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ABSTRACT

Architectural innovation is one of the leading development directions of the telecommuni-

cation network. It overcomes barriers left by the traditional network, such as inefficient

resource usage, costly network growth, and ossification service levels. Network Function

Virtualisation (NFV) plays a crucial role in promoting architecture innovation by disaggregating

hardware and software. In NFV-enabled architecture, end-to-end (E2E) network services can

be deployed flexibly as ordered Service Function Chains (SFCs). Another critical technology

to stimulate architectural innovation is Multi-access Edge Computing (MEC), which brings

computing resources to the edge to reduce latency, reduce load, and improve performance and

user experience. To gain the advantage of architectural transformation, the resource allocation

problem for SFCs has been extensively investigated. However, there is still a gap in serving a new

class of advanced high capacity and ultra-low latency services. Motivated by the emergence of

diversified and sometimes extreme service Quality-of-Service (QoS) requirements, the necessity

for resource management on densely developed but geographically distributed MEC nodes, as

well as the difficulty of dealing with complex and rapidly changing network and environment,

this thesis focus on solving the resource allocation problem for QoS-aware SFCs in multi-layer

edge-cloud networks.

This thesis creates a comprehensive road map for addressing the QoS-aware SFCs resource

allocation problem under various scenarios. The developed Mixed Integer Linear Programming

(MILP) model can find optimal solutions for small-scale networks. Meanwhile, the proposed

heuristic and Deep Reinforcement Learning (DRL) approaches can deliver solutions in a rea-

sonable time for large-scale networks. For centralised control, the designed meta-heuristic and

multi-objective DRL algorithm can balance service performance and resource utilisation. For

decentralised control, the adopted congestion game model and multi-agent DRL model assure

privacy and scalability. For ultra-low latency services, adding an optical layer reduces the

transmission and queueing latency on intermediate switches, and proposed algorithms achieve

impressive service acceptance performance. In practical scenarios, on the one hand, real test-bed

experiments bridge the gap between theoretical and practical algorithms’ performance. On the

other hand, provided online solutions cater to dynamic and unforeseeable service requests and

network environments. The thesis contributions on the resource allocation for SFCs in multi-

layer edge-cloud networks are of significant value to unleash the great potential of the evolved

telecommunication network.
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INTRODUCTION

This chapter begins with the introduction of the network transformation, which is the

background of this study. Then, supporting technologies, such as Network Function

Virtualisation (NFV) and Multi-access Edge Computing (MEC), are detailed. In the

NFV-enabled edge-cloud network, on-demand computing and networking resources should be

provided to satisfy diverse user requirements. Driven by this, the Quality of Service (QoS)-aware

NFV-Resource Allocation (NFV-RA) problem has been widely studied. Then, the motivation,

problem statement, challenges, and contributions of this study are discussed. Next, the thesis

goals and structure are followed. Finally, at the end of this chapter, all the publications are listed.

1.1 Background

1.1.1 Network Transformation

Faced with the explosive growth of data traffic, diverse requirements of novel applications, and the

popularity of smart devices and machine type communication, communications service providers

(CSPs) require the transformation of the whole network [9, 10]. Such transformation should add

agility and flexibility to the network, reduce architecture and management complexity, assist

in faster service innovation, and reduce cost. The fifth generation of mobile technology (5G) is,

therefore, proposed to transform traditional network infrastructure to support traffic growth and

service complexity, satisfy users’ higher Quality of Experience (QoE) requirements, and provide a

more scalable, flexible, and intelligent network [11].

This transformation is not primarily about implementing the most cutting-edge technologies

at each layer of the infrastructure. Rather, it brings automation, openness, and agility to service

creation and delivery and allows intelligent insights into users and infrastructure behaviour.
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FIGURE 1.1. 5G Challenges, Potential Enablers, and Design Principles [13].

Furthermore, in the development of the value chain of services to end-users, this transformation

will also support new business models and provide new opportunities [12].

5G is an end-to-end (E2E) ecosystem that supports a fully mobile and connected society and

empowers value creation towards customers and partners through the present, and emerging use

cases [11]. In general, 5G is going to address six challenges: 1) much higher capacity (1000 times

improvement), 2) much higher data rate (10-100 times improvement), 3) lower E2E latency (less

than 5ms), 4) higher number of connections (100 times improvement), 5) cost-efficient network

solutions, 6) consistent QoE provisioning (shown in Figure 1.1) [11, 13]. For individual 5G use

cases, requirements can be very diverse and sometimes extreme. There will be three major uses

cases in the 5G scenarios, including: 1) enhanced mobile broadband (eMBB); 2) ultra-reliable and

low-latency communications (URLLC); and 3) massive machine-type communications (MMTC)

[9].

It is anticipated that several services with different requirements will be active at the same

time, and it is high cost and impractical to provide a specific service model for each use case. In

addition, considering the nature of stochastic and unpredictable network services in the future,
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FIGURE 1.2. 5G Architecture [11].

it requires re-architect the network to efficiently support network services and fulfil network

transformation.

Figure 1.2 shows the 5G architecture proposed by the Next Generation Mobile Network [11].

It consists of three layers and an E2E management and orchestration entity. The infrastructure

resource layer includes computing nodes, network nodes, mobile devices, and physical links. All

the physical resources are virtualised and utilised by the upper layer and monitored by the E2E

management and orchestration entity. The business enablement layer is a library of all functions,

and the business application layer contains specific network services. The E2E management

and orchestration entity translates service requirements into actual modular network functions,

chains these network functions, and maps all of them to the infrastructure layer [11].

Benefits from this 5G architecture, physical resources can be virtualised and network func-

tions can be relocated to more general-purpose servers. Compared to previously fixed location

resources and network functions, such transformation enables network resources and services to

be offered in a more effective way. Hence, 5G will no longer provide strictly defined and single

service models. Instead, it will support tailored and dynamic services for end-users, enterprises,

verticals, and stakeholders, with diverse requirements, in terms of latency, bandwidth, reliability,

privacy, etc [14].

Apart from diverse service requirements, there are still some other barriers to enable network

transformation, such as strict E2E latency requirements (around 1ms) for real-time applications,
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costly network growth, long and complex launch cycle for new applications, and organization

development [9, 11]. To break through these barriers, innovations in the radio access network

(RAN), the backbone, the fronthaul and backhaul, and the control and management are necessary

[13]. The network needs to provide both high throughput and low latency, both flexibility and

programmability combined with efficient use of available resources so as to meet all of the

challenges [13, 15].

The new network architecture framework should satisfy the following requirements: 1)

Complete separation of hardware and software, 2) Flexible automation and scalability of the

network function deployment, and 3) Dynamic operations in the network function control through

control and monitoring of the network state [16].

1.1.2 Technologies

Leveraging technologies, such as NFV and MEC, a traditional network can be evolved to respond

to network transformation, support various 5G applications, and provide scalable and flexible

network management [10, 13, 17, 18]. These two major technologies will be analysed in this

article to demonstrate their importance in 5G and their benefits.

1.1.2.1 Network Function Virtualisation

The traditional service provision paradigm is inflexible and costly due to the complexity of mid-

dlebox implementation [19]. Network functions (NFs), such as gateways, proxies, firewalls, and

transcoders, are generally placed on dedicated hardware, and service providers have to spend high

Capital Expenses (CAPEX) and Operating Expenses (OPEX) on maintenance and management.

NFV, defined by the industry specification group (ISG) under the European Telecommunications

Standards Institute (ETSI), has drawn significant attention from both academy and industry

in recent years [13, 20]. It shifts the service provision paradigm by decoupling NFs from dedi-

cated hardware and implementing them in virtual machines (VMs) or containers on standard

commercial-off-the-shelf (COTS) hardware [20, 21].

Such migration enables Virtual Network Functions (VNFs) to be instantiated and run on the

cloud, programmed by software rather than physical hardware and implemented flexibly and

dynamically in the network. The main benefits can be classified in the following aspects:

i) Add flexibility to service and resource provisioning. As NFs are no longer location-dependent,

they can be placed in any location at any time according to service requirements and current

resource status [9]. With shared hardware and software resources, these NFs can be connected in

a more flexible way [22]. Such flexible deployment can satisfy diversified service requirements,

such as latency, and efficiently use virtualised hardware resources.

ii) Auto-configuration and softwarisation to satisfy dynamic property and ease operation.

Considering that network traffic is dynamic and stochastic, automated configuration and manage-

ment allow network operators to instantiate, scale-up, scale down, and delete VNFs dynamically
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FIGURE 1.3. ETSI NFV Reference Architectural Framework [10].

[23]. Softwarisation can reduce operation complexity, simplify operation infrastructure, and ease

upgrade and maintenance [18].

iii) Reduce CAPEX and OPEX. CAPEX savings comes from the optimised utilisation and on-

demand provision of network resources, the efficient management of shared and flatter network

infrastructures, and the adoption of COTS hardware devices [9, 23]. VNFs can be instantiated

without installing new equipment, which can reduce capital investment and energy consumption.

OPEX saving comes from the simplified operation and management approaches. For example,

most fault detection and restoration can be done remotely instead of working on the spot.

iv) Accelerate the product cycle. NFV has the potential to bring new services with increased

agility and faster time-to-value by using COTS hardware [22]. Previously, it was costly and took

a long time to launch new services because of the proprietary nature of dedicated devices and the

lack of professional knowledge and experience to integrate and maintain these services [23].

A VNF is normally administered by an Element Management System (EMS), responsible

for its creation, configuration, monitoring, performance, and security. In a Telecommunication

Service Provider (TSP)’s environment, an EMS provides the essential information required by the

Operations Support System (OSS). In conjunction with the Business Support System (BSS), the
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OSS is a general management system that assists providers in deploying and managing a variety

of E2E telecommunications services (e.g., ordering, billing, renewals, problem troubleshooting,

etc). Therefore, the focus of NFV specifications is on integration with existing OSS/BSS solutions

[21].

The development of NFV is based mainly on the adoption of industrial-standard hardware

and cloud computing technologies [23]. Compared to dedicated hardware, industrial-standard

hardware has larger volumes and interchangeable components inside to support different NFs.

By replacing a great number of specific hardware devices in the network, general-purpose devices

can simplify the complexity of hardware architectures in the network. Recent developments of

cloud computing technologies, such as various hypervisors, OpenStack, and Open vSwitch, also

make NFV achievable in reality [23].

According to ETSI ISG, the NFV high-level architecture framework (illustrated in Figure 1.3)

consists three major building blocks: i) VNFs, ii) NFV Infrastructure (NFVI), iii) NFV Manage-

ment and orchestration (MANO) [20]. They are identified and introduced in detail as follows:

i) VNFs are defined as a software implementation of network functions, which are capable of

running over the NFVI [20].

ii) NFVI includes diverse hardware resources and how they can be virtualised, which can

support the execution of VNFs [20].

NFVI consists of both physical and virtual resources. Physical resources refer to computing,

storage, and network hardware resources of the core network, backhaul network, and edge

network [24]. Virtual resources are abstractions of these hardware resources, which are achieved

through the virtualisation layer [22]. Virtual resources include virtual nodes that support pro-

cessing or routing functionality and virtual links that logically connect two virtual nodes directly.

Such virtualisation hides the complexity of the physical layer and provides hardware resources

as a pool and realises adaptable and efficient utilisation.

iii) NFV MANO covers all virtualisation-specific management and orchestration tasks for the

NFV framework, such as the life-cycle management of physical and/or software resources and

the life-cycle management of VNFs [20, 24].

The NFV Orchestrator (NFVO) is responsible for the life-cycle management and auto-

deployment of network service (NS) over NFVI [25]. It achieves life-cycle management automation

by realising closed-loop service assurance, service fulfilment, and service orchestration in the

instantiation, configuration, activation and running phases [24]. The VNF Manager can be used

for the VNF life-cycle management covering instantiation, updating, scaling, querying, and termi-

nation [20]. The Virtualised Infrastructure Manager (VIM) controls the NFVI and the interaction

between NFVI and VNFs [23]. It can be used for resource allocation, resource management,

performance analysis from the NFVI perspective, collection of infrastructure fault information,

and monitoring for further optimisation [20].

As we can see, this framework also includes the coordination between NFV and traditional
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FIGURE 1.4. Integrated MEC Deployment in 5G Network [26].

network management systems such as OSS and BSS, which enables the management of VNFs

running on legacy equipment [22]. However, the requirements of managing and orchestrating

network services under this architecture bring new challenges as well, such as how to describe

VNFs, how to connect them into services, and how and where to deploy them [24].

1.1.2.2 Multi-access Edge Computing

MEC can be seen as an evolution of clouding computing to meet the demanding 5G Key Perfor-

mance Indicators (KPIs), especially on low latency and bandwidth efficiency [26]. By placing

computing and storage resources at the edge of the network, processing and caching capabilities

are brought from cloud data centres (DCs) to locations closer to end-users [27]. It can enable

the network transformation, support ultra-low latency services, fulfil data privacy and context

awareness requirements and improve edge intelligence [13, 18, 25, 27].

MEC is recognised by the European 5G Infrastructure Public Private Partnership (5G PPP)

as one of the critical enablers for the 5G network [28]. It is currently being standardised in an

ETSI ISG [26]. Figure 1.4 in the MEC white paper shows how to deploy the MEC system in the

5G network.

On the left side of this figure, NFs of the 5G Radio Access Network (RAN) network are included.

Network Slice Selection Function (NSSF) can allocate users to proper network slices based on

their requirements. MEC services are registered in the service registry on the MEC platform,

while other services are registered on the Network Resource Function (NRF). Unified Data

Management (UDM) handles user identification, manages access authorisation, supports service

continuity, and performs subscription management procedures. Network Exposure Function

(NEF) acts as a centralised point for service exposure and authorising the coming requests [26].

Session Management Function (SMF) provides functionality that includes session manage-
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ment, IP address allocation and management, selection/re-selection and control of the User Plane

Function (UPF), configuring the traffic rules for the UPF, and charging and support for roaming

[26]. It plays a crucial role in MEC because it selects and controls the UPF and configures its

traffic steering rules. In addition, the SMF exposes service operations to allow MEC to control

the policy settings and traffic rules [26].

On the right side of this figure is the MEC system deployed in a data network external to

the 5G system [26]. MEC orchestration and management is responsible for the MEC host and

applications, traffic routing configuration, dynamic application deployment, and user mobility

monitoring of MEC applications [26]. The distributed MEC host can accommodate MEC platform

services. MEC platform can interact with VNFs and NFVI via service Application Programming

Interfaces (APIs).

5G system offers both generic traffic rule-setting and specific traffic rule-setting for User

Equipment (UE). It is the UPF that is responsible for steering the user plane traffic towards the

targeted MEC application in the data network [26]. When a MEC application is instantiated, the

MEC platform will interact with the Policy Control Function (PCF) to request traffic steering for

the specific traffic. Then, PCF will transform the request into policies and provide the routing

rules to the appropriate SMF. After receiving information, SMF will identify the target UPF and

configure traffic rules accordingly.

UPF is critical in the MEC system deployment because its location can affect the location

of the MEC system. Thanks to its flexibility in locating, network operators can place it based

on user requirements, network load, and available physical resources. Hence, MEC can also

be deployed flexibly in the network. According to the white paper [26], there are four MEC

deployment scenarios (presented in Figure 1.5):

1. Both the MEC and the local UPF are built on the Base Station (BS).

2. The MEC is located within a transmission node, perhaps with a local UPF.

3. Both the MEC and the local UPF are built on a network aggregation point.

4. The MEC is located within the Core Network functions (i.e., in the same DC).

As we can see, MEC can be placed from the BS to the central DC, catering for different

requirements of operation, performance, and security [26].

Benefits from the adoption of MEC technology, a wide variety of use cases can be supported

for the new market, such as Augmented Reality (AR), Cloud Gaming (CG), vehicle-to-vehicle

(V2V) communication, e-health, smart factoring, and Internet of Things (IoT) [27]. Take AR,

for example, it requires a high data rate and low latency. Furthermore, it needs to be aware

of the user’s location so as to analyse the output from a device’s camera and provide real-time

information. In most cases, such information is position-relative and even related to the direction

users face. Hosting AR at the MEC platform can significantly enhance the QoE because it caches

the localised data, reduces traffic propagation latency to the cloud, and updates information at a

fast rate [27]. It is the key application considered in this thesis to represent low latency traffic.
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FIGURE 1.5. Examples of the Physical Deployment of MEC [26].

1.2 Resource Allocation in NFV-enabled Edge-Cloud Networks

1.2.1 Motivation

Previously, NFV was adopted only in the DC networks. When the network edge has been equipped

with computing and storage resources, it is advisable to consider NFV and MEC jointly because

it enables the flexible deployment of MEC applications and brings common management and

orchestration system to the entire network [18]. Furthermore, since the MEC MANO and the

NFV MANO have similar operations, merging the MEC and NFV architecture is feasible.

Figure 1.6 shows the proposed MEC/NFV architecture [29]. The NFV domain, comprised of

NFVO, VNF Manager (VNFM), VIM, VNF, and NFVI, is responsible for supporting underlying

resources. While, the MEC domain, comprised of Mobile Edge Operator (MEO), ME Platform

Management (MEPM), and ME Platform, is responsible for application demand information and

application management. The NFVI implements virtualised infrastructures for MEC applica-

tions. The ME platform, which can be implemented by VNF, supports application-level traffic

forwarding and processes application content data. The MEPM provides management of commu-

nication interfaces, application-level traffic forwarding rules, and Domain Name Service (DNS)

configuration. The VNFM controls the creation, release, and scaling of MEC service instances.

It also works with the VIM to apply resources according to MEC application requirements and

network status [29].

The orchestration and management layers span over the NFV and MEC domains, ensuring

the interaction between the two domains to meet the low delay and high bandwidth requirements
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FIGURE 1.6. MEC/NFV Architecture [29].

jointly [29]. For the orchestration layer, the NFVO will update the system orchestration according

to the information such as MEC application changes and edge network system status provided by

the MEO. For the management layer, the VNFM manages the service instance life-cycle according

to the messages, like conflicts and location changes of MEC services, provided by the MEPM [29].

It allows the whole network to take advantage of the flexibility by integrating MEC and NFV.

VNFs can be deployed at the edge as well as in the central cloud, depending on the needs of use

cases and business models. NFVI should support VNFs to be instantiated in suitable locations at

the right time. Nevertheless, not all the resources should be provided to the same use case at the
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same time. Therefore, it requires flexible and scalable schemes to provide and scale both network

and computing resources in edge and cloud networks automatically, dynamically, and on-demand

to these VNFs [11, 23]. Taking into account that edge resources are limited in comparison to

central resources, and MEC services have stricter requirements on latency compared to other

services, the resource provisioning schemes should be both efficient and tailored to ultra-low

latency network services [11].

In the NFV ecosystem, a network service (NS) is a collection of chained VNFs, and it is

created and deployed by defining the number of VNFs, their order in the chain, and the chain’s

allocation in the NFVI [21]. One of the most difficult aspects of NFV deployment is achieving fast,

scalable, and dynamic composition and allocation of NFs to perform an NS. However, because

an NS necessitates a set of VNFs, attaining efficient service coordination and management in

NFV raises two issues: 1) how to compose VNFs for a determined NS, and 2) how to efficiently

distribute and schedule the chained VNFs onto the network [21].

Hence, a resource allocation scheme is essential for NFV-based networks to fulfil the require-

ments mentioned above [21]. Efficient algorithms running at the control and management layer

can make decisions in a holistic view for physical resources utilisation to achieve economics on

a large-scale provided by NFV. These algorithms should decide [24]: 1) Placement: which VNF

instance of the service requests should run on which computing nodes and should be supported

by how many resources; 2) Routing: which link should be chosen to connect the placed VNF

instances in the correct order, and it is a flow level decision; 3) Scheduling: which execution time

slot is selected for the VNFs processing and transmission in the NS [30]; 4) Monitoring: which

kind of data should be monitored, and where and how often should they be monitored.

The placement, routing, scheduling, and monitoring decisions in edge and central cloud

networks can be formulated as an optimisation problem to satisfy objectives such as service

acceptance maximisation, resource utilisation maximisation, congestion minimisation, etc [22].

Such a problem is called as NFV-Resource Allocation (NFV-RA) problem [21] consisting of three

stages below: 1) VNFs-Chain Composition: decides which type of VNFs should be chosen for

the network services. 2) VNF-Forwarding Graph Embedding: includes the placement (mapped

to substrate nodes) and routing (mapped to substrate paths) problem. 3) VNFs-Scheduling:

decides how to execute each VNF in order to minimise the execution time. In this thesis, this

problem’s second and third stage has been studied especially for service requests with different

QoS requirements in 5G edge-cloud networks.

1.2.2 Problem Statement and Challenges

The E2E services can be flexibly deployed in the NFV-enabled 5G network to satisfy user

requirements and improve resource utilisation efficiency. These services can be represented by

chaining different types of VNFs in order as Service Function Chains (SFCs) [21]. According to

Internet Engineering Task Force (IETF), SFC is standardised as a set of ordered or partially
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FIGURE 1.7. SFC Placement Example and Main Flow.

ordered VNFIs, and packets/frames must follow the path of strictly ordering VNFs [19]. SFCs

provide architectural building blocks for network operators to instantiate and connect network

functions across the network and realise diagnostics, security, and management for network

services [31]. In the context of SFCs, the second stage of the NFV-RA problem is called the SFCs

placement problem [32, 33], while the third stage is called the SFCs scheduling problem [34].

The SFCs placement problem contains two sub-problems. The first refers to determining

the nodes where VNFs should be placed (i.e., VNF Placement), and the second consists of the

link selection between nodes where VNFs run (i.e., routing) [35]. This problem has been widely

studied in the core network [36–39]. However, to cope with new requirements in the 5G network,

it needs to be further studied in combined MEC and core network scenarios considering QoS

requirements, especially latency requirements. As we know, many novel 5G network services have

strict E2E latency requirements, such as AR, V2V communication, and smart manufacturing.

To make these ultra-low latency services in reality, they must be properly chained, placed, and

routed to meet the stringent QoS and service-level agreement requirements of users/tenants [16].

In this thesis, the QoS-aware SFC placement problem has been well studied in the multi-

layer 5G network, including access, metro, and core networks. MEC nodes, Edge Data Centres

(EDCs), and Core Data Centres (CDCs) are equipped with different amounts and different types

of resources. These nodes and switching nodes are connected via IP links or optical links. In

this work, not only traditional ordering and resource constraints are taken into consideration,

but also E2E latency constraints ranging from 1ms for ultra-low latency services to 500ms for

non-real-time services. The E2E latency accounts for the time needed for the data packet from

source to the destination across all the nodes and servers [11].

Figure 1.7 illustrates an example of the SFC placement. As illustrated, the virtual infras-
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tructure is deployed with OpenStack. Two MEC nodes and one edge DC are edge NFVIs, while

the core DC is core NFVI. In this example, a single SFC contains 4 VNFs. According to the

placement solutions, VNF1 is mapped to one of the MEC nodes, VNF2 is mapped to EDC, and

the other two VNFs are mapped to CDC. The source and destination are also shown in this

figure. Electrical signals to be transmitted through the network will be first transformed into

optical signals and then transmitted via the network using optical fibres. After the transmission,

optical traffic will be converted to electrical signals at the receiver and processed at the VNF

instance. Optical-to-Electrical-to-Optical (OEO) conversions across the optical layer and IP layer

are shown by the red dotted arrow line. In the optical layer, Wavelength Division Multiplexing

(WDM) is adopted to give flexibility [11]. The optical signals transmitted between the transmitter

and receiver via lightpath will use the same wavelength (demonstrated by the thick arrow lines

in green, blue, and red).

In the NFV architecture, VIM manages the node resources and link resources to create VNF

instances and orchestrate VMs based on OpenStack [40]. The NFVO (e.g., Open Source MANO)

monitors the network status and interacts with the planning tool (e.g., SFCs placement algorithm)

[41]. The right side of Figure 1.7 shows the main flow of SFC placement. After receiving the

service request in NFVO, the SFC placement algorithm will make decisions based on monitored

network status [40]. Such decisions refer to the VNFs’ mapping on physical nodes and the

virtual links’ mapping to physical links without breaking corresponding constraints. Then, NFVO

interconnects VNFs in numerous MEC nodes and DCs to meet all end-user requirements while

improving resource utilisation performance [41]. With such an SFC placement algorithm and NFV

MANO system, 5G infrastructure can support flexible and intelligent control and management of

network resources and network services.

There are many challenges to be addressed to solve this QoS-aware SFC placement problem

in multi-layer edge-cloud networks:

1) The SFC placement problem is proved to be NP-hard as it is a joint problem of two NP-

hard problems: NF placement and flow routing [42, 43]. The optimal solutions for NP-hard

problems can not be achieved in polynomial time and heuristic and meta-heuristic algorithms

are usually proposed to approximate optimal solutions. For this problem, it is harder to consider

node mapping and flow routing holistically since their results can affect each other [39].

2) The SFC placement is more challenging under the MEC environment compared to the

core network. Firstly, many services in the MEC network are ultra-low latency services, and

latency requirements should be considered with great emphasis [10, 44]. Furthermore, latency

requirements can vary a lot among different types of services, which means the proposed solutions

should be capable of dealing with different QoS requirements. Secondly, the computing resources

of MEC nodes, as well as the bandwidth between MEC nodes, are more limited compared to those

in core networks [44]. These limited resources need to be utilised very well to serve as many

services as they can.
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3) As there is a large number of MEC nodes with computing capability, it requires scalable

approaches for SFC placement, control, and management [15]. Approaches used for SFC place-

ment in the core network, such as Mixed Integer Linear Programming (MILP) and evolutionary

algorithms do not scale well. For the intelligent approaches, considering a large number of hosting

nodes, which leads to large action space, reinforcement learning (RL) is not suitable for the SFCs

placement problem in edge-cloud networks [19]. In addition, centralised control is faced with a

single-node failure problem and also does not scale well. Thus, novel and scalable approaches are

expected for problem-solving, network control and management.

4) The SFCs placement problem can be multi-objective in reality. For example, reducing

latency can result in congestion in the MEC nodes and degrading load balance performance.

These objectives are usually conflicting with each other and it is hard to balance different

objectives at the same time. In addition, NFV providers and customers may require different

objectives. For example, NFV providers care more about cost-saving, but customers care more

about QoS performance. Different objectives can not be optimized at the same time, thus it is

difficult to get a win-win situation [33].

5) In real network scenarios, network status and traffic vary significantly due to the dynamic

and stochastic arrival of different network service requests [33]. These service requests are not

known in advance, and their requirements can change during the process. Therefore, this problem

can not be solved just offline. Online approaches are also required to place SFCs dynamically

to adapt to the changing network scenarios. It is also challenging to achieve dynamic scaling

of VNF instances, whether horizontal (i.e., instantiate/remove VNF instances) or vertical (i.e.,

add/release resource to/from VNF instances) or both [45].

6) Studying SFCs placement problems in the multi-layer network composed of virtual layer,

IP layer, and optical layer, offers significant merits in terms of high-capacity and low-latency

transmission, especially for the increasingly bandwidth-hungry and low-latency applications

in the 5G scenario. In order to leverage such benefits, the fundamental complexity challenge

caused by adding the optical layer has to be resolved. Firstly, resource availability in three-layer

networks needs to be considered [46]. In addition to computing and buffering resources, OEO

conversion resources and wavelengths in the optical layer should be provided to SFCs. Secondly,

adding an optical layer means adding complexity to the model and algorithm design. In the

MILP model, constraints such as the mapping from virtual link to optical link, the wavelength

continuity, wavelength resource capacity, and optical transmission latency must be satisfied.

In the algorithm design, wavelength continuity and availability will affect the routing path

determination. Thirdly, the scalability problem is even more severe. Due to a large number of

wavelengths in different optical links, the computational complexity grows dramatically as the

problem size increases for this kind of NP-hard problem [47].

Compared to the SFCs placement problem, few papers are studying the SFCs scheduling

problem (third stage of NFV-RA problem), which determines the execution time slot for the
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traffic of each SFC traversing the VNF that placed on the corresponding server [30, 48]. The SFC

scheduling algorithm can also run as the SFC planning tool in Figure 1.7 and decide the VNFs’

mapping, virtual links’ mapping, VNF’s processing time slot, and traffic transmission time slot.

It can be formulated as a job-shop scheduling problem, which is proved to be NP-hard [49, 50].

Apart from the aforementioned five challenges, some additional challenges exist for this problem,

such as the model complexity in terms of time sequence constraints and the algorithm design

when considering E2E service latency, which is a challenging delay-aware scheduling problem

[50].

1.2.3 Research Contribution

The main purpose of this thesis is to provide a comprehensive way for supporting QoS-aware

network services, especially ultra-low latency services, in edge-cloud networks, from single-

objective to multi-objective, from centralised control to distributed control, from mathematical

optimisation to reinforcement learning, from offline to online.

