140 research outputs found

    A doubly-refined enumeration of alternating sign matrices and descending plane partitions

    Get PDF
    It was shown recently by the authors that, for any n, there is equality between the distributions of certain triplets of statistics on nxn alternating sign matrices (ASMs) and descending plane partitions (DPPs) with each part at most n. The statistics for an ASM A are the number of generalized inversions in A, the number of -1's in A and the number of 0's to the left of the 1 in the first row of A, and the respective statistics for a DPP D are the number of nonspecial parts in D, the number of special parts in D and the number of n's in D. Here, the result is generalized to include a fourth statistic for each type of object, where this is the number of 0's to the right of the 1 in the last row of an ASM, and the number of (n-1)'s plus the number of rows of length n-1 in a DPP. This generalization is proved using the known equality of the three-statistic generating functions, together with relations which express each four-statistic generating function in terms of its three-statistic counterpart. These relations are obtained by applying the Desnanot-Jacobi identity to determinantal expressions for the generating functions, where the determinants arise from standard methods involving the six-vertex model with domain-wall boundary conditions for ASMs, and nonintersecting lattice paths for DPPs.Comment: 28 pages; v2: published versio

    Multiply-refined enumeration of alternating sign matrices

    Get PDF
    Four natural boundary statistics and two natural bulk statistics are considered for alternating sign matrices (ASMs). Specifically, these statistics are the positions of the 1's in the first and last rows and columns of an ASM, and the numbers of generalized inversions and -1's in an ASM. Previously-known and related results for the exact enumeration of ASMs with prescribed values of some of these statistics are discussed in detail. A quadratic relation which recursively determines the generating function associated with all six statistics is then obtained. This relation also leads to various new identities satisfied by generating functions associated with fewer than six of the statistics. The derivation of the relation involves combining the Desnanot-Jacobi determinant identity with the Izergin-Korepin formula for the partition function of the six-vertex model with domain-wall boundary conditions.Comment: 62 pages; v3 slightly updated relative to published versio

    New enumeration formulas for alternating sign matrices and square ice partition functions

    Full text link
    The refined enumeration of alternating sign matrices (ASMs) of given order having prescribed behavior near one or more of their boundary edges has been the subject of extensive study, starting with the Refined Alternating Sign Matrix Conjecture of Mills-Robbins-Rumsey, its proof by Zeilberger, and more recent work on doubly-refined and triply-refined enumeration by several authors. In this paper we extend the previously known results on this problem by deriving explicit enumeration formulas for the "top-left-bottom" (triply-refined) and "top-left-bottom-right" (quadruply-refined) enumerations. The latter case solves the problem of computing the full boundary correlation function for ASMs. The enumeration formulas are proved by deriving new representations, which are of independent interest, for the partition function of the square ice model with domain wall boundary conditions at the "combinatorial point" 2{\pi}/3.Comment: 35 page

    Truncated determinants and the refined enumeration of Alternating Sign Matrices and Descending Plane Partitions

    Full text link
    Lecture notes for the proceedings of the workshop "Algebraic Combinatorics related to Young diagram and statistical physics", Aug. 6-10 2012, I.I.A.S., Nara, Japan.Comment: 25 pages, 8 figure

    Integrable Combinatorics

    Full text link
    We review various combinatorial problems with underlying classical or quantum integrable structures. (Plenary talk given at the International Congress of Mathematical Physics, Aalborg, Denmark, August 10, 2012.)Comment: 21 pages, 16 figures, proceedings of ICMP1

    On the weighted enumeration of alternating sign matrices and descending plane partitions

    Get PDF
    We prove a conjecture of Mills, Robbins and Rumsey [Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A 34 (1983), 340-359] that, for any n, k, m and p, the number of nxn alternating sign matrices (ASMs) for which the 1 of the first row is in column k+1 and there are exactly m -1's and m+p inversions is equal to the number of descending plane partitions (DPPs) for which each part is at most n and there are exactly k parts equal to n, m special parts and p nonspecial parts. The proof involves expressing the associated generating functions for ASMs and DPPs with fixed n as determinants of nxn matrices, and using elementary transformations to show that these determinants are equal. The determinants themselves are obtained by standard methods: for ASMs this involves using the Izergin-Korepin formula for the partition function of the six-vertex model with domain-wall boundary conditions, together with a bijection between ASMs and configurations of this model, and for DPPs it involves using the Lindstrom-Gessel-Viennot theorem, together with a bijection between DPPs and certain sets of nonintersecting lattice paths.Comment: v2: published versio

    The First Bijective Proof of the Alternating Sign Matrix Theorem Theorem

    Get PDF
    Alternating sign matrices are known to be equinumerous with descending plane partitions, totally symmetric self-complementary plane partitions and alternating sign triangles, but a bijective proof for any of these equivalences has been elusive for almost 40 years. In this extended abstract, we provide a sketch of the first bijective proof of the enumeration formula for alternating sign matrices, and of the fact that alternating sign matrices are equinumerous with descending plane partitions. The bijections are based on the operator formula for the number of monotone triangles due to the first author. The starting point for these constructions were known "computational" proofs, but the combinatorial point of view led to several drastic modifications and simplifications. We also provide computer code where all of our constructions have been implemented
    • …
    corecore