
SOFTWARE – PRACTICE AND EXPERIENCE

Satisfying quality requirements in the design of a partition-based,
distributed stock trading system

Xiaohu Yang1, Liping Zhao2, Xinyu Wang1,∗,†, Ye Wang1, Jie Sun1

and Albert Jerry Cristoforo3

1College of Computer Science, Zhejiang University, Hangzhou, People’s Republic of China
2School of Computer Science, University of Manchester, Manchester, U.K.

3State Street Corporation, Boston, MA, U.S.A.

SUMMARY

Although quality requirements (QRs) have become a major drive in today’s software develop-
ment, there have been very few real-world examples in the literature that demonstrate how to
meet these requirements. This paper presents such an example. Specifically, the paper describes
the design of a partition-based distributed stock trading service system that satisfies a set of QRs
related to resource utilization, performance, scalability and availability. The paper evaluates this
design through detailed experiments and discusses some design alternatives and the lessons learned.
Central to this design are a static load distribution strategy and a dynamic load balancing strategy.
The first strategy is to achieve an initial balanced workload on the system’s server cluster during
the system initialization time, whereas the second strategy is to maintain this balanced workload
throughout the system execution time. Together, these two strategies work in unison to ensure that
the server resources are efficiently utilized; the user requests are processed with the required speed;
the application is partitioned with sufficient room to scale; and the system is highly available.
Copyright q 2011 John Wiley & Sons, Ltd.

Received 30 March 2010; Revised 6 December 2010; Accepted 13 December 2010

KEY WORDS: distributed systems; partition-based server clusters; quality-of-service; quality require-
ments; software design; static load distribution and dynamic load balancing strategies;
stock trading systems

1. INTRODUCTION

A major challenge in the design of service systems is to satisfy their quality requirements (QRs)
[1]. Several characteristics underlie this challenge: First, QRs are system-level requirements which
cannot be assigned directly to individual system components; instead, they need to be planned at
the infrastructure-level as a whole, with their design aspects then entrusted to system components.
Second, QRs are often interconnected and their realization in a system requires a collective and
coordinated behavior of the system components and a system-level design strategy. Third, QRs are
application-specific and their fulfillment necessarily requires a specific design approach germane
to their applications. Finally, QRs are not only a design time concern, but most crucially a runtime
concern. Satisfying QRs in a system means designing runtime mechanisms that can maintain the
system’s QRs throughout the execution time.

∗Correspondence to: Xinyu Wang, College of Computer Science, Zhejiang University, Hangzhou 310027, People’s
Republic of China.

†E-mail: wangxinyu@zju.edu.cn

Copyright q 2011 John Wiley & Sons, Ltd.

Softw. Pract. Exper.
Published online 27 January 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.1054

2012; :131–42 157

X. YANG ET AL.

We have learned about these characteristics of QRs from undertaking a re-engineering project
for a US-based multinational financial service company—referred to as FSC in this paper. The
purpose of that project was to transform a standalone stock trading system into a distributed
system, called GETS (Global Equity Trading System), under a set of business and QRs. These
requirements are described as follows.

As a stock trading system, GETS’s main function is to facilitate its users to sell or buy shares
online. GETS’s users are traders and operators. Traders are investors who would buy or sell shares
for their institutions or themselves, whereas operators are FSC’s employees who would use GETS
to process shares. GETS is required to provide five essential trading services for its users, which
are Order Entry, Order Matching, Trade Management, Order Pricing and Trade Printing. GETS
is also required to access the trading data from an existing centralized relational trading database
through a set of APIs. GETS’s users would typically interact with GETS in the following manner:

(1) The trader would use the Order Entry service to submit his trading data in the form of
orders. GETS would then validate the trading orders and send the confirmation to the trader.
The validated orders would be placed in order books stored in the trading database to wait
for Order Matching. An order book is a record of un-traded orders with the same equity
symbol. An equity symbol is a unique identifier for a group of publicly traded shares of a
specific company on a particular equity market. GETS should provide one order book for
each equity symbol.

(2) Upon receiving the order books, the operator would then apply the Order Matching service
to match buy-side orders with suitable sell-side ones according to their equity symbols.
A buy-side order is an order to buy some shares of a certain equity symbol, whereas a
sell-side order is an order to sell some shares of a certain equity symbol. Once the orders
are matched, GETS should find the execution prices for the matched orders through the
Order Pricing service and convert the orders into the trades.

(3) The operator would then use the Trade Printing service to check whether the trades are in
line with the financial regulations and to publish the trades to the public.

(4) To complete the trading process, the operator would use the Trade Management service to
update the trades and trading accounts in the trading database.

In addition to the above business requirements, GETS is required to satisfy the following four
QRs‡.

• Resource utilization: GETS should use its computational resources (e.g. disk spaces and
processing times) efficiently. As this paper will show, this QR is most important to GETS, as
it has a direct impact on other QRs.

• Performance: GETS’s performance is measured by its throughput, which is the number of the
orders that can be matched in one second. GETS is expected to produce at least 300 matched
orders per second.

• Scalability: GETS’s processing capacity should be expandable and the expansion should not
affect its performance.

• Availability: GETS should ideally maintain a high availability (HA) equivalent to 99.99% of
its operation time.

These QRs, as stated in [2], represent a set of key quality-of-service (QoS) requirements for
almost all online stock trading systems. In contrast to GETS’s business requirements which define
‘what’ services GETS should provide, these QRs delineate ‘how well’ GETS should perform these
services. They are therefore the ultimate design goals for GETS.

Since its development, GETS has been successful in operation and has played a vital role in
its company’s core business. Today, GETS supports equity trading in the U.S.A., Europe and
Australia, with an average daily trading volume exceeding 200 million shares and an average daily

‡Our key QRs do not include security as we have opted to use standard, off-the-shelf security software for GETS.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

132

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

turnover of more than 10 billion USD. GETS’s business success indicates that its design has stood
the test of time. The purpose of this paper is to present this design and in particular to show how
the design meets the above four QRs.

The remaining paper is presented as follows: Section 2 introduces GETS’s development platform
and design tasks. Sections 3 and 4 present GETS’s design tasks in detail. Section 5 evaluates this
design through detailed experiments, whereas Section 6 discusses some design alternatives and
lessons learned. Section 7 compares and contrasts our design with closely related work and finally,
Section 8 concludes the paper by summarizing the key contributions of this design work.

2. OVERVIEW OF GETS’S DEVELOPMENT PLATFORM AND DESIGN TASKS

This section provides a brief introduction to GETS’s development platform and an overview to
GETS’s design tasks.

2.1. GETS’s development platform

GETS’s development is based on a cluster of WebSphere Partitioning Facility (WPF) enabled
servers [3, 4]. The salient feature of a WPF-enabled server is its support for the concurrent execution
of multiple independent processing units called ‘service partitions’ (SPs). Exactly how many SPs
can be executed at the same time depends on the number of the computation threads possessed
by the server. The server provides a scheduling and synchronization mechanism to control the
execution of its SPs. This feature is particularly attractive to us because we can divide GETS
into a set of independent SPs, distribute these SPs across a cluster of servers and then execute
concurrently. On each WPF-enabled server cluster, there is a load balancing mechanism in place
to ensure a balanced workload on the entire cluster at runtime. This feature is also attractive as
GETS’s runtime workload on each server can change dynamically due to the client requests.

In addition, each WPF-enabled server cluster has an HA device which monitors each server’s
conditions periodically at runtime to ensure that failures are detected as early as possible and the
jobs on the failed servers are transferred into the healthy ones promptly. This feature is clearly
relevant to GETS’s availability QR. Finally, a WPF-enabled server provides a runtime data buffer.
This means that the application data can be preloaded from the database into the server’s data
buffer to avoid runtime database access (DA) operations. This feature can therefore increase the
data processing speed, which is very important to GETS, because, as a data processing intensive
system, GETS’s performance is directly related to its data processing speed.

Figure 1 illustrates the main components of a WPF-enabled server cluster.

2.2. GETS’s design tasks

By using a WPF-enabled server cluster, GETS’s development consists of design, implementation,
deployment and system initialization phases. Once these phases are completed, GETS can be put
into operation, which is the execution phase or runtime. Here, we aim to provide a conceptual
understanding of the tasks involved in the design phase, the process that drives these tasks and the
motivation behind these tasks. To help the reader to understand GETS’s development cycle, this
section will also provide a brief summary to other development phases.

At the design phase, our aim is to design a set of SPs for GETS and to distribute these SPs across
the server cluster. Intuitively, since SPs are independent processing units, it makes sense for each
of GETS’s SPs to provide the same set of trading services (i.e. Order Entry, Order Matching, Trade
Management, etc.) but process a different set of trading data. To achieve a balanced workload,
it also makes sense for all GETS’s SPs to have the same size and an even amount of workload.
Furthermore, in order to maintain the server cluster’s stability, it also makes sense to distribute
these SPs equitably across the servers on the cluster. Finally, to provide a stable development
platform, it makes sense too, to use a cluster of identical servers for GETS.