The main contributions can be summarised as follows:

1) Formulate the QoS-aware SFCs placement problem and SFCs scheduling problem in multi-

layer networks consisting of virtual layer, IP layer, and optical layer. Firstly, single-objective

and multi-objective MILP models are designed to get the optimal solutions in the small-scale

networks, which are taken as the benchmark for the algorithms’ performance analysis. Secondly,

the optical layer is included in these models to reduce the transmission latency on intermediate

switches, increase the flexibility of ultra-low latency services placement, and increase the service

acceptance performance.

2) Study the QoS-aware SFCs placement problem and SFCs scheduling problem in edge-cloud

networks. Firstly, different models are applied to MEC nodes and DCs to capture their different

resource capacity features (e.g., M/M/1 queueing model at MEC nodes but no queueing latency at

DCs). Secondly, different objectives are designed to support services demanding different E2E

latency (e.g., MEC nodes maximise the ultra-low latency service acceptance and DCs maximise

all the service acceptance). Thirdly, a wide range of algorithms (e.g. heuristic, meta-heuristic,

game theory-based, DRL algorithms) are designed for different scenarios to support various QoS

services in the same network, reduce MEC nodes congestion during peak hours, increase service

acceptance performance, especially for ultra-low latency services.

3) Evaluate the proposed models and algorithms through simulation and real test-bed exper-

iments. Simulation works are carried out for all the considered network scenarios. For offline

algorithms, the performances of the proposed algorithms are compared with optimal solutions

and other benchmark solutions in small-scale networks. While large-scale simulation tests their

scalability and complexity performance. For online algorithms, simulation results prove their

capabilities of serving service requests in the online environment. For the experiment, SFCs with

different latency and traffic sizes are implemented in VNF instances hosted by servers connected
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through optical fibres. Real test-bed experiment results validate the performance of the proposed

offline algorithms by providing real E2E latency, CPU resource usage, and service acceptance

ratio (SAR).

1.3 Thesis Structure

The following is a thesis outline describing the major parts of the thesis.

In Chapter 1, first, the motivation for adopting NFV and MEC technologies and for studying

the resource allocation problem in NFV-enabled edge-cloud networks are discussed. Next, the

QoS-aware SFC placement and scheduling problem and its challenges are introduced followed by

a description of our research contributions. Publications during the last four years are included

in the end. In Chapter 2, the literature review of QoS-aware SFCs placement and scheduling

problem is provided combined with the related work of multi-objective reinforcement learning

(MORL) and multi-agent RL (MARL). In Chapter 3, methodologies for resource allocation are

introduced such as MILP, deep reinforcement learning, game theory, and MARL, followed by the

management tools for the virtualised infrastructure and network services.

To solve the QoS-aware SFCs placement and scheduling problem in NFV-enabled edge-cloud

networks, different methods are proposed to address different challenges. Mathematical models,

algorithm design, simulation settings, experiment settings, and results of these proposed methods

are detailed explained and analysed in Chapters 4-8.

It starts from a single-objective optimisation to increase the SAR of ultra-low latency services

(Chapter 4). A MILP model is designed for small-scale networks and a meta-heuristic algorithm

is presented for large-scale networks. Then, a more realistic multi-objective optimisation problem

is studied with the assistance of evolutionary algorithms (EAs) (Chapter 5). In the next step,

to further improve the network performance in terms of QoS, resource congestion, and SAR, a

scalable DRL approach is designed for this multi-objective SFCs placement problem. A Pointer

Network-based DRL model is at first designed with the MILP model as environment constraints.

Then, a Chebyshev-assisted Actor-Critic algorithm is designed to approximate the Pareto Fronts

(PFs) by running it with a series of weights and to improve ultra-low latency service acceptance

performance under different workloads by running it with the selected weights (Chapter 6).

These methods above show great performance in simulation and experiment as offline solutions

with centralised control.

To adapt to dynamic network scenarios, firstly, a distributed online algorithm is designed

based on game theory (Chapter 7). Network services are players in the congestion game competing

for resources to maximise their own payoff. By assigning different weights of resource consump-

tion for services with different latency requirements, the ultra-low latency service acceptance

performance can be improved. Secondly, an online MARL method is investigated to solve the joint

SFCs placement and scheduling problem in edge-cloud networks (Chapter 8). Both cooperation
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and self-interested scenarios are studied by the centralised training decentralised execution DRL

algorithm, with different objectives for edge and cloud agents. It is still ongoing work, and more

algorithms will be proposed in the future.

Finally, Chapter 9 concludes achievements and presents the outline of future work.
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2
LITERATURE REVIEW

This chapter provides the literature review of related works that study the QoS-aware

SFCs placement problem at first. Specifically, these works are grouped into five classes:

single-objective optimisation for SFCs placement, multi-objective optimisation for SFCs

placement, RL-assisted SFCs placement, distributed SFCs placement, and SFCs Placement in

Optical Networks. The first two classes focus on works utilising traditional methods such as

ILP, heuristic, and meta-heuristic, to solve this problem. The third class focuses on RL methods.

In the next, a literature study of QoS-aware SFCs scheduling problem is detailed, comprising

both traditional and RL methods. Last but not least, the literature review of multi-objective RL

and multi-agent RL-related works is discussed. By providing the background information, the

motivation for adopting these two methods can be strengthened.

2.1 Literature Review on QoS-aware SFCs Placement

2.1.1 Single-Objective Optimisation for SFCs Placement

In this subsection, the related works, which use traditional methods such as ILP, heuristic,

meta-heuristic, etc, to solve the single-objective QoS-aware SFCs placement in a centralised

manner, are summarised and analysed.

Some works take the cost minimisation as their objective without impacting QoS requirements

since cost saving is one of the main goals of NFV technologies [51]. Authors in [51] design a

mixed integer programming model for SFCs placement in Evolved Packet Core (EPC) with the

VNF deployment and resource utilisation cost minimisation as the objective function. The E2E

latency requirements are modelled as constraints including processing, propagation, queueing,

and virtualisation latency. In [8], authors design a MILP model with latency limitations for the
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cost minimisation in metro core networks for SFCs placement. The VNF placement causes the

cost on a physical node, cost per utilised resource on a physical node, and cost per utilised capacity

on the physical link. The E2E latency is caused by processing, packet queueing, and propagation.

However, both transmission and OEO conversion latency are not included in these two works.

Although some works have different goals, they are still latency-aware. A mixed integer

quadratically constrained programme model is provided to minimise resource consumption for

SFCs placement while delivering particular latency in [52]. It investigates the linear relationship

between a VNF’s processing time and the number of resources allocated to it. Authors in [53],

aim at maximising the total number of requests that each SFC can send to the cloud. Their

approach combines service chain consolidation, pod assignment, and machine assignment per

pod problems using a linear programming model and efficient heuristics. Delay for transmitting

a packet between any two machines is taken into account in a fat-tree DC network.

Others take latency minimisation as their objective directly. The authors of [43] use latency

minimisation as their objective since it allows them to maximise average resource utilisation while

reducing average response latency at the same time. For joint optimisation of SFCs placement

and scheduling, a two-phase priority-driven weighted algorithm is presented to reduce response

latency and increase resource utilisation in DCs networks. Similar to the algorithms proposed in

this thesis, their devised algorithm can lower the job rejection rate. In [54], a VNF low latency

placement technique is proposed to minimise network latency in DC networks. A MILP cost

minimisation model and an online heuristic algorithm are developed to jointly optimise three

steps in NFV-RA, including VNFs-Chain Composition, VNFs-Forward Graph Embedding, and

VNFs-Scheduling in [38]. In this approach, the delay is considered in the cost objective. However,

their link delays are generated by the uniform distribution.

However, the hierarchical network resources have not yet been considered in the latency-

aware SFCs placement works stated above. As a result, their solutions are unsuitable for a

hierarchical 5G network with MEC nodes and DCs. There are only two studies that examine

hierarchical network resources for the single-objective optimisation [1, 55]. In [55], a shortest

path decision mechanism is addressed for each SFC to minimise the E2E latency composed

of processing and network latency in DC networks. They consider three DCs with different

processing capacities: small DCs, medium DCs and large DCs. However, no optical layer is

involved in their models. An algorithm is designed in [1] to minimise the average number of

nodes required to host VNF instances as well as the blocking probability. The E2E latency caused

by propagation, Forward Error Correction (FEC), and OEO conversion are taken as constraints.

Although the work proposed in [1] studies SFCs placement problem in the hierarchical network

including access, main and core central office connected via optical links, it neither takes queueing

and transmission latency into account nor proposes a MILP model to get the optimum solution

like the one proposed in Chapter 4.
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2.1.2 Multi-Objective Optimisation for SFCs Placement

In this subsection, the related works, which use traditional methods such as heuristic, meta-

heuristic, etc, to solve the multi-objective QoS-aware SFCs placement in a centralised manner,

are summarised and analysed.

Considering the network domains, some works focus on the SFCs placement in cloud networks

[36, 40, 45, 56, 57]. Genetic algorithms (GAs) are employed by the Authors of [45] to optimise

the overall number of used servers, links, link resources, and the number of updated servers

and links during scaling. However, their objective function is weighted-sum and the weights

are chosen to be equal or zero, which is not reflected by the Pareto Fronts (PFs). The rest

papers approach this problem in a Pareto-optimal fashion. Authors in [56] tackle this issue by

providing a heuristic-based non-dominated sorting GA-II (NSGA-II) to minimise the number of

employed servers and the link resource utilisation. In [40], two goals are involved, one is the

minimisation of total bandwidth consumption, and the other is the minimisation of the maximum

link utilisation. Authors in [57] use a multi-objective Evolutionary Algorithm (EA) based on

decomposition to find the optimal placement for SFCs. They maximise the total cost and the

incoming service acceptance ratio (SAR). However, none of these algorithms considers the latency

requirements, let alone the latency objective, which are very important for 5G services with

variant QoS requirements. There is only one paper considering latency. Authors in [36] apply

a multi-objective modified simulated annealing algorithm (MOSA) to generate PFs that depict

various trade-offs between the latency minimisation and the cost minimisation. The overall

delay of all demands, the total number of placed VNF instances, and used CPU resources are

minimised simultaneously in their model. However, the MOSA method highly depends on the

initial solutions and cannot effectively find feasible solutions.

There are several studies of this problem in a mixed environment including edge and cloud

[3, 39, 58–60]. Authors in [39] present a scalable solution based on the flow clustering module to

balance multi-objectives such as path stretch minimisation, load balancing, and total network

usage maximisation. The above three objectives are weighted equally and combined into a

single-objective function. The authors of [58] minimise the combination of the edge cloudlet’s

maximum utilisation, QoS violation, and allocated cloud computing resources. They model the

edge-central cloud architecture as MILP without breaching the delay constraint. Similar to the

model proposed in Chapter 4 and Chapter 5, they use different queueing models for edge nodes

and clouds, with M/M/1 queue for the edge node, and the M/G1/∞ queue for the clouds. Authors

in [3] propose a GA to minimise both the CPU usage and the service blocking rate in Cloud/MEC

architecture that include both optical network resources and computing resources. In [59], a

fraction of SFCs mapping cost and load balancing is represented as one objective for the SFCs

placement in edge servers and cloud. They consider the latency requirement for each service

request. In a multi-domain scenario, authors in [60] design a heuristic algorithm to minimise

E2E delay, service cost and operational cost together. However, none of the above papers includes
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PFs’ analysis and there is a lack of Pareto optimal solutions in a mixed environment.

Some of the aforementioned works use EAs to solve this problem [3, 36, 45, 56, 57]. Among

them, the PF is studied in [36, 56] to select solutions that meet the providers’ numerous objectives

and performance trade-offs. Others convert multi-objective problems to a single-objective by

introducing weighting factors [39, 58], or combining different objectives directly [59], or solving

each objective sequentially [60].

There is a work [25] studying a GA framework tailored to ultra-low latency services in the

MEC environment to minimise access latency and maximise service availability. The comparison

of the objective values with different weighting values is carried out, which is very similar to the

work in Chapter 5, however, this work is about the VMs placement.

2.1.3 Reinforcement Learning-assisted SFCs Placement

The approaches adopted to the SFCs placement problem are not limited to the optimisation

methods listed in the above two subsections. In recent years, RL has also been applied to this

problem. However, it is challenging to solve this problem with traditional RL algorithms because

they are tabular methods and require a high degree of memory for large dimension problems,

which is inefficient and impractical when the state space of the environment is huge [19]. The

SFCs placement problem has both large state space (the network has plenty of hardware devices

and different types of resources) and action space (SFCs can be flexibly placed in various network

locations), which are hard to be recorded in finite Q tables [19]. Thanks to the development

of Deep Reinforcement Learning (DRL), this problem can be solved because a finite Q table is

substituted by a deep neural network (NN), and memory is only required to store the NN or

experience replay [61]. High-dimensional network resource states and VNF placement actions

for the optimal placement can be handled by DRL based on network feedback rewards.

Some works are dealing with SFCs placement problems via the DRL approach. Among

them, most use value-based approaches [19, 49, 62–64]. In [62], the authors use a Graph Neural

Network (GNN) to process the topology information, including the resource type and resource

capacity and use a DRL architecture to train the parameters of the GNN by interacting with

the network environment. The GNN-based scheme has a better relationship inferring ability

among the network’s nodes than other deep learning methods. This work is QoS-aware, and the

routing nodes’ processing delay, the VNF instances’ processing delay, and the transmission delay

are all considered. In [19], authors formulate the SFC placement problem as a Binary Integer

Programming (BIP) problem and use the Double Deep Q Network (DDQN) method to design

the VNF placement algorithm. DDQN is proposed to solve the overestimation and instability of

the traditional DQN approach. It includes an online neural network taking charge of sampling

and action selection and a target neural network evaluating the Q-values. Their algorithm,

which includes the offline training and online running process, has been proved to improve the

reject number and reject ratio of SFC requests, throughput, E2E delay, VNFI running time, and
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load balancing. In reference [63], authors suggest an offline parallel deployment scheme based

on DRL to satisfy all demands and deploy all SFCs simultaneously. They begin by calculating

the number of VMs and locating servers to host VNFs using DRL. Then, they proportionally

distribute resources. In comparison to selected benchmarks, their solution serves demands with

the minimum cost.

Indeed, it is difficult to calculate all the value functions with the value-based approach for

problems with large action space and continuous control [33]. Hence, some works use policy-based

approaches to solve the SFCs placement problem [33, 46, 65, 66]. In reference [33], authors

propose an adaptive, online, DRL approach NFVdeep to automatically deploy SFCs to minimise

the operation cost and maximise the overall throughput of requests. A policy gradient-based

method is used to improve the training efficiency and convergence to optimality. The NFVdeep

architecture covers the NFV environment (servers and network links) and agent. In particular,

the agent collects state information from the NFV environment and operates automatically. Once

the agent has taken action, the NFV environment distributes the reward to it. Finally, the agent

updates the relevant policy according to the reward. Such a procedure repeats until the reward

converges. Authors in [46], consider this problem in metro-core optical networks. They design a

multi-layer optimisation model based on MILP to maximise the number of successfully routed

chains and minimise the reconfiguration penalty as a weighted-sum objective. Reference [65]

studies the intelligent SFC routing in dynamic network settings. They introduce a DRL scheme to

achieve overall load balancing and minimise maximum flow path delay in multi-service networks

with the coexistence of background traffic and SFC flows. Compared with MILP, their DRL

approach can obtain near-optimal network performance with only lightweight training before

being applied to different traffic matrices. But there is only one work modelling this problem as

the constrained combinatorial optimisation problem and using DRL to solve it [66]. The designed

agent is able to learn placement decisions to minimise the overall power consumption. This work

is going to be detailed analysed in subsection 2.2.

In addition, there is work using the actor-critic method. Authors in [67], design an adap-

tive DRL resource allocation method to minimise E2E delay (processing and queueing delay).

According to the problem’s continuity, they improve the Asynchronous Advantage Actor-Critic

(A3C) algorithm with unsupervised reinforcement and auxiliary learning to obtain the optimal

allocation policy.

Although plenty of research works have been using DRL for the SFCs placement problem,

none are in a multi-agent environment. For large-scale problems, it is necessary to develop

distributed methods in a multi-agent scenario, which is studied in Chapter 8.

2.1.4 Distributed SFCs Placement

This subsection summarises the works utilising distributed approaches to solve the SFCs place-

ment problem. Compared to the aforementioned works that rely on a centralised approach, the

27



CHAPTER 2. LITERATURE REVIEW

distributed methods bring advantages such as 1) scalability; 2) robustness; 3) privacy; 4) practical

feasibility, which will be detailed explained in Chapter 3. Based on these benefits, it is believed

that distributed approach is a better approach for the NFV-RA problem [68]. Several works

are studying the SFCs placement problem with game theory, however, they are all in the cloud

environment [68–70].

In [69], a game theory-based heuristic method is developed for load balancing, with the SFCs

placement problem modelled as an ILP. Various costs are included: 1) opening cost: the licensing

and energy cost of having an idle VNF; 2) processing cost: a piece-wise linear function of the load

of each server; 3) link cost: linear with respect to the bandwidth used. The operator determines

the cost of each SFC by adjusting the price of each VNF and each link to better fit for dynamic

network status. Each SFC request is a greedy player trying to minimise its own costs, and each

player is considered successful if its cost is lower than the cost in its previous position. However,

the problem they studied is static and no latency involved.

In [68], authors formulate the resource allocation problem as a convex optimisation problem,

maximising the overall system utility function for 5G service slices requiring different resource

demands. A resource allocation game model is designed for the resource auction between the

slices and the DCs based on the notion of dominant resource fairness. It is proven that the

proposed game holding an NE is the same as the solution of the centralised scheme. Moreover,

they design a fully distributed algorithm to solve the game and show how the selfish behaviour of

non-collaborative slices affects the fair performance of the system. Both simulation and numerical

analysis validate the results, showing the convergence of the proposed solutions and the optimal

solutions. Resources, such as CPU, RAM, storage, and bandwidth are included. However, they do

not consider latency, which is a crucial KPI for 5G services.

The following two works consider latency. The authors of [70] create a distributed approach

for deploying SFCs in DCs by formulating a graph partitioning game and designing a distributed

algorithm. With the latency constraints, the computation and communication costs are minimised.

By partitioning a graph’s vertices into a set of disjoint subsets, the number of nodes in each

subset is fewer than a certain threshold and the number of cut edges is kept to a minimum. A cost

function representing constraints is introduced and the Nash equilibrium (NE) is mathematically

proven to exist. To find the NE and thus the optimal solution, a simplified iterative distribution

algorithm is provided, which involves three steps: the initial solution, the refinement algorithm,

and the termination criterion. A random walk in the search space is adopted to avoid being

trapped in a local optimum and to converge towards the ideal solution. The termination criterion

is used to make a trade-off between cost and execution time.

Authors in [71] minimise the congestion, latency, and cost collaboratively. They investigate

the SFC composition problem (i.e., composing an ordered chain of VNFs) as an atomic weighted

congestion game with unsplittable flows and player-specific cost functions. Each network user

takes on a player’s role, searching for the best service chain of VNF instances that meets their

28



2.1. LITERATURE REVIEW ON QOS-AWARE SFCS PLACEMENT

individual requirements. Then, with a privacy-preserving distributed algorithm, this model is

solved in a distributed manner. They show that the proposed game model possesses a weighted

potential function and admits a NE, and the designed distributed algorithm converges toward an

NE of the game in polynomial time. Through extensive numerical results, the performance of

the proposed distributed solution is assessed. They consider NFV-specific network requirements

and features, such as VNF server congestion, traffic flow latency, and the price charged by VNF

servers. Specifically, the latency combines all inter-server, ingress-to-server, and server-to-egress

latency. Inspired by this work, we will implement a congestion game for the SFCs placement

problem, considering not just node mapping but also traffic routing in multi-layer networks.

There is one work studying the dynamic SFCs placement problem at the network edge using

game theory [72]. Authors formulate the problem as a mean-field game where VNFs are modelled

as entities contending over MEC nodes with the goal of reducing the resource consumption of MEC

nodes and reducing service latency. The game involves heterogeneous VNFs requiring different

amounts and types of resources, namely computational, storage, and transmission resources.

However, their proposed algorithm is executed by the SDN controller and is a centralised solution.

To the best of our knowledge, the algorithm proposed in Chapter 7 is the first distributed solution

solving the dynamic SFCs placement problem at the edge-cloud multi-layer networks.

2.1.5 SFCs Placement in Optical Networks

As 5G is expected to support low latency (<1ms), high capacity, and high-speed ( 1Gbps) commu-

nications, optical transmission technology, which offers exactly these desired capabilities, must

be combined with NFV and MEC technologies together for the 5G solutions. However, there are

only a few works considering optical layer for the SFCs placement [1, 3, 46, 73].

In 2015, for the first time, the optical network was considered into an SFCs placement

algorithm to minimise expensive OEO conversions in packet/optical DC networks [73]. In DC

networks, optical technologies can perform VNF chaining for larger aggregated flows. Authors

formulate the SFCs placement problem as a BIP model and design an efficient heuristic algorithm

achieving near-optimal OEO conversion performance compared to BIP. In this work, SFCs

placement is constrained by the computing, storage, and optical network resources, service order,

affinity/anti-affinity constraints, and other requirements. However, this work is not fit for the

hierarchical network consisting of DCs and MEC nodes.

The following three works are in the edge-cloud scenario. Authors in [1] propose an algorithm

for dynamic SFCs placement in a metro-area network aiming to minimise both the average

number of active nodes and the blocking probability. In this network, optical transparent switches

are used and WDM technology is adopted, which imposes wavelength continuity constraints. It is

to be noticed that latency is involved, which contributed from 1) context switching delay incurred

for loading and saving the state of VMs, 2) propagation delay for each optical link, 3) Forward

Error Correction (FEC) delay for encoding/decoding optical signals, 4) OEO conversion latency in
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intermediate nodes of an SFC. However, processing, queueing, and transmission latency are not

included.

Reference [3] studies the SFCs placement problem in Cloud-Radio Access Networks (C-RAN)

and proposes a GA to minimise both the used CPU and service blocking ratio. Access Offices

(AOs) and Central Office (CO) are connected via an optical ring using WDM or Space Division

Multiplexing (SDM). In their work, optical network capacity is also involved in the resource

constraints together with computing resources and storage resources. However, no exact solution

like the MILP model is designed and no PFs are studied.

In addition to traditional approaches, the RL algorithm is used for the dynamic SFC place-

ment in NFV-SDN enabled metro-core optical networks [46]. Authors create a MILP model as

an environment for an RL system to optimise the resource allocation of SFCs in a multi-layer

network (packet over flexi-grid optical layer). The objective is to maximise the number of suc-

cessfully routed SFCs while minimising blocking probability, reconfiguration penalty, and power

consumption. They develop the reward function and the agent that decides the SFC reconfigu-

ration. In the multi-layer architecture, the service layer collects information on SFC requests.

IP/Multi-Protocol Label Switching (MPLS) layer handles the creation of lightpaths between the

chaining VNFs mapped from the service layer. Their solution is QoS-aware with propagation

latency and service traffic volume taken into consideration. However, the RL algorithm used in

this work is suitable for neither mathematical optimisation nor multi-agent system, which we

will study in Chapter 6 and Chapter 8.

2.2 Literature Review on QoS-aware SFCs Scheduling

2.2.1 Traditional Ways Solving SFCs Scheduling

The SFCs scheduling problem has been studied by several works from different aspects adopting

MILP, heuristic, meta-heuristic, or other traditional methods [30, 38, 48, 72, 74–76].

Authors in [30] emphasise fairness and resource utilisation. They model the SFC scheduling

based on min-plus algebra theory and propose a weighted-based VNF scheduling algorithm

to achieve fair scheduling. By sharing VNF instances among different traffic, assigning high

weights to services requiring high capacities, and re-allocating the idle resources, the resource

fragmentation can be reduced and the resource utilisation can be improved. Authors in [74]

provide an adaptive SFC scheduling solution in a dynamic network. To address the mismatch

problem that the arrival rate of data exceeds the maximum departure rate in a VNF instance,

they split one SFC flow into several portions. A four-stage adaptive scheduling algorithm is

proposed to make the trade-off between service performance and network management overhead.

It maximises the available resource utilisation in common instances by absorbing more traffic

and decreases the scaling frequency to reduce the management cost. Authors in [38] pay more

attention to cost minimisation. They provide a MILP cost minimisation model involving capital
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expenditures, operating expenditures, and link costs. A one-hop heuristic online algorithm is

proposed to jointly optimise three steps in NFV-RA (e.g., VNFs-Chain Composition, VNFs-Forward

Graph Embedding, and VNFs-Scheduling). The E2E delay is taken as a penalty signal in the

objective function, and the link delay is generated by the uniform distribution.

SFC delays are included in [48], and authors study the SFCs scheduling problem with the

MILP method to minimise the makespan of the overall VNF’s schedule. The model is decomposed

into four sub-problems: 1) the virtual link bandwidth allocation subproblem to assign traffic on

each physical link; 2) the virtual machine allocation subproblem to map VNFs onto servers; 3)

the transmit bitrates at the VNFs is calculated; 4) the starting time is decided for each VNF

in the chain. Based on such decomposition, a GA-based method is developed for solving the

problem efficiently and it aims to find the earliest completion of the schedule of each network

service. Processing delay and transmission delay are included in the delay model. Authors in [48]

study the SFCs scheduling problem to minimise the VNF transmission and processing delays.

They develop a genetic algorithm-based heuristic method for solving this problem. However, they

assume that the virtual link between two physical nodes can only handle one traffic flow at a

time.

The joint SFC placement and scheduling problem has also been studied. Authors in [76]

propose an SFC embedding and scheduling algorithm. A node resource ability metric is provided

before the SFCs are placed onto the physical node. The node having the highest available resource

ability value will be selected to embed the VNFs. If there is no proper node to support VNFs, the

SFC will be rejected. Then, the virtual links between VNFs are mapped onto the physical links.

After the scheduling is finished, the algorithm starts to reschedule SFCs including those rejected

ones to enhance QoS performance and improve resource utilisation. If the rescheduling of the

rejected SFC requests fails again, these requests will be thrown. A forwarding probability is used

to measure the possibility of a physical node forwarding to its neighbouring node. There are two

metrics evaluating the algorithm performance, one is the SFC acceptance ratio, and the other is

the resource utilisation ratio. Different types of resources include computing resources, storage

resources, and link bandwidth resources.

There are some papers considering MEC nodes in their studies. Authors in [72], study the

SFCs scheduling problem on different MEC nodes and formulate it as a matching game between

the VNFs and edge resources. The execution order of the VNFs can be achieved while minimising

resource consumption and overall latency. Different types of resources such as computational,

storage, and transmission resources are allocated to stochastic arrival SFC requests. They also

consider the E2E delay involving processing, queueing, and transmission delay between two

VNFs. The M/M/1 queue and Little’s law are adopted to calculate such queuing delay. However,

their solution is a centralised solution with an iterative learning algorithm executed by the

SDN controller to converge to a Nash Equilibrium (NE). In [75], an affinity-based fair weighted

scheduling heuristic is proposed, in the MEC scenario, which considers the access point selection
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and the transmission between micro DCs.

However, all of the above works focus on the centralised solution. There is only one work

developing the distributed solution. A multi-site cooperative throughput-optimal SFCs scheduling

algorithm for edge cloud networks is developed in [77]. The authors provide a stochastic queueing-

based system model to characterise the runtime traffic scheduling problem for SFCs. In the

distributed settings, scheduler instances located at each site have access only to their local state,

and the scheduler uses a distributed method to dynamically select where to send a packet and

how many resources to allocate to each VNF instance at runtime. If no local VNF instance has

enough resources to support traffic, the traffic will be sent to VNF instances on other sites. Both

system utilisation and service quality are optimised. The scheduler can also balance load among

different sites by forwarding packets when local traffic is overloaded. This solution is adaptable

to high traffic dynamics since it is a fine-grained packet-level strategy that requires no prior

knowledge of traffic and can leverage the resources that become available on the fly as a result

of real-time sudden changes in network traffic. Hence, a packet-level simulator is developed to

evaluate their solutions.

These heuristic algorithms (e.g., greedy algorithms) are fast and straightforward to build

in general, but their performance is highly dependent on the features of the problem and lacks

generality [50].

2.2.2 Reinforcement Learning (RL)-assisted SFCs Scheduling

Apart from heuristic/meta-heuristic methods, some works adopted the RL approach [49, 50, 78].

