1,145 research outputs found

    Energy-aware Service Allocation for Cloud Computing

    Get PDF
    Energy efficiency has become an important managerial variable of IT management. Whereas cloud computing promises significantly higher levels of energy efficiency, it is still not known, if and to what extent outsourcing of software applications to cloud service providers affects the overall energy efficiency. This research is concerned with the allocation of cloud services from providers to customers and addresses the problem of energy-aware service allocation. The distributed nature of the problem, i.e., the multiple loci of control, entails the failure of centralised solutions. Hence, we approach this problem from a multiagent system perspective, which preserves the distributed setting of multiple service providers and customers. The contribution of our research is a game-theoretic framework for analysing service provider and customer interactions and a novel distributed allocation mechanism based on this framework to approximate energy-efficient, optimal allocations. We demonstrate the usefulness and efficacy of the proposed artifact in several simulation experiments

    A Multi-Criteria Metaheuristic Algorithm for Distributed Optimization of Electric Energy Storage

    Full text link
    The distributed schedule optimization of energy storage constitutes a challenge. Such algorithms often expect an input set containing all feasible schedules or respectively require to efficiently search the schedule space. It is hardly possible to accomplish this with energy storage due to its high flexibility. In this paper, the problem is introduced in detail and addressed by a metaheuristic algorithm, which generates a preselection of schedules. Three contributions are presented to achieve this goal: First, an extension for a distributed schedule optimization allowing a simultaneous optimization is developed. Second, an evolutionary algorithm is designed to generate optimized schedules. Third, the algorithm is extended to include an arbitrary local criterion. It is shown that the presented approach is suitable to schedule electric energy storage in real households and industries with different generator and storage types

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Airport under Control:Multi-agent scheduling for airport ground handling

    Get PDF

    Online Optimisation of Casualty Processing in Major Incident Response

    Get PDF
    Recent emergency response operations to Mass Casualty Incidents (MCIs) have been criticised for a lack of coordination, implying that there is clear potential for response operations to be improved and for corresponding benefits in terms of the health and well-being of those affected by such incidents. In this thesis, the use of mathematical modelling, and in particular optimisation, is considered as a means with which to help improve the coordination of MCI response. Upon reviewing the nature of decision making in MCIs and other disaster response operations in practice, this work demonstrates through an in-depth review of the available academic literature that an important problem has yet to be modelled and solved using an optimisation methodology. This thesis involves the development of such a model, identifying an appropriate task scheduling formulation of the decision problem and a number of objective functions corresponding to the goals of the MCI response decision makers. Efficient solution methodologies are developed to allow for solutions to the model, and therefore to the MCI response operation, to be found in a timely manner. Following on from the development of the optimisation model, the dynamic and uncertain nature of the MCI response environment is considered in detail. Highlighting the lack of relevant research considering this important aspect of the problem, the optimisation model is extended to allow for its use in real-time. In order to allow for the utility of the model to be thoroughly examined, a complementary simulation is developed and an interface allowing for its communication with the optimisation model specified. Extensive computational experiments are reported, demonstrating both the danger of developing and applying optimisation models under a set of unrealistic assumptions, and the potential for the model developed in this work to deliver improvements in MCI response operations
    • …
    corecore