1,076 research outputs found

    Current Advances in Internet of Underground Things

    Get PDF
    The latest developments in Internet of Underground Things are covered in this chapter. First, the IOUT Architecture is discussed followed by the explanation of the challenges being faced in this paradigm. Moreover, a comprehensive coverage of the different IOUT components is presented that includes communications, sensing, and system integration with the cloud. An in-depth coverage of the applications of the IOUT in various disciplines is also surveyed. These applications include areas such as decision agriculture, pipeline monitoring, border control, and oil wells

    Decision Agriculture

    Get PDF
    In this chapter, the latest developments in the field of decision agriculture are discussed. The practice of management zones in digital agriculture is described for efficient and smart faming. Accordingly, the methodology for delineating management zones is presented. Modeling of decision support systems is explained along with discussion of the issues and challenges in this area. Moreover, the precision agriculture technology is also considered. Moreover, the chapter surveys the state of the decision agriculture technologies in the countries such as Bulgaria, Denmark, France, Israel, Malaysia, Pakistan, United Kingdom, Ukraine, and Sweden. Finally, different field factors such as GPS accuracy and crop growth are also analyzed

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Ag-IoT for crop and environment monitoring: Past, present, and future

    Get PDF
    CONTEXT: Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction of IoT (Internet of Things) into crop, soil, and microclimate sensing has transformed crop monitoring into a quantitative and data-driven work from a qualitative and experience-based task. OBJECTIVE: Ag-IoT systems enable a data pipeline for modern agriculture that includes data collection, transmission, storage, visualization, analysis, and decision-making. This review serves as a technical guide for Ag-IoT system design and development for crop, soil, and microclimate monitoring. METHODS: It highlighted Ag-IoT platforms presented in 115 academic publications between 2011 and 2021 worldwide. These publications were analyzed based on the types of sensors and actuators used, main control boards, types of farming, crops observed, communication technologies and protocols, power supplies, and energy storage used in Ag-IoT platforms

    Mosquito Ovitraps IoT Sensing System (MOISS): Internet of Things-based System for Continuous, Real-Time and Autonomous Environment Monitoring

    Get PDF
    The monitoring of environmental parameters is indispensable for controlling mosquito populations. The abundance of mosquitoes mainly depends on climate conditions, weather and water (i.e., physicochemical parameters). Traditional techniques for immature mosquito surveillance are based on remote sensing and weather stations as primary data sources for environmental variables, as well as water samples which are collected in the field by environmental health agents to characterize water quality impacts. Such tools may lead to misidentifications, especially when comprehensive surveillance is required. Innovative methods for timely and continuous monitoring are crucial for improving the mosquito surveillance system, thus, increasing the efficiency of mosquitoes' abundance models and providing real-time prediction of high-risk areas for mosquito infestation and breeding. Here, we illustrate the design, implementation, and deployment of a novel IoT -based environment monitoring system using a combination of weather and water sensors with a real-time connection to the cloud for data transmission in Madeira Island, Portugal. The study provides an approach to monitoring some environmental parameters, such as weather and water, that are related to mosquito infestation at a fine spatiotemporal scale. Our study demonstrates how a combination of sensor networks and clouds can be used to create a smart and fully autonomous system to support mosquito surveillance and enhance the decision-making of local environmental agents

    Practical considerations for acoustic source localization in the IoT era: Platforms, energy efficiency, and performance

    Get PDF
    The rapid development of the Internet of Things (IoT) has posed important changes in the way emerging acoustic signal processing applications are conceived. While traditional acoustic processing applications have been developed taking into account high-throughput computing platforms equipped with expensive multichannel audio interfaces, the IoT paradigm is demanding the use of more flexible and energy-efficient systems. In this context, algorithms for source localization and ranging in wireless acoustic sensor networks can be considered an enabling technology for many IoT-based environments, including security, industrial, and health-care applications. This paper is aimed at evaluating important aspects dealing with the practical deployment of IoT systems for acoustic source localization. Recent systems-on-chip composed of low-power multicore processors, combined with a small graphics accelerator (or GPU), yield a notable increment of the computational capacity needed in intensive signal processing algorithms while partially retaining the appealing low power consumption of embedded systems. Different algorithms and implementations over several state-of-the-art platforms are discussed, analyzing important aspects, such as the tradeoffs between performance, energy efficiency, and exploitation of parallelism by taking into account real-time constraintsThis work was supported in part by the Post-Doctoral Fellowship from Generalitat Valenciana under Grant APOSTD/2016/069, in part by the Spanish Government under Grant TIN2014-53495-R, Grant TIN2015-65277-R, and Grant BIA2016-76957-C3-1-R, and in part by the Universidad Jaume I under Project UJI-B2016-20.Publicad

    Internet of underground things in precision agriculture: Architecture and technology aspects

    Get PDF
    The projected increases in World population and need for food have recently motivated adoption of information technology solutions in crop fields within precision agriculture approaches. Internet Of Underground Things (IOUT), which consists of sensors and communication devices, partly or completely buried underground for real-time soil sensing and monitoring, emerge from this need. This new paradigm facilitates seamless integration of underground sensors, machinery, and irrigation systems with the complex social network of growers, agronomists, crop consultants, and advisors. In this paper, state-of-the-art communication architectures are reviewed, and underlying sensing technology and communication mechanisms for IOUT are presented. Moreover, recent advances in the theory and applications of wireless underground communication are also reported. Finally, major challenges in IOUT design and implementation are identified

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications
    • …
    corecore