In [50], authors formulate the delay-aware SFCs scheduling problem as a job-shop problem

and solve it using MILP and reinforcement learning. The scheduling actions include two parts:

1) For service, the starting time for each VNF being processed is determined; 2) For the NFV

node, the scheduling sequence of all embedded VNFs is determined. Considering the action

set depending on the previous VNF varies and each action execution time also varies at each

decision-making state for the scheduling, a novel Q-learning algorithm is developed with a

variable state-dependent action set and a customized reward function. Both the makespan (i.e.,

the time it takes from the execution of the first VNF to the completion of the last VNF for all

services) and the various E2E latency requirements are considered. In the reward function, the

shorter makespan leads to a large reward and the performance satisfaction leads to a positive

reward. They also introduce a weight mechanism to reflect the service priority. To accommodate

varying delay requirements, weight should be set as a large value for delay-sensitive services

and a small value for delay non-sensitive services.

In [78], authors model the SFC requests as a graph and develop an online customised deep

deterministic policy gradients (DDPG) based algorithm to maximise network utility for SFCs

scheduling in the cost geo-diversity network. As the profit relates not only to the revenue but

also to the QoS, both E2E delay and operation costs are taken into consideration. Although E2E
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delay is considered, only processing delay is included. They redesign the exploration strategy,

create a dual replay buffer structure, and use their formulation to guide reply buffer updates. The

basic DDPG training agent composes of two parts: the actor-network and the critic-network. The

actor’s role is to define parameterised policy and generate actions (e.g., VNF scheduling) based on

the network state (e.g., network topology, current VNF activation, flow rate). The critic’s job is

to evaluate current actions considering the reward obtained from the network. However, these

two works are centralised requiring global information and are not fit for addressing privacy or

scalability issues.

To the best of my knowledge, there are no distributed RL solutions, whereas the afore-

mentioned RL approaches are all centralised. To fill this gap, a distributed delay-aware SFCs

scheduling solution is proposed based on the multi-agent deep reinforcement learning approach

in Chapter 8.

2.3 Literature Review on Multi-Objective RL

Due to the multi-objective characteristics of many real problems, Multi-objective Reinforcement

Learning (MORL) has drawn great attention in recent years. It refers to the sequential decision-

making problem with multiple objectives [79]. In MORL, each objective function has its reward

signal, so the reward is not a scalar value in conventional RL problems but a vector value

[79, 80]. Each agent is required to obtain action policies that can optimise multiple objectives.

However, if these objectives are conflicting, there is no policy to optimise them at the same

time. The maximisation of one objective can lead to the minimisation of the other. Under such

circumstances, which is more challenging, the policy for different trade-offs among objectives is

expected.

According to the number of learned policies, there are two main approaches for solving MORL:

single-policy and multi-policy [79–81]. Single-policy methods aim to find the best single policy,

which represents the preferences of users among the multiple objectives, while multi-policy

methods can find a variety of solutions simultaneously [79–81].

The single-policy method is the simplest way because a multi-objective problem is transformed

into a scalarised single-objective problem and is possible to be solved with any single-objective

RL algorithms [80]. The scalarisation can be linear or nonlinear. When compared to multi-policy

techniques, this method has the benefit of requiring less computational expenses [81]. However,

it requires prior information about preference, which can be hard to get. Sometimes, even though

the preference information is available initially, a slight change in the objective preference may

lead to significant solution variations and produce undesired solutions.

Another class of approaches is a multi-policy method. Instead of finding a single policy for a

specific preference, this method can generate multiple solutions simultaneously to satisfy various

preferences [79]. It learns a set of Pareto dominating policies in a single run and obtains the
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approximation of true PF, i.e., the set of solutions that Pareto dominates all the other solutions

but are mutually incomparable [80]. The main drawback of this approach is its lack of scalability

because a PF of optimal policies are represented by learning several individual policies and

it grows significantly with the size of the domain [82]. Due to the simple implementation of

scalarisation, the single-policy approach is the most common way adopted to find a set of trade-off

solutions by solving several scalarisation functions over different preferences and combing their

results [82].

For example, authors in [83], generate a set of uniformly spread weight vectors, use the

weighted-sum approach to scalarise multi-objective functions and decompose the multi-objective

travelling salesman problem into a set of scalar optimisation sub-problems. Each sub-problem is

modelled as Pointer Network and solved by Deep Reinforcement Learning (DRL). As two sub-

problems with adjacent weights could have very close optimal solutions, a neighbourhood-based

parameter-transfer strategy is designed to solve a sub-problem assisted by the knowledge of its

neighbouring sub-problem. The Actor-Critic method is used to train the sub-problem model with

1) an actor-network, modelled as the Pointer Network, which provides the probability distribution

for choosing the following action; and 2) a critic-network that assesses the expected reward given

a specific problem state. Motivated by their methods, in Chapter 6, we model the SFCs placement

problem as a Pointer Network and improve their methods by finding more precise PFs.

Although the weighted-sum approach is straightforward to be implemented, it is not guar-

anteed that the mapping from weight space to objective space is isomorphic [80]. Moreover, the

actions in PF’s concave areas may not be chosen so that the PF cannot be accurately approximated

[79]. Hence, several works are using the Chebyshev scalarisation function in MORL to find a

Pareto approximate set [84, 85].

Authors in [84] study the way of finding the PF in situations where the shape of the front is

not known beforehand, as is often the case. Instead of using a linear scalarisation function, they

propose a non-linear scalarisation function, called the Chebyshev scalarisation function. They try

to minimise the distance between some reference points and the feasible objective region. Most

often, the utopia point in the PF is used as a reference. They conclude that there are three main

advantages of the Chebyshev scalarisation method: 1) it can discover Pareto optimal solutions

regardless of the shape of the front, 2) it can obtain a better spread amongst the set of Pareto

optimal solutions, and 3) it is not particularly dependent on the actual weights used [84].

In reference [85], the multi-objective VM placement problem in DC networks is handled. It

is challenging but crucial to find a proper weight for each objective because the inappropriate

weights will cause the solution set to deviate from the Pareto optimal set [85]. Unlike most

authors who simply set the weight for each objective to the same value, the authors in this work

employ the Chebyshev scalarisation function in RL to determine the appropriate weights. They

aim to reduce resource waste and energy consumption by finding a Pareto approximate set. As an

initialisation, they create random scalarisation weight tuples. After that, combine the Chebyshev
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scalarisation function with RL based on such initialisation. Finally, they will be able to select a

suitable weight tuple from these randomly generated ones.

In multi-objective optimisation problems, feasible regions can be defined by constraints, and

the task is to optimise the target function while satisfying these constraints. However, there is

no closed-form solution for general constraints in RL [86]. Authors in [86], use an alternative

penalty signal to guide the policy toward a constraint-satisfying solution, which can be effectively

combined with existing RL algorithms. Precisely, they use the Lagrange relaxation technique

and transform the constrained problem into an equivalent unconstrained problem.

Authors in [66] apply this method to the DRL for solving the SFCs placement problem, use

the Lagrange relaxation technique and introduce the penalty signal to the reward function.

The resulting agent is able to learn placement decisions with the aim of minimising the overall

power consumption. It is the only work modelling this problem as the constrained combinatorial

optimisation problem and using the sequence-to-sequence model to solve it. Motivated by this

work, we firstly extend it to multi-objective, secondly improve its scalability by using Pointer

Network, which removes the context vector calculation in the sequence-to-sequence model. In

their model, they manually select the weight for each constraint and then combine them into a

penalty signal, which may mislead the policy to sub-optimal solutions. Instead, we will use the

constraint violation concept in [87] to construct the penalty signal.

2.4 Literature Review on Multi-Agent RL for Scheduling

DRL has presented great potential in the telecommunication area, especially for dealing with the

dynamic problem as the best strategy can be determined according to the interaction with the

environment [67]. However, most implementations of existing works are single-agent DRL-based

and cannot cope with more and more complex situations. In such situations, multiple DRL agents

are interacted with each other in a common environment to address the challenges like scalability,

privacy, and partial-observability. These agents cooperate or compete to obtain the best overall

performance, which is essential to establish self-organising, self-sustaining, and decentralised

networks in the 5G and the beyond 5G networks [88, 89]. In this subsection, the related works of

Multi-Agent Reinforcement Learning (MARL), especially those in the telecommunication area

will be reviewed.

Several challenges are arising in the MARL, such as 1) non-stationarity; 2) scalability;

3) partial observability; 4) privacy and security [88]. When this approach is adopted in the

telecommunication area, these issues must be suitable tackled. There are mainly two kinds

of methodologies developed for overcoming the non-stationarity problem. The first one gener-

alises the single-agent RL algorithms to the multi-agent setting, while the second one uses the

centralised training and decentralised execution framework [88]. The latter one has become a

standard paradigm in multi-agent systems because it provides a straightforward solution to the
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partial observability and non-stationarity problems while allowing the decentralisation of agents’

policies [88, 90]. It assumes a central controller collects information from all the other agents

and learning policies for all the other agents during the training period to avoid non-stationarity.

But during execution, these learned policies are decentralised executed, and the agent chooses

actions using the local information only. This framework suits the telecommunication scenario

well where centralised training can happen in the simulator or laboratory with no communication

constraints, and execution can be done decentralised to save communication resources, reduce

communication time, and protect agent’s privacy [89].

The centralised training and decentralised execution framework is proposed simultaneously

in the two works. Authors in [90], propose a counterfactual multi-agent policy gradient algorithm

(COMA), a multi-agent actor-critic approach that employs a centralised critic to estimate the

Q-function and decentralised actors to optimise the agents’ policies. However, this method works

only in the cooperative scenario and focuses only on discrete action space. Authors in the other

work [91], create the multi-agent deep deterministic policy gradient (MADDPG) algorithm based

on the actor-critic policy gradient method. Unlike COMA, MADDPG can be applied to both

cooperative and competitive games and learn continuous policies efficiently. In the MADDPG,

the critic has fully observations and uses extra information about other agents’ policies for

the training. After training is completed, only the actors take actions based on their local

information during execution. This algorithm can be seen as a general-purpose MARL approach

because it i) enables decentralised execution manner by using only local information at execution

time for learned policies; ii) does not consider environments in which agents have explicit

communication mechanisms or a differentiable model of the environment dynamics; iii) suits

cooperative, competitive, and mixed cooperative-competitive environments since each agent have

a centralised critic, allowing for agents with differing reward functions.

Several works adopt centralised training and decentralised execution framework and use

MADDPG in the telecommunication area. In [92], the MADDPG algorithm is used to cooperate

with the multi-channel access and task offloading of MEC in Industry IoT. Reference [93] studies

the edge caching problem with the MADDPG-like algorithm. In this work, the cloud DC is taken

as the centralised critic, each base station is considered as an agent hosting actor-network,

and control channels allow the communication between the cloud DC and base stations. In

[94], authors also propose MADDPG-like algorithms for cooperative edge caching. The central

controller evaluates the actions taken by edge servers locally based on the global caching state

and feeds back the evaluation results to edge servers to optimise the following actions. In their

setting, actor-networks are deployed in the central controller, and each network is duplicated

in its assigned edge server. With such implementation, the local actor-network parameters can

be replaced by the central controller for updating. Simulation results of the above three works

prove the effectiveness of the MADDPG method in the MARL scenario. However, none of them is

NFV-related.
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To the best of our knowledge, only two works are studying virtual resource allocation with the

MARL approach. The first one studies the virtual network embedding (VNE) problem [95]. The

authors propose a decentralised MARL algorithm that dynamically allocates physical network

resources to multiple virtual networks in a coordinated way to improve the virtual network

acceptance ratio. QoS requirements such as the packet drop rate and virtual link delay are

satisfied. The learning environment consists of physical node agents and physical link agents.

Each node agent manages node queue sizes while each link agent manages link bandwidths. It is

assumed that each node agent has information on substrate node resource availability and all

the resource utilisation of virtual nodes mapped onto it, and each link agent has information on

substrate link resource availability and all the resource utilisation of virtual links mapped to it.

Link agents also coordinate together to make sure that no virtual link can be mapped to more

than one physical link. These agents dynamically adjust allocated resources to make sure that

resources are not left underutilised. Their proposed method belongs to the first class of solving

MARL problems: the generalisation of single-agent RL algorithms to the multi-agent setting. A

decentralised Q-learning algorithm iteratively approximates the state action value and optimises

the virtual nodes and virtual link mapping.

The second one studies the dynamic SFC-placement problem in IoT networks [96]. In this

article, the whole IoT network is modelled as an agent, and the cooperation of multiple IoT

networks is modelled through MARL. In the beginning, the cloud controller selects the IoT

devices to serve in the current time slot. Then, the virtual network agents implement SFCs of the

selected devices. The results of each DRL agent are combined in the central Q-table. Based on the

combined decision, the network status (environment) is updated, the rewards returned, and the

central policy updated accordingly. Each distributed DRL agent is a software element in the cloud

server which provides distributed SFC mapping solutions. The performance is measured through

the power consumption and the cost of nodes and links. To improve the long-term performance,

two Q-networks are introduced, where one solves the SFC-placement problem while the other

keeps track of long-term policy changes and adjusts the weights of the first Q-network. However,

on the one hand, this solution cannot address the partial-observability problem, on the other

hand, it faces a scalability problem for storing all agents’ decisions in the central Q-table.

As the SFCs scheduling problem can be modelled as the job-shop scheduling problem (JSSP),

this subsection provides JSSP-related works. Because centralised control of network states is

challenging to be implemented in some practical scenarios, in [97, 98], various multi-agent RL

algorithms have been presented to tackle reactive JSSPs. Compared to predictive scheduling,

reactive scheduling is online control concerned with making local decisions independently [97]. It

has several advantages, including the ability to: 1) respond effectively to unforeseen events (such

as a machine breakdown) without the need for complete re-planning; 2) solve the large-scale

scheduling problem in a reasonable time owing to its decentralised feature; 3) more practical in

real-world situations where no global control can be implemented, and communication between
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distributed working centres is impossible; 4) increase flexibility, save expenses, and may facilitate

humans and agent-based machinery to collaborate [97, 98]. Hence, the JSSP can be formulated

as a multi-agent MDP with changing action sets and then be solved in a distributed manner via

inter-agent coordination. The agents’ role is to select the next job from a list of jobs waiting to be

processed at some resource.

Authors in [97] model the reactive JSSPs as multi-agent RL problems. Each resource is

assigned an adaptive agent that makes job dispatching decisions independently of the other

agents and uses an RL algorithm to improve its dispatching behaviour from trial and mistake. In

each time step, the distributed RL agent observes the local state only, which contains condensed

information about its associated resource and the jobs waiting there, and takes judgments after

time intervals. They create a new multi-agent learning algorithm that incorporates data-efficient

batch-mode RL, neural network-based value function approximation, and an optimistic inter-

agent coordination mechanism to allow agents to learn in parallel. Because the immediate

global costs are also taken into account, this learning rule builds a relationship between the

local dispatching decisions and the overall optimisation goal. The expected long-term costs are

minimised and the resource utilisation is maximised when the number of time steps can be

minimised during which jobs are waiting for processing at the resources’ queues (i.e., makespan).

To do so, it must learn a decision policy that determines the optimum action for a given state.

Although partial observability makes finding an optimal schedule more challenging, it allows for

complete decentralisation in decision-making.

In [98], the reactive JSSP is also solved as a distributed problem with a large number of

independent agents making decisions based on local observation. Authors create a multi-agent

RL algorithm to solve reactive JSSPs featured by changing action sets (i.e., the list of jobs

waiting at resource) and partially ordered transition dependencies. Each resource has an RL

agent connected to it that uses probabilistic dispatching policies to determine which operations of

the jobs queued at the respective resource should be processed next. They propose a small set

of real-valued parameters for a compact representation. Using policy gradient RL, the agents

adjust these parameters during training to optimise their dispatching policies and minimise the

maximum makespan. Furthermore, they invent a lightweight communication mechanism that

improves the capabilities of independently learning agents, allowing them to become partially

aware of inter-agent dependencies.

The SFCs scheduling problem is more challenging compared to JSSPs [50]. Firstly, it is delay-

aware JSSPs as different SFCs associated with different latency requirements [50]. Dispatching

rules will consider resource capacity constraints, VNF ordering constraints, and the E2E latency

constraints for each flow. Secondly, the same type of VNF instance on different nodes with

different processing capacities increases the problem complexity. For example, processing VNFs

at the MEC node leads to high queueing latency but low propagation latency, while, processing

them at DC leads to low queueing latency but high propagation latency. It requires coordination
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between agents or global training. In Chapter 8, we will solve these two challenges.
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3
METHODOLOGY

In this chapter we provide the necessary methodology for the rest of the thesis. They include

mathematical modelling tools like Mixed Integer Linear Programming (MILP) in section 3.1,

Deep Reinforcement Learning (DRL) model in section 3.2 and Congestion Game in section

3.3; algorithms especially multi-agent reinforcement learning (MARL) algorithm in section 3.4;

management tools like OpenStack and Open Source MANO (OSM) in section 3.5. These tools

and methods are used for solving the QoS-aware NFV-RA problem in edge-cloud networks in this

thesis.

3.1 Mixed Integer Linear Programming

The SFC placement problem has been proved to be NP-hard in [78, 99]. The non-deterministic

polynomial-time (NP) theory belongs to computability theory and informally, the NP-hardness

defines a class of problems that are at least as hard as the hardest problems in NP [100].

The computability theory originated in the work of Turing and others in 1936, is a standard

computer model [101]. In this theory, the class P problems can be solved by some algorithms

within a limited number of steps bounded by some fixed polynomial-time, while the class NP

problems cannot be solved within polynomial-time by a non-deterministic Turing machine. For

problems that fall into the class of NP-hard, there has been no algorithm discovered yet to achieve

the optimal solution systematically [102].

To solve NP-hard problems, Integer Linear Programming (ILP) or Mixed-Integer Linear

Programming (MILP) models can be applied. ILP investigates linear programming problems

in which the variables are restricted to integers, while in MILP, only some of the variables

are constrained to be integers, and others are allowed to be non-integers [103]. The general
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problem is of the form: min cT x, subject to Ax = b, where x ≥ 0 and xi ∈ Z ∀i ∈ I. There are

many commercial-available optimization tools for solving ILP, and MILP models, such as Gurobi

Optimiser [104].

Although the ILP and MILP approaches can obtain the optimal solutions, they suffer the main

limitation of scalability. Authors of [103] provide proof that MILP problems are NP-Hard, and

their computational complexity grows exponentially with problem size [47]. When the problem

size is large, exact methods are no longer feasible. To improve the scalability, heuristic and

meta-heuristic algorithms can be adopted for near-optimal solutions, which means there is a

trade-off between the execution time and the quality of solutions [47]. Furthermore, designing an

effective heuristic or meta-heuristic algorithm requires expertise in the problem.

In recent years, thanks to the development of deep reinforcement learning (DRL), solving

NP-hard problems without the need for human involvement and not time-consuming has become

possible [102]. DRL learns how to make decisions, which is in alignment with the requirements of

mathematical optimisation problems. Benefiting from the deep neural network, DRL is capable

of solving large-scale problems [19]. For example, in an SFCs placement problem with large-scale

action spaces, DRL can exploit known information, explore new knowledge, evaluate actions by

interacting with the environment and learns optimal policy. In addition, once the agent is trained,

due to its strong generalization ability, it can solve problems that the algorithm never saw before

[83].

3.2 Deep Reinforcement Learning

Reinforcement Learning (RL) is learning how to map situations to actions so as to maximise a

numerical reward signal [105]. In RL, any decision-maker (learner) is called an agent, and any-

thing outside the agent is called the environment. The agent senses the environment frequently

and interacts with it to optimise its own goals. Figure 3.1 describes the interactions between the

agent and the environment. At time step t, the state of the environment is denoted as St. The

agent senses this state and performs a corresponding action At. Then, the environment state

changes to St+1 and a reward Rt+1 is generated as a feedback to the agent [89].

Beyond the agent and the environment, there are two main concepts in RL: a policy and a

value function. 1) A policy π is a learning agent’s way of behaving at a given time, which defines

how to map the perceived state to the action [105]. By interacting with the environment, the

agent can optimise its policy; if the selected action is followed by a poor reward, then the policy

will assign a low possibility to this action, while if it is followed by a good reward, then the

policy will assign high possibility. The policy is the core of an RL agent as it alone is sufficient to

determine behaviour [105]. 2) A value function calculates the long-term reward expectation [105].

To get a good result in the long run, the exploitation and exploration dilemma should be paid

attention since we need to explore the states as much as possible and exploit the best ones from
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FIGURE 3.1. Overview of Reinforcement Learning.

FIGURE 3.2. Overview of Deep Reinforcement Learning.

visited states.

By combining with Deep Learning (DL), RL achieves big success in recent years, for example,

Google’s DeepMind applied DRL to the Go play and the AlphaGo beats the best Go player [106].

The role of DL in DRL is to use the powerful representation capabilities of neural networks (NN)

to suit the RL agent’s strategy (mechanism shown in Figure 3.2) [107]. NN is composed of node

layers, including the input layer, one or more hidden layers, and the output layer. Each neuron,

connected with others, has an associated weight and bias as its own linear regression function

[108]. Learning from the training data, the NN adjusts the weights and biases of each neuron to

achieve outputs.

DRL is mainly used for making decisions in high-dimensional environments [89]. Thus, it

can be applied to solve various optimization problems automatically [83] and recent advances of

the DRL have been extended to solve NP-hard problems [89]. The action space of the DRL is the

search space in mathematical optimisation problems, and it usually has a large dimensionality. In

such a context, it usually relies on a policy-based learning method to effectively map an instance

of the problem (state) to a solution (action) [109]. Because of the exploring characteristic of DRL

training, the trained model has a strong generalisation property and can solve problems that it

has never seen before.
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DRL has also been applied to the research on multi-objective optimisation due to large

practical problems having multiple objectives. MORL problems necessitate a learning agent

obtaining action policies that can simultaneously optimise two or more objectives [79]. According

to the number of learned policies, MORL algorithms can be divided into two classes. One is

the single-policy MORL approach, and the other is the multiple-policy MORL approach [79].

In the single-policy MORL approach, the reward signal is a scalar and the best single policy

representing users’ preferences is going to be found. In the multi-policy MORL approach, the

reward signal is a vector, and a set of policies that represents a set of objectives are learned

together to approximate the true PF [79].

In this thesis, MORL is adopted to find the PF of the SFC placement problem. The simplest

way to achieve multi-policy RL is a weighted sum, that is, converting vector reward to a set of

weighted-sum scalar rewards. By running these scalar optimisation subproblems, the desired PF

can be solved [83].

3.3 Distributed Control and Congestion Game

Fundamentally, edge computing architectures are based on existing distributed system tech-

nologies and established paradigms [15]. It means that not only centralised control, but also

distributed control can be established. Compared to the centralised control where the edge

nodes rely heavily on the central DC to manage and orchestrate edge resources and networking

resources [15], the distributed control services reside on both edge nodes and DCs to provide

more scalable and flexible control and management [15]. Distributed systems have a long and

illustrious history on the internet. Interior gateway protocols like Open Shortest Path First

(OSPF) and Intermediate System-Intermediate System (IS-IS) are fully distributed. BitTorrent

and other distributed file-sharing applications have had a significant influence on content sharing.

All of these technologies aim to improve their core performance by removing centralised entities

[68].

The distributed control brings several advantages for the NFV-RA in edge-cloud networks.

They can be summarised as follows: 1) the distributed scheme offers scalability for a large

number of MEC nodes, the growth of the service requests, and the dynamic network changes;

2) single-point-of-failure can be avoided since many agents reduce the failure possibility for

the entire resource allocation scheme; 3) privacy can be guaranteed without disclosing private

information to the central controller or the third-party controller; 4) the distributed scheme

provides solutions considering the user-specific and individualistic behaviour and capture the

non-cooperative behaviour among competitive and individualistic entities, which is motivated

by self-interest rather than a shared goal; 5) due to the NP-hardness of the NFV-RA problem,

distributed solutions reduce the computational time to get competitive solutions [68, 71]. However,

it also faces several drawbacks, for example, the overhead to synchronise among distributed
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controllers [15].

For the distributed algorithm design, game theory is widely used [70]. It can be used to address

the problem of choosing the optimal decisions for each player in the presence of competition,

cooperation, or conflict [107]. A game model is usually made up of players, a set of strategies,

and utility functions. In general, the players who make decisions are dependent on the choices

of others. In game theory, players compete against each other in a series of turns to maximise

their payoff until they reach the Nash Equilibrium (NE). A NE is a stable scenario in which no

player has an incentive to deviate from its chosen strategy after considering the decisions of other

opponents [107].

Among all the game models, congestion games have been proposed in many networking

scenarios because of their ability to capture network resource congestion. Congestion games are

a type of game in which a group of players competes against each other for a limited number

of resources [110]. Each player’s strategy in the congestion game consists of selected resources

based on the cost of these resources, which can be reflected as the congestion over such resources.

The payoff of each player is determined by the number of players who choose the same resource

as it chooses. The congestion game also has a lot of appealing properties: 1) it possesses a Pure

strategy Nash Equilibrium (PNE) [110]; 2) the Finite Improvement Property (FIP) makes every

improvement path finite, allowing any improvement sequence to lead to a PNE [23]. Because it

holds a potential function, which is a real-valued function that records the changes in the cost

functions of players which unilaterally deviate from a strategy to another [111].

3.4 Multi-Agent Reinforcement Learning

Multi-agent Reinforcement Learning (MARL) has recently attracted great attention because

there are more and more situations including the cooperation and competition among multiple

agents, such as multiplayer games and unmanned aerial vehicles (UAVs) [89]. In MARL, a set of

agents interact with the common environment and in some mechanisms, they can communicate

with each other [89].

The MARL problem is generally formulated as a Stochastic Game [88]: the number of agents

can be denoted as n, a discrete set of environmental states as S, and a set of actions for each

agent as A i, i = 1,2, ...,n. The joint action set including actions of all agents is represented as

A = A1×A2×...×An. The state transition probability function can be defined by p : S×A×S → [0,1]

and the reward function is specified as r : S× A×S →Rn.

Extending from single-agent to multi-agent environment, there are several challenges that

must be considered: 1) non-stationarity due to the agents simultaneously acting; 2) centralised

control or decentralised control when the joint action space grows exponentially with the number

of agents; 3) full observability or partial observability; 4) Cooperative, competitive, or mixed

environments [88, 89, 112, 113]. Unlike a single-agent system, the rewards and the environment
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transition probabilities of an agent may not be stationary, as they depend on the other agents’

actions and their updated policies, respectively. The Markov property does not hold anymore

and the convergence property is not guaranteed in most MARL problems [114]. Moreover, in

some privacy cases, each agent can only access its local observation and not be allowed to share

such information with other agents [113]. Therefore, the centralised training and decentralised

execution method, proposed independently in [90, 91], are widely used in recent research works to

ease implementation and improve stability [115]. Compared to this method, the fully centralised

method suffers from scalability problems, and the fully decentralised method cannot guarantee

convergence.

The centralised learning and decentralised execution scheme has recently become a standard

paradigm in MARL [89, 90]. Taking into account the ease of training process and convergence

performance, all agents are trained together by a centralised method having fully observations,

while considering the communication constraints and partially information observability during

execution time, decentralised execution is adopted where each agent can take actions based on

its own observations [89]. In both [91] and [90], authors propose an actor-critic policy gradient

method for Q-learning, allowing the critic to use the policies of other agents for the training

purpose, while, the actors to use their local information for the execution in a decentralised

manner. There are two separate neural networks involved in the actor-critic algorithm: 1) actor-

network: taking action according to the local observation and transferring to the critic-network

for evaluation; 2) critic-network: using a Temporal Difference (TD)-error function to indicate the

future tendency of the selected action [89].

As for the relationship among agents, there are four types: 1) cooperative; 2) competitive;

3) mixed cooperative and competitive; 4) self-interested [116]. In a fully cooperative setting, all

agents usually share a common reward function, i.e., R1 = R2 = ... = Rn [116]. Authors in [90]

solve a fully cooperative multi-agent task as a stochastic game. In a fully competitive setting,

multi-agent tasks are typically modelled as zero-sum stochastic/Markov games. A mixed setting

can be modelled as the general-sum stochastic game [117]. When each agent is self-interested,

each agent maximises its own objective, and their rewards may be conflicting. The methods

proposed in [91], can be applied to both cooperative and competitive environments.

3.5 Management Tools

3.5.1 OpenStack

OpenStack is a cloud computing platform developed by NASA for the control of large pools of

computing, storage, and networking resources [119]. It enables administrators and researchers

to deploy Infrastructure as a Service (IaaS) infrastructure. As shown from Figure 3.3, OpenStack

provides a series of Application Programming Interfaces (APIs) to allow applications to access

the underlying infrastructure resources and fulfil control and management functions. From
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FIGURE 3.3. OpenStack Cloud Operating System [118].

this figure, we can also see an OpenStack dashboard where administrators control and user

resources provision is supported [120]. In addition to resource provision, control, and management,

OpenStack enables orchestration, fault management, and service management [120].

