7,471 research outputs found

    DOH: A Content Delivery Peer-to-Peer Network

    Get PDF
    Many SMEs and non-pro¯t organizations su®er when their Web servers become unavailable due to °ash crowd e®ects when their web site becomes popular. One of the solutions to the °ash-crowd problem is to place the web site on a scalable CDN (Content Delivery Network) that replicates the content and distributes the load in order to improve its response time. In this paper, we present our approach to building a scalable Web Hosting environment as a CDN on top of a structured peer-to-peer system of collaborative web-servers integrated to share the load and to improve the overall system performance, scalability, availability and robustness. Unlike clusterbased solutions, it can run on heterogeneous hardware, over geographically dispersed areas. To validate and evaluate our approach, we have developed a system prototype called DOH (DKS Organized Hosting) that is a CDN implemented on top of the DKS (Distributed K-nary Search) structured P2P system with DHT (Distributed Hash table) functionality [9]. The prototype is implemented in Java, using the DKS middleware, the Jetty web-server, and a modi¯ed JavaFTP server. The proposed design of CDN has been evaluated by simulation and by evaluation experiments on the prototype

    Methodology for modeling high performance distributed and parallel systems

    Get PDF
    Performance modeling of distributed and parallel systems is of considerable importance to the high performance computing community. To achieve high performance, proper task or process assignment and data or file allocation among processing sites is essential. This dissertation describes an elegant approach to model distributed and parallel systems, which combines the optimal static solutions for data allocation with dynamic policies for task assignment. A performance-efficient system model is developed using analytical tools and techniques. The system model is accomplished in three steps. First, the basic client-server model which allows only data transfer is evaluated. A prediction and evaluation method is developed to examine the system behavior and estimate performance measures. The method is based on known product form queueing networks. The next step extends the model so that each site of the system behaves as both client and server. A data-allocation strategy is designed at this stage which optimally assigns the data to the processing sites. The strategy is based on flow deviation technique in queueing models. The third stage considers process-migration policies. A novel on-line adaptive load-balancing algorithm is proposed which dynamically migrates processes and transfers data among different sites to minimize the job execution cost. The gradient-descent rule is used to optimize the cost function, which expresses the cost of process execution at different processing sites. The accuracy of the prediction method and the effectiveness of the analytical techniques is established by the simulations. The modeling procedure described here is general and applicable to any message-passing distributed and parallel system. The proposed techniques and tools can be easily utilized in other related areas such as networking and operating systems. This work contributes significantly towards the design of distributed and parallel systems where performance is critical
    • …
    corecore