Yet, at the design stage, we can only fix the size and the number of SPs for GETS; we cannot,
however, prefix the workload for each SP or each server. This is because each SP’s workload

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

133

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

Load Balancer

Server 1

Partition Manager

SP SP ...

Server 2

SP SP

Server m

SP SP

...

Client 1 Client rClient 2

WPF-enabled Server Cluster

...

SP : Service Partition

Legend:

: Dataflow

Figure 1. A WPF-enabled application server cluster is a partition-based server cluster supported by a
partitioning facility and a load balancing mechanism.

will change at runtime, triggered by the service requests from the clients. The best we should
do for the design is to develop a sensible load distribution strategy that can evenly distribute
the workload across the SPs as well as the entire server cluster—in order to achieve a balanced
workload—and that can reduce the dependency between the SPs—in order to facilitate the SPs’
concurrent execution. We should also develop a sensible load balancing strategy that can maintain a
balanced workload on the entire server cluster at runtime and that can adjust the servers’ workload
dynamically when needed.

This analysis suggests that GETS’s design should entail three major tasks:

T1. To design a set of identical SPs.
T2. To design a load distribution strategy.
T3. To design a load balancing strategy.

Yet, these tasks are challenged by a set of difficult questions:

Q1. What is GETS’s workload and how do we calculate it?
Q2. How should we decompose the trading data so that they can be processed by different SPs

independently and concurrently?
Q3. How many identical SPs should GETS have in order to process its workload?
Q4. How many identical servers should GETS have in order to accommodate its workload?
Q5. How should we distribute the workload evenly across the SPs as well as across the entire

cluster?
Q6. How do we know a server is overloaded and how do we redistribute the workload across

the server cluster dynamically?

In order to answer Q1, the expert developers of the previous standalone trading system at FSC
advised us to use the DA values of the trading database to predict GETS’s workload. A DA value
is a weighted total of the average number of the historical database transactions that has been
performed on a unit of the trading data per second. Such a DA value is also called a static DA
value as it represents the static workload of the data unit. We shall describe how to calculate static
DA values in Section 3.

Now we know that GETS’s workload is related to its trading data, we should therefore answer
Q2 first before Q1. How should we work out the number of identical SPs (Q3) and the number

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

134

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

of identical servers (Q4) needed for GETS? In theory, GETS’s SPs should be independent of
the server cluster and the calculation of the number of SPs needed should be based on GETS’s
workload. In practice, however, this calculation is restricted by the specification of the server’s CPU
speed, memory, disk spaces and processing speed. Even trickier for us is that we have preselected
a specific type of server for GETS and our design of the SPs is therefore bound by this type of
server. Because of this, we should answer Q4 before Q3.

For Q5, we cannot physically allocate the workload to the SPs at the design stage as we do
not know what service requests are going to be and what actual workload each SP will process.
Nevertheless, we can plan ahead by logically allocating the predicted static workload (according
to the static DA values) evenly to the SPs and logically allocating these SPs to the server cluster.
This means that the design of GETS’s load distribution strategy is to establish two sets of logical
mapping:

• a mapping from GETS’s workload to its SPs and
• a mapping from GETS’s SPs to its servers.

These two sets of mapping will be stored in a system configuration file to be deployed onto
the server cluster at the deployment phase. During the system initialization time, the first set of
mapping will be used to guide the physical distribution of the trading data to GETS’s SPs and
the second set of mapping will be used to allocate the SPs to the servers. At runtime, the first
set of mapping will help to determine which service requests should be dispatched to which SPs,
whereas the second set of mapping will be used to aid the dynamic load balancing strategy.

To answer Q6, we need to predict GETS’s runtime workload. Just as we have used static DA
values to predict GETS’s static workload, we have adopted Winckler’s load prediction method
[5] to calculate dynamic database access values (also called DDA values) to estimate GETS’s
‘near-future’ workload. We will describe how to calculate DDA values in Section 4.

Based on the above analysis, it became clear to us that the first two design tasks (T1 and T2)
should be further divided into six subtasks (S1–S6). GETS’s design process thus consists of three
major tasks and six subtasks, as Figure 2 shows. Also shown in this figure is the correspondence
between these design tasks and the above-discussed six questions (Q1–Q6). We will use Figure 2
as a roadmap to guide our description of GETS’s design in the remaining paper.

We now briefly introduce other development phases. Following the design phase is the imple-
mentation where GETS’s trading services, its SPs and database APIs will be implemented. At
the deployment phase, the source code of the complete set of trading service operations will be
installed and compiled on each server and will be shared by the server’s SPs at runtime. We have
already outlined that during the system initialization phase, the trading data will be allocated to
GETS’s SPs and the latter will be allocated to the server cluster.

Figure 2. GETSs design process consists of three tasks (T1–T3) and six subtasks (S1–S6).

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

135

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

Figure 3. GETS’s development and execution phases.

Figure 3 summarizes GETS’s development and execution phases. Although these phases are
displayed as a linear sequence, they are actually progressed iteratively, rather than in a strictly
sequential order.

According to GETS’s development phases, the load distribution strategy is applied at the system
initialization phase to help GETS to achieve a balanced initial (pre-runtime) workload, whereas
the load balancing strategy is employed at runtime to direct the dynamic load balancing operation.
Owing to this important distinction, these two strategies are respectively called a static load
distribution strategy and a dynamic load balancing strategy. Yet, both the strategies need to be
designed at GETS’s design phase.

Clearly, the design phase is most crucial, as it not only involves very challenging tasks, but
also how well we perform these design tasks will directly affect how well GETS can satisfy and
manage its QRs. These design tasks will be described in detail in Sections 3 and 4.

3. DESIGNING GETS’S SERVICE PARTITIONS AND STATIC
LOAD DISTRIBUTION STRATEGY

This section presents the first two design tasks (T1 and T2 in Figure 2): to design GETS’s SPs and
its static load distribution strategy. The ultimate goal of these two design tasks is to collectively
attain a balanced static workload for the server cluster. We present these design tasks according
to the order of their subtasks (S1–S6 in Figure 2).

3.1. Decomposing GETS’s trading data

The purpose of this subtask is to decompose GETS’s trading data into a set of independent data
units (DUs) so that the workload on each DU can be calculated by their DA values and can be
executed independently. Recall in Section 1 that GETS’s trading data are stored in a relational
database and this means that they are structured as relational tables. Figure 4 shows the Order
and Trade tables of the trading database. The Order table stores both sell-side and buy-side order
data. Recall also in Section 1 that during the trading process, the Order Matching service will
attempt to match the buy-side orders with sell-side orders according to their equity symbols. The
successfully matched orders will become the trades, which will be stored in the Trade table. Figure 4
shows three historical trades (INTC, IBM and AAPL). They were the results of the three pairs
of the matched orders. For example, the IBM trade in the Trade table is the result of matching
the sell-side and buy-side orders with the same IBM equity symbol. This example suggests that
we should decompose the trading data into a set of order-related data units based on their equity
symbols.

Yet, since at this stage GETS is still being designed, the trading data in the database do not
belong to GETS and instead, they are the historical trading data. What we are doing here is to use
the historical order-related data to predict GETS’s current workload. This method has proved to
be accurate in the development of stock trading systems.

In contrast to data fragmentation in distributed database design [6], our data decomposition is
only performed logically, not physically—that is, we are not physically dividing the database, but
instead, we only mark or tag the data in the database according to their equity symbols. We will
return to this comparison in Section 7.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

136

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

Figure 4. The trading data are logically decomposed into a set of independent data units (e.g. INTC, IBM
and AAPL) based on their equity symbols.

3.2. Predicting GETS’s static workload

A simple but effective method for predicting the workload of stock trading systems is to use their
DA values. This method is also known to be generally applicable to data processing intensive
systems. As stated in Section 2, a DA value of a particular DU in GETS’s trading database is a
weighted total of the average number of the historical database transactions performed on that DU
per second. A database transaction is a database operation performed on reading a DU from the
database or writing a DU to the database. We can find all the DUs’ database transactions from the
database log file and then use the following formula to calculate the DA value for each DU:

DAdu= R+s∗W (1)

where R is the average number of database reading operation performed on the DU per second;
W is the average number of database writing operation performed on the DU per second; s is the
weighting (usually s=2) assigned to W to indicate that a database writing operation takes twice
as much time as a database reading operation.

The values of R and W for each DU are based on the statistics of the database transactions
performed on the DU.

Once we have calculated all the DA values for all the DUs stored in the trading database, we
can add them together as shown in Formula (2). This total DA value (DAGETS) will then be used
to denote GETS’s total static workload

DAGETS=
N∑
i=1

DAdui (2)

In Formula (2), N represents the total number of DUs decomposed in the trading database and i
points to the i th DU. So far, GETS’s static workload has been around 9000 DA values.