The main characteristics of OpenStack are 1) Scalable: as a worldwide solution implemented

in various companies, it is capable of managing up to 1 million physical machines, 60 million

virtual machines, and billions of stored objects [119]. 2) Compatible and Flexible: it supports

most virtualization solutions of the market, including ESX, Hyper-V, KVM, LXC, QEMU, UML,

Xen, and XenServer, and it can be applied in both private and public clouds [121]. 3) Open: it

is an open-source technology whose codes can be modified, and it also provides a validation

process for new standards [119]. With these features, OpenStack has great potential in the 5G

communication system.

Figure 3.4 shows components of OpenStack. Among them, OpenStack Compute, Image, and

Object are three main components [119]. OpenStack Compute, named Nova, is a management

platform that controls the access, servers, and networks. It is essential for OpenStack as it

provides IaaS by controlling the hypervisor services, handling the lifecycle management of

instances, creating VLAN/DNS/Bridges and firewall rules, and determining where tasks should be

executed [119, 123]. Glance is the OpenStack Image service providing storage services, recording
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FIGURE 3.4. Components of OpenStack [122].

and distributing the images to VM disks, and allowing querying of VM image metadata and

catalogue through APIs [121]. Swift is the OpenStack Object Storage used to store petabytes

of data with multiple access points on distributed architecture to avoid Single Point of Failure

(SPoF) [119].

Other components include the OpenStack dashboard (Horizon), authentication system (Key-

stone), networking services (Neutron) [119]. Neutron provides network connectivity among

devices managed by Nova, which enables the management of dynamic host configuration pro-

tocol (DHCP), static Internet protocol (IP), and virtual area networks (VLAN) along with other

advanced policies [121]. All of the configuration and management information generated by

OpenStack are stored in the MySQL database management system by default [121]. In the

implementation, MySQL is installed on the controller of the network, and it is essential for basic

cloud services.

3.5.2 Open Source MANO

In this subsection, MANO will be explained in detail. The MANO framework is proposed by ETSI

NFV Industry Specification Group (ISG) [18]. It enables an integrated and holistic approach

to the management of resources and network services [24]. To be more specific, it controls the

lifecycle and configuration of VNFs, NSs, network slices, manages and orchestrates the virtualized

resources, and monitors the network performance [124]. In addition, a database is included in the

MANO system for the storage of resource and network service-related information, such as the

lifecycle properties of VNFs and NSs, data models for the NSs deployment, as well as resource

status [21].

Open Source MANO (OSM) is a solution to the proposed MANO framework. It is an orches-

tration and management system and aims to support the broadest range of NFVI, Virtualised

Infrastructure Managers (VIMs), WAN Infrastructure Managers (WIMs) as well as the broadest

possible range of VNFs, NSs, and network slices [124]. VIMs control the VMs and containers

while WIMs control the virtual links [124]. Hence, as we can see from Figure 3.5, OSM acts as an
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FIGURE 3.5. OSM in Service Platform View [124].

E2E NS orchestrator in the network.

The stages of the lifecycle of the NS in the E2E NS orchestrator include modelling, onboarding,

creation, operation, and finalisation [124]. OSM’s Information Model (IM) is capable of modelling,

and the models can be used as the templates for NSs creation. Then, the NS and NF packages

will be onboarded in OSM. After creating an NS, OSM will control the NS instance-related Read,

Update, and Delete operations.

At the top of Figure 3.5, a unified Northbound Interface (NBI) facing OSS/BSS of the network

is provided by the OSM. By integrating with the existing BSS, it provides a commercial gateway

to an NS. With the existing OSS, it will treat an NS as a component in an existing service

composition framework [12]. The NBI enables the full control of NSs. It can provide all the

necessary abstractions for the control, operation, and supervision of the NSs and network slices

lifecycle and hide unnecessary details of its constituent elements at the same time [124].

At the bottom of Figure 3.5, the connections between OSM and NFs, VIMs, and WIMs are

shown. Through them, OSM gets access to the hosted functions and infrastructures. NSs are

composed of VNFs, physical network functions (PNFs), and hybrid network functions (HNFs) in

different domains, such as private infrastructure, public cloud, assess network, and transport

network. To enable the control of NSs spanning across different domains, there are broad types
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FIGURE 3.6. Next-Generation 5G Architecture [12].

of OSM Southbound, which can work with VIM interfaces (OpenStack, VMWare, OpenVIM, and

Kubernets), SDN interfaces (ODL, ONOs, and Floodlight), VNF interfaces and domain interface

[12, 124].

Figure 3.6 shows how the OSM controls the E2E network and services in the 5G architecture.

From the RAN to the MEC, from the MEC to the central DC, OSM controls the computing

resources and VNFs through the connection with the VIM, which interacts with infrastructure

to manage the lifecycle, and the VNFAccess (VNFA), which interacts with VNF instances to

manage configuration and monitoring. In addition, OSM controls the networking resources and

connections by interacting with the SDN Controller (SDNC) to configure and manage network

infrastructures and connectivity [12].

The OSM fulfils its resource management and orchestration function from two aspects. On

the one hand, it provides the location of VNFs, the topology of existing NSs, and the resource

utilization of VMs, containers, and servers to the planning tools, which can decide the composition

and resource allocation of new NSs [21, 124]. On the other hand, OSM’s IM provides a mechanism

for different providers to describe the internal topology, required resources, procedures, and

lifecycle of their NFs in the NF Packages [124].
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SINGLE-OBJECTIVE OPTIMISATION FOR SFCS PLACEMENT

The latency-aware SFCs placement problem is crucial to flexibly support ultra-low latency

services and efficiently use limited resources in MEC nodes. In this chapter, this problem is

studied in a multi-layer edge-cloud network scenario. Service requests with different data

rates, E2E latency, and VNFs are placed on MEC nodes, edge DCs, and core DCs interconnected

via optical links. By adopting different mathematical latency calculation methods for the MEC

nodes and DCs in the designed MILP model, both MEC resources can be better utilised, and

ultra-low latency requirements can be satisfied under different workloads. For solving large-

scale problems, a Data Rate-based Heuristic Algorithm is designed, which can reach ≤ 1.5

approximation ratio under simulation scenarios and at least 1.7 times as much service acceptance

ratio as the first-fit baseline algorithm.

4.1 Introduction

The combination of MEC, NFV, and optical technology is necessary to satisfy the low latency and

high capacity requirements of the 5G network. As more and more upcoming network applications

are time-critical (e.g., AR, smart manufacturing, real-time gaming), MEC technology can support

them at a place closer to end-users, and optical networks can support high-speed transmission.

Furthermore, the virtualisation capability brought by NFV guarantees flexible service processing

according to their latency requirements.

To leverage the advantages provided by the combination of technologies, several challenges

have to be addressed for solving the SFC placement problem in edge-cloud networks: 1) the

hierarchical network characterised by different resource capacities in different network domains

makes the resource allocation more difficult than before [125]; 2) the various QoS requirements

of network services such as E2E latency and data rate need to be satisfied in the same network;
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3) the optical layer and its related constraints should be considered because it supports high-

capacity and high-speed communications (around 1 Gbps data rate) [3] and OEO conversion

latency around 100 µs cannot be ignored [126] for ultra-low latency services.

In this chapter, the challenges mentioned above are addressed. Firstly, a multi-layer MILP

model including virtual function layer, IP layer, and optical layer is designed to minimise the

total service E2E latency consisting of processing, queueing, transmission, propagation, and OEO

conversion latency. Despite numerous efforts that have been made to address the latency-aware

SFCs placement problem, the optical layer and the hierarchical network characteristic have not

been studied together in the existing MILP models [8, 43, 46, 51, 52, 55]. However, considering

both of them is essential to the problem in the realistic edge-cloud networks. The proposed MILP

model in this chapter narrows such gaps by adding the optical layer and adopting different

mathematical models for MEC nodes and DCs. Secondly, a heuristic algorithm called the Data

Rate-based Heuristic Algorithm is designed based on the optimal resource allocation pattern

obtained from the MILP model to solve a large-scale problem.

The main contributions can be summarised below as:

1) A novel multi-layer MILP model is designed, and the optical layer is added for the first

time. Optical layer-related constraints, such as the wavelength resource limitation, the mapping

of virtual link to optical link, and the wavelength continuity constraint, are properly modelled.

Taking into consideration the computing resource hierarchical property, the M/M/1 queueing

model is only used to calculate processing, queueing, and OEO conversion latency at MEC nodes.

While the resource capabilities of DCs are larger, neither queueing nor OEO conversion latency

is taken into account.

2) A heuristic algorithm is designed to serve more ultra-low latency services with limited

MEC node resources. It can replace VNFs from MEC nodes to DCs when the MEC nodes are

overloaded. Its performance is compared with the MILP model in the small-scale network and

with the first-fit heuristic algorithm in the large-scale network. Simulation results prove that

it can both maximise the MEC resource utilisation and improve the SAR for ultra-low latency

services.

The rest of this chapter is organised as follows. Section 4.2 states the problem and formulates

the MILP model. Section 4.3 introduces simulation settings and analyses the simulation results

of the MILP model. Section 4.4 explains the Data Rate-based Heuristic Algorithm and discusses

its performance. Finally, Section 4.5 concludes this work.

4.2 MILP Formulation for Single-Objective SFCs Placement

4.2.1 Network Topology and Problem Statement

We consider a three-level network topology, encompassing access, metro, and core networks, as

illustrated in Figure 4.1. In this network, computing nodes are categorised as MEC nodes, Edge
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FIGURE 4.1. 5G Network Topology and SFCs Placement [2]

DCs (EDCs), and core DCs (CDCs) based on their locations and resource capacities. MEC server

is expected to be located close to 4G/5G base stations (i.e., eNodeBs) or macro-base stations (MBS)

[25, 127], while EDC and CDC are located at the metro and core network, respectively. EDC and

CDC have far more resources than the MEC server, which has limited computing and storage

resources. Other network nodes are switching nodes that have no computing resources. Each

network node contains an IP router and an Optical Cross Connector (OXC) [128]. All the network

nodes are connected through Wavelength Division Multiplexing (WDM) optical links.

The latency-aware SFCs placement problem can be stated as follows. Given the hierarchical

5G network topology, resource capacities, and all the SFC requests, we need to map VNFs on

computing nodes and map virtual links to optical links to minimise the service E2E latency for

all demands while satisfying all the constraints. The bottom of Figure 4.1 shows an example

of the SFC placement. There are seven different VNFs in this SFC, and they are placed on

MEC nodes (A and E), EDCs (B and C) and CDC (D) according to the placement results. If two

neighbouring VNFs are placed at different computing nodes, after the data is processed by the

first VNF, the electrical traffic will be converted to optical traffic before being aggregated with
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other optical traffic by a multiplexer (MUX). Then, combined optical traffic will be transmitted via

a single wavelength λ along the lightpath. When it reaches the destination node, optical traffic is

dropped by a demultiplexer (DEMUX) and converted to electrical traffic, and then processed at

the computing node where the second VNF is placed.

The E2E latency for the single service includes:

1) Processing latency: the time period data is processed at the computing nodes;

2) Queueing latency: the time period data is queued in an electronic buffer, which only

happens at the MEC servers in our MILP model;

3) Transmission latency: the time period the whole packet is transmitted from node to link;

4) Propagation latency: the time period traffic transmitted in each WDM link;

5) OEO conversion latency: the time period signals converted from optical to electrical, and

vice versa, are all called OEO conversion latency in this chapter.

4.2.2 MILP Formulation

4.2.2.1 Input Parameters

To formulate the latency-aware SFC placement problem, the network infrastructure is coded as

follows.

The network infrastructure is modelled as a directed graph G = (N,LP ), with N representing

the set of nodes, and LP representing the set of optical links. Among all of the nodes, Nv represents

the node with computing resources, and NSWN represents the node with switching capability only.

Nv includes MEC servers, EDCs, and CDC, denoted as NMEC, NEDC, and NCDC, respectively.

MEC servers have much lower resources compared to DCs and are located near 5G base stations

(i.e., eNodeBs) [25]. The switching node in this model includes the router and the OXCs.

A processing node n ∈ Nv is characterised by the computing resource, buffer, and OEO

conversion-related resource (including OE and EO), denoted as ncpu,nbuf , and noeo, respectively.

As CPU is usually defined as the bottleneck in most VNFs, while other hardware resources

are relatively sufficient in most cases [43], the storage resource is not included. Switching node

n ∈ NSWN has only OEO conversion-related resources. The different resource utilisation ratio on

node n is ucpu
n ,ubuf

n ,uoeo
n , individually.

A physical link (n,n′) ∈ LP indicates a link from node n to n′, with the length len(n,n′). The

total number of wavelength in the network is W and the w−th wavelength in the set of wavelength

is w ∈ [1, |W |]z. (| · | represents the number of elements in the set, and [A,B]z represents the set of

integers from A to B). In the physical link (n,n′), the transmission capacity of w− th wavelength

is Bw
(n,n′). In optical fibre, the light speed is lv. A lightpath (l, l′) from node l ∈ Nv to node l′ ∈ Nv

belongs to the set of lightpath Ll p. Q(l,l′) represents the number of lightpaths from node l to l′.
We use q(l,l′) to denote the q− th lightpath on (l, l′), q ∈ [1, |Q(l,l′)|]z.

F defines the set of different types of VNFs, and m ∈ F stands for the specific m type VNF.

Different VNFs require different amount of computing resource, buffer, and OEO conversion-
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related resource, denoted as βcpu
m ,βbuf

m ,βoeo
m , respectively. In addition, the scaling attribute of

different VNF is different. We use δm to represent this attribute. The output data rate voutput

for each flow is determined by the input data rate vinput and the scaling attribute, which can be

computed by voutput = δm ·vinput.

The symbols that represent the MILP model’s input parameters are provided in Table. 4.1.

These input variables include all the variables stated above, such as network topology, node and

link resources, and VNF attributes. In addition, service requests are also the input variables.

The set of service requests is K and the chain of VNFs makes up each service request k ∈ K .

The number of VNFs required by the service request k is Ok. The o− th VNF in the SFC k is

represented by o ∈ [1, |Ok|]z. In addition, service request is also characterised by the source node

s ∈ Nv and destination node d ∈ Nv, data rate vk, required E2E latency DRk, and packet size

TSk.

The o− th VNF in the service request k has a data rate of vk,o
m . For the first VNF in SFC,

vk,1
m = vk. For the other VNF, vk,o

m = δ
k,o−1
m′ · vk,o−1

m′ . The computing resource , buffer, and OEO

conversion-related resource required by the o− th VNF of service request k, can be represented

by Ck,o,cpu
m ,Ck,o,buf

m ,Ck,o,oeo
m , respectively. The following three equations can be used to compute

the required resource amount: Ck,o,cpu
m =βcpu

m ·vk,o
m , Ck,o,buf

m =βbuf
m v̇k,o

m , and Ck,o,oeo
m =βoeo

m ·vk,o
m .

After receiving the service request, VNFs should be mapped on physical nodes, and virtual

links between VNFs should be mapped to underlying physical links, while satisfying E2E latency

requirement and resource capacity limitation [40]. suitm,n is a binary indicator representing

whether the VNF can be supported by the node n or not.

4.2.2.2 Output Variables

The resulting placements are represented by the following output variables in Table. 4.2.

4.2.2.3 Objective

The objective function shown in equation (4.1) is the minimisation of service E2E latency D total

composed of processing latency DPk, queueing latency DQk, transmission latency DTk, propaga-

tion latency DGk, and OEO conversion latency DCk for all demands. It is worth mentioning that

this objective can avoid congestion and leave enough resources at the MEC node to support ultra-

low latency services because it can route traffic from MEC nodes to DCs when the DQk +DCk at

the MEC node is larger than the DTk +DGk caused by the transmission from the MEC node to

the DC.

(4.1) minD total = ∑
k∈S

(DPk +DQk +DTk +DGk +DCk)
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Table 4.1: Input Parameters of Single-objective Optimisation Model

G directed network graph, G = (N,LP )

N the set of nodes, including MEC servers NMEC , EDCs NEDC , CDCs
NCDC , and switching nodes (SWN) NSWN

LP the set of physical links

n physical node, n ∈ N

(n,n′) physical link connecting node n and n′, (n,n′) ∈ LP

len(n,n′) the length of physical link

w the w− th wavelength in the set of wavelengths W

ncpu, nbuf , noeo computing resources, buffer, and OEO conversion related resources in
node n

ucpu
n , ubuf

n , uoeo
n computing resources, buffer, and OEO conversion related resources

utilisation ratio on node n

Bw
(n,n′) transmission capacity of each wavelength

(l, l′) lightpath from node l to l′ in the set of lightpaths Ll p

q(l,l′) the q− th lightpath in the set of lightpaths Q(l,l′)

m the m− th type of VNFs in the set of VNFs F

β
cpu
m , βbuf

m , βoeo
m computing resources, buffer and O/E/O conversion related resources

required by the VNF

δm the scaling attribute of the VNF

suitm,n a binary variable indicating whether the VNF can be supported by
node n or not

k the k− th service request in the set of all service requests K

lk
s,d the link between source and destination node of the service request

Ok the number of VNFs required by the service request

o the o− th VNF in the service request, o ∈ [1, |Ok|]z

vk the data rate required by the service request

vk,o
m the data rate for the o− th VNF in the k− th service request, vk,o

m =
δ

k,o−1
m ·vk,o−1

m if o > 1, else vk,o
m = vk

Ck,o,cpu
m , Ck,o,buf

m , Ck,o,oeo
m computing resources, buffer and OEO conversion related resources

required by the VNF, which are proportional to the required data rate,
e.g.Ck,o,cpu

m =βcpu
m ·vk,o

m

DRk the latency required by the service

TSk the packet size required by the service

zk,o,cpu
n , zk,o,buf

n , zk,o,oeo
n average processing, queueing, and OEO conversion latency

zk,o,cpu
n,max , zk,o,buf

n,max , zk,o,oeo
n,max the maximum processing, queueing, and OEO conversion latency

ar, br, cr, dr, er, gr coefficients for the r− th piecewise linearisation in all function sets R
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Table 4.2: Output Variables of Single-objective Optimisation Model

xk,o
m,n a binary variable indicating whether the VNF in the service request is placed on

node n or not

yk,o,m
(l,l′),q a binary variable indicating whether lightpath is selected on the path between

the o− th and the (o+1)− th VNF or not

ywk,o,m
(l,l′),q,w a binary variable indicating whether wavelength in (l, l′) is selected on the path

between the o− th and the (o+1)− th VNF or not

twk,o,m
(l,l′),q,(n,n′),w a binary variable indicating whether wavelength in (n,n′) is selected on the path

between the o− th and the (o+1)− th VNF or not

ˆf k
n a binary variable indicating whether the node is used by the service chain or not,

if xk,1
m,n = 1 ∀n ∈ NMEC or

∑
o∈[1,|Ok |−1]z

∑
(l,l′)∈Ll p

∑
q∈Q(l,l′)

∑
w∈[1,|Wk |]z

∑
a∈N

twk,o,m
(l,l′),q,(n,a),w +∑

o∈[2,|Ok |]z

∑
(l,l′)∈Ll p

∑
q∈Q(l,l′)

∑
w∈[1,|Wk |]z

∑
a∈N

twk,o−1,m
(l,l′),q,(a,n),w = 1 ∀k ∈ K ,n ∈ Nv, it equals 1,

otherwise, it equals 0

4.2.2.4 Constraints

a) VNF Placement

Constraint (4.2) ensures that the o− th VNF can only be mapped on one VNF instance on the

node that can support it.

(4.2)
∑

n∈N
xk,o

m,n · suitm,n = 1 ∀ m ∈ F,k ∈ K , o ∈ [1, |Ok|]z

b) Node and Link Resources

Equations (4.3)-(4.5) guarantee that the required computing resources, buffer, and OEO conversion-

related resources do not exceed the available resource capacities of physical nodes. The resource

constraint for optical link is represented by (4.6).

(4.3)
∑
k∈K

∑
o∈[1,|Ok|]z

xk,o
m,n ·Ck,o,cpu

m ≤ ncpu ∀ n ∈ N

(4.4)
∑
k∈K

∑
o∈[1,|Ok|−1]z

∑
(l,l′)∈Ll p

∑
q∈Q(l,l′)

∑
w∈[1,|Wk|]z

· ∑
a∈N

twk,o,m
(l,l′),q,(a,n),w ·Ck,o,buf

m ≤ nbuf ∀ n ∈ N

(4.5)
∑
k∈K

∑
o∈[1,|Ok|−1]z

∑
(l,l′)∈Ll p

∑
q∈Q(l,l′)

∑
w∈[1,|Wk|]z

· ∑
a∈N

twk,o,m
(l,l′),q,(a,n),w ·Ck,o,oeo

m ≤ noeo ∀ n ∈ N

(4.6)
∑
k∈K

∑
o∈[1,|Ok|−1]z

∑
(l,l′)∈Ll p

∑
q∈Q(l,l′)

twk,o,m
(l,l′),q,(n,n′),w ·vk,o

m ≤ Bw
(n,n′)∀ n ∈ N
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c) Link Mapping

Flow conservation constraint is presented in (4.7). Equation (4.8) makes sure that the wave-

length continuity between two VNFs placed on different nodes. Equation (4.9) and (4.10) are the

relationship constraints between lightpaths and optical fibre links.∑
(l,l′)∈Ll p

∑
q∈Q(l,l′)

∑
w∈[1,|Wk|]z

∑
a∈N

twk,o,m
(l,l′),q,(n,a),w − ∑

(l,l′)∈Ll p

∑
q∈Q(l,l′)

∑
w∈[1,|Wk|]z

∑
a∈N

twk,o,m
(l,l′),q,(a,n),w

= xk,o
m,n − xk,o+1

m,n ∀ k ∈ K , o ∈ [1, |Ok|−1]z,n ∈ N
(4.7)

(4.8)
∑

w∈[1,|Wk|]z

ywk,o,m
(l,l′),q,w = yk,o,m

(l,l′),q∀ k ∈ K , o ∈ [1, |Ok|−1]z, (l, l′) ∈ Ll p, q ∈Q(l,l′)

(4.9)

twk,o,m
(l,l′),q,(n,n′),w ≤ ywk,o,m

(l,l′),q,w∀ k ∈ K , o ∈ [1, |Ok|−1]z, (l, l′) ∈ Ll p, q ∈Q(l,l′), (n,n′) ∈ Lp,w ∈ [1, |Wk|]z∑
n∈N

twk,o,m
(l,l′),q,(n,n′),w − ∑

i∈N
twk,o,m

(l,l′),q,(n′,n),w

=


ywk,o,m

(l,l′),q,w i f n′ = l′

−ywk,o,m
(l,l′),q,w i f n′ = l

0 otherwise

∀ k ∈ K , o ∈ [1, |Ok|−1]z,

(l, l′) ∈ Ll p, q ∈Q(l,l′),w ∈ [1, |Wk|]z,n′ ∈ N

(4.10)

d) Latency

The E2E latency includes processing, queueing, transmission, propagation, and OEO conversion

latency, which can be calculated as follows. Considering that MEC servers are equipped with much

fewer resources compared with DCs, the processing, queueing, and OEO conversion overheads

are modelled as the M/M/1 queueing model in MEC nodes, whereas there are no such overheads

in DCs [51, 129].

Processing latency DPk only happens at the computing nodes and can be obtained by equation

(4.12).

(4.11) ucpu
n = (

∑
k∈K

∑
o∈[1,|Ok|]z

xk,o
m,n ·Ck,o,cpu

m )/ncpu ∀n ∈ Nv

DPk = ∑
n∈N

∑
o∈[1,|Ok|]z

xk,o
m,n ·

1
(1−ucpu

n ) ·ncpu
= ∑

n∈N

∑
o∈[1,|Ok|]z

xk,o
m,n · (ar ·ucpu

n +br)

= ∑
n∈N

∑
o∈[1,|Ok|]z

zk,o,cpu
n ∀k ∈ S

(4.12)

The Big-M method is used for the linearisation of the conduct of a binary variable and

a continuous variable, and the upper bound of 1/(1− ucpu
n ) is zk,o,cpu

n,max . Piecewise linearisation

functions equation (4.13) and (4.14) are used to approximate the processing latency [8].

zk,o,cpu
n ≤ xk,o

m,n · zk,o,cpu
n,max ∀k ∈ K , o ∈ [1, |Ok|]z,n ∈ Nv(4.13)
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ar ·ucpu
n +br ≤ zk,o,cpu

n + (1− xk,o
m,n) · zk,o,cpu

n,max

∀k ∈ K , o ∈ [1, |Ok|]z,n ∈ Nv
(4.14)

Queueing latency DQk and OEO conversion related latency DCk can be calculated by equation

(4.16) and (4.20), respectively. Similar to the linearisation process of processing latency, we use

equation (4.17), (4.18), (4.21), and (4.22) to estimate the queueing and OEO conversion latency

[8].

(4.15)

ubuf
n = (

∑
k∈K

∑
o∈[1,|Ok|−1]z

∑
(l,a)∈Ll p

∑
q∈Q(l,a)

∑
w∈[1,|Wk|]z

· ∑
(n,n′)∈Lp

twk,o,m
(l,a),q,(n,n′),w ·Ck,o,buf

m )/nbuf ∀ l ∈ Nv

(4.16) DQk = ∑
n∈NMEC

∑
o∈[1,|Ok|]z

zk,o,buf
n ∀ k ∈ K

(4.17) zk,o,buf
n ≤ xk,o

m,n · zk,o,buf
n,max ∀ k ∈ K , o ∈ [1, |Ok|]z,n ∈ Nv

(4.18) cr ·ubuf
n +dr ≤ zk,o,buf

n + (1− ˆf k
n ) · zk,o,buf

n,max ∀ k ∈ K , o ∈ [1, |Ok|]z,n ∈ Nv, r ∈ [1, |R|]z

(4.19) uoeo
n = (

∑
k∈K

∑
o∈[1,|Ok|−1]z

∑
(l,a)∈Ll p

∑
q∈Q(l,a)

∑
w∈[1,|Wk|]z

· ∑
(n,n′)∈Lp

twk,o,m
(l,a),q,(n,n′),w·C

k,o,oeo
m )/noeo ∀ l ∈ Nv

(4.20) DCk = ∑
n∈NMEC

∑
o∈[1,|Ok|]z

zk,o,oeo
n ∀ k ∈ K

(4.21) zk,o,oeo
n ≤ xk,o

m,n · zk,o,oeo
n,max ∀ k ∈ K , o ∈ [1, |Ok|]z,n ∈ N

(4.22) er ·uoeo
n + gr ≤ zk,o,oeo

n + (1− ˆf k
n ) · zk,o,oeo

n,max ∀ k ∈ K , o ∈ [1, |Ok|]z,n ∈ N, r ∈ [1, |R|]z

Transmission latency DTk happens only at the source node of the lightpath.

(4.23) DTk = ∑
o∈[1,|Ok|−1]z

∑
(l,l′)∈Ll p

∑
q∈Q(l,l′)

∑
w∈[1,|Wk|]z

· ∑
(n,n′)∈Lp

twk,o,m
(l,l′),q,(n,n′),w ·TSk/vk,o

m ∀ k ∈ S

Propagation latency happens at every chosen physical link for the traffic routing.

(4.24) DGk = ∑
o∈[1,|Ok|−1]z

∑
(l,l′)∈Ll p

∑
q∈Q(l,l′)

∑
w∈[1,|Wk|]z

· ∑
(n,n′)∈Lp

twk,o,m
(l,l′),q,(n,n′),w · len(n,n′)/lsw ∀ k ∈ K

Constraint (4.25) ensures that the total latency experienced by all SFC functions does not

exceed its E2E latency requirement.

(4.25) (DPk +DQk +DTk +DGk +DCk)≤ DRk ∀ k ∈ K
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EDC0

MEC0 MEC1

SWN0

CDC0

Figure 4.2: 5-Node Network Topology

4.3 MILP Simulation Evaluation

4.3.1 Simulation Setup

The MILP model is evaluated on a small-scale network with two MEC servers (MEC0 and MEC1),

one EDC (EDC0), one CDC (CDC0), and one switching node (SWN0) shown in Figure 4.2. We

assume that each MEC node has 512 CPU cores [1], EDC and CDC have 2560 and 5120 CPU

cores, which are 5 and 10 times the CPU cores in the MEC node, respectively [55]. On MEC

nodes, the buffer is set to 2048 units [3]. According to equation (4.20), the OEO conversion-

related resources are set to 200 units to make sure that all the 1ms services can be accepted

in our model even when all the resources are 98% used. There are 4 bidirectional physical

links, each link with 4 wavelengths and a capacity of 25 Gbps for each wavelength. The length

of physical links (NMEC0, NSWN0), (NMEC1, NSWN0), (NSWN0, NEDC0), and (NSWN0, NRDC0) are

10km, 10km, 25km and 300km, respectively.

