowledge of these observing sites.China Scholarship Council (CSC), Newcastle Universit

    Spaceborne Differential SAR Interferometry: Data Analysis Tools for Deformation Measurement

    Get PDF
    This paper is focused on spaceborne Differential Interferometric SAR (DInSAR) for land deformation measurement and monitoring. In the last two decades several DInSAR data analysis procedures have been proposed. The objective of this paper is to describe the DInSAR data processing and analysis tools developed at the Institute of Geomatics in almost ten years of research activities. Four main DInSAR analysis procedures are described, which range from the standard DInSAR analysis based on a single interferogram to more advanced Persistent Scatterer Interferometry (PSI) approaches. These different procedures guarantee a sufficient flexibility in DInSAR data processing. In order to provide a technical insight into these analysis procedures, a whole section discusses their main data processing and analysis steps, especially those needed in PSI analyses. A specific section is devoted to the core of our PSI analysis tools: the so-called 2+1D phase unwrapping procedure, which couples a 2D phase unwrapping, performed interferogram-wise, with a kind of 1D phase unwrapping along time, performed pixel-wise. In the last part of the paper, some examples of DInSAR results are discussed, which were derived by standard DInSAR or PSI analyses. Most of these results were derived from X-band SAR data coming from the TerraSAR-X and CosmoSkyMed sensors
    corecore