3.3. Determining the number of servers needed for GETS

As described in Section 2, we have preselected a specific type of server§ for GETS. Here, our
task is to work out the maximum number of identical servers needed for GETS. This involves

§The server we selected consists of one CPU of 2.4GHz, 2G memory and one hard disk with the speed of 80M
bytes per second.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

137

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

Figure 5. The relationship between a server’s response time and its workload, measured
by the servers database access value.

finding out what percentage of GETS’s static workload each server can process. To do so we use
one of our chosen servers to perform the Order Matching operation on GETS’s trading database.
We then record the maximum number of the database transactions that the server can perform
every second. Finally, we use Formula (3) to calculate the maximum DA value (DAmax) for this
server. The value obtained thus indicates the server’s maximum workload capacity, which is a
weighted total of the maximum number of database transactions performed by the server on the
trading database

DAmax= R+2W (3)

Formula (3) suggests that database writing operations require twice as much time as database
reading operations. For our chosen server, its DAmax value is around 5000.

Yet, we cannot directly use the DAmax value to calculate the number of servers required for
GETS, because we need to reserve a portion of this value for the dynamic load balancing operation.
To find out what proportion of the DAmax value should be reserved, we test the server’s response
times under different workload conditions (i.e. from using 10–100% of its DAmax value). The
experimental results (Figure 5) show that the server has the best response time when its workload
falls within 60 and 70% of its DAmax value. By taking the mean value, we have decided to use
65% of this value as the server’s processing capacity and to reserve 35% of this value for the
server’s dynamic load balancing operation. The number of identical servers needed by GETS can
be calculated as follows: DAGETS/(DAmax∗65%).

Suppose that GETS’s DAGETS value is 9000, and the server’s DAmax value is 5000, we can
work out that the number of identical servers needed for GETS is three.

3.4. Determining the number of SPs for each server and the size of each SP

To determine the number of identical SPs suitable for each server, we tested a server’s performance
under different number of SPs. Note that our test only uses 65% of the server’s DAmax value, which
is around 3250. The test shows that the server has the best performance when it hosts between
four and six SPs (Figure 6). By considering the resources (memory space and processing time)
required for managing the SPs, we decided that each server should have at most four SPs. This
means that for a cluster of three servers, the total number of SPs should be 12.

For each SP, we can also work out its size—that is, its workload capacity, which is (DAmax∗
0.65)/4. Since DAmax=5000, the size of an SP is therefore 813 DA values. As all SPs are identical,
they should all have the same size and the same DA value, that is, the same workload capacity.

3.5. Establishing the mapping from GETS’s static workload to its SPs

After performing the above subtasks, we are now ready to design GETS’s static load distribution
strategy. As stated in Section 2, our design goal for this strategy is to distribute GETS’s workload

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

138

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

Figure 6. The relationship between the number of SPs on a server and the server’s
performance, measured by its throughput.

evenly across the SPs as well as across the entire server cluster, and to reduce the dependency
between the SPs. We also explained that the design of such a strategy entails the establishment of
two sets of logical mapping:

• a mapping from GETS’s workload to its SPs and
• a mapping from GETS’s SPs to its servers.

In this section, we describe how to establish the first set of mapping. We defer the description of
the second set to the following section.

Based on our design goal, there are two conditions under which a mapping from GETS’s
workload to its SPs should be established: (1) to ensure that all the DUs in the trading database
are equitably mapped onto the SPs and (2) to ensure that the related DUs are mapped onto the
same SP where possible. The first condition is to achieve a balanced static workload on all the
SPs, whereas the second one is to reduce the dependency between the SPs so that the SPs can
be executed concurrently. Based on these conditions, we have defined two rules for mapping the
DUs to the SPs:

Rule 1. Always map the related DUs to the same SP if possible.
Rule 2. Always map the DU with the highest DA value (i.e. the highest workload) to the SP

with the lowest total DA value of its DUs (i.e. the lowest workload).

Rule 1 corresponds to the second condition, whereas Rule 2 is for the first condition. Their reverse
order suggests that reducing the dependency between the DUs should always be the foremost
criterion for the load distribution and it is under this condition that the second rule applies. For
Rule 1, two DUs might be related if they have the same client. For Rule 2, a higher DA value
means a higher workload. Note also that the static workload of a DU is not measured by its
volume, but instead, by its DA value.

Based on these two rules, we have devised a procedure for mapping GETS’s DUs to its SPs.
This procedure is presented in Figure 7 and is illustrated as follows.

The mapping begins by ordering all the DUs in the descending order of their DA values, as
shown in Figure 8. Since all the SPs are empty at the beginning, their DA values for the DUs
should be zero. Therefore, initially, the SPs are ordered by their identification numbers, not by
their DA values. To start with, Rule 1 does not apply as no DUs have been mapped yet. Thus
according to Rule 2, we map the DU with the highest DA value (e.g. DU1) to the SP with the
lowest DA value (e.g. SP1). This SP’s remaining workload capacity will be decreased as a result
of this mapping and its new DA value is now the DU’s DA value.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

139

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

Figure 7. The procedure applied to map GETSs static workload (i.e. DUs) to its service partitions.

...

DUm... DUm-1DU5DU3 DU4DU1 DU2

eulavADtsewoLeulavADtsehgiH

Lowest DA value Highest DA value

SP1 SPn-1SP2 SPn

Legend:

: Data Unit to be AllocatedDU: Dependency

Figure 8. Mapping a set of DUs to the SPs: the starting point.

We then reorder all the SPs based on their new DA values. This time SP1 has the highest DA
value as it has been allocated to DU1 and will then be placed in the lowest position. According to
Rule 1, before allocating DU2, we check whether it has a dependency with DU1. If no, then DU2
is allocated to SP2 which has the highest DA value. In the third round, we reorder the SPs and
place SP2 before SP1, as it has a higher DA value than SP1. When mapping DU3 we notice that
DU3 has a dependency with DU1 and according to Rule 1 we map DU3 to SP1 which contains
DU1. Figure 9 shows the allocation described so far.

When it comes to mapping DUm−1, we encountered a situation as shown in Figure 10: DUm−1
should be allocated to SP3 because of its relationship with DU5; however, by doing so SP3 would
run out the space. To solve this problem, DUm−1 has to be mapped onto an SP with the lowest
DA value, which currently is SPn−3. We repeat this process until all the DUs have been mapped
onto the SPs.

3.6. Establishing the mapping from GETS’s SPs to its servers

There are also two conditions under which a mapping from GETS’s SPs to its servers should be
established: (1) to ensure that all the SPs are equitably mapped onto the servers and (2) to ensure
that the related SPs are mapped onto the same server where possible. The first condition is to
achieve a balanced static workload on all the servers, whereas the second one is to reduce the
dependency between the servers so that the SPs can operate concurrently as well as independently.
Based on these conditions, we have defined two rules for mapping GETS’s SPs to its servers:

Rule 1. Always map the related SPs to the same server if possible.
Rule 2. Always map the SP with the highest DA value (i.e. the highest workload) to the
server with the lowest DA value (i.e. the lowest workload).

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

140

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

eulavADtsewoLeulavADtsehgiH

Lowest DA value Highest DA value

Legend:

: to be allocated to

...

SP3 SP2SP4 SP1

DUm

... DUm-1DU5DU3 DU4DU1 DU2

DU2 DU1

: Allocated Data UnitDU

Figure 9. Mapping the DUs to the SPs: no dependency between DU1 and DU2.

...

DU1

...

SP1SP3 SP2SPn-3

DU3DU4

DU2

...

DU5

...
DUm-6

...

Highest DA value Lowest DA value

Lowest DA value Highest DA value

DUm

... DUm-1DU5DU3 DU4DU1 DU2

Figure 10. Mapping the DUs to the SPs: Dependencies exist between DU1 and DU3, and DU2 and DU4.

Rule 1 corresponds to the second condition, whereas Rule 2 is for the first one. Their reverse order
suggests that reducing the dependency between the SPs should always be the foremost criterion
for the load distribution and it is under this condition that the second rule applies. For Rule 1, two
SPs are said to be related if their DUs are related. Since the number of the SPs is much smaller
than the number of DUs, we can manually adjust the SPs to ensure a best possible mapping from
the SPs to the servers.

At the end of this design step, we have produced two sets of logical mapping: (1) the mapping
from the DUs to the SPs and (2) the mapping from the SPs to the servers. These mappings will be
stored in the system configuration file to be placed in the server cluster’s middleware. During the
system initialization phase, they will be used to guide the physical allocation of the trading data
to the SPs as well as the allocation of the SPs to the servers. At runtime, the first set of mapping
will be used to determine which service requests should be dispatched to which SPs, whereas the
second set of mapping will be used to aid the dynamic load balancing strategy. Together, these
two sets of mapping form a static load distribution strategy for GETS.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

141

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

4. DESIGNING GETS’S DYNAMIC LOAD BALANCING STRATEGY

As stated in Section 2, WPF-enabled server clusters provide a dynamic load balancing mechanism
for adjusting servers’ workload at runtime. How this mechanism works is determined by its load
balancing strategy. In this section, we present our design of such a strategy for GETS, which is
T3 in Figure 2.