There are 6 service types evaluated, including Cloud Gaming, Augmented Reality (AR),

Voice over Internet Protocol (VoIP), Video Streaming, Massive Internet of Things (MIoT), Smart

Manufacturing, and Non-real Time services. Table. 4.3 lists their percentage, data rate, E2E

latency, and VNF chains requirements. The size of these services is randomly generated from

[1MB,2MB] according to uniform distribution [49]. For the source and destination setting, Smart

Manufacturing and MIoT services have the same source and destination MEC node, AR services

have the different MEC node as source and destination, while other types of services have the

randomly chosen source and destination.

There are 11 VNF types taken into account, including Data Pre-processing (DP), Network

Address Translation (NAT), Firewall (FW), Intrusion Detection (ID), WAN Optimiser (WO),

Flow Monitor (FM), Video Transcoder (VT), Application Accelerator (AA), Learning (LR), Motion

Control (MC) and Transmitter (TM). The computing resource and buffer required by different

VNFs are in Table. 4.4. The OEO resources are all set to 0.001 to prevent exceeding the associated

resource capacity. Each SFC includes 6 VNFs and their orders are shown in Table. 4.4. Among
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all the VNFs, the ’Transmitter’ function consumes no resource but is included in SFCs for the

purpose of routing traffic to the destination because it can only be supported by the destination

node.

The MILP model is solved by the Gurobi solver [130] on an IBM System, with 24GB RAM

and dual-core AMD opteron processor.

Table 4.3: Service Requests Setting [1][2]

Service Percentage Data Rate Latency VNF Chain

Cloud Gaming 25% 4Mbps 80ms NAT-FW-VT-WO-ID-TM

Augmented Reality 25% 100Mbps 1ms NAT-FW-FM-VT-ID-TM

VoIP 1.5% 0.064Mbps 250ms NAT-FW-FM-FW-NAT-TM

Video Streaming 25% 4Mbps 100ms NAT-FW-FM-AA-ID-TM

MIoT 7.02% 100Mbps 5ms NAT-FW-DP-LR-ID-TM

Smart Manufacturing 7.03% 100Mbps 1ms NAT-FW-MC-TM-TM-TM

Non-real Time 9.45% (4,100)Mbps 500ms NAT-FW-WO-LR-ID-TM

Table 4.4: VNF CPU Resource Requirements [1, 3]

VNF CPU Buffer Scale VNF CPU Buffer Scale

DP 0.003 0.006 0.5 NAT 0.00092 0.00092 1

FW 0.0009 0.00135 1 ID 0.0107 0.0107 1

WO 0.0054 0.0108 1 FM 0.0133 0.0399 1

VT 0.0054 0.0054 2 AA 0.003 0.003 0.5

LR 0.008 0.008 1 MC 0.008 0.016 1

TM 0 0 1

4.3.2 Simulation Results and Analysis

The average total E2E latency results can be obtained by running the MILP model 10 times on

the 5-Node network topology, as shown in Figure 4.3(a). It can be seen that the total latency

grows slowly at the beginning because when the total number of service requests is less than 200,

the MEC nodes have enough resources, and all the services can be processed at the MEC nodes.

When the total number of service requests increases from 200 to 500, the total latency increases

at a faster rate because firstly, the MEC nodes are overloaded and the processing latency at MEC

nodes is increased, secondly, the transmission latency and propagation latency are added induced

by routing services from MEC nodes to other nodes. The maximum number of service requests is

500 because the simulation result for larger than 500 requests cannot be reached by solving the

MILP model on the IBM server with limited RAM capability (16 GB).
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FIGURE 4.3. Simulation Results on 5-Node Topology: (a) Average Total Service E2E
Latency (b) Average MEC CPU Utilisation Ratio (c) Average MEC Buffering Re-
source Utilisation Ratio (d) AR and MIoT Placement Solutions of MILP

The average CPU and buffer utilisation ratios of MEC nodes under different workload

conditions are compared in Figure 4.3(b) and Figure 4.3(c), respectively. Both ratios rise steadily

as the workload rises. When the number of services is increased to 500, the MEC node CPU

utilisation ratio reaches the highest 65% and the buffer utilisation ratio achieves the highest 48%.

Moreover, it is worth mentioning that the 38% buffer utilisation ratio at 300 service requests is

the point at which the traffic is routed from MEC nodes to DCs because of the lowered overall

E2E latency. To be more specific, when the buffer utilisation ratio exceeds 38%, the sum of

transmission and propagation latency for routing traffic to DCs is less than the sum of queueing

and OEO conversion latency on MEC nodes.

Although we use a simple 5-Node topology, the designed MILP model is still time-consuming.

For example, it takes 12.8 hours to finish the 500 SFCs placement, which makes achieving optimal
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solutions in large-scale network topology difficult. Hence, we are going to design a heuristic

algorithm for large-scale problems in the next section.

4.4 Data Rate-based Heuristic Algorithm

4.4.1 Algorithm Design

By solving the MILP model with all the services employing the MEC0 as the source and desti-

nation node, we find that only the AR and MIoT traffic with 100 Mbps (the highest data rate in

this simulation) are routed to the neighbouring MEC node or neighbouring EDC0. The traffic

placement trends are plotted in Figure 4.3(d). When there are less than 250 service requests, all

the services are placed at the MEC0 (source) node. It is worth mentioning that, as the number of

service requests increases, AR is firstly routed to the MEC1 and then to the EDC0, while MIoT

requests are only routed to MEC1. Other services, even those requiring 500ms E2E latency, are

all assigned at the MEC0 node in the optimal simulation results. Therefore, we can conclude

that i) it is the data rate requirement that affects resource allocation rather than the latency

requirement, ii) the traffic should be routed to the nearest available node firstly and then routed

to the DCs.

Inspired by this regularity, we design the corresponding heuristic algorithm (Algorithm 1) for

the large-scale network. It is accomplished in the following two phases.

1) The first step is running the baseline approach to generate the initial solutions (node

mapping solution xk,o,m
n,initial and link mapping solution twk,o,m

(n,n′),w,initial). The baseline algorithm

prioritises SFCs that have lower E2E latency requirements. In detail, all the service requests are

firstly sorted by their E2E latency requirements. Secondly, the VNF in each service request is

placed at the nearest computing node with sufficient resources to the source node. Thirdly, the

physical link with sufficient resources is selected for traffic routing between two VNFs. After all

the VNFs are placed, the network status is updated. The SFC can be blocked either because of no

computing nodes or physical links having enough resources to support the VNF processing or

transmission, or the unsatisfied E2E latency requirement. We calculate the total E2E latency

and SAR in the initial solutions as the baseline results.

2) The second step is running the Data Rate-based Heuristic Algorithm, which takes the

initial solutions (xk,o,m
n,initial and twk,o,m

(n,n′),w,initial) as inputs and then replaces the services with the

higher data rate first. In Algorithm 1, according to the regularity discovered by the MILP model,

all services are sorted by the data rate in the descending order (line 3) and services with higher

data rates will be preferentially replaced. Next, the current node mapping and link mapping

solutions are initialised with initial input solutions and the best solutions are initialised with the

current solutions (line 4).

For all the VNFs in all the SFC requests, after finding the initial node s supporting this

VNF, the other nodes are sorted in ascending order according to the distance from the original
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Algorithm 1: Data Rate-based Heuristic Algorithm
1 Input: Updated network status, VNF parameters, SFC requests, Initial

solutions: xk,o,m
n,initial , twk,o,m

(n,n′),w,initial

2 Output: xk,o,m
n,best, twk,o,m

(n,n′),w,best, Service acceptance ratio, Objective: Minimum total latency
3 Sort all the service requests by the descending order of data rate
4 Initialise xk,o,m

n,current ← xk,o,m
n,initial , twk,o,m

(n,n′),w,current ← twk,o,m
(n,n′),w,initial , xk,o,m

n,best ← xk,o,m
n,current,

twk,o,m
(n,n′),w,best ← twk,o,m

(n,n′),w,current
5 for All the SFC requests do
6 for All the VNFs of the SFC request do
7 Find the initial node s supporting this VNF
8 Sort all the Nv by the ascending order of the distance from node s
9 for n in Nv do

10 Initialise block = 0
11 if suitm,n == 1 and remaining resources on node n are enough to support this VNF

then
12 Find the shortest path between node s and n
13 if Remaining resource on the shortest path is not enough to support the

transmission then block = 1
14 end if
15 else
16 block = 1
17 end if
18 if block = 0 then
19 Calculate dt1 and dg1 for routing function from node s to node n
20 Calculate dq0 and dc0 when the VNF is placed on node s
21 if (dt1 +dg1)< (dq0 +dc0) then
22 xk,o,m

n = 1, twk,o,m
(n,n′),w = 1, xk,o,m

n,current = xk,o,m
n , twk,o,m

(n,n′),w,current = twk,o,m
(n,n′),w

23 Calculate dqbest and dcbest
24 if (dt1 +dg1)< (dqbest +dcbest) then
25 xk,o,m

n,best = xk,o,m
n,current, twk,o,m

(n,n′),w,best = twk,o,m
(n,n′),w,current

26 Update the network status
27 end if
28 end if
29 end if
30 end for
31 end for
32 end for
33 Initialise Service_Block ←;
34 for All SFC requests K do
35 Calculate the service latency
36 if service latency> required total latency then
37 Service_Block ← k
38 end if
39 end for
40 Calculate the Minimum total E2E latency and Service acceptance ratio
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node s (line 8). These nodes are the candidates for the new node to which the VNF will be

placed. For each new node candidate, if enough computing resources and bandwidth resources

are available on the shortest path between the original node and the new node, the induced

transmission latency dt1 and propagation latency dg1 for routing the corresponding traffic will

be calculated (line 19). The queueing latency dq0 and OEO conversion latency dc0 at the original

node are also calculated (line 20). Next, the sum of transmission latency and propagation latency

(i.e., dt1 +dg1) is compared to the sum of queueing latency and OEO conversion latency (i.e.,

dq0+dc0) that the VNF on the original node experienced. If dt1+dg1 < dq0+dc0, the new node

and the shortest physical link will be assigned as the current solutions (line 21 to 22). We also

compare dt1+dg1 to the lowest sum of queueing and OEO conversion latency obtained so far (i.e.

dqbest +dcbest). If dt1 +dg1 < dqbest +dcbest, the current solutions are set as the best solutions,

and the network status are updated accordingly (line 23 to 26). Such latency comparison can

route traffic from the original node to a new node and reduce total E2E latency, which is called

the traffic routing mechanism in this algorithm. Finally, the total E2E latency for all demands

and SAR are calculated (line 34 to 40).

4.4.2 Algorithm Performance Analysis

The Data Rate-based Heuristic Algorithm is firstly run on the 5-Node topology (Figure 4.2) for the

performance comparison with optimal solutions provided. All the SFC and VNF parameters are

identical to those used in the MILP model simulation. Under various workloads, the results of

the baseline algorithm (i.e., the first stage of Algorithm 1), Data Rate-based heuristic algorithm,

and the MILP model are compared in terms of average total E2E latency, average MEC CPU

utilisation ratio, and average MEC buffer utilisation ratio.

Figure 4.3(a) compares the total E2E latency performance of the MILP, baseline algorithm,

and Data Rate-based Heuristic Algorithm. Among them, the baseline algorithm performs the

worst with the highest E2E latency under all workload conditions. When the total number of

service requests is less than 300, Data Rate-based Heuristic Algorithm has similar performance

to that of the baseline algorithm. After 300 service request point, unlike the total E2E latency of

the baseline algorithm, which increases dramatically, the performance of the Data Rate-based

Heuristic Algorithm improves greatly with much lower E2E latency, which is similar to the

optimal solution in the MILP model. Such improvement is achieved by routing services from

MEC nodes to DCs, which greatly reduces the total E2E latency (traffic routing mechanism

in Algorithm 1). Because the sum of transmission latency and propagation latency induced by

routing traffic to the core network is less than the sum of queueing latency and OEO conversion

latency at the edge nodes under high workload scenarios.

It is worth mentioning that there is a latency fluctuation of the Data Rate-based Heuristic

Algorithm. Total E2E latency decreases between 300 and 400 service requests because the traffic

is relocated from MEC nodes to DCs and MEC nodes’ processing latency falls a lot. It can also be
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reflected by the decreased MEC CPU utilisation ratio after 300 in Figure 4.3(b). The proposed

algorithm performs the best at 400, with the closest latency to the optimum. After 400 service

requests point, the latency increases again and becomes larger than the optimal solutions due to

the limited traffic routing capability of Algorithm 1, which compares only the sum of transmission

latency and propagation latency and the sum of processing latency and queueing latency. However,

compared to the baseline algorithm, the increasing trend after 400 is moderate, which shows the

effectiveness of this traffic routing mechanism. The approximation ratio ≤ 1.5 can be achieved in

this proposed algorithm. Under the low (≤250 total service requests) or high (≥350 total service

requests) workload scenarios, the algorithm can perform better with ≤ 1.25 approximation ratio.

Figure 4.3(b) and (c) show that the MILP model can place more VNFs at the MEC nodes with

the highest average MEC CPU utilisation ratio and lowest average MEC buffer utilisation ratio,

while the other two heuristic algorithms are capable of routing more traffic to metro and core

networks, which increases the traffic routing back to MEC nodes and consumes more edge buffer

resources. The buffer resource usage of the baseline algorithm is always the highest and rises

significantly after 200 because it does not consider the source and destination information and

route services to the core network even if their source and destination are the same MEC nodes,

which significantly increases the edge node buffer usage. Compared to it, the MILP model and

Data Rate-based Heuristic Algorithm can achieve a lower buffer utilisation ratio to reduce the

total queueing latency. As fewer functions are placed on MEC nodes in both algorithms than in

the MILP model, the MEC CPU utilisation ratios of the two algorithms are lower than those

in the MILP model. But we can see that the maximum CPU utilisation ratios are all 65% in

the three approaches in Figure 4.3(b). From Figure 4.3(b), we can also conclude that the Data

Rate-based Heuristic Algorithm can effectively route traffic from MEC nodes to DCs (lowest CPU

utilisation ratio for 400 and 500 service requests) and leave enough edge computing resources for

the ultra-low latency services.

Then the baseline algorithm, Data Rate-based Heuristic Algorithm and the QoS improvement

algorithm in [1] are run on the 35-Node topology shown in Figure 4.1. The box plots of three

algorithms’ total E2E latency results under 10 independent runs are compared in Figure 4.4(a).

Under various workload circumstances, the baseline algorithm is the worst with the highest

average total E2E latency. The QoS improvement approach can only reduce the total E2E latency

when service requests are larger than 3000. For the rest of the time, it performs the same as

the baseline algorithm. When compared to these benchmark algorithms, the Data Rate-based

Heuristic Algorithm can achieve significantly lower latency. At the point of 4000 total service

requests, the average latency of the Data Rate-based Heuristic Algorithm is one-seventh and one-

fourth of that in the baseline algorithm and QoS improvement algorithm, respectively. Compared

to 5-node simulation results (Figure 4.3(a)), a similar average latency fluctuation of the Data

Rate-based Heuristic Algorithm happens on the 35-node topology between 2500 and 3000 service

requests (Figure 4.4(a)) caused by the traffic relocation from MEC nodes to DCs.
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FIGURE 4.4. Simulation Results on 35-Node Topology: (a) Total Service E2E Latency,
(b) Total SAR and 1ms SAR.

As for the statistical performance, most of the time, the latency variances of the three

algorithms are slight and comparable. When there are 4000 service requests, Data Rate-based

Heuristic Algorithm achieves 8947 latency variance for 50% results (from 12800 to 21747), the

QoS improvement approach gets 14298 (from 55980 to 70278), and the baseline algorithm only

gets 20610 (from 65775 to 86385). Based on these, it can be concluded that the baseline algorithm

is the worst with broader distribution, while, the proposed Data Rate-based Heuristic Algorithm

is the best.

Figure 4.4(b) compares the service acceptance performance of all the algorithms in 10 inde-

pendent simulations using different seeds for service request generation. The baseline approach

(solid blue line) is the worst, with less than 42% service acceptance ratio. The QoS improvement

algorithm (solid green line) improves this ratio by more than 30%, and the Data Rate-based
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Heuristic Algorithm (solid orange line) improves it furthermore. It can be seen that the average

SAR of Data Rate-based Heuristic Algorithm is larger than 1.7 times compared to that of the

baseline approach. The trends of the proposed Data Rate-based Heuristic Algorithm can be

explained in detail as follows. When the workload is light, more than 90% of service requests can

be accepted because MEC nodes have sufficient resources to support services. Then the SAR drops

to roughly 67% since the remaining MEC node resources can not handle all ultra-low latency

services. When the workload is high (i.e., between 2500 and 4000), the sum of transmission

and propagation latency for routing traffic to DCs is less than the sum of queueing and OEO

conversion latency at MEC nodes, the average SAR increases again to 90% because the traffic is

routed to DCs, allowing MEC nodes to support more ultra-low latency services.

The ultra-low latency SARs derived by three algorithms are also compared in Figure 4.4(b).

The baseline algorithm (dotted blue line) has a nearly zero ratio, which can only be improved by

the QoS improvement algorithm when the total number of service requests hits 4000 (dotted green

line). However, under low and high workload scenarios, the Data Rate-based Heuristic Algorithm

produces considerably superior outcomes, with 81.7% and 83.92% ultra-low latency service

accepted at the point of 500 and 4000 total service requests, respectively. Such a comparison

demonstrates that the developed Data Rate-based Heuristic Algorithm can effectively deliver

ultra-low latency services in edge-cloud networks. For both SAR and ultra-low latency SAR

performance, all the algorithms are stable with condensed data in the smaller section of the box

plot (≤ 5% SAR).

4.5 Summary

In this chapter, the single-objective optimisation for latency-aware SFCs placement problem was

studied in hierarchical 5G networks. Firstly, we designed the multi-layer MILP model including

the optical layer, IP layer, and virtual layer to minimise the E2E latency for all demands. The

total E2E latency includes processing, queueing, transmission, propagation, and OEO conversion

latency. Simulation results proved that the ultra-low latency requirements can be met, and the

maximum MEC CPU utilisation ratio (around 65%) can be obtained. Secondly, we proposed a

Data Rate-based Heuristic Algorithm to solve this problem in a large-scale network. Simulation

results show it can achieve a ≤1.25 approximation ratio under low or high workload scenarios in

small-scale networks and significantly outperform the other benchmark approaches in terms of

total E2E latency and service acceptance ratio.
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MULTI-OBJECTIVE OPTIMISATION FOR SFCS PLACEMENT

The SFCs placement problem is related to both the resource utilisation and the QoS of

the network traffic [62]. It is not pragmatic to optimise the QoS while sacrificing other

performance. Hence, in this chapter, the QoS-aware SFCs placement problem is expanded

from single-objective to multi-objective by considering resource utilisation. First of all, a multi-

objective MILP model is designed to minimise the total service E2E latency and the resource

congestion ratio in the multi-layer networks involving the virtual layer, IP layer, and optical layer.

In the following, simulation results prove that both objectives can be improved after adding the

optical layer. At last, a non-dominated sorting genetic algorithm-II (NSGA-II) and a state-of-the-

art constrained two-archive evolutionary algorithm (C-TAEA) are adapted to the SFCs placement

problem to find non-dominated solutions for large-scale problems.

5.1 Introduction

The ultra-low latency 5G services impose stringent requirements on the network infrastructures.

For those applications, the delay can be critical ranging between 1ms and 10 ms [11]. Hence,

5G-enable network infrastructures are deploying MEC nodes to host computing and storage

resources at the edge to reduce the transmission latency [127]. However, the limited resource

capacities of MEC nodes can lead to resource congestion during peak hours. Network and compute

virtualisation provided by NFV architecture promises service flexibility to better utilise MEC

nodes’ resources. Typically, 5G services can be represented by SFCs interconnecting a sequence

of VNFs [39]. The placement of SFCs has recently become a subject of extensive research in

edge-cloud networks [25, 58, 131].

Considering both the resource utilisation and the QoS of the network traffic, previous single-
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objective optimisation work in Chapter 4 is extended to multi-objective optimisation work in

the three-level infrastructure, comprising the MEC nodes, EDCs, and CDCs. A multi-objective

MILP model is designed to minimise the E2E latency for all service requests to satisfy QoS

requirements and to minimise the computing resource congestion for all nodes to enhance load

balance. These two objectives are contradictory. On the one hand, the first objective can minimise

the E2E latency and place VNFs at the MEC nodes rather than DCs because of the reduced

transmission and propagation latency. On the other hand, the second objective can reduce the

edge resource utilisation and route VNFs to the DCs to ease the MEC burden. We also take

into account multi-layer networks, which are made up of a virtual function layer, IP layer, and

optical layer. In our approach, the queueing and transmission latency at switches can be further

reduced by including the optical layer, which also increases the available communication capacity

[3]. As a result, SFCs that require low E2E latency can be placed at remote locations, such as

neighbouring MECs and DCs.

In this study, we utilise the Pareto-front approach to address the multi-objective QoS-aware

SFCs placement problem. Pareto-front is a set of solutions that are non-dominated by each

other [132]. In this problem, all Pareto optimal solutions are SFC placements that cannot be

improved in any way without deteriorating another objective at the same time. Due to the NP-

hardness of this problem, the MILP approach suffers from the scalability problem and spends

huge time in finding non-dominated solutions. EA, which scales better than MILP, is widely

used to address the multi-objective problems, especially for approximating a population of non-

dominated solutions[133] because they can capture a number of solutions concurrently in a single

run [134]. There are also some mechanisms involved in EAs to deal with constrained optimisation

problems, such as the constrained dominance relation [135] and the balancing trade-off between

convergence and diversity [133]. Inspired by these mechanisms, we modify the GA, the NSGA-II,

and the constrained two-archive EA (C-TAEA) to fit this problem and study their performance.

To the best of our knowledge, the main contributions are: 1) The extension of our MILP

model proposed in [131] to handle multi-objective SFCs placement and to enhance it with the

loop-avoidance constraint in the optical layer. 2) The multi-objective heuristic-based GA, NSGA-II,

and C-TAEA are designed to solve the constrained SFCs placement problem and deal with the

lack of scalability of the MILP model.

The following of this chapter is organised as follows. Section 5.2 details the problem formula-

tion and multi-objective MILP modelling. Section 5.3 introduces the GA, NSGA-II, and C-TATE

algorithm designed for the SFCs placement problem. In the next, Section 5.4 analyses the benefits

of multi-objectives and optical layer, and then the PFs approximation performance. In the end,

Section 5.5 concludes the whole chapter.
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FIGURE 5.1. SFC Placement Example in Multi-layer Edge-Cloud Network.

5.2 MILP Formulation for Multi-Objective SFCs Placement

5.2.1 SFCs placement in Edge-Cloud Networks

Figure 5.1 shows the SFCs placement in multi-layer edge-cloud network. In this MFV-enabled

infrastructure, NFVO collects network status and service chain requests and then sends them as

the input parameters to the SFC placement algorithm, which makes decisions for the resource

allocation. MEC nodes, EDCs, and CDC that hold different capacities of resources are connected

via optical fibres and switching nodes, such as OXCs. On both the IP layer and optical layer,

physical resources are virtualised and deployed with OpenStack. NFVO integrates VNFs across

several MEC nodes and DCs to suit all end-user requirements while improving resource utili-

sation [41]. In the optical layer, WDM is adopted and optical transparent switches are used to

assure wavelength continuity [1]. The SFCs placement problem refers to the optimal mapping of

chained VNFs to computing nodes and virtual links between VNFs to the lightpath in physical
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links without violating corresponding constraints in such a situation.

Figure 5.1 also depicts a SFC placement example. In this case, a single SFC contains 4 VNFs.

According to the placement findings, one of the MEC nodes hosts VNF1, the EDC hosts VNF2,

and the CDC hosts VNF3 and VNF4. The source and destination nodes of this SFC are also

included. The signal will be at first converted from electronic to optical and then transmitted

along optical fibres at the transmission end. Optical traffic will be converted to electronic signals

at the receiving end and then processed at the VNF instance. OEO conversions exist across the

optical layer and IP layer, as indicated by the red dotted arrow line. The green, blue, and red

thick arrow lines show the optical signals transmitted from the transmitter to the receiver via

lightpath.

To formulate the multi-objective SFC placement problem, the infrastructure is coded as

follows.

A directed graph G = (N,LP ) is used to model the network of nodes and physical links, where

N represents the set of nodes, and LP represents the set of optical links. Among all of the nodes,

Nv represents node with computing resources, including MEC servers NMEC, EDCs NEDC, and

CDC NCDC. NSWN represents node with switching capability only. MEC servers have limited

computing and buffering resources and are placed close to 5G base stations (i.e., eNodeBs) [25].

In contrast, DCs are assumed to have unlimited resources. The switching node in this model

includes the router and the OXCs.

There are two types of network nodes. One is computing node n ∈ Nv, which is characterised

by the computing and buffering resources, indicated as ncpuandnbuf , respectively. The other

has only buffering resources and is called switching node n ∈ NSWN . A lightpath (l, l′) from node

l ∈ Nv to node l′ ∈ Nv belongs to the set of lightpath Ll p. The light speed in optical fibre is lv. An

optical physical link (n,n′) ∈ LP represents a link between node n and n′, with length of len(n,n′).

The total number of wavelengths in the network is W , and w ∈ [1, |W |]z is the w− th wavelength in

the wavelength set. (| · | denotes the number of elements in the set, and [A,B]z denotes the set of

integers from A to B). In the physical link (n,n′), the transmission capacity of w− th wavelength

is Bw
(n,n′).

The set of VNFs types is defined as M, and m ∈ M is used to indicate the specific m type VNF.

Different VNFs demand different amounts of computing and buffering resources denoted as βcpu
m ,

and β
buf
m , respectively. Different VNFs has different scaling attribute, which is represented by

δm. For each flow, the output data rate voutput is determined by the input data rate vinput and

the scaling attribute, which can be computed using voutput = δm ·vinput. Furthermore, suitn,m is

a binary indicator that indicates whether or not the VNF m can be placed on the computing node

n.
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5.2.2 Multi-Objective MILP Formulation

5.2.2.1 Input Variables

Input variables contain all of the variables listed above, as well as service requests. We assume

there is a set of service requests K . A chain of VNFs makes up each service request is k ∈ K . Each

service request k requires the Ok number of VNFs in the chain. We use o to represent the o− th

VNF in the SFC k, o ∈ [0, |Ok|+1]z, where o = 0 represents the source of SFC sk and o = |Ok|+1

represents the destination dk. In addition, the service request is also characterised by the data

rate vk, required E2E latency DRk, and packet size TSk.

The o− th VNF in the service request k has a data rate of vk,o
m . For the first VNF in SFC,

vk,1
m = vk. For the other VNF, vk,o

m = δ
k,o−1
m′ · vk,o−1

m′ . The o− th VNF of service request k requires

computational and buffering resources, which are represented by Ck,o,cpu
m and Ck,o,buf

m , respec-

tively. The following two equations can be used to compute the required computing and buffering

resource amount: Ck,o,cpu
m =βcpu

m ·vk,o
m and Ck,o,buf

m =βbuf
m v̇k,o

m .

5.2.2.2 Output Variables

Table.5.1 shows the MILP model’s output variables.

Table 5.1: Output Variables of Multi-objective Optimisation Model

xk,o
n,m A binary variable indicating whether the m type VNF in the service

request is placed on the node n or not

ywk,(o,o+1),m
(l,l′),w A binary variable indicating whether w wavelength in the lightpath

(l, l′) is selected on the path between the o− th and (o+1)− th VNF
or not

twk,(o,o+1),m
(l,l′),(n,n′),w A binary variable indicating whether w wavelength in the physical

link (n,n′) is selected on the path between the o− th and (o+1)− th
VNF or not

D total The total service E2E latency of all service requests

U cpu The total CPU utilisation ratio of all nodes

ucpu
n The CPU utilisation ratio on node n

ubuf
n The buffer utilisation ratio on node n

5.2.2.3 Objectives

In this multi-objective problem, we design the first objective as the minimisation of the total ser-

vice E2E latency (presented in equation (5.1)), which includes processing latency DPk, queueing
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latency DQk, transmission latency DTk, and propagation latency DGk of all demands.

(5.1) minD total = ∑
k∈[1,|K |]z

(DPk +DQk +DTk +DGk)

The second objective is to minimise the total congestion ratio (shown in equation (5.2)), which is

determined as the sum of CPU utilisation ratio of all nodes. The CPU utilisation ratio of each

node n is calculated using equation (5.3).

(5.2) minU cpu = ∑
n∈Nv

ucpu
n

(5.3) ucpu
n = (

∑
k∈[1,|K |]z

∑
o∈[1,|Ok|]z

xk,o
n,m ·Ck,o,cpu

m )/ncpu ∀n ∈ Nv

5.2.2.4 Constraints

A) Placement: This constraint guarantees that the o− th VNF of service request k can only be

mapped to one node in the network. Specifically, the 0− th VNF and (|Ok|+1)− th VNF can only

be mapped to the required source and destination node, respectively.