In what follows, we first briefly introduce the standard load balancing mechanism and its strategy
provided by WPF-enabled server clusters; we then present a dynamic load balancing strategy
designed specifically for GETS.

4.1. GETS’s dynamic load balancing mechanism

Each WPF-enabled server cluster provides a standard mechanism for the dynamic load balancing
operation. This mechanism consists of three cluster-based components, which are Load Balancer,
Data Aggregator and HA Coordinator, and three server-based components, which are Load
Recorder, Actuator and HA Manager. Each server has a set of server-based components.
The static relationships between these components are depicted in Figure 11. Below we
describe how these components interact at runtime to perform the dynamic load balancing
operation.

The dynamic load balancing operation is carried out cyclically at runtime to check whether a
server is overloaded or crashed. At each cycle, the Data Aggregator collects the control data from
each server’ Load Recorder and forwards these data to the Load Balancer. The Load Balancer will
then use a dynamic load balancing strategy to determine whether the workload on the server cluster
needs to be rebalanced. If so, this strategy will generate a new set of mapping for the affected SPs
and their servers and cause the system configuration file to change accordingly. According to this
mapping, the HA Coordinator will coordinate the Actuators on the affected servers to redistribute
the affected SPs. Figure 12 illustrates the interactions between different components in performing
the dynamic load balancing operation.

Clearly, the dynamic load balancing strategy plays a central role in the dynamic load balancing
operation. WPF-enabled server clusters provide a standard strategy which uses each server’s
transaction count (the number of operations performed over a certain period of time) and the
server’s response time (the total response time of all transactions performed over a certain period
of time) to control load balancing on each server. This standard strategy assumes that the server
cluster’s workload is measured by its Performance Monitoring Infrastructure (PMI) data. This
strategy, however, is not suitable for GETS as the PMI data are not accurate enough to represent

Load Balancer

Data Aggregator HA Coordinator

Load
Recorder Actuator

Load
Recorder

Actuator
Load

Recorder
Actuator

Server 1

HA
Manager

HA
Manager

HA
Manager

SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10 SP11 SP12

Server 2 Server 3

Figure 11. A WPF-enabled server cluster and its dynamic load balancing components.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

142

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

Load RecorderData Aggregator Load Balancer HA Coordinator

1. collect_control_data()

2. send_control_data()

5. rebalance_solution()

Actuator

6. notification()

Service Partition

7. movement_operation()

3. is_overloaded()

4. modify_configuration_files()

Figure 12. A complete cycle of the dynamic load balancing operation.

GETS’s workload. We have therefore designed a new dynamic load balancing strategy for GETS.
In this new strategy, the DDA values are used to determine the servers’ dynamic workload. In the
following sections, we describe this new load balancing strategy and its parameters.

4.2. GETS’s dynamic load balancing strategy

As described in the previous section, according to the dynamic load balancing strategy, the workload
on some servers may need to be rebalanced. This means that some SPs on the overloaded servers
may need to be physically moved to other servers at runtime. This operation is performed by the
Actuators on the affected servers and will take the following steps: (1) deactivating the services
on the affected SPs, (2) transferring the SPs’ DUs and their state data to the recipient servers
according to the new mapping generated by the dynamic load balancing strategy, (3) deploying
a set of new SPs to the receipent servers to replace the affected SPs and finally (4) reactivating
the services on the new SPs. Clearly, from deactivating the services to reactivating them, the
services will be interrupted. In the design of GETS’s dynamic load balancing strategy, our goal is
to minimize the movement of the SPs and thereby to reduce service interruption caused by such
movement. Accordingly, we have laid down three design rules for GETS’s dynamic load balancing
strategy:

Rule 1. Only move an SP when absolutely necessary.
Rule 2. Always move the SP with the lowest workload (i.e. the smallest SP).
Rule 3. Always move the SP to the server with the lowest workload.

Rule 1 suggests that we should reduce the frequency of moving the SPs and in doing so,
reduce the service interruption. Rule 2 implies that if we do need to move the SPs, we
should move the smallest SP because it will incur less service interruption time than moving
the largest SP. Rule 2 also implies that moving the smallest SP is less likely to cause the
decomposition of the workload on the SP, whereas moving the largest SP may cause the load
decomposition, for example, if the recipient server can only receive part of the load on the
largest SP. Rule 2 therefore also aims at reducing the dependency between the servers as

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

143

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

well as between the SPs. Rule 3 is used to achieve a balanced workload on the entire server
cluster.

Based on these rules, we have designed the following dynamic load balancing strategy for
GETS:

(1) For each server, sort its SPs (SPm , SPm−1, . . ., SP1) in the descending order according to
their runtime workload. An SP’s runtime workload is measured by its DDA value (denoted as
DDAsp). An SP’s DDAsp predicts the SP’s ‘near-future workload’—that is, the SP’s workload
in the next time interval. The higher an SP’s DDAsp value, the heavier the SP’s workload.
We will describe how to calculate this value in Section 4.3.

(2) Sort all the servers (Sm , Sm−1, . . ., S1) in the descending order according to their runtime
workload. A server’s runtime workload (DDAs) is the total workload of the server’s SPs,
that is, the total DDAsp values.

(3) Check whether Sm has exceeded its runtime load limit (denoted as DDAmax). If so, continue;
otherwise, abort the algorithm. Since GETS’s servers are identical, we only need to use one
DDAmax. We will describe how to obtain this value in Section 4.3.

(4) Determine if Sm’s SPs need to be moved to S1 by comparing Sm’s DDAs value with that
of S1 (the server with the least DDAs). If the load ratio from Sm to S1 is greater than the
allowed load fluctuation value (denoted as Fmax), continue; otherwise, abort the algorithm.
We will describe how to determine Fmax in Section 4.3.

(5) Check whether by moving the smallest SP from Sm to S1 will make S1 overloaded. This is
done by adding the SP’s DDA value to S1’s DDA value and comparing this aggregated value
with DDAmax. If so, abort the algorithm; otherwise, continue.

(6) Move the SP from Sm to S1 by deactivating the SP’s services, transferring its data units and
its state information to S1, deploying a new SPs to S1, and then reactivating the services on
the new SP.

(7) Modify the mapping for the new SP and its target server in the system configuration file.

In this strategy, Steps 3 and 4 aim at minimizing the movement of the SPs (Rule 1). Specifically,
Step 3 determines whether a server is overloaded and Step 4 decides whether the server’s load
is unbalanced with respect to the least loaded server and whether the load fluctuation is below
a certain threshold. Only when the both Steps are true, will the load rebalancing operation be
performed. Therefore, these two steps collectively control the frequency of the movement of the
SPs and thus reduce the service interruption.

When an overloaded server has to be rebalanced, according to Rule 2, the priority is to
move the SP with the smallest DDA value (i.e. the lowest workload) rather than the SP with
the largest DDA value (i.e. the highest workload). Step 5 determines which SP should be
moved.

Finally, according to Rule 3, our strategy is to move the smallest SP to the least loaded server
(Steps 1 and 2).

It is important to note that GETS’s dynamic load balancing strategy relies on its static load
distribution strategy to provide a stable initial workload for the server cluster and to minimize the
dependency relationships between the DUs, between the SPs and between the servers. Building
on this foundation, GETS’s dynamic load balancing strategy can then direct the dynamic load
balancing operation with ease. These two strategies thus work in unison to support GETS’s dynamic
load balancing operation.

4.3. Determining the parameters for GETS’s dynamic load balancing strategy

4.3.1. Determining the dynamic workload for SPs and servers. Just as we use the data access
(DA) values of the DUs in GETS’s trading database to measure the static workload for GETS’s
SPs and servers (see Section 3), here we use the DDA values of the DUs to determine the runtime
workload for GETS’s SPs and servers. Specifically, an SP’s dynamic workload can be predicted
by its DDA value, which is a weighted total of the average number of the historical database
transactions performed on all the DUs of the SP within a second. Each SP’s DDA value can be

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

144

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

calculated by using the workload prediction method [5], as shown below

DDAsp = Rt ∗
(
1+ Rt1−Rt0

Rt0

)
+s∗Wt ∗

(
1+ Wt1−Wt0

Wt0

)
(5)

where Rt is the number of times an SP reads all its DUs from the trading database within the time
unit t , is usually less than a second; Wt is the number of times an SP writes all its DUs back to the
trading database within the time unit t , is usually less than a second; s is the weighting (usually is
2) for Wt to emphasize that a database writing operation takes twice as much time as a database
reading operation.

(Rt1−Rt0)/Rt0 : This is to predict the trend of reading the DUs from the trading database
between t1 and t0 in the near future. If the trend is less than zero, the number of reading operations
on the DUs in the near future will be smaller than Rt ; if the trend is equal to or greater than zero,
the number of reading operations on the DUs in the near future will be equal to or greater than
Rt . The values of Rt0 and Rt1 are calculated by adding the reading times for the SP’s DUs within
the time units t0 and t1, respectively.

(Wt1−Wt0)/Wt0 : This is to predict the trend of writing the DU back to the trading database
between t1 andt0 in the near future. If the trend is less than zero, the number of writing operations
on this DU in the near future will be smaller than Wt ; if the trend is equal to or greater than zero,
the number of writing operations on this DU in the near future will be equal to or greater than Wt .
The values of Wt0 and Wt1 are calculated by adding the writing times for the SP’s DUs within
the time units t0 and t1, respectively.

After we have calculated the DDA values for all GETS’s SPs, we can obtain the runtime
workload for each server (DDAs) by using the following:

DDAs =
N∑
i=1

DDAspi (6)

In Formula (6), N represents the total number of the SPs on the server and i points to the i th SP.

4.3.2. Determining the maximum dynamic load limit for each server. A server’s maximum dynamic
load limit stipulates the maximum dynamic workload that each server can have at runtime. This
limit, represented by a server’s dynamic database access (DDAmax) value, is used to constrain
GETS’s dynamic load balancing operation (Section 4.2). Below, we show how to determine this
value.

We can derive a server’s DDAmax value from its DAmax value, which represents the server’s
maximum static workload (see Section 3). Each server should reserve a portion of this value for
the room to support the dynamic load balancing operation. In Section 3, we have showed that a
server has the best response time when its static workload falls within 60–70% of its DAmax value.
This suggests that a server’s DDAmax value should be between 60 and 100% of its DAmax value,
as shown below

DDAmax= x ∗DAmax where 0.60<x<1 (7)

The question is, within this range, what is the best x for a server’s DDAmax value? To answer
this question, we need to conduct the following experiments. First, we choose different percentages
between 60 and 90% of the DAmax value using GETS’s dynamic load balancing strategy. We set
Fmax to zero so that Step 4 in the algorithm will always be true—in other words, the dynamic load
balancing operation will always be needed. For each percentage of the DAmax value, we record its
corresponding service interruption time. Figure 13 shows a graph obtained by connecting different
percentages of the DAmax value with their corresponding service interruption times. The graph
indicates that as the percentage of the DAmax value increases, the server’s service interruption time
decreases.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

145

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

Figure 13. According to the standard deviation of the server cluster, a servers maximum dynamic load
limit DDAmax should be within the range of 70–80% of the server’s maximum static workload DAmax.
Below this range, the server will require more frequent dynamic load balancing and thus more service
interruption time, whereas above this range the server will have less service interruption time, but its load

will be too heavy and thus the server will become unstable.

Second, at each time interval, we calculate the average runtime load on the entire server cluster.
This is done by adding each server’s runtime workload (DDAs) together and dividing the total by
the number of servers on the cluster, as shown below

�= 1

N

N∑
j=1

DDAs j (8)

Third, for each average load, we calculate the standard deviation (SD) among the servers’ workload
using Formula (3). The SD represents the load difference among the servers

SD=
√√√√ 1

N

N∑
j=1

(DDAs j −�)2 (9)

By drawing a graph with different SD values obtained at different time intervals and superim-
posing this graph with that of the percentages of the DAmax value, we found that the two graphs
intersect between 70 and 75% of DAmax (see Figure 13). The intersection point represents the
optimal percentage for the DDAmax value, but due to the dynamic nature of a server’s runtime
workload, we have chosen a range of percentages (between 70 and 80% of DAmax), as the candi-
dates for calculating a server’s DDAmax value. This gives us the freedom to fine-tune GETS’s
dynamic load balancing strategy by assigning one specific percentage from this range as a server’s
DDAmax value.

4.3.3. Determining the maximum load fluctuation for the server cluster. The maximum load fluc-
tuation (Fmax) is a ratio between the server with the highest load and the server with the lowest
load. This constraint, together with the server’s maximum load limit (DDAmax), will be used to
restrict the frequency of the movement to the SPs, as described in Section 4.2. In this section, we
show how to determine this constraint.

We intuitively know that Fmax should be between 1.1 and 1.9. This is because Fmax=1 and
Fmax=2 are two extreme situations that do not normally exist in reality. More specifically, Fmax=1
means that all servers on the cluster have exactly the same amount of workload and hence no need
for load balancing. By contrast, Fmax=2 indicates that the workload of one server is twice the

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

146

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

Figure 14. According to the standard deviation of the server cluster, the maximum load fluctuation
of the server cluster Fmax should be between 1.3 and 1.5. Below this range, the cluster will
require more frequent dynamic load balancing and thus more service interruption time, whereas
above this range the cluster will have less service interruption time, but the entire cluster will

become unstable, due to unbalanced load on the servers.

workload on another server and this implies that the server cluster will always require the dynamic
load balancing operation. Therefore, Fmax should fall within the range of 1.1 and 1.9 and within
this range, the higher the Fmax, the more unbalancing the server cluster. The question is: What
value should be ideal for Fmax?

To determine an optimal value for Fmax, we set DDAmax=0.8∗DAmax so that it is the upper
bound of DDAmax. Based on this value, we execute our load balancing algorithm with different
Fmax values, from 1.1 to 1.9. For each Fmax value, we record its corresponding service interruption
time. Figure 14 shows the relationship between different Fmax values and their related service
interruption times. By superimposing the cluster’s SD (Formula 8), we notice that when the range
of Fmax increases from 1.1 to 1.5, the service interruption time decreases, but the SD increases.
This means that the number of SPs to be moved is also becoming smaller. However, when Fmax
reaches 1.6, the interruption time becomes zero and the SD also reaches the highest value. This
means that no SP will be moved (thus the zero interruption time). Thereafter, the increase in Fmax
will have no effect on the service interruption time and the SD. This means that after Fmax reaches
1.6, it becomes too big for the actual load fluctuation. Hence, Step 5 of the dynamic balancing
algorithm (Section 4.2) will always yield a false. Therefore, when striking a balance between the
service interruption times and the servers’ SD, we found that an optimal value for Fmax should be
between 1.3 and 1.5.

5. EXPERIMENTAL EVALUATION

The best way to assess how well our design has met its QRs (i.e. resource utilization, performance,
scalability and availability) is to implement it. The implementation is based on a cluster of three
identical WPF-enabled servers. Each server is configured as one CPU of 2.4GHz, one piece of
2G Memory, one hard disk with the speed of 80M bytes per second, and all servers are connected
to a 100M high-speed Intranet. We then conducted a series of experiments on this system, each
focusing on one specific QR. The following sections discuss our experimental results and evaluate
our design against each of the QRs.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

147

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

Figure 15. GETS’s static load balancing strategy has achieved a better balanced server
cluster than a hash allocation method.

Figure 16. GETS’s dynamic load balancing strategy has achieved a balanced workload under both Order
Entry and Order Matching services.

5.1. Resource utilization

We have satisfied this QR in the design of a static load distribution strategy and a dynamic load
balancing strategy for GETS. To assess the effectiveness of the first strategy, we have compared
it with a random hash allocation method. Figure 15 shows that this strategy has achieved a much
better balanced static workload, which has a lower SD (0.076) than the hash method, which has
a higher SD (0.36).

To evaluate the effectiveness of GETS’s dynamic load balancing strategy, we tested it on
the Order Entry and Order Matching services, respectively. For each service operation, we have
measured the fluctuation value for the server cluster, which is 1.09 for Order Entry and for 1.07
for Order Matching (see Figure 16). Recall in Section 4.3.3 that GETS’s maximum fluctuation
value (Fmax) was set to be between 1.3 and 1.5. The fluctuation values for both Order Entry and
Order Matching services are much lower than this maximum range, and are near optimal—that is,
when the fluctuation value is equal to 1. This demonstrates that GETS’s dynamic load balancing
strategy is very effective.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

148

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

Figure 17. GETS has a good performance, demonstrated by the positive increase in its throughput of the
number of the matched orders in relation to the number of processed orders.

5.2. Performance

This QR is measured by GETS’s throughput, which is the number of the orders matched per
second. In order to meet this QR, our design has taken the following into considerations: First, we
have aimed at minimizing the number of the dependencies in the system (Section 3), thus reducing
DA time and increasing the system efficiency. Second, we dynamically adjusted the workload on
each server (Section 4) to prevent server crashes caused by heavy workload.

To evaluate how well GETS has satisfied this QR, we have used the number of the orders
matched per second to measure the throughput of Order Matching service. Figure 17 shows that
GETS has a good performance, demonstrated by the positive increase in the number of the matched
orders in relation to the number of processed orders. Figure 17 also shows that GETS’s throughput
slows down when the number of orders reaches a certain threshold, due to the increase in the
processing time caused by the large number of processed orders.

5.3. Scalability

This QR requires GETS to be extensible without compromising its performance. This means that
(1) GETS should be able to process additional trading data and (2) GETS should be able to be
extended with additional servers. The scalability in the first situation has already been considered
in GETS’s static load distribution strategy which allows new trading data to be decomposed and
allocated equitably across the existing servers.

In the second scalability situation, we tested GETS’s performance under different number
of servers and the results in Figure 18 show that GETS’s performance and the number of
servers increase in unison, which means that GETS can be scaled up without compromising its
performance.