(5.4)
∑

n∈N
xk,o

n,m · suitn,m = 1 ∀k ∈ [1, |K |]z, o ∈ [0, |Ok|+1]z

B) Resource Capacity: Equation (5.5) and (5.6) ensure that the computing resource and buffer

required by all the VNFs do not exceed the physical node’s available resources.

(5.5)
∑

k∈[1,|K |]z

∑
o∈[1,|Ok|]z

xk,o
n,m ·Ck,o,cpu

m ≤ ncpu ∀n ∈ Nv

(5.6)
∑

k∈[1,|K |]z

xk,1
l′,m ·Ck,o,buf

m + ∑
k∈[1,|K |]z

∑
o∈[1,|Ok|]z

∑
l∈N

∑
w∈[1,|W |]z

ywk,(o,o+1),m
(l,l′) ·Ck,o,buf

m ≤ l′buf ∀l′ ∈ N

Equation (5.7) ensures that the total bandwidth used by all transmissions does not exceed the

physical link’s transmission capacity.

(5.7)
∑

k∈[1,|K |]z

∑
o∈[0,|Ok|+1]z

∑
(l,l′)∈Ll p

twk,(o,o+1),m
(l,l′),(n,n′),w ·vk,o

m ≤ Bw
(n,n′) ∀(n,n′) ∈ LP ,w ∈ [1, |W |]z

C) Link Mapping: Equation (5.8) makes sure the flow conservation restriction.∑
(l,l′)∈Ll p

∑
w∈[1,|W |]z

∑
n′∈N

twk,(o,o+1),m
(l,l′),(n,n′),w ·vk,o

m − ∑
(l,l′)∈Ll p

∑
w∈[1,|W |]z

∑
n′∈N

twk,(o,o+1),m
(l,l′),(n′,n),w ·vk,o

m

= xk,o
n,m − xk,o+1

n,m′ ∀k ∈ [1, |K |]z, o ∈ [0, |Ok|]z,n ∈ N
(5.8)

Equation (5.9) shows the wavelength continuity constraint from the o− th VNF to the (o+1)− th

VNF along all the selected (n,n′) links.

(5.9)
∑

w∈[1,|W |]z

ywk,(o,o+1),m
(l,l′),w ≤ 1 ∀k ∈ [1, |K |]z, o ∈ [0, |Ok|]z, (l, l′) ∈ Ll p
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Equation (5.10) makes sure that the physical link can be chosen only after the lightpath has been

chosen.

twk,(o,o+1),m
(l,l′),(n,n′),w ≤ ywk,(o,o+1),m

(l,l′),w ∀k ∈ [1, |K |]z, o ∈ [0, |Ok|]z,

(l, l′) ∈ Ll p, (n,n′) ∈ LP ,w ∈ [1, |W |]z

(5.10)

Equation (5.11) represents the relationship constraint between traffic flow in lightpath and

physical link.

∑
n∈N

twk,(o,o+1),m
(l,l′),(n,n′),w − ∑

n∈N
twk,(o,o+1),m

(l,l′),(n′,n),w =


ywk,(o,o+1),m

(l,l′),w i f n′ = l′

−ywk,(o,o+1),m
(l,l′),w i f n′ = l

0 otherwise

∀k ∈ [1, |K |]z, o ∈ [0, |Ok|]z, (l, l′) ∈ Ll p,w ∈ [1, |Wk|]z

(5.11)

Equation (5.8) and (5.11) aid in the avoidance of traffic loops for computing nodes, and equa-

tion (5.12) guarantees that no traffic loops exist for switching nodes.∑
n∈N

twk,(o,o+1),m
(l,l′),(n,n′),w ≤ 1 ∀k ∈ [1, |K |]z, o ∈ [0, |Ok|]z, (l, l′) ∈ Ll p,w ∈ [1, |W |]z,n′ ∈ NSWN(5.12)

D) Latency: The following equations can be used to calculate processing, queueing, transmis-

sion, and propagation latency. 1) Processing latency: it happens only at the computing nodes and

the M/M/1 model is adopted to the calculation [8]. Since equation (5.13) is a conduct of a binary

variable and a continuous variable, the Big-M method is used for the linearisation. zk,o,cpu
n is the

average processing latency, zk,o,cpu
n,max is the upper bound of 1/(1−ucpu

n ), and be, ce are parameters

introduced for the linearisation (the total number of piecewise linearisation functions is E and

e ∈ [1, |E|]z).

DPk = ∑
n∈Nv

∑
o∈[1,|Ok|]z

xk,o
n,m · 1

(1−ucpu
n ) ·ncpu

= ∑
n∈Nv

∑
o∈[1,|Ok|]z

xk,o
n,m · (be ·ucpu

n + ce)

= ∑
n∈Nv

∑
o∈[1,|Ok|]z

zk,o,cpu
n ∀k ∈ [1, |K |]z

(5.13)

(5.14) zk,o,cpu
n ≤ xk,o

n,m · zk,o,cpu
n,max ∀k ∈ [1, |K |]z, o ∈ [1, |Ok|]z,n ∈ Nv

(5.15) be ·ucpu
n + ce ≤ zk,o,cpu

n + (1− xk,o
n,m) · zk,o,cpu

n,max ∀k ∈ [1, |K |]z, o ∈ [1, |Ok|]z,n ∈ Nv, e ∈ [1, |E|]z

2) Queueing latency: it is assumed that DCs have unlimited buffering capacities, while MEC nodes

have limited buffering resources in this model. As a result, the queueing latency is only taken

into account at the MEC servers and M/M/1 model is used for the calculation [8]. Equation (5.17)

calculates the buffering resource utilisation ratio on MEC server l′.

(5.16) DQk = ∑
n∈NMEC

∑
o∈[1,|Ok|]z

zk,o,buf
n ∀k ∈ [1, |K |]z
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ubuf
l′ = (

∑
k∈[1,|K |]z

xk,1
l′,m ·Ck,1,buf

m + ∑
k∈[1,|K |]z

∑
o∈[1,|Ok|]z

∑
l∈|Nv|∑

w∈[1,|W |]z

ywk,(o,o+1),m
(l,l′),w ·Ck,o,buf

m )/l′buf ∀l′ ∈ NMEC

(5.17)

In order to calculate the queueing latency, the same linearisation approach is used. The average

queueing latency is zk,o,buf
n , the maximum queueing latency is zk,o,buf

n,max , and coefficients for the

linearisation include ge and je.

(5.18) zk,1,buf
n ≤ xk,1

n,m · zk,1,buf
n,max ∀k ∈ [1, |K |]z,n ∈ NMEC

(5.19) zk,o,buf
n ≤ ∑

w∈[1,|W |]z

∑
l∈Nv

ywk,(o,o+1),m
(l,n),w · zk,o,buf

n,max ∀k ∈ [1, |K |]z, o ∈ [2, |Ok|]z,n ∈ NMEC

(5.20) ge ·ubuf
n + je ≤ zk,1,buf

n + (1− xk,1
n,m) · zk,1,buf

n,max ∀k ∈ [1, |K |]z,n ∈ NMEC, e ∈ [1, |E|]z

ge ·ubuf
n + je ≤ zk,o,buf

n + (1− ∑
w∈[1,|W |]z

∑
l∈Nv

ywk,(o,o+1),m
(l,n),w )

·zk,o,buf
n,max ∀k ∈ [1, |K |]z, o ∈ [2, |Ok|]z,n ∈ NMEC, e ∈ [1, |E|]z

(5.21)

3) Transmission latency: Traffic is sent along the chosen lightpath in this multi-layer infrastruc-

ture. Under this scenario, transmission latency occurs solely at the source of the lightpath. To be

more specific, traffic will be sent along the lightpath (l, l′) if the o− th and (o+1)− th VNFs are

deployed at two different node l and l′, with transmission latency happens solely at node l.

(5.22) DTk = ∑
o∈[1,|Ok|]z

∑
(l,l′)∈Ll p

∑
w∈[1,|W |]z

ywk,(o,o+1),m
(l,l′),w ·TSk/Bw∀k ∈ [1, |K |]z

4) Propagation latency: exists on all the optical links chosen for the traffic transmission.

(5.23) DGk = ∑
o∈[0,|Ok|]z

∑
(l,l′)∈Ll p

∑
w∈[1,|W |]z

∑
(n,n′)∈LP

twk,(o,o+1),m
(l,l′),(n,n′),w · len(n,n′)/lv ∀k ∈ [1, |K |]z

5) E2E latency: constraint (5.24) ensures that the total latency experienced by all the chained

VNFs does not exceed its service E2E latency requirement.

(5.24) (DPk +DQk +DTk +DGk)≤ DRk ∀k ∈ [1, |K |]z

5.3 Algorithms for Non-dominated Solutions

Due to the NP-hard property of the SFCs placement problem and the lack of scalability of MILP

based approaches [32, 56], it is crucial to design algorithms for solving large scale problems. Since

the GA, NSGA-II, and Multi-objective Virtual Network Function Chain Placement (MO-VNFCP)

Algorithm have been proposed for the SFCs resource allocation in recent works [36, 45, 56], we

modify them to fit this SFCs placement problem. In addition, we implement a state-of-the-art
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two-archive EA, which is designed for constrained multi-objective optimisation problems, for this

SFCs placement problem.

To address the constraint challenge in multi-objective optimisation problems, we adopt

the constraint-handling technique used in [136]. In this approach, the solution (x1), which

constrained-dominates another one (x2), is chosen. The constrained domination criterion is true

if any one of the following conditions is true: 1) if x1 is feasible and x2 is infeasible; 2) if x1 and

x2 are infeasible, and x1 has a smaller constraint violation value [87]; 3) if x1 and x2 are feasible

and x1 dominates x2 with the usual domination principle.

The sum of constraint violation can be calculated as follows:

(5.25) ψ(−→x )=
t∑

κ=1
max(0,ξκ(−→x ))2 +

p∑
λ=1

|φλ(−→x ) |

where −→x is the vector of solutions −→x = [x1, x2, ...xn]T , the values of each inequality constraint

ξκ(−→x ),κ= 1,2, ..., t and also each equality constraint φλ(−→x ),λ= 1,2, ..., p are normalized [87]. Due

to this simple constraint-handling scheme, this approach can be coupled to a variety of algorithms,

without introducing new parameters [87]. However, it may lead to premature convergence [87].

5.3.1 Heuristic-based GA & NSGA-II Algorithm

Our proposed heuristic-based GA and heuristic-based NSGA-II can be explained as follows:

1) Objective: Algorithms are designed to achieve the minimisation of total service E2E latency

and the minimisation of total CPU utilisation ratio at the same time.

2) Population: It contains a fixed number of chromosomes. The initial population is created in

three ways without violating the physical resource constraints: 1) a first fit placement heuristic

that starts from the MEC to the EDC and then to the CDC; 2) a first fit placement heuristic that

starts from the CDC to the MEC and then to the EDC; 3) a random VNF placement. In [56], they

only use the first fit heuristic to generate feasible solutions for NSGA-II. However, according to

[137], infeasible solutions can be valuable stepping stones between feasible regions of the search

space, so we introduce infeasible solutions through the random generation.

3) Coding of individuals: An individual is characterised by a set of parameters known as

Genes. Each individual is a node placement solution to this problem. The gene in the specific

position represents the chosen node for the specific VNF in SFC. The gene’s ordering is the same

as the VNF’s ordering in the SFC. Each integer is the selected node number. Figure 5.2 (a) and

(b) show an example of such coding. There are two SFC requests and each one requires three

VNFs. For the first SFC, its VNFs are mapped to MEC1, MEC2 and core DC, so its coding is 1, 2,

and 7. While the second SFC is coded as 1, 2, 6.

4) Parent Selection: We introduce the constrained-domination criterion to parent selection.

Two individuals are firstly randomly selected, and then the solution which constrained-dominates

the other one is kept as one of the parents. The other is chosen based on the same procedure.
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FIGURE 5.2. SFCs Coding in the Proposed NSGA-II. a) SFC Requests b) Example of
Placement Codification of Two SFCs in 7-Node Simulation Topology. c) Example of
Two-Point Crossover

Hence, we can make sure that the feasible and fittest solution can be kept and has more chance

to pass its genes to the next generation.

5) Crossover: In this most significant phase, we use a two-point crossover where two points on

the chromosomes are randomly selected. A child inherits elements between these two crossing

points of one parent and inherits the remaining elements from the other parent, which is also

shown in Figure 5.2 (c).

6) Mutation: Mutation allows to modify the offspring in order to diversify the population. To

improve the convergence performance, we use a local search to find a neighbour solution that

constrained-dominates the original solution. The neighbour solution is generated by changing

the placement result for a randomly chosen VNF. In [56], mutation result is randomly chosen.

Although it introduces diversity, it is harder to find a feasible solution and prevent convergence

in our problem where there are plenty of complex constraints.

7) Difference between GA and NSGA-II: Compared to GA, the NSGA-II introduces the fast non-

dominated sorting approach and a diversity preservation mechanism. At first, the usual coding,

selection, crossover, and mutation are used to create offspring. The procedure is different after

the initial generation. For each solution, the number of solutions which dominates the solution,
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and the set of solutions that this solution dominates are calculated. The one dominated by the

lower number of solutions is in the lower rank and is a better solution. Then for each solution,

the crowding-distance is calculated as the sum of individual distance values corresponding to

each objective [135]. Solutions in lower rank will be selected and solutions in the same rank but

has a high crowding distance will be selected for the next generation [135].

5.3.2 Constrained Two-Archive Evolutionary Algorithm

Compared to GA and NSGA-II, C-TAEA provided in [133] is designed especially for addressing

constrained multi-objective optimisation problems. It can simultaneously balance the convergence,

diversity, and feasibility by maintaining two collaborative archives named convergence-oriented

archive (CA) and diversity-oriented archive (DA). As the name indicated, the CA archive aims

to improve the convergence performance and keep solutions in the feasible regions, while, the

DA archive aims to improve the diversity features and discover the regions that have not been

explored before. Mating parents are chosen separately from the CA and the DA during the

reproduction process based on their evolution status. Following that, the offspring are used to

update the CA and the DA.

The algorithm can be described as follows.

1) Density Estimation: Firstly, a density estimation method is introduced to divide the objective

space into N sub-regions. To make it comparable to the modified GA and NSGA-II, we uniformly

divide each objective coordinate into 100 divisions and generate 101 subregions with the weight

vectors (0,1), (0.01,0.99), ..., (0.99,0.01), (1,0). Each solution x of a population is associated with a

unique sub-region whose index is determined by equation (5.26).

(5.26) k = argmin
i∈1,...,N

<F(x),wi >

where F(x) is the normalised objective vector of x, and its i− th objective function is calculated

by the following equation (5.27).

(5.27) f i(x)= f ix− z∗i
znad

i − z∗i

where i ∈ 1, ...,m, z∗ and znad are, respectively, the estimated ideal and nadir points, where

z∗i = minx∈S f i(x), znad
i = maxx∈S f i(x) and S is the current solution set. The density of a sub-

region is counted as the number of its associated solutions.

2) Population Generation and Coding of individuals: We utilise the same methods for popula-

tion generation and individual coding in the GA and NSGA-II algorithm design.

3) Update CA: CA attempts to balance the convergence and diversity within the feasible region

by firstly pushing the population towards the feasible region as much as possible. They produce a

hybrid population Hc, a mix of the CA and the offspring population Q. Feasible solutions in Hc

are chosen into a temporary archive Sc. Afterwards, the follow-up procedure is determined by
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the size of Sc: 1) if Sc has the same size as N, it is directly used as the new CA. 2) if |Sc| > N,

they divide solution Sc into several non-dominated levels using the NSGA-II fast non-dominated

sorting approach. Then, they trim the worst population in each sub-region until S’s size equals

N. 3) if |Sc| < N, they use the same fast non-dominated sorting approach to divide the infeasible

solutions in Hc into several non-dominated levels. Solutions in the first several levels have a

larger chance of surviving into the new CA.

4) Update DA: DA makes an effort to include as much diversity as possible. It takes the

most current CA as a reference set and explores the DA’s under-exploited areas to compensate.

Initially, the DA combines itself with the offspring population Q to create a hybrid population Hd.

Then, they associate each solution in Hd and the up-to-date CA with its corresponding sub-region

separately. Afterwards, they iteratively analyse each subregion and decide whether or not the

solutions in Hd should be kept in the new DA. For the currently investigating sub-region, if

there are already solutions in CA, no solutions in Hd will be kept for this sub-region during this

iteration. Otherwise, the best non-dominated solutions in Hd will be picked to survive the new

DA. The investigation will be iterated until the DA is filled.

5) Offspring Reproduction: The restricted mating selection is utilised to exploit the elite

knowledge from both archives for offspring reproduction. They construct a set Hm by combining

the CA and the DA. Afterwards, they calculate the proportion of non-dominated solutions of

the CA and the DA in Hm, respectively. If the CA’s convergence status is better than the DA’s,

the first mating parent is chosen from the CA, otherwise, it comes from the DA. The proportion

of non-dominated solutions in the CA determines whether the other mating parent is chosen

from the CA or the DA. They use a binary tournament to select a mating parent. To be more

specific, if all of the randomly chosen candidates are feasible, they are selected using the Pareto

dominance principle; if only one of them is feasible, the feasible one will be selected; otherwise, the

mating parent is chosen at random. Once the mating parents have been chosen, they employ the

simulated binary crossover [138] and the polynomial mutation [139] for offspring reproduction.

5.4 Simulation-based Evaluation

5.4.1 Simulation Setup

Two network scenarios are considered: a 7-node topology shown in Figure 5.2 (b) and a 29-node

topology in Figure 5.3. On the 7-node network, we solve the MILP model by Gurobi solver and

run the proposed heuristic-based GA, NSGA-II, and C-TATE algorithms designed for the SFCs

placement problem and the benchmark algorithm MOSA. On the 29-node network, we only run

the above-mentioned algorithms. For the simulation, the MILP model and designed algorithms

are running on an IBM server with an 8-core processor and 24GB RAM.

For the computing and buffering resource setting, we assume that each MEC node, EDC,

and CDC has 280, 1400, 140000 CPU cores, individually [140–142], and 1120, 5600, 560000
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FIGURE 5.3. Large-Scale Simulation Topology: 29 Node Network

GB RAM resources, respectively in both small-scale (7-node) and large-scale (29-node) network

scenarios [3]. For the link settings, we assume that, in 7-node topology, physical links from CDC

to SWN, from EDC to SWN, from the MEC server to switching node (SWN), and between SWNs

are 300km, 20km, 1km, and 2km, respectively. Each link has 6 wavelengths and a capacity of

10 Gbps [143]. While in the 29-node topology, physical links between the MEC server and the

nearest SWN, between EDC and the nearest SWN, between CDC and the nearest SWN, between

SWN and the neighbour SWN in the metro area, and between SWN and the neighbour SWN in

the core area are 1km, 20km, 300km, 2km, and 5km, respectively. Each link has 11 wavelengths

and a 10 Gbps capacity.

Based on the E2E latency and bandwidth requirements, We divide network services into

five categories: 1) High bandwidth and low latency; 2) Low bandwidth and low latency; 3) High

bandwidth and medium latency; 4) Low bandwidth and medium latency; and 5) Non-real time

services. To simulate these five service classes, we use Augmented Reality (AR), mIoTs, Video

Streaming (VS), Voice over Internet Protocol (VoIP), and Web services. Table 5.2 shows their

proportion, data rate, latency, and VNFs requirements. For the AR and mIoTs services, the source

and destination are the same MEC node. Others have their source and destination determined

at random. There are six VNF types considered, including Firewall (FW), Network Address

Translation (NAT), Video Transcoder (VT), Intrusion Detection (ID), WAN Optimizer (WO), and

Traffic Monitoring (TM). The computing and buffering resources demanded by various VNFs, as

well as their scaling vectors are listed in Table 5.3.
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Table 5.2: Service Requests Setting [4–8]

Service Percentage Data Rate Latency VNF Chain

AR 39.5% 100Mbps 1ms NAT-FW-TM-VT-ID

mIOT 10.05% 100Kbps 5ms NAT-FW-ID

VS 39.5% 4Mbps 100ms NAT-FW-TM-VT-ID

VoIP 1.5% 64Kbps 100ms NAT-FW-TM-FW-NAT

Web 9.45% 100Kbps 500ms NAT-FW-TM-WO-ID

Table 5.3: VNF required Resources and Properties[1, 3]

VNF CPU RAM Scale VNF CPU RAM Scale

NAT 0.00092 0.00092 1 FW 0.0009 0.00135 1

TM 0.0133 0.0399 1 VT 0.0054 0.0054 2

WO 0.0054 0.0108 1 ID 0.0107 0.0107 1

5.4.2 Simulation Results and Analysis

5.4.2.1 MILP Results

In this subsection, the benefits of adding the optical layer and the different effects brought by the

two objectives are concluded through the comparison among three MILP models. 1) Model 1 and

Model 3 involve the optical layer by adding transmission latency only at the source node while

keeping the wavelength continuity. Model 2 does not involve the optical layer and transmission

latency happens both at the source node and the intermediate switches. 2) Model 1 and Model 2
minimise the total service E2E latency whereas Model 3 minimises the total congestion ratio.
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FIGURE 5.4. Total Service E2E Latency on 7-Node Topology.
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FIGURE 5.5. Total Congestion on 7-Node Topology.

Model 1 vs Model 2: By comparing findings across a 7-node topology presented in Figure 5.2

(b), we can confirm the advantages of adding the optical layer for reducing both service E2E

latency and congestion. When the number of requests is fewer than 200 both Model 1 and

Model 2 yield comparable results. However, when the service requests reach 400, Model 1
achieves a 9% lower overall service E2E latency (Figure 5.4) and a 6% lower total congestion ratio

(Figure 5.5) than Model 2. When there are 500 requests, Model 1 achieves a lower total service

E2E latency of 11% and a lower total congestion ratio of 5% than Model 2. As a consequence

of the inclusion of the optical layer in Model 1, the total service E2E latency and congestion

ratio can be reduced more efficiently by allowing VNFs to be deployed not only in the nearest

MEC to users but DCs reachable through optical lightpaths. Furthermore, it is expected that

the difference betweenModel 1 and Model 2 will be wider in a larger network topology serving

larger service requests.

Model 1 vs Model 3: The trade-off between minimising total service E2E latency and total

congestion ratio can be confirmed by the results in Figure 5.4 and Figure 5.5. By minimising

the total congestion ratio, the total service E2E latency is significantly increased by Model 3.

As expected, Model 1 achieves up to 85% lower service E2E latency and 85% higher overall

congestion ratio than Model 3 for up to 200 service requests. The network becomes congested

when the number of requests reaches 400 or 500, resulting in a narrowing of the performance

gap between Model 1 and Model 3. Because these two objectives are contradictory, using a multi-

objective method to solve the SFCs placement problem is critical. In the following subsections,

we will study the non-dominated solutions to the multi-objective SFCs placement problem.

Apart from the average latency and congestion results, Figure 5.4 and Figure 5.5 also present

the statistical performance of the three models. Based on the box plots in Figure 5.4, it can be

concluded that MILP models with latency minimisation as the objective (Model 1 and Model 2)

83



CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION FOR SFCS PLACEMENT

can achieve more stable and robust results in terms of latency performance compared to the

model with congestion minimisation as the objective (Model 3). The 50% latency variance of

Model 1 and Model 2 are less than 5ms for different number of service requests. But this

value of Model 3 is always larger and even reaches 80ms and 194ms for 400 and 500 service

requests, respectively. A similar conclusion can be drawn from Figure 5.5. Model 3 minimising

congestion ratio outperforms the other two models minimising total service E2E latency in terms

of congestion statistic performance. For the different number of service requests, Model 3’s box

width is always narrow compared with the other two models’ box widths, which indicates more

condensed data and a more robust feature.

5.4.2.2 Simulation Results for Algorithms

In this subsection, approximated non-dominated solutions obtained by the heuristic-based GA,

NSGA-II, MO-VNFCP, and C-TAEA algorithms running on both 7-node and 29-node network

topology are presented and analysed.

1) Simulation Results on 7-node Topology

To provide an idea of how the non-dominated front changes with the increase of the total

number of service requests, Figure 5.6 (a)-(d) show the non-dominated fronts obtained via different

approaches for 100, 200, 300, and 400 service requests on the 7-node network, respectively. In the

simulation, we set the population size to 100 and the mutation rate to 0.30 for the heuristic-based

GA and heuristic-based NSGA-II algorithms. For the comparison purpose, we run heuristic-

based GA, heuristic-based NSGA-II, MO-VNFCP algorithms proposed in [36], and C-TAEA 100

iterations.

Among all the algorithms, the MO-VNFCP performs the worst. It can be seen that all the non-

dominated solutions calculated by the MO-VNFCP algorithm are dominated by other algorithms’

non-dominated solutions. Because it highly depends on the initial solutions and improves a little

with the non-dominated generation within 100 iterations (black triangle). When the number of

services increases, it performs even worse, which can be seen from the average distance between

the MO-VNFCP solutions and the GA solutions. Compared to it, the heuristic-based GA and

NSGA-II algorithms improve the performance a lot with better and more non-dominated solutions

(yellow circle and orange star). However, their capabilities of exploring PF are still limited in the

highly constrained problem, which means the randomness introduced by the mutation can be

largely possible in the infeasible area and the new generation will not be selected for the new

population generation.

The C-TAEA performs the best. It can effectively reduce the total congestion ratios and achieve

better non-dominated solutions (dark green cross) since it introduces the diversity mechanism to

explore the unvisited area. In this model, instead of running VNFs at MEC nodes, C-TAEA can

route VNFs from MEC nodes to DCs to further reduce the congestion ratio. However, it takes

more time than other algorithms to get such good solutions. Table. 5.4 summarises the running
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FIGURE 5.6. Non-dominated Solutions on Small-Scale Network: (a) 100 Service Re-
quests Situation, (b) 200 Service Requests Situation, (c) 300 Service Requests
Situation, (d) 400 Service Requests Situation.
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time performance of different approaches on the 7-node network topology. From this table, we can

find that 1) the GA and NSGA-II take a similar time to run 100 iterations, 2) MO-VNFCP costs

on average 10% running time of these two algorithms, 3) C-TAEA almost doubles the running

time of GA and NSGA-II.

Table 5.4: Time Consumption for Small Scale Network

Total 7-Node Network Topology

Service GA NSGA-II MO-VNFCP C-TAEA

100 112min 153min 25min 182min
200 203min 210min 54min 357min
300 239min 234min 70min 526min
400 289min 312min 86min 611min

2) Simulation Results on 29-node Topology

In this subsection, the four algorithms mentioned above are tested on the large-scale (29-

node) network. Figure 5.7 (a)-(d) shows the non-dominated fronts obtained for 300, 600, 900, and

1200 service requests, respectively. Table. 5.5 demonstrates the time consumption of different

algorithms for 300, 600, 900, and 1200 service requests. From Figure 5.7 and Table. 5.5, we can

make a conclusion that 1) although the MO-VNFCP spends the lowest time for the simulation,

its performance is the worst with all the solutions dominated by other algorithms’ solutions,

2) the heuristic-based GA and heuristic-based NSGA-II performs similar in terms of both the

non-dominated fronts and the running time, and these two algorithms can achieve better non-

dominated fronts than the MO-VNFCP, 3) the C-TAEA algorithm achieves the best non-dominated

fronts under the different total number of service requests. However, it consumes more than two

times the running time of GA and NSGA-II.

Table 5.5: Time Consumption for Large Scale Network

Total 29-Node Network Topology

Service GA NSGA-II MO-VNFCP C-TAEA

300 1239min 1323min 247min 2955min
600 3551min 3211min 700min 6862min
900 8542min 8722min 1793min 18375min

1200 13672min 13692min 2755min 28219min

5.5 Summary

In this chapter, the multi-objective optimisation for latency-aware SFCs placement problem was

investigated in multi-layer networks. The single objective MILP model presented in Chapter 4
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FIGURE 5.7. Non-dominated Solutions on Large-Scale Network: (a) 300 Service Re-
quests Situation, (b) 600 Service Requests Situation, (c) 900 Service Requests
Situation, (d) 1200 Service Requests Situation.
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was first extended to multi-objective by adding the total CPU congestion minimisation. Then,

this model is enhanced with loop avoidance constraints on intermediate switches. In the next,

the MILP model with and without an optical layer are evaluated on small-scale networks, with

findings demonstrating that, by adding the optical layer, the total service E2E latency can be

reduced by ten times, despite the model complexity increasing. Finally, four algorithms were

adapted to solve the SFCs placement problem and validated on both small-scale and large-

scale networks. The C-TAEA algorithm outperforms the others in terms of the Pareto Fronts

approximation performance, but the heuristic-based GA and heuristic-based NSGA-II consume

less running time.
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6
MULTI-OBJECTIVE DRL-ASSISTED SFCS PLACEMENT

The SFCs placement solution should meet a variety of QoS criteria, reduce resource

congestion at the network edge, and improve service acceptance performance. This chapter

proposes a novel approach for addressing these challenges by solving a multi-objective

SFCs placement problem using the Pointer Network. This approach is a DRL-based algorithm,

called Chebyshev-assisted Actor-Critic SFCs Placement Algorithm, that overcomes the limitations

of traditional heuristic and meta-heuristic approaches. Then, we run this algorithm iteratively

with a set of weights to generate non-dominated solutions with significantly greater hypervolume

values than those obtained using existing state-of-the-art algorithms. Furthermore, using chosen

weights from non-dominated solutions to execute our algorithm individually can avoid edge

resource congestion and attain 98% low-latency SARs during high-workload periods. Finally, the

proposed approach is found to be suitable for pragmatic service implementation while reaching

100% of SARs in the deployed use cases on the testbed.