5.4. Availability

This QR has two aspects: (1) GETS’s entire server cluster should provide the service continuously
for as long as possible; (2) Should a server crash at runtime, its recovery time should be as little as
possible. These two aspects have been explicitly considered in our design. First, GETS’s dynamic
load balancing strategy ensures that the workload on the servers is dynamically adjusted so that no
server will exhaust its resources or become overloaded. This strategy therefore helps to minimize
the failure of the servers due to resource exhaustion or heavy workload. Second, GETS’s static load
distribution strategy aims at minimizing inter-data dependencies, and consequently, this strategy
helps to shorten data synchronization time and reduce the server recovery time. These strategies,
together with the self-recovery mechanism on each server (via the HA Manager), collectively fulfill
the availability QR of GETS.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

149

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

Figure 18. GETS has a good scalability, as shown by the relationship between the performance (the
throughput of the matched orders) and the number of servers.

Figure 19. GETS has a good availability, which is measured by the recovery time of its server in relation
to the number of orders processed.

To evaluate how well GETS has satisfied the availability QR, we used the recovery time as a
yardstick to measure how quickly a server can recover from a crash. The recovery time is the
difference between the time when the service on a server is interrupted and the time when the
service is resumed. We tested the server cluster on different workloads, from 2000 to 16 000 trading
orders. We fed each batch of orders into GETS and ran the Order Matching service on these orders;
we then randomly choose a server to shut down and recorded its recovery time. The relationship
between different batches of orders and their corresponding recovery times on the server (Figure 19)
shows that the recovery times only fluctuate around 14–15 s between different batches of orders.
From the history data, we found that GETS has less than 3 crashes a year. According to these
data, we can work out the availability of GETS to be (1−(15∗3)/(365∗24∗60∗60)≈99.999%).
This demonstrates that GETS is robust enough to satisfy the availability QR. Figure 19 also shows
that the recovery time increases slightly as the number of orders increases, as loading more data
requires more time. Nevertheless, in spite of this, the increase in the recovery time is very small in
comparison with the increase in the number of orders. This demonstrates that even under a higher
workload situation, GETS still offers an HA.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

150

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

6. REFLECTION AND DISCUSSION

It has been several years since GETS was developed. During the course of writing this paper, we
have retraced our design journey and revisited our design ideas. Such reflections have helped us
to understand better why and how we solved GETS’s design problems in the way presented in
this paper. This section provides a reflection on our design and presents some important lessons
we have learned from this design.

6.1. Design tradeoffs and room for improvement

In this section, we discuss some design alternatives that we have considered for GETS, but have not
adopted; we speculate how the current design might be improved by combining some alternative
approaches.

6.1.1. Static workload calculation and distribution. GETS’s static workload calculation is based
on the DA values of the data units (Section 3). This method is only feasible if such history data
exist, for example, in the case of a re-engineering project like GETS.

Moreover, even with the existence of the history data, our calculation method can be very time-
consuming, as it requires the calculation of all the DUs’ DA values in GETS’s trading database
and for all GETS’s SPs. For example, it will take more than 3 h to calculate the DA values for 10
million DUs.

An alternative method is to use a hash algorithm which allocates an average number of DUs
to each server, instead of using the DA values of the DUs. This method assumes that all the DUs
have the same amount of workload and is therefore simple and fast at design time, but it will
incur the runtime overheads, as the system may spend most of its processing time on adjusting
the workload of each server.

A possible improvement to GETS’s static workload calculation and distribution is to use a
hash algorithm for the initial load distribution and to use our current method to fine-tune the load
distribution. However, some manual adjustment is still needed as the DA values cannot predict the
workload for each data unit accurately.

6.1.2. Static versus dynamic data loading. According to our current design, GETS’s data are
loaded at the system initialization time. The problem with this static allocation is that most of the
system initialization time is spent on loading the data into the servers’ data buffers. For example,
loading all the DUs for GETS may take tens of seconds or even several minutes, depending on
the number of DUs. Since GETS cannot provide the service until its initialization is completed,
shortening the data loading time can reduce the out-of-service time and therefore increase the
system availability.

One approach to overcome this problem is to load the DUs dynamically on demand at runtime
[7]. When a request arrives, the related data units are loaded into the related server and the request is
processed. Our initial experiment shows that dynamic DU allocation only requires several seconds
for each SP. Since GETS has been using a dynamic data loading method for its dynamic load
balancing operation, it should be feasible to switch to the full-scale of on-demand, dynamic loading
of the DUs.

6.1.3. Dynamic load balancing strategy. GETS’s dynamic load balancing strategy is based
on the DDA values of each server. Like the static load distribution strategy, this strategy is
only feasible if we have the database reading and writing statistics. In the absence of such
data, the PMI data, as originally supported by the WPF-enabled server clusters, might be an
alternative.

6.1.4. Dynamic load balancing components. As stated in Section 4, the Load Balancer, Data
Aggregator and HA Coordinator provide central services to all the servers on the cluster. Providing
a single set of these components for a server cluster has two obvious drawbacks: First, it can

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

151

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

cause a single point of failure to the cluster and second it can cause a bottleneck to the server
performance. To overcome the first drawback, we have developed two sets of these three central
components but only activate one set at runtime and leave another set on stand-by. If the activated
set fails, the stand-by set will be put into operation. To ensure the state consistency, the stand-by
set will start operation from the beginning of the current load balancing cycle, such that its Data
Aggregator will re-collect the control data and the Load Balancer will re-analyze the system’s
load condition, and so on. Clearly, reloading these backup components will cause interruption
in the dynamic load balancing operation, but it can prevent the failure of the system. During
the history of GETS, there have only been very few times when the stand-by load balancing
components had to be used. Hence, overall, the backup has hardly had any impact on GETS’s
performance.

For the bottleneck problem, one solution is to use multiple load balancers, one for each
server [8]. Our reservation for such a solution is that it solves the bottleneck problem at
the expense of additional server space, processing time and frequent inter-server communica-
tion. Currently, the bottleneck problem is not acute enough to comprise GETS’s performance,
but this problem will be monitored and a better solution will be sought to rectify this
problem.

6.1.5. Testing and evaluation methods. We can more objectively evaluate how well our design has
satisfied its QRs if we use a set of independent benchmark test results. For example, performance
tests might be carried out by using TAO’s benchmarking software [2], which tests system latency
times under different load conditions. How to measure and evaluate QRs is itself a research
challenge.

6.2. Lessons learned

In this section, we summarize some important lessons we have learned from the fulfillment of
GETS’s QRs.

(1) QRs are system-level requirements that cannot be assigned directly to individual system
components; instead, they need to be planned at the infrastructure-level as a whole, with their
design aspects then entrusted to system components. This is the most important lesson we
learned from designing GETS. It is crucial that the development platform provides appropriate
quality mechanisms for the application at hand. It is equally crucial that the QRs are carefully
designed into the application system with a judicious use of these mechanisms.

(2) QRs are often interconnected and their realization in a system requires a collective and
coordinated behavior of the system components and a system-level design strategy. For
example, in order to support system performance, we have designed a dynamic load balancing
strategy to ensure service interruption times to be minimal. We have also designed a static
load distribution strategy to ensure that the related data are allocated to the same SPs or to
the same servers. These two strategies have also helped to improve system availability by
reducing the risk of system failure due to the imbalanced workload on the servers.

(3) QRs are application-specific and their fulfillment necessarily requires a specific design
approach germane to their applications. The most challenging task in GETS’s development
is design. Sections 3 and 4 have articulated our design effort and showed how we have
to develop application-specific techniques to solve design problems. For example, we have
chosen to use both static and DDA values to work out a more accurate method for calculating
GETS’s static and dynamic workload. The application specificity is what makes the same set
of QRs differ from one application to another.

(4) QRs are not only a design time concern, but most crucially a runtime concern. Satisfying
QRs in a system means to design runtime strategies and mechanisms that can maintain
and dynamically adjust the system’s workload to avoid the violation of its QRs. GETS’s
static load distribution and dynamic load balancing strategies work in unison to achieve its
QRs by ensuring that the servers’ resources are efficiently utilized, the orders are processed

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

152

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

with the required speed and the system is partitioned with sufficient room to scale is also
highly available.

7. RELATED WORK

Since GETS is a distributed system, its design should therefore be resonate in the design of
distributed systems. Specifically, GETS’s design is based on the work in the areas of distributed
database systems, middleware-based load balancing and QoS-enabled systems. This section
discusses some closely related work in these areas.

7.1. Partition-based, distributed database design

Designing a distributed database typically involves transformation of a pre-existed standalone
database (either relational or object-oriented). There are three problems related to this transforma-
tion: data partitioning, data allocation and load balancing. These three problems also occur in our
design and below we compare our approaches with some used in distributed database design.

Data partitioning is to divide a given standalone database into a distributed database. Assuming
that the given database is relational, data partitioning is usually achieved by one of the three
approaches [9]: (1) dividing a relation vertically into a set of small relations by projecting the
original relation on one or more attributes; (2) dividing a relation horizontally into a set of tuples
according to some selection criteria; (3) dividing a relation horizontally and then vertically or vice
versa. There has been a continuous effort on developing optimization algorithms for vertical data
fragmentation [10–12].

In GETS, data partitioning (called decomposition) is only applied logically, rather than physi-
cally. For business performance reasons specific to GETS, we have chosen the horizontal decom-
position approach to divide the data into data units, each consisting of one or more tuples, selected
according to some business criteria—each data unit shares the same trading equity symbol value.
Our aim is to minimize inter-data dependencies.

In distributed database design, data allocation concerns allocating physical data frag-
ments to different locations (sites) at design time, to ensure that the designed system has
an initial balanced load. Many approaches have been developed for this task, including
near-neighborhood, location-based and fuzzy allocation [13], all aiming at improving the perfor-
mance of the distributed database systems.

GETS’s data allocation has the same purpose as that of distributed databases; but it is done
logically rather than physically by establishing the mappings from data units to SPs and to servers.
To achieve a balanced initial state for GETS, we have adopted two strategies: to distribute data
units equitably across all SPs and to allocate related DUs together. The latter strategy is similar to
the near-neighborhood allocation approach [13].

In distributed database systems, data on different sites may become imbalanced at runtime due
to data insertion or deletion. Several load balancing approaches have been developed to solve this
problem. One approach, proposed by Copeland et al. [14], uses a simple heuristic to control data
rebalancing: Data fragments on an overloaded site will only be moved to other sites if the time
consumed on moving them is shorter than the extra processing time needed for the overloaded
site. Another approach, developed by Hua and Lee [15], uses a Best Fit Decreasing strategy which
minimizes data movement by moving smaller data fragments first and if possible, leaving larger
data fragments untouched.

Our dynamic load balancing approach is similar to that of Hua and Lee [15]. A possible future
improvement is to combine Hua and Lee’s Best Fit Decreasing strategy with that of Copeland et al.
[14], taking consideration of the extra processing time versus the overheads of the data movements
in our approach.

Finally, there is an important difference between our data allocation and load balancing
approaches and those of distributed database systems wherein we calculate the workload based

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

153

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

on DA values, whereas transaction counts are usually used to measure the workload in distributed
database systems.

7.2. Load balancing strategies for server clusters

The use of load balancing has extended beyond distributed database systems and has become
a popular and effective solution to improve the performance of server clusters [2, 16–18]. For
example, Othman et al. [2] present a set of strategies for CORBAmiddleware-based load balancing.
They view the central role of a Load Balancer as making a balanced decision on which server
will process which incoming request at runtime. These authors classify different load balancing
strategies broadly into non-adaptive and adaptive. A non-adaptive load balancing strategy uses
either a simple round-robin algorithm to allocate requests equally to each server or a randomization
algorithm to select a server to handle a particular request. An adaptive load balancing strategy uses
runtime information, such as the amount of the idle CPU time to decide which server to handle
which request.

Based on an adaptive strategy, Othman et al. [19] developed a CORBA-compliant load balancing
middleware, called ‘TAO’. TAO is a general-purpose Load Balancer for distributed systems, aiming
at improving system scalability and overall system throughput. TAO uses an algorithm called
‘Least loaded’ to ensure that load differences between servers fall within a certain tolerance and
select server with the least load to handle a request. Othman and Schmidt [20] elaborate TAO’s
design into a set of design patterns.

In TAO’s terminology, GETS’s Load Balancer is also adaptive as it uses runtime information—
real-time database access values (DDA values)—to make the balancing decision. GETS’s Load
Balancer, however, differs from TAO in one principal way: In TAO, a request that is being
processed is directly bound to its processing server and can therefore not be moved to other server.
Consequently, TAO cannot rebalance the workload that is being processed on the servers. In GETS,
however, since requests are associated with their SPs, they can be moved to a different server
together with their SPs and the movement will not affect the client requests. With this flexibility,
GETS’s Load Balancer can achieve two related purposes: (1) to ensure that each server has a
balanced current workload (requests-in processing) and (2) to ensure that each incoming client
request is directed to the server that has the least load. These two purposes, as described in Section
4, are closely related, whereas the second one is a direct consequence of the first one.

Other load balancing mechanisms are also briefly described here. For session-intensive appli-
cations, Dutta et al. [21] devised a load balancing approach called ‘Request Distribution for the
Application Layer (ReDAL)’. This approach checks each incoming request to see whether it
matches an existing session; if so, it will send the request to the corresponding application server,
provided that the server is not overloaded. Otherwise, it will send the request to the applica-
tion server with the lowest load. The load index, used by ReDAL to measure each application
server’s workload, is the number of requests. However, different requests may consume different
amount of system resources. Thus this load index is not always accurate to represent the actual
workload.

Viswanathan et al. [22] proposed a set of Resource-Aware Dynamic Incremental Scheduling
(RADIS) strategies to handle large volumes of computationally intensive and divisible loads
for processing in grid systems. A divisible load (job) [23] is one that can be partitioned into
arbitrary smaller fractions, such as very large data files in image processing or multimedia
processing. Shah et al. [24] proposed two job migration strategies for the load balancing of grid
systems, which are Modified Estimated Load Information Scheduling Algorithm (MELISA) and
Load Balancing on Arrival (LBA). MELISA and LBA are, respectively, applicable to large-scale
and small-scale grid systems. All these load balancing strategies are based on the assumption
that load fractions/jobs bear no dependencies between each other, and thus can be assigned
to any node. GETS’s Load Balancer, by contrast, is designed to process the requests with
inter-dependencies.

For communication-intensive systems, Qin et al. [25] proposed a communication-aware load
balancing scheme (COM-aware) to increase the effective utilization of networks in clusters. This

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

154

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

scheme is specific to systems that require frequent inter-server communications. By contrast,
GETS’s design aims at minimizing the inter-server dependencies.

For agent-oriented systems, Jiang and Jiang [26] presented a task allocation and load balancing
approach based on the contextual-resource negotiation. The number of allocated tasks on an
agent is directly proportional to not only its own resources, but also to the resources of its
interacting agents. Their approach allocates incoming tasks to agents based on the length of
each resource’s task queue, but ignores the fact that different tasks may lead to different
workloads.

7.3. QoS mechanisms for distributed systems

In the recent years, the increase in Internet-based enterprise service systems and the advent of
Web Service technologies have placed heavy demands on stringent QRs on system development.
A large number of quality control mechanisms have been developed based on load balancing
strategies [16, 27, 28]. For example, Garcia et al. [27] have extended the Load Balancer with a QoS
controller for a Web Service server cluster. The goal of this controller is to improve the system
response time. It uses an SLA (Service-Level Agreement) to determine what levels of service and
response time should be delivered to which client groups. In TAO’s terminology, this approach is
non-adaptive, because it does not make use of system runtime information.

Gmach et al. [29] presented a QoS management mechanism (called AutoGlobe) to support SOA-
based enterprise application development. AutoGlobe provides three quality control components:
(1) A static resource management component which produces an optimally global allocation of
services to servers via monitoring and periodically evaluates workload data of services; (2) a
dynamic resource management component which handles the exceptional situations (e.g. failures
and overload situations) at runtime and supervises services with a fuzzy logic-based controller; (3)
a request scheduler to prioritize the requests of individual services based on a SLA. AutoGlobe
and GETS are similar in their treatment of static and dynamic load balancing, but AutoGlobe’s
load balancing strategy ignores the inter-dependencies between the services. By contrast, in GETS,
inter-service dependencies are crucial to both static and dynamic balancing.

Shankaran et al. [30] proposed the Integrated Planning, Allocation, and Control (IPAC) resource
management architecture for distributed real-time embedded systems. IPAC provides (1) a fine-
grained mechanism, which achieves the workload balancing on a system by fine-tuning the system’s
parameters, such as by decreasing the component execution rate to reduce the load of a certain
component; and (2) a coarse-grained mechanism, which recovers the system from server failures by
coarse-grained adaptation operations, such as adding or removing the components under execution.
Different from the real-time embedded systems, the load of GETS’s SPs is determined by the client
requests. GETS itself is not able to reduce the load via decreasing the SP execution rate or other
fine-grained operations. Hence, in GETS, both situations of load imbalance and server failure are
handled by coarse-grained operations—that is, SP movements, as described in Section 4.

Saito et al. [8] described a design of a mail server system that aims at system manageability,
performance and availability. Their work has some similarities with ours as it also considers initial
load balance and automatic reconfiguration of client request dispatching. Their design, however,
differs from ours as it provides each server with a Load Balancer which keeps track of the server
load and makes the balancing decision independently. The problem of such a design is that it
requires frequent communications among the servers and hence affects system performance. In
contrast, GETS only uses one load balancer for the entire server cluster and can avoid the additional
inter-server communication cost. To prevent the system from the single point of failure resulted by
the Load Balancer, GETS has a backup Load Balancer stored in a server, as discussed in Section 4.