6.1 Introduction

To meet the various and stringent needs of QoS, the fast deployment of 5G and beyond 5G

network services will necessitate flexible and efficient resource utilisation. Network service

will be implemented as an SFC that connects a series of VNFs [39]. The SFCs placement

problem is described as the optimal resource allocation for SFCs deployments while meeting

the QoS requirements. Although several studies have been conducted on the SFCs placement

problem in edge-cloud networks [3, 39, 58, 60, 131], there are still three major challenges not

properly investigated. 1) Strict and diverse QoS criteria must be met to place SFCs in the same

infrastructure. A typical example is an E2E latency from 500 ms (e.g., web services) to 1 ms (e.g.,
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AR) [4]. 2) MEC nodes with limited resource capacities can cause significant congestion and a

high rejection ratio of low-latency services during peak hours [143]. 3) Scalability of the problem

due to a large number of computing nodes in edge-cloud networks and the growing number

of services. This problem has been proved to be NP-hard, with the computational complexity

exponentially increasing as the problem size grows [47].

To address all the aforementioned challenges, a DRL-based model for the multi-objective

SFCs placement problem is proposed in the multi-layer edge-cloud networks formed by the virtual

function layer, IP layer, and optical layer. In this model, on the one hand, the total E2E latency is

minimised to satisfy QoS requirements, on the other hand, the computing resource congestion is

minimised for all nodes to improve load balance. The MILP model provided in chapter 5 is taken

as the environment in this DRL approach.

To tackle the scalability barrier in the multi-objective SFCs placement problem, instead

of using the MILP technique, most existing approaches focus on heuristic and EAs [3, 39, 58,

60]. However, these approaches are still limited in their scalability when dealing with high

dimensional and constrained multi-objective problems. In fact, EAs need a large number of

iterations and long computation time [83]. Furthermore, in order to discover feasible solutions,

both heuristic and EA approaches require expert knowledge of the problem [66, 87]. Thanks

to recent advances in DRL, it is now possible to link high-dimensional states and actions to

solve NP-hard problems without human interaction in an acceptable time scale [83, 102]. In

this chapter, we design and test a DRL-based model using a Pointer Network technique, with

an attention mechanism as a "pointer" to pick a member of the input as the output, to handle

the multi-objective SFCs placement problem [144]. Our proposed model employs a sequence-

to-sequence structure that consists of two Recurrent Neural Networks (RNNs), referred to as

encoder and decoder, respectively [83]. The input SFC requests are encoded into a code vector

using the encoder RNN. Then, such a code vector is decoded into appropriate placement solutions

by the RNN decoder.

The multi-objective optimisation problem can be solved in one of two ways. The first is to

find all of the Pareto optimal solutions (Pareto Front (PF)) or a representative subset [145]. In

this problem, Pareto optimal solutions include all non-dominated SFCs placement solutions that

cannot be enhanced in any way without deteriorating another goal. The second is to combine all

of the objective functions into a single composite objective function or to keep only one function

as objective and utilise the others as constraints [132]. The weighted-sum approach, which

introduces different weights to each individual function belongs to the second group [80, 145].

It has been extensively adopted because of its easy implementation and ability to express the

preferences in the selected weights [80]. In our mathematical model, VNFs can be placed at DCs

during peak hours and MEC nodes’ congestion can be relieved by giving the first objective a low

weight and the second one a high weight. Unlike many other researchers who choose the weights

according to their prior knowledge, we will choose the weights based on achieved non-dominated
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solutions. Because the mapping from weight space to objective space is not guaranteed to be

isomorphic [80], we utilise the Chebyshev scalarisation approach to approximate the PFs. It has

several advantages, such as it can 1) search solutions in both convex and non-convex areas, 2) get

a better spread among the set of non-dominated solutions, and 3) be independent on the actual

weights used [84]. In this chapter, we are going to apply the non-linear Chebyshev function to the

actor-critic algorithm to solve the multi-objective SFCs placement problem.

The following are the main contributions of this chapter:

1) Modelling: A DRL model based on the Pointer Network technique is designed with the

MILP models proposed in chapter 5 as its environment to solve large-scale multi-objective SFCs

placement problems in edge-cloud networks.

2) Algorithm Design: A novel DRL algorithm, called Chebyshev-assisted Actor-Critic SFCs

Placement Algorithm, is developed for training. Under various workload scenarios, it can be used

to estimate PFs, improve the MEC resource usage and enhance the ultra-low latency SAR.

3) Simulation Evaluation: The proposed algorithm is evaluated on both small and large scale

networks using simulation. In terms of PFs approximation, it outperforms other state-of-the-art

methods proposed in [3, 36, 56, 83, 133], with the highest hypervolume values. In terms of

edge resource usage and SAR, it outperforms the First-Fit algorithm and the Data-Rate-based

algorithm in [131].

4) Experimental Evaluation: The proposed algorithm is integrated and experimentally evalu-

ated with an OSM for SFCs placement in an OpenStack enabled testbed that emulates a long

haul optical edge-cloud network. Experimental results validate that it outperforms the First-

Fit algorithm and the Data-Rate-based algorithm [131] with respect to the service acceptance

performance.

The rest of this chapter is organised as follows. In Section 6.2, problem formulation and DRL

modelling are presented. Then, the proposed DRL algorithm is explained in Section 6.3. In the

next section, we proceed with our simulation setup and results. Then, our experimental testbed

is detailed and experimental results are analysed in Section 6.5. Finally, Section 6.6 summarises

the highlights of this chapter.

6.2 Multi-Objective SFCs Placement Problem Formulation

6.2.1 SFCs placement in Edge-Cloud Networks

The multi-layer edge-cloud network considered can be modelled as a directed graph G = (N,LP ),

where N is the set of nodes, and LP is the set of optical links. Among all of the nodes, Nv

indicates a set of nodes with computing resources, whereas NSWN indicates a set of nodes with

just switching capability. Nv includes MEC servers NMEC, EDCs NEDC, and CDC NCDC. MEC

servers, in comparison to DCs, have limited resources and are placed located near 5G base

stations (i.e., eNodeBs) [25]. In this model, the switching node includes the router and the OXCs.
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A computing node n ∈ Nv is characterised by the computing resources and buffer, denoted as

ncpuandnbuf , respectively. Switching node n ∈ NSWN has only buffering resources. A optical link

(n,n′) ∈ LP denotes a link with a length of len(n,n′) from node n ∈ N to n′ ∈ N. The total number

of wavelength in the network is W , and the w− th wavelength in the collection of wavelength is

w ∈ [1, |W |]z. (The number of elements in the set is denoted by | · |, and the set of integers from

A to B can be represented by [A,B]z). In the physical link (n,n′), the transmission capacity of

w− th wavelength is Bw
(n,n′), and the light speed is lv. The set of lightpath Ll p includes links (l, l′)

connecting computing node l ∈ Nv to the other computing node l′ ∈ Nv.

Moving to the virtual layer, the set of distinct types of VNFs is represented as M, and

the specific type VNF is represented as m ∈ M. Different VNFs require different amounts of

computing and buffering resources, denoted as βcpu
m , and β

buf
m , respectively. Besides, different

VNFs has different scaling attribute denoted as δm. For each flow, the output data rate voutput is

determined by the input data rate vinput and the scaling attribute, which can be calculated by

voutput = δm · vinput. Furthermore, suitn,m is a binary indication that indicates whether or not

the VNF m can be placed on the node n.

In the offline scenario, the set of service requests K is known in advance. Each service request

k ∈ K is made up of a chain of VNFs. Ok denotes the number of required VNFs in service k, and

the o ∈ [0, |Ok|+1]z VNF is used to represent the o− th VNF in the SFC k, where o = 0 is the

source of SFC sk and o = |Ok| +1 is the destination dk. In addition, the other service-related

features include the data rate vk, required E2E latency DRk, and packet size TSk.

Considering that different VNFs have different scaling attribute, data rate vk,o
m for the o− th

VNF in the service request k can be different from the vk. For the first VNF in SFC, vk,1
m = vk.

For the other VNF, vk,o
m = δ

k,o−1
m′ · vk,o−1

m′ . The computing resources and buffer required by the

o− th VNF of service request k, can be represented by Ck,o,cpu
m and Ck,o,buf

m , respectively. These

required resource amount can be affected by the data rate as they are calculated by the following

two equations:Ck,o,cpu
m =βcpu

m ·vk,o
m and Ck,o,buf

m =βbuf
m v̇k,o

m in our model.

The SFCs placement solutions include: 1) the node mapping variable xk,o
n,m, indicating whether

or not the m type VNF in the service request is placed on the node n; 2) the lightpath mapping

variable ywk,(o,o+1),m
(l,l′),w , showing whether or not the w wavelength in the lightpath (l, l′) is selected

for the traffic routing from the o− th to the (o+ 1)− th VNF; 3) the link mapping variable

twk,(o,o+1),m
(l,l′),(n,n′),w, indicating whether or not w wavelength is selected in the physical link (n,n′) on

the path between the o− th and (o+1)− th VNF. Based on these solutions, the total service E2E

latency of all service requests D total and the total CPU utilisation ratio U cpu can be obtained.

6.2.2 DRL Model Formulation

The DRL approach is adopted to solve this multi-objective SFCs placement problem. To simplify

the problem and save the running time [83], we use the scalarisation method and decompose it

into a series of subproblems with different weights. The number of subproblems is I and the i− th
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FIGURE 6.1. Encoding and decoding of SFC: a) 7-Node Simulation Topology. b) Pointer
Network Architecture.

subproblem is represented as i ∈ [1, |I|]z. A neural network (NN) is used to model each subproblem

with θi as the weight. The optimised subproblem is represented by θ∗i . The MILP model designed

in Chapter 5 is taken as the environment for the DRL model, and the two objectives are defined

in the same way.

Each SFCs placement subproblem is described as a Pointer Network with two RNNs, an

encoder and a decoder, both of which are made up of Long Short-Term Memory (LSTM) cells.

Figure 6.1 (b) shows the architecture of the Pointer Network (the encoder is represented by blue

cells on the left while the decoder is orange cells on the right). The encoder’s input is a list of

all service requests R i = {r1
i , ..., rk

i , ..., r|K |
i }. Each service request comprises of the needed VNFs

rk
i = { f k,1

i , ..., f k,o
i , ..., f k,|Ok|

i }. To make the model design process easier, the R i is represented as

R i = { f 1
i , .., f |K |×|Ok|

i }. The coming two SFCs requests are therefore encoded as "1,2,3,4,5,6" in the

Figure 6.1 (b) step 2. The state in this model comprises all of the service requests as well as
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their characteristics < sk
i ,dk

i ,vk
i ,TSk

i ,DRk
i >. The decoder’s output is a list of placement solutions

(actions) specifying which host node the VNF should be placed on, H i = {h1
i , ...,h|K |×|Ok|

i }. As

shown in Figure 6.1 (b), the VNFs should be placed chosen in step 3 are placed to the computing

nodes in step 4.

When solving the i − th subproblem, the probability of allocating a VNF f relies on the

placement solutions of previous allocated VNFs at each stage. Such conditional probability is

shown in Equation (6.1).

(6.1) pi(H i|R i)=
|K |×|Ok|∏

f i=1
pi(h

f
i |h

(< f )
i ,R i) ∀i ∈ [1, |I|]z

In Pointer Network, the attention mechanism is utilised to determine the aforementioned prob-

ability. To be more precise, at first, the encoder turns the input sequence to a high-dimensional vec-

tor, which is then fed to the generating network. Next, using the attention mechanism, the gener-

ating network produces a pointer to the input items. Encoder hidden states are (e1,i, ..., e|K |×|Ok|,i),
and decoder hidden state at decoding step t is dt,i. The Pointer Network selects a member of

the input sequence as the output according to the pointer provided by the attention mechanism

[144]. The pointer is a softmax probability distribution with dictionary size equal to the length of

the input [144]. At each output time t, the attention vector ut
i is obtained by equation (6.2), and

the vector ut
i is then softmax normalised (equation (6.3)) to be an output distribution over the

dictionary of inputs [144]. vi, W1,i, and W2,i are all learnable parameters in the output model.

(6.2) ut
f ,i = vT

i tanh(W1,i · e f ,i +W2,t ·dt,i)∀ f ∈ [1, |K |× |Ok|]z, i ∈ [1, |I|]z

(6.3) p(Ht|H1, ...,Ht−1,R)= sof tmax(ut)

The stochastic policy gradient technique is used to learn the placement policy that maps all

the provided service requests (state) to host nodes (action) and optimises the parameters of a

Pointer Network denoted as θi. The stochastic policy that generalises a placement strategy for all

service requests in the i− th subproblem is indicated as πθi (H i|R i), which sets a high probability

to the placement solutions with low reward and a low probability to the placement solutions with

high reward. Equation (6.1) can be used for such policy calculation.

Given all of the solutions for placement, the expected total service E2E latency Jπ
D(θi|R i) and

the expected total congestion Jπ
U (θi|R i) can be defined as follows:

(6.4) Jπ
D(θi|R i)= E

H i∼πθi (·|R i)
[D total(H i)] ∀i ∈ [1, |I|]z

(6.5) Jπ
U (θi|R i)= E

H i∼πθi (·|R i)
[U cpu(H i)] ∀i ∈ [1, |I|]z

Due to the fact that the SFCs placement problem is a constrained optimisation problem with

no closed-form solution for general constraints [86], we introduce a penalty signal to the reward
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function to indicate the degree of constraint dissatisfaction and guide the solution to feasible

regions. We utilise a constraint violation idea given in [87] to construct the penalty signal and

make the problem an unconstrained problem. It is calculated in equation (6.6) based on the

values of each inequality constraint ξκ(H i),κ= 1,2, ...ϵ and the values of each equality constraint

φλ(H i),λ= 1,2, ...,τ.

(6.6) ψ(H i)=
ϵ∑

κ=1
max(0,ξκ(H i))2 +

τ∑
λ=1

|φλ(H i)|∀i ∈ [1, |I|]z

Equation (6.7) gives the expectation of the penalty signal linked with a policy.

(6.7) Jπ
C(θi|R)= E

H i∼πθi (·|R i)
[ψ(H i)] ∀i ∈ [1, |I|]z

The objective function is the sum of the expected weighted-sum reward and the penalty signal

in each subproblem. The weight for the total service E2E latency minimisation is denoted as

αD
i ∈ [0,1], and the weight for the total congestion minimisation is represented as αU

i ∈ [0,1]. For

all the subproblems, uniformly spread weights vector are applied (1,0), (0.99,0.01),...,(0.01,0.99),

(0,1). In such a setting, the DRL will determine which policy minimises the weighted-sum

objective while fulfilling all the constraints. Equation (6.8) is the new objective function defining

the quality of the policy.

(6.8) min
θi

Jπ
L(θi|R i)= min

θi
[αD

i · Jπ
D(θi|R i)+αU

i · Jπ
U (θi|R i)+ Jπ

C(θi|R i)]

The stochastic gradient descent (SGD) approach is used to optimise the parameters of NN.

The gradient of the objective is calculated by the log-likelihood method with a baseline estimator

bθv,i , which is parameterised by weights θv,i. The baseline function is independent of policy π and

calculates the expected goal of reducing gradient variance [109]. The penalised objective value

achieved in each training iteration is Lπ
i (H i|R i). It can be computed by equation (6.10), where

Dπ
i (H i|R i) is the total latency and Uπ

i (H i|R i) is the total computing resource utilisation ratio.

(6.9) ∇θi J
π
L(θi|R i)= E

H i∼πθi (·|R i)
[(Lπ

i (H i|R i)−bθv,i (R i)) ·∇θi logπθi (H i|R i)]

(6.10) Lπ
i (H i|R i)=αD

i ·Dπ
i (H i|R i)+αU

i ·Uπ
i (H i|R i)+ψ(H i|R i)

Furthermore, the gradient is estimated using Monte Carlo sampling with B samples and

sampling a single as indicated in equation (6.11).

(6.11) ∇θi J
π
L(θi)≈ 1

B

B∑
j=1

(Lπ
i (H i, j|R i, j)−bθv,i (R i, j)) ·∇θi logπθi (H i, j|R i, j)

Throughout the training phase, another NN critic is used to assess the expected reward. The

baseline is trained using SGD on the mean squared error objective between the actual observed

reward obtained from the environment and its predictions bθv,i (R i, j).

(6.12) L (θv)= 1
B

B∑
j=1

||bθv (R i, j)−Lπ
i (H i, j|R i, j)||2
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6.3 Multi-Objective DRL Algorithm

In this section, we propose a Multi-Objective DRL algorithm for the SFCs placement problem.

In this algorithm, the complete problem is divided into multiple scalarised subproblems and

the non-dominated solutions can be obtained after solving all of the subproblems. It is worth

mentioning that we train each subproblem using the homotopy optimisation technique [82]. Due

to the existence of many local minimum throughout the landscape of the mean squared error loss

L (θv,i), a flatter value metric loss L (θh,i) is introduced to guide policy to the global minimum.

The homotopy path ω connecting L (θv,i) and L (θh,i) provides better chances of discovering

the global optimal parameters θ∗. Equation (6.13) presents the new loss function. By gradually

raising the value ω from 0 to 1, the loss function is shifted from L (θv,i) to L (θh,i). L (θv,i) first

guarantees the prediction is near to the true expected total reward and then L (θh,i) offers

auxiliary pull along the direction with better utility.

(1−ω)∗L (θv,i,ω)+ω∗L (θh,i,ω)=
1
B

B∑
j=1

[(1−ω)∗||bθv,i,ω(R i, j)−Lπ
i (H i, j|R i, j)||2 +ω∗ (bθv,i,ω(R i, j)−Lπ

i (H i, j|R i, j))]
(6.13)

Algorithm 2 describes the proposed Multi-Objective DRL algorithm. The input parameters

include the index of subproblems I, training steps S, homotopy path Ω, service requests R i,

batch size B, and MILP models for subproblems. For each subproblem, the output parameters

contain the optimised parameters θ∗i,ω and θ∗v,i,ω. For the first two subproblems, the expected

total E2E latency and total congestion are learned by Algorithm 3 (line 4-21), whereas, for the

remaining subproblems, Algorithm 4 is adopted to learn these two objectives (line 23-33).

At first, the weights for two objectives are calculated for each subproblem (line 6, line 8 and

line 23). Then, each subproblem is trained along the homotopy path. When ω= 0, two parameters

θi,ω,θv,i,ω are initialised randomly (line 12 and line 26). With the increase of ω, the θi,ω and θv,i,ω

are fed with the optimal θ∗i,ω−1 and θ∗v,i,ω−1 (line 15-16 and line 29-30). This homotopy technique

is effective because it applies the optimisation result from the previous phase in each update

step.

Inspired by the asynchronous advantage actor-critic (A3C) algorithm proposed in [109], we

design an Actor-Critic SFCs Placement Algorithm for the two subproblems with αD
i = 1,αU

i = 0

and αD
i = 0,αU

i = 1, and a Chebyshev-assisted Actor-Critic SFCs Placement Algorithm for the rest

subproblems based on SGD. During the training procedure, T instances of all service requests

are produced. For training, both algorithms have two networks: 1) An actor-network, which is

the Pointer Network, offers the probability distribution for picking the host nodes and calculates

the placement solution for the next VNF (line 5-7 in both Algorithm 3 and Algorithm 4). 2) A

critic-network, which assesses the expected reward given a certain issue state, maps an input

sequence R i, j into a baseline prediction bθv,i (R i, j). The critic-network is based on the same
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Algorithm 2: Multi-objective DRL Algorithm

1 Input: the number of subproblems I; the number of homotopy path Ω; the model of
subproblem including MILP environment; the training steps S; batch size B

2 Output: the optimal params θ∗i,ω and θ∗v,i,ω for each subproblem
3 for i = 0, ..., I −1 do
4 if i == 0 or i == 1 then
5 if i == 0 then
6 αD

i = 1,αU
i = 0,

7 else
8 αD

i = 0,αU
i = 1,

9 end if
10 for ω= 0,1/Ω,2/Ω, ...,1 do
11 if ω== 0 then
12 initialise params θi,ω,θv,i,ω randomly,
13 Jπ

D(θi,ω|R i), Jπ
U (θi,ω|R i),θ∗i,ω,θ∗v,i,ω← Al gorithm 3(θi,ω,θv,i,ω,αD

i ,αU
i ,ω)

14 else
15 θi,ω←θ∗i,ω−1/Ω, θv,i,ω←θ∗v,i,ω−1/Ω
16 Jπ

D(θi,ω|R i), Jπ
U (θi,ω|R i),θ∗i,ω,θ∗v,i,ω← Al gorithm 3(θi,ω,θv,i,ω,αD

i ,αU
i ,ω)

17 end if
18 end for
19 if i == 1 then
20 Jmin

D = min(Jπ
D(θi,0|R i), Jπ

D(θi,1|R i)), Jmin
U = min(Jπ

U (θi,0|R i),Jπ
U (θi,1|R i))

21 else
22 else
23 αD

i = 1− (i−1)∗0.01,αU
i = 0+ (i−1)∗0.01,

24 for ω= 0,1/Ω,2/Ω, ...,1 do
25 if ω== 0 then
26 initialise params θi,ω,θv,i,ω randomly,
27 θ∗i,ω,θ∗v,i,ω← Al gorithm 4(θi,ω, θv,i,ω, αD

i , αU
i , ω, Jmin

D , Jmin
U )

28 else
29 θi,ω←θ∗i,ω−1/Ω, θv,i,ω←θ∗v,i,ω−1/Ω
30 θ∗i,ω,θ∗v,i,ω← Al gorithm 4(θi,ω, θv,i,ω, αD

i , αU
i , ω, Jmin

D , Jmin
U )

31 end if
32 end for
33 end if
34 end for
35 return θ∗i,ω and θ∗v,i,ω for all subproblems
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Algorithm 3: Actor-Critic SFCs Placement Algorithm
1 Input: the initialised params θi,ω,θv,i,ω; the model of subproblem including service requests R i

and MILP environment; the weights for objective αD
i ,αU

i ; the path ω; the training steps S; batch
size B

2 Output: the optimal params θ∗i,ω and θ∗v,i,ω for each subproblem
3 for s = 1, ...,S do
4 generate T instances of service requests Ri, j
5 while not terminated do
6 select h f

i for the VNF r f
i according to probability calculated by equation (6.1)

7 end while
8 sample the input R i, j for j ∈ 1, , , .,B
9 sample the correspondence policy πθi, j for j ∈ 1, , , .,B

10 compute Dπ
i (H i, j|R i, j), Uπ

i (H i, j|R i, j), ψπ
i (H i, j|R i, j), Lπ

i (H i, j|R i, j) for j ∈ 1, , , .,B
11 calculate ∇θi,ω Jπ

L(θi,ω) by equation (6.11)
12 calculate L (θv,i,ω) by equation (6.13)
13 θi,ω← ADAM(θi,ω,∇θi,ω Jπ

L(θi,ω))
14 θv,i,ω← ADAM(θv,i,ω,∇θv,i,ωL (θv,i,ω))
15 end for
16 return θ∗i,ω, θ∗v,i,ω, Jπ

D(θi,ω|R i), Jπ
U (θi,ω|R i) for all subproblems

design as the Pointer Network’s encoder to encode an input sequence. The critic output, a baseline

prediction, is then decoded from the encoder’s hidden state.

The objective function to be optimised is the only difference between the two designed Actor-

Critic Algorithms. In Algorithm 3, the objective function is equation (6.13). In Algorithm 4,

the Chebyshev scalarisation method [85] is adopted. It is based on minimising the distance

between a point and the Utopian point (Jmin
D ,Jmin

U ) in terms of the factor that maximises such

distance. Therefore, the objective function in Algorithm 4 is (1−ω)∗D(θv,i,ω)+ω∗D(θh,i,ω) when

the latency−di f f erence is greater than the balance−di f f erence, and is (1−ω)∗U (θv,i,ω)+
ω∗U (θh,i,ω) when the latency− di f f erence is smaller than the balance− di f f erence. The

latency−di f f erence and the balance−di f f erence are calculated in line 11-12 based on the

Jmin
D and the Jmin

U calculated by line 19-21 in Algorithm 2.

The proposed Chebyshev-assisted Actor-Critic SFCs Placement Algorithm has a time complex-

ity of O (|I| · |K | · |Ok| ·d2
h), where |I| stands for the number of subproblems, |K | for the number

of service requests, |Ok| for the number of VNFs in each service request, and d2
h for the time

complexity of the RNN [83].

6.4 Simulation-based Evaluation

6.4.1 Simulation Setup

The simulation network topologies, resource capacities, VNF properties, SFC-related parameters,

and other simulation settings are the same as those in Section 5.4 of Chapter 5. We run the
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Algorithm 4: Chebyshev-assisted Actor-Critic SFCs Placement Algorithm
1 Input: the initialised params θi,ω,θv,i,ω; the model of subproblem including service requests R i

and MILP environment; the weights for objective αD
i ,αU

i ; the path ω; the minimum expected
objective: Jmin

D and Jmin
U ; the training steps S; batch size B

2 Output: the optimal params θ∗i,ω and θ∗v,i,ω for each subproblem
3 for s = 1, ...,S do
4 generate T instances of service requests Ri, j
5 while not terminated do
6 select h f

i for the VNF r f
i according to probability calculated by equation (6.1)

7 end while
8 sample the input R i, j for j ∈ 1, , , .,B
9 sample the correspondence policy πθi, j for j ∈ 1, , , .,B

10 compute Dπ
i (H i, j|R i, j), Uπ

i (H i, j|R i, j), ψπ
i (H i, j|R i, j) for j ∈ 1, , , .,B

11 latency−di f f erence =αD
i ∗ (Dπ

i (H i, j|R i, j)− Jmin
D ),

12 balance−di f f erence =αU
i ∗ (Uπ

i (H i, j|R i, j)− Jmin
U ),

13 if latency−di f f erence > balance−di f f erence then
14 ∇θi,ω Jπ

D(θi,ω)←1/B
∑B

j=1(Dπ
i (H i, j|R i, j)+ψ(H i, j|R i, j)−bθv,i,ω (R i, j)) ·∇θi,ω logπθi,ω (H i, j|R i, j)

15 (1-ω)∗D(θv,i,ω)+ω∗D(θh,i,ω)= 1
B

∑B
j=1[(1−ω)∗||bθv,i,ω (R i, j)−αD

i ∗Dπ
i (H i, j|R i, j)−

ψ(H i, j|R i, j)||2 +ω∗ (bθv,i,ω (R i, j)−αD
i ∗Dπ

i (H i, j|R i, j)−ψ(H i, j|R i, j))]
16 θi,ω← ADAM(θi,ω,∇θi,ω Jπ

D(θi,ω))
17 θv,i,ω← ADAM(θv,i,ω,∇θv,i,ωD(θv,i,ω))
18 else
19 ∇θi,ω Jπ

U (θi,ω)←1/B
∑B

j=1(Uπ
i (H i, j|R i, j)+ψ(H i, j|R i, j)−bθv,i,ω (R i, j)) ·∇θi,ω logπθi,ω (H i, j|R i, j)

20 (1-ω)∗U (θv,i,ω)+ω∗U (θh,i,ω)= 1
B

∑B
j=1[(1−ω)∗||bθv,i,ω (R i, j)−αU

i ∗Uπ
i (H i, j|R i, j)−

ψ(H i, j|R i, j)||2 +ω∗ (bθv,i,ω (R i, j)−αU
i ∗Uπ

i (H i, j|R i, j)−ψ(H i, j|R i, j))]
21 θi,ω← ADAM(θi,ω,∇θi,ω Jπ

U (θi,ω))
22 θv,i,ω← ADAM(θv,i,ω,∇θv,i,ωU (θv,i,ω))
23 end if
24 end for
25 return θ∗i,ω and θ∗v,i,ω for all subproblems

proposed Multi-Objective DRL Algorithm and other state-of-the-art algorithms for both small-

scale (Figure 6.1 (a) 7-node) and large-scale (Figure 5.3 29-node) networks. For the simulation,

the benchmark approaches are running on an IBM server with 24GB RAM and an 8-core CPU

processor, while DRL-related training and testing are carried out on a CORSAIRONE PRO

workstation equipped with an 8-core CPU processor and TensorFlow.