8. CONCLUSION

Although QRs have become a major drive in today’s software development, there have been very
few real-world examples in the literature that demonstrate how to meet these requirements. This

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

155

Softw. Pract. Exper. 2012; :131–42 157

X. YANG ET AL.

paper provides such an example. Specifically, the paper describes a complete design process for a
partition-based distributed stock trading service system called GETS and explains in detail every
design task, its challenge and rationale. The paper shows how the design has satisfied a set of
QRs related to resource utilization, performance, scalability and availability. Finally, the paper
evaluates this design through detailed experiments and discusses a number of design alternatives
and important lessons.

The main features of this design are the development of a static load distribution strategy and
a dynamic load balancing strategy. The first strategy is to achieve an initial balanced workload
on the system’s server cluster during the system initialization time, whereas the second strategy
is to maintain this balanced workload throughout the system execution time. Together, these two
strategies work in unison to ensure that the server resources are efficiently utilized; the user requests
are processed with the required speed; the application is partitioned with sufficient room to scale;
and the system is highly available.

In conclusion, this paper has made an important contribution by showing in detailed steps how
to fulfill a set of QRs in the design of a stock trading system. We believe that the principles and
methods employed in this design are relevant to the development of a wide range of quality-based
software systems and hope that we have provided you, the reader, with some key take-home points
for you to apply the principles presented in this paper in a project of your own.

ACKNOWLEDGEMENTS

We are indebted to our three anonymous reviewers for their thoughtful and detailed comments and
suggestions. Our special thanks are due to the second reviewer who has helped us to improve the quality
of the writing by providing us with an excellent commentary on this paper. We also thank the editor
of the journal for giving us the opportunity to improve the paper. This work was jointly supported by
the State Street Cooperation in U.S.A., by the Fundamental Research Funds for the Central Universities
and by the National 973 Fundamental Research and Development Program of China under the Grant
2009CB320701.

REFERENCES

1. Mehra A, Indiresan A, Shin KG. Structuring communication software for quality-of-service guarantees. IEEE
Transactions on Software Engineering 1997; 23(10):616–634. DOI: 10.1109/REAL.1996.563710.

2. Othman O, O’Ryan C, Schmidt DC. Strategies for CORBA middleware-based load balancing. IEEE Distributed
Systems Online 2001; 2(3). Available at: http://www.computer.org/portal/web/csdl/doi?doc=abs/mags/ds/2001/
03/o3001abs.htm [5 October 2009].

3. Java2 Platform. Available at: http://java.sun.com/j2ee [5 October 2009].
4. WebSphere Partition Facility (WPF) Overview. Available at: http://publib.boulder.ibm.com/infocenter/wxddoc51/

topic/com.ibm.wasxd.doc/WPFUserGuide.pdf [5 October 2009].
5. Winckler A. Scheduling of near-future workload in distributedcomputing systems. Proceedings of IEEE Region

10 Conferences on Computer, Communication, Control and Power Engineering. IEEE Computer Society Press:
Silver Spring, MD, 1993; 169–172. DOI: 10.1109/TENCON.1993.319955.

6. Date CJ. An Introduction to Database Systems. Addison-Wesley: Boston, MA, 1990.
7. Apers PMG. Data allocation in distributed database systems. ACM Transactions on Database Systems 1988;

13(3):263–304. DOI: 10.1145/44498.45063.
8. Saito Y, Bershad BN, Levy HM. Manageability, availability and performance in Porcupine: A highly

scalable cluster-based mail service. ACM Transactions on Computer Systems 2000; 18(3):298–332. DOI:
10.1145/1326561.1326569.

9. Runceanu A. Fragmentation in distributed databases. Innovations and Advanced Techniques in Systems, Computing
Sciences and Software Engineering 2008; 57–62. DOI: 10.1007/978-1-4020-8735-6 12.

10. Sacca D, Wiederhold G. Database partitioning in a cluster of processors. ACM Transactions on Database Systems
1985; 10(1):29–56. DOI: 10.1145/3148.3161.

11. Navathe SB, Ra M. Vertical partitioning for database design: A graphical algorithm. ACM SIGMOD Record
1989; 18(2):440–450. DOI: 10.1145/67544.66966.

12. Ceri S, Pernici B, Wiederhold G. Distributed database design methodologies. The IEEE 1987; 75(5):533–546.
13. Huang Y, Chen J. Fragment allocation in distributed database design. Journal of Information Science and

Engineering 2001; 17(3):491–506.
14. Copeland G, Alexander W, Boughter E, Keller T. Data placement in Bubba. ACM SIGMOD International

Conferences on Management of Data. ACM: New York, 1988; 99–108. DOI: 10.1145/971701.50213.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

156

Softw. Pract. Exper. 2012; :131–42 157

DESIGN OF A PARTITION-BASED DISTRIBUTED STOCK TRADING SYSTEM

15. Hua KA, Lee C. An adaptive data placement scheme for parallel database computer systems. Proceedings of
the 16th International Conference on very Large Databases. Morgan Kaufmann Publishers: San Francisco, CA,
1990; 493–506.

16. Balasubramanian J, Schmidt DC, Dowdy L, Othman O. Evaluating the performance of middleware load balancing
strategies. Proceedings of the Eighth IEEE International Enterprise Distributed Object Computing Conference.
IEEE Computer Society: Washington, DC, 2004; 135–146. DOI: 10.1109/EDOC.2004.11.

17. Aleksy M, Korthaus A, Schader M. Design and implementation of a flexible load balancing service for CORBA-
based applications. Proceedings of the International Conference on Parallel and Distributed Processing Techniques
and Applications. CSREA Press: New York, 2001; 2140–2144.

18. Ho KS, Leong HV. An extended CORBA event service with support for load balancing and fault-tolerance.
Proceedings of the International Symposium on Distributed Objects and Application. IEEE Computer Society:
Washington, DC, 2000; 49–58.

19. Othman O, Balasubramanian1 J, Schmidt DC. The design of an adaptive middleware load balancing and
monitoring service. Proceedings of the Third International Workshop on Self-adaptive Software. ACM Press:
New York, 2003; 205–213.

20. Othman O, Schmidt DC. Optimizing distributed system performance via adaptive middleware load balancing.
Proceedings of the Third International Workshop on Self-adaptive Software. ACM Press: New York, 2003.

21. Dutta K, Datta A, VanderMeer D, Thomas H, Ramamritham K. ReDAL: An efficient and practical request
distribution technique for application server clusters. IEEE Transactions on Parallel and Distributed Systems
2007; 18(11):1516–1528. DOI: 10.1109/TPDS.2007.1105.

22. Viswanathan S, Veeravalli B, Robertazzi TG. Resource-aware distributed scheduling strategies for large-scale
computational cluster/grid systems. IEEE Transactions on Parallel and Distributed Systems 2007; 18(10):1450–
1461. DOI: 10.1109/TPDS.2007.1073.

23. Bharadwaj V, Ghose D, Robertazzi TG. Divisible load theory: A new paradigm for load scheduling in distributed
systems. Cluster Computing 2003; 6(1):7–17. DOI: 10.1023/A:1020958815308.

24. Shah R, Veeravalli B, Misra M. On the design of adaptive and decentralized load-balancing algorithms with load
estimation for computational grid environments. IEEE Transactions on Parallel and Distributed Systems 2007;
18(12):1675–1685. DOI: 10.1109/TPDS.2007.1115.

25. Qin X, Jiang H, Manzanares A, Ruan X, Yin S. Communication-aware load balancing for parallel applications
on clusters. IEEE Transactions on Computers 2010; 59(1):42–52. DOI: 10.1109/TC.2009.108.

26. Jiang Y, Jiang J. Contextual resource negotiation-based task allocation and load balancing in complex
software systems. IEEE Transactions on Parallel and Distributed Systems 2009; 20(5):641–653. DOI:
10.1109/TPDS.2008.133.

27. Garcı́a DF et al. A QoS control mechanism to provide service differentiation and overload protection to internet
scalable servers. IEEE Transactions on Services Computing 2009; 2(1):3–16. DOI: 10.1109/TSC.2009.3.

28. Zeng L, Benatallah B, Ngu AH, Dumas M, Kalagnanam J, Chang H. QoS-aware middleware for web services
composition. IEEE Transactions on Software Engineering 2004; 30(5):311–327. DOI: 10.1109/TSE.2004.11.

29. Gmach D, Krompass S, Scholz A, Wimmer M, Kemper A. Adaptive quality of service management for enterprise
services. ACM Transactions on Web 2008; 2(1):8. DOI: 10.1145/1326561.1326569.

30. Shankaran N, Kinnebrew JS, Koutsoukos XD, Lu C, Schmidt DC, Biswas G. An integrated planning and adaptive
resource management architecture for distributed real-time embedded systems. IEEE Transactions on Computers
2009; 58(11):1485–1499. DOI: 10.1109/TC.2009.44.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

157

Softw. Pract. Exper. 2012; :131–42 157