6.4.2 Simulation Results and Analysis

In both 7-node and 29-node network, to approximate the PFs, we run six algorithms: GA, NSGA-II,

MO-VNFCP Algorithm, Constrained Two Archive Evolutionary Algorithm (C-TAEA), Linear-

Multi-Objective Deep Reinforcement Learning (MODRL) Algorithm (LMODRL) and Chebyshev-

MODRL Algorithm (CMODRL). The first three benchmark algorithms are based on the ap-

proaches used in [3, 36, 56] to place SFCs, respectively. The C-TAEA algorithm is chosen as the
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benchmark because it is specifically designed for addressing constrained multi-objective optimi-

sation problems and it exhibits a strong capacity to balance convergence, diversity, and feasibility

at the same time [133]. These four algorithms have been modified to match this multi-objective

SFCs placement problem, and their detailed algorithm designs are listed in Chapter 5. The fifth

benchmark comes from [83], which solves each sub-problem of the multi-objective DRL problem

using the linear weighted-sum scalarisation approach. The last algorithm is proposed in this

chapter (Algorithm 2), which is based on the non-linear Chebyshev scalarisation technique. Three

EA-based algorithms conduct 100 generations for 100 populations, the MO-VNFCP Algorithm

runs 100 iterations, while the last two DRL algorithms handle 100 weights uniformly distributed

sub-problems in both 7-node and 29-node network topologies.

6.4.2.1 Non-dominated Fronts on Small Scale Networks

Figure 6.3 shows the non-dominated fronts obtained for addressing multi-objective SFCs place-

ment of 100, 200, 300, and 400 service requests on the 7-node network. The MO-VNFCP Algorithm

performs poorly in all cases since it can only find neighbouring solutions for the initial solutions.

In comparison, GA, NSGA-II, and C-TAEA can discover more and better non-dominated solu-

tions. However, these four algorithms rely heavily on the initially generated feasible solutions in

this highly restricted situation. However, these human-designed algorithms cannot guarantee

the quality of solutions and these obtained feasible solutions are neither near to optimum nor

represents true PFs distribution. As a result, despite the existence of mechanisms to provide

randomness, such as the mutation process, these algorithms are unable to successfully escape

the local minimum and reach feasible solutions.

As shown in the four graphs in Figure 6.3, two DRL-based algorithms can successfully

overcome the limitations of human-designed algorithms to find solutions that are significantly

closer to the global optimum and closer to true PFs. Especially in the congestion area, it can

find solutions that vastly minimise traffic congestion. Although there are 100 weights set in the

Linear-MODRL Algorithm, it can only discover a few non-dominated solutions and fails to find

some solutions in the non-convex areas. In most cases, the solutions discovered are identical to

those found with (0,1) and (1,0) weight vectors, demonstrating that the mapping from weight

space to objective space is not perfectly isomorphic.

Undoubtedly, the proposed Chebyshev-MODRL Algorithm outperforms all other algorithms.

When compared to the first four algorithms, it approximates the optimal values very well. It

can discover more non-dominated solutions than the Linear-MODRL Algorithm because it is not

limited by the setting weights and capable of solving problems in non-convex areas. In Figure 6.3

(c) and (d), we can find that the Linear-MODRL Algorithm has a lot of solutions (blue squares)

that are located close to each other at the left bottom, which makes it difficult to represent

non-dominated fronts well. Nevertheless, the solutions of the Chebyshev-MODRL Algorithm

spread widely. In further, all solutions that are closer to minimum total E2E latency, minimum
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FIGURE 6.2. Non-dominated Solutions on Small-Scale Network: (a) 100 Service Re-
quests Situation, (b) 200 Service Requests Situation, (c) 300 Service Requests
Situation, (d) 400 Service Requests Situation.
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total congestion, and utopia point [146] can be found, which can better reflect PFs.

Hypervolume Indicator (HV) is used to evaluate the performance of six algorithms by mea-

suring the area dominated by non-dominated fronts [36]. However, this volume is infinite for

a minimisation problem. Hence, we use a reference point with the maximum objective values

generated by all six algorithms as its coordination. Under such circumstance, higher HV values

indicate better performance [36]. From Table 6.1, it can also be deduced that two MODRL-based

algorithms beat the other benchmarks, with the Chebyshev-MODRL Algorithm providing the

highest HV values in most scenarios.

Table 6.1: Algorithm Performance Indicator

Total Small Scale Network

Service GA NSGA-II MO-VNFCP C-TAEA LMODRL CMODRL

100 0.02772 0.02865 0.02396 0.04499 0.56851 0.57269
200 0.03223 0.03211 0.03179 0.04180 0.68814 0.69581
300 0.13733 0.13686 0.11527 0.20688 0.78492 0.79181
400 0.25591 0.25567 0.22765 0.35321 0.68230 0.68270

Total Large Scale Network

Service GA NSGA-II MO-VNFCP C-TAEA LMODRL CMODRL

300 0.05827 0.07086 0.01609 0.28949 0.67689 0.67245
600 0.02599 0.02762 0.0188 0.22229 0.66945 0.67881
900 0.04245 0.06004 0.02074 0.17774 0.67818 0.71030

1200 0.10380 0.08265 0.07422 0.17014 0.61477 0.64358

6.4.2.2 Non-dominated Fronts on Large Scale Networks

Figure 6.3 shows the non-dominated fronts achieved for placing 300, 600, 900, and 1200 service

requests on the 29-node network using multi-objective SFC algorithm. Six algorithms perform

similarly on the large-scale network to those on the small-scale network. In all cases, the

MO-VNFCP Algorithm performs worst with minimal HV values (as indicated in Table 6.1).

Although the GA and NSGA-II improve the performance, they are unable to effectively eliminate

congestion. C-TAEA Algorithm can release congestion by providing more solutions with a lower

congestion ratio because it involves the mechanism to explore new areas. Two DRL algorithms

significantly enhance the performance with considerably higher HV values (Table 6.1). Linear-

MODRL Algorithm can achieve better non-dominated fronts in terms of both solution numbers

and spread performance in large-scale networks than in small-scale networks. In most cases, the

Chebyshev-MODRL Algorithm is superior to the Linear-MODRL Algorithm because it further

improves the non-dominated fronts and gives lower latency and lower congestion solutions.
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FIGURE 6.3. Non-dominated Solutions on Large-Scale Network: (a) 300 Service Re-
quests Situation, (b) 600 Service Requests Situation, (c) 900 Service Requests
Situation, (d) 1200 Service Requests Situation.
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6.4.2.3 Time Consumption Performance

The running time for all algorithms on 7-node and 29-node architecture is shown in Table 6.2. In

both scenarios, it can be seen that: 1) GA and NSGA-II take about the same amount of time to

run 100 iterations, 2) MO-VNFCP consumes about a quarter of the consumption time that GA

and NSGA-II use, but its performance is the worst (lowest HV values in Table 6.1), 3) although

C-TAEA produces better non-dominated solutions than the GA and NSGA-II, it takes more than

twice running time of GA and NSGA-II, 4) two DRL algorithms have the best performance, with

training time accounting for just 2% of the total running time of GA and NSGA-II.

The execution time for each approach grows when the network scales from 7-node to 29-node

and the number of service requests triples. On a large-scale network, two DRL algorithms cost

less than seven times what they do on a small-scale network. However, GA, NSGA-II, MO-VNFCP,

and C-TAEA algorithms take ten to fifty times longer than those on the small-scale network. For

example, the GA and NSGA-II simulations take 9 days for 1200 service requests on the 29-node

network, the C-TAEA simulation takes 19 days, while two DRL approach simulations take just 4

hours.

Based on the results of the simulation, it can be concluded that the proposed Chebyshev-

MODRL Algorithm outperforms other state-of-the-art benchmarks in terms of the PF exploration

capacity and scalability for solving large-scale problems.

Table 6.2: Time Consumption of Different Approach

Total Small Scale Network

Service GA NSGA-II MO-VNFCP C-TAEA LMODRL CMODRL

100 112min 153min 25min 182min 9.65min 8.23min
200 203min 210min 54min 357min 14.23min 13.70min
300 239min 234min 70min 526min 26.28min 26.8min
400 289min 312min 86min 611min 36.91min 35.95min

Total Large Scale Network

Service GA NSGA-II MO-VNFCP C-TAEA LMODRL CMODRL

300 1239min 1323min 247min 2955min 34.95min 36.45min
600 3551min 3211min 700min 6862min 123min 95min
900 8542min 8722min 1793min 18375min 139min 143min

1200 13672min 13692min 2755min 28219min 249min 245min

6.4.2.4 Weighted-sum Results on Large Scale Network

On the 29-node network, we run the 1) First-Fit Algorithm, which places SFCs to the nearest

available nodes; the 2) Data-Rate-based Algorithm, which starts with the results of the first

algorithm and then routes VNFs from MEC nodes to DCs when the MEC nodes are overloaded
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FIGURE 6.4. Simulation Results on 29-Node Network: (a) Average Total Service E2E
Latency, (b) Average Total Transmission and Propagation Latency.

[131]; and the 3) Chebyshev-assisted Actor-Critic SFCs Placement Algorithm designed in this

chapter (Algorithm 4). Under various workload scenarios, the chosen weights for Algorithm 4

are the weights of the points closest to the Utopia points [146], and 10 independent simulation

experiments are carried out with different random seeds for the service request generation.

The average latency results of the three methods are illustrated in Figure 6.4 (a) and (b).

It can be observed that the Chebyshev-assisted Actor-Critic SFCs Placement Algorithm has the

lowest average total service E2E latency (green bar in Figure 6.4 (a)) and can route more services

from MEC nodes to DCs, resulting in increased transmission and propagation latency (green bar

in Figure 6.4 (b)). Because of such replacement, they can utilise more network resources than the

first two algorithms. Furthermore, when there are more than 900 service requests, the overall

service E2E latency for the First-Fit Algorithm grows dramatically owing to the massive increase

in processing latency at MEC nodes when they are overloaded (more than 70% utilisation ratio

shown in Figure 6.6 (d)).

Figure 6.5 are box plot latency results of 10 independent simulation runs. As the total

number of service requests increases, three algorithms become less robust (Figure 6.5 (a)). Among

them, the Chebyshev-assisted Actor-Critic SFCs Placement Algorithm performs the best with
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FIGURE 6.5. Statistical Simulation Results on 29-Node Network: (a) Total Service E2E
Latency, (b) Total Transmission and Propagation Latency.

the narrowest box width, and the First-Fit Algorithm performs the worst with the broadest box

width. For example, the Chebyshev-assisted Actor-Critic SFCs Placement Algorithm can efficiently

control 50% latency variance within 52ms (from 392ms to 444ms), while, the Data-Rate-based

Algorithm and the First-Fit Algorithm can only reach 702ms (from 1251ms to 1953ms) and

1669ms (from 3744ms to 5413ms) latency variance, respectively. The reason is that the DRL

algorithm is more general than the heuristic algorithm and can lead to robust performance. In

Figure 6.5 (b), the observed box plots show no specific trend for the tested three algorithms in

terms of total transmission and propagation latency.

The CPU utilisation results of the three methods are shown in Figure 6.6 (c) and (d). The First-

Fit Algorithm performs the poorest with the highest average congestion ratio. When the MEC

nodes are overloaded, the Data Rate-based Algorithm can release the congestion by replacing

VNFs from MEC nodes to EDCs, keeping the edge CPU utilisation ratio around 75%. The overall

congestion performance and average edge CPU utilisation can be improved using the Chebyshev-

assisted Actor-Critic SFCs Placement Algorithm. On the one hand, when compared to the First-Fit

Algorithm and the Data Rate-based Algorithm, it can successfully replace VNFs from MEC nodes

to CDCs, reducing total congestion by 312% and 208% for 1200 service requests, respectively. On
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the other hand, it can keep the utilisation ratio of edge CPU below 41%, relieve the MEC nodes’

burden, and keep enough edge resources for the future ultra-low latency services.

Figure 6.6 (e) shows the average SAR performance of three algorithms. When there are

less than 900 service requests all three methods can reach 100% SAR. It can be seen that the

Chebyshev-assisted Actor-Critic SFCs Placement Algorithm is the best for the rest of the time

because it can effectively place VNFs at CDCs and accepts more than 99% service requests. Re-

markably, the average SAR performance of 1ms services is compared among the three algorithms.

When there are more than 900 service requests, more than 75% 1ms service requests will be

rejected by the first two algorithms. Under the 1200 requests scenario, the First-Fit Algorithm

performs significantly worse, and not one 1ms service can be accepted. It is worth mentioning that

the Chebyshev-assisted Actor-Critic SFCs Placement Algorithm (Algorithm 4) can achieve 98%

1ms service requests under various workload scenarios because of its capability to intelligently

support services with diverse QoS requirements.

Figure 6.7 (c), (d), and (e) depict the statistical performance of three algorithms with respect

to total congestion, average edge CPU utilisation ratio, and SAR, individually. For the CPU

utilisation, by comparing the box width of three algorithms with the number of service requests

varying from 300 to 1200, it can be concluded that the proposed Chebyshev-assisted Actor-

Critic SFCs Placement Algorithm outperforms the other two methods since it can get smaller

distribution and lower mean value. It can limit the congestion variance and reduce congestion

effectively under various workloads. Figure 6.7 (e) proves that the Chebyshev-assisted Actor-Critic

SFCs Placement Algorithm is robust in comparison to other baseline approaches in terms of both

overall service acceptance and ultra-low latency service acceptance performance. Because its SAR

and 1ms SAR results have the smallest box width, the smallest data variance, and the highest

mean value. To be more specific, its SAR variances and 1ms SAR variances are 0ms and its mean

values are 100% for all the considered scenarios. Since the highest SAR value, the lowest SAR

value, the mean SAR value, and the 50% SAR variance equal that of the 1ms SAR for the same

algorithm, it indicates that all the rejected service requests are ultra-low latency service requests

for all the considered scenarios.

Table 6.3 compares the time consumption performance of these three algorithms on the

29-node topology. The First-Fit SFCs Placement Algorithm takes the least amount of time but

cannot guarantee the quality of solutions. Once trained, the Chebyshev-assisted Actor-Critic SFCs

Placement Algorithm runs faster than the Data-Rate-based SFCs Placement Algorithm in the

large-scale static network, requiring just 0.16-0.18 seconds to assign a single service request.

It is desired to adapt the designed algorithm for online simulation, taken into account

the limitations of offline algorithms (e.g., not working for users’ unpredictable behavior [147]).

According to the time consumption results in Table 6.3, it can be expected that our proposed

algorithm should be able to complete the resource allocation per request within one second.

Furthermore, it satisfies the reported instantiation time for online single service provisioning
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FIGURE 6.7. Statistical Simulation Results on 29-Node Network: (c) Total Congestion,
(d) Average Edge CPU Utilisation Ratio, (e) SAR.
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[148]. Based on Table 4 in [148], the time it takes to instantiate a service should be less than

120sec, and our proposed algorithm takes just 0.83% time of such target requirement. In the

future, the fully live-adaption environment, which includes unseen service requests, can be

modelled using the same constraints proposed in this chapter to train the Chebyshev-assisted

Actor-Critic SFCs Placement Algorithm.

Table 6.3: Running Time of Weighted-sum Approaches

Service Requests 300 600 900 1200

First-Fit Algorithm 2.97sec 5.67sec 7.27sec 11.24sec

Data-Rate Algorithm 332.91sec 1341.56sec 3461.92sec 7684.07sec

Chebyshev-DRL Algorithm 53.19sec 104.59sec 145.67sec 217.11sec

6.5 Testbed Experimentation-based Evaluation

6.5.1 Experiment Description

In addition to simulation evaluation, the experimental evaluation is carried out. The proposed

OpenStack-based experiment testbed is established using the logical diagram of the optical layer

depicted in Figure 6.8 (a). In this testbed, two CORSAIRONE PRO computers holding 8-core

processors act as DCs, while two IBM x3455 servers holding 4-core processors as MEC nodes. Four

computing nodes are connected to the Corsa DP2100 switch via 10 Gbps Ethernet cables on top

of the optical fibres. At computing nodes and layer-2 switch, Intel multi-mode small form-factor

pluggable (SFP) transceivers are used as the OEO conversion-related resources. Moreover, two

optical fibres ranging 100km and 50km are included as well.

All of the NFVIs described (shown in Figure 6.8 (c) and (e)) are controlled by the OSM

implemented on the EDC (DC1), which has less CPU resources after running OSM than the

other computer. The other one is designed as the CDC (DC2). Figure 6.8 (b) shows how these

computing nodes are controlled by the OSM controller, as well as their CPU capacity and current

CPU utilisation. To reflect the transmission latency on 10km and 150km optical fibres between

DC2 and switch, and MEC node and switch, respectively, extra latency of 0.73ms and 0.05ms

are introduced at DC2 and MEC nodes, individually. We assign separate IP addresses to various

SFCs’ ports and build two different lightpaths (shown in Figure 6.8 (a) and (f)) for SFC from the

same source and destination.

Firewall (FW), Deep Packet Inspection (DPI), VLC-media player (VLC), and Web Service

(Web) are four types of VNF instances implemented at four VMs on each computing node. On

MEC nodes, VMs have 2 CPU cores dedicated to hosting VLC and 1 CPU core dedicated to other

functions. While, on DC, VMs are given with 4 CPU cores for VLC and 2 CPU cores for other

functions. These instances are all controlled by the OSM. Examples of VNF instances on the
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FIGURE 6.8. Experiment Testbed: a) Logical Diagram of Optical Layer, b) Control of
Computing Nodes, c) NFVIs Part I (MEC nodes, Switches, and Optical Fibres), d)
Control of VNF instances, e) NFVIs Part II (DC nodes and Monitors), f) Lightpath
Labels.
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OSM are shown in Figure 6.8 (d). In this diagram, one FW is instantiated on DC2, and three

Web created on MEC nodes and DC. Each VNF instance has its own IP address for routing

traffic through SFCs. In this experiment, we explore two types of service chains. One is the video

streaming service requiring FW, DPI, and VLC function in order, 550ms E2E latency and 270

Kbyte packet for transmission. The other is the Web service requiring FW, DPI, and Web in order,

2s E2E latency and 64-byte packet for transmission.

At DC1 (controller), all the SFC placement algorithms are executed. First, the OSM gathers

all of the VMs’ current ’VCPUs(used)’. This information and SFC requests are taken as inputs to

the algorithm. After getting input parameters, these algorithms are executed to produce node

mapping and link mapping results. Then SFCs are created by NFVO according to these obtained

results. To compare each node’s CPU utilisation ratio and the service E2E latency between the

simulation and experiment, these two indicators are calculated by SFC placement algorithms for

the simulation, and recorded during the experiment as the real experimental outcomes.

6.5.2 Experiment Results and Analysis

Prior to the experiment, we conduct a pre-experiment test to gather information for the simulation

environment settings. When there is no active service, the CPU utilisation ratio of each node is

monitored. Accordingly, the CPU capacity is set to be 7.41, 7.88, 3.91, and 3.93 for DC1, DC2,

MEC1, and MEC2. According to this pre-test, the maximum number of operating VLC instances

is 5 and 2 for each DC and MEC node. We then run the maximum number of VLC instances

and find that the CPU utilisation ratio is 36% and 64% for each MEC node and DC, respectively.

Based on the results of this test, we set the VNF CPU resource consumption attribute βcpu
m to

be 0.003, 0.003, 0.003, and 0.006 for FW, DPI, Web, and VLC, respectively. For 8, 12, 16, and 20

service requests, we solve the multi-objective SFCs placement problem in the experiment. All

SFC requests are evenly split between the FW-DPI-VLC video service and the FW-DPI-Web web

service.

The simulation results and experimental results of two objectives obtained by three algorithms

are presented in Figure 6.9 (a) and (b) as dotted line and solid line, respectively. It can be seen

that they have comparable tendencies in Figure 6.4 (a) and (b). To be more specific, First-Fit

SFCs Placement Algorithm performs the worst, having the highest total service E2E latency

and total congestion. Data Rate-based SFCs Placement Algorithm and Chebyshev-assisted Actor-

Critic SFCs Placement Algorithm performs better with lower total E2E latency and lower total

congestion ratio. However, these two algorithms’ total congestion results (solid green line and

solid red line) are similar since the MEC CPU capacity and DC CPU capacity are comparable in

the experiment environment.

In Figure 6.9 (c), the average edge CPU utilisation ratios of these methods are compared.

Both for the simulation and experiment, the Chebyshev-assisted Actor-Critic SFCs Placement

Algorithm always obtains the lowest average edge CPU utilisation ratios (dotted and solid red
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FIGURE 6.9. Simulation and Experiment Results on Real Testbed: (a) Total service E2E
latency, (b) Total Congestion Ratio, (c) Average Edge CPU Utilisation Ratio, (d)
SAR.
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lines), demonstrating that it is the best algorithm for moving service from MEC nodes to DCs in

a variety of workload circumstances. From this figure, it can also be found that the experiment

CPU usage results are different from the simulation because the real CPU cores allocation differs

from the M/M/1 queueing model adopted in the simulation.

Figure 6.9 (d) presents the SAR performance for simulation (dots) and experiment (line).

The First-Fit SFCs Placement Algorithm (blue line) always accepts lower service requests than

the Data Rate-based SFCs Placement Algorithm (green line) and also lower service requests

than the Chebyshev-assisted Actor-Critic SFCs Placement Algorithm (red line). Because the first

algorithm places a large number of services at MEC nodes for the high workload scenario, which

is greater than the maximum number of supported services. Even though the second algorithm

can improve such performance, some services are still be rejected in 20 SFC situations. Notably,

the third algorithm consistently reaches 100% SAR. It can also be found that the simulation and

experiment SAR of the second algorithm are different when there are 20 service requests. The

reason for this is that different methods to SAR calculation are employed. In the simulation,

when the calculated E2E latency exceeds the requirement or there is a CPU resource shortage,

the video streaming service request is rejected. However, because the CPU utilisation ratio never

reaches 100% in reality, the video streaming service request will not be refused in the experiment

owing to the CPU resource shortage.

6.6 Summary

In this chapter, the SFCs placement problem in multi-layer edge-cloud network was handled

using a multi-objective optimisation strategy to meet high capacity and low latency service

requirements. Initially, a Pointer Network-based DRL model was designed. Following that, a

novel Chebyshev-assisted Actor-Critic SFCs Placement Algorithm was proposed to achieve above

0.55 HV of PFs outperforming other state-of-the-art algorithms, and to deal with various workload

scenarios achieving 99% total SAR and 98% 1ms SAR. Finally, experiments were carried out on a

real testbed that consisted of multiple OpenStack-based NFVIs (e.g., MECs) hosted in servers

linked by optical fibres. The results of simulation and real testbed experiments showed that the

proposed algorithm can satisfy a wide range of QoS criteria and prevent congestion in different

workload conditions. Notably, it achieved a 100% SAR in the tested scenario.

114



C
H

A
P

T
E

R

7
DISTRIBUTED GAME THEORY-BASED SFCS PLACEMENT

To overcome the disadvantages suffered from the centralised control of SFCs placement,

such as scalability, privacy, and single point failure, a decentralised control method is

proposed in this chapter. The latency-aware SFCs placement problem is first modelled as

the congestion game to measure the effects of resource congestion on packet processing latency,

optical-to-electrical (OE) conversion latency, and electrical-to-optical (EO) conversion latency.

In this model, all SFC requests arriving simultaneously are players competing against each

other to minimise their own E2E latency and resource consumption costs. Secondly, a distributed

online algorithm is designed with the simulation results showing its 100% service acceptance

performance in the simulation scenario. In the weighted-sum objective function, by setting lower

resource consumption weights for ultra-low latency services, these services can be routed to edge

nodes, and network operators can earn more. Thirdly, a real testbed experiment is carried out for

SFCs with different packet sizes. Experimental results prove the online capability of the proposed

algorithm as it converges to Nash Equilibrium in 40 seconds, and all the E2E latency criteria can

be met if the packet size is small.

7.1 Introduction

Faced with the requirements of massive and various applications, the 5G or beyond 5G network

is expected to provide high capacity and low latency services [149]. Because the combination of

optical transmission and switching technologies can supply both high data rate and low latency

solutions, the optical network is a significant enabler [150]. MEC is a promising enabler for

ultra-low latency services as it brings computing resources from the core network to the edge

network [151]. With virtualisation technologies, on-demand computing and network resources
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can be offered on elastic optical networks for 5G services. For example, in SFCs, VNFs can

be instantiated on any available resources, and virtual links can be mapped to any available

physical links. By jointly considering optical network, MEC, and NFV technologies, flexible,

efficient, and dynamic resource allocation can be achieved while catering to diverse application

QoS requirements.

In this chapter, the latency-aware SFCs placement problem is studied by considering com-

puting resources at MEC servers and DCs, network resources such as wavelength, optical-to-

electronic (OE) conversion and electronic-to-optical (EO) conversion resources, and constraints

in multi-layer networks. Regarding this problem, many works focus on the centralised methods

including ILP, heuristic, meta-heuristic and RL algorithms [1, 8, 46, 51, 73, 152], however, these

centralised approaches cannot address the requirements of fast, efficient, and scalable SFCs

deployment in edge-cloud networks with a large number of MEC servers and the increasing

number of services [38]. On the one hand, due to the NP-hardness of this problem, the ILP model

is not scalable [21], heuristic algorithms cannot get high-quality solutions [153], meta-heuristic

algorithms require a large iteration process to get good results [153], and RL algorithms which

depend on tabular methods cannot handle high dimensional problems very well [83]. On the

other hand, centralised methods also have disadvantages such as private information disclosure

and the machine breakdown problem [68, 71]. Although some DRL approaches can handle the

scalability problem, they suffer the disadvantages mentioned above.

To overcome the aforementioned drawbacks of the centralised approach, the distributed

scheme is believed to be better for the latency-aware SFCs placement in edge-cloud networks

[68]. In the distributed scheme, the proposed algorithm can run on many computing nodes based

on local information. Therefore, i) scalability problem, ii) privacy problem, iii) single-point failure

problem can all be addressed. Game theory is widely used in the development of distributed

algorithms. There are several works using game theory for resource allocation in NFV-enabled

networks. A graph partitioning game is used in [70] to assist the distributed algorithm design

for VNF chaining in DCs. The expenses of processing and communication deployment are kept

to a minimum with latency constraints. Authors in [69] propose a game theory-based heuristic

algorithm for load balancing in VNF operation and routing. Authors in [71] solve the static SFC

composition problem by modelling it as a congestion game and designing a distributed heuristic

algorithm to minimise the congestion, latency, and cost all at the same time.

However, those methods proposed in the above works are not fit for solving the SFC placement

problem in the multi-layer edge-cloud network because neither optical network nor edge com-

puting resource is considered. Only one work presents a mixed-strategy gaming-based dynamic

solution for the latency-aware SFCs placement problem in the elastic optical inter DC network

taking into account computing, wavelength, and OEO conversion resources [154]. However, their

model is not fully distributed but hierarchical. There is a central controller providing placement

schemes for each service request. Hence, to the best of our knowledge, there is no distributed
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online solution for the latency-aware SFCs placement problem that considers both optical network

resources and edge computing resources.

To fill this gap, in this chapter, we design a game model and propose distributed online

algorithm for latency-aware SFCs placement in multi-layer edge-cloud networks. The main

contributions can be summarised below as:

1) The SFCs placement problem is modelled as a congestion game in which each service

request behaves as a player attempting to reduce its own E2E latency and resource consumption

costs. Due to the property of the congestion game, the processing latency, OE, and EO conversion

latency are all affected by the number of users who share the same resource.

2) For each service request, a distributed online algorithm is developed to improve its own

objective function and reach Pure strategy Nash Equilibrium (PNE). Its performance is tested in

both discrete event simulation and real testbed experiments. By minimising both the latency and

cost, 100% SAR can be achieved. The lower the weights set for network services, the higher the

edge resources utilisation can be guaranteed and the higher network payoff can be achieved.

This chapter is structured as follows: Resource competition among service requests in 5G

networks is introduced in Section 7.2. Section 7.3 formulates the SFCs placement problem as

the congestion game and mathematically proves the existence of potential function and PNE.

Section 7.4 provides the distributed online algorithm. Simulation setup, results, and analysis are

described in Section 7.5. An experimental testbed is introduced, and experimental results are

analysed in Section 7.6. The final section concludes the whole chapter.

7.2 Distributed SFCs Placement Problem Formulation

The network topology considered in this chapter is presented in Figure 7.1. In this topology, MEC

servers are located at the Macro Base Station (MBS) in the 5G network [127]. While EDCs and

CDCs are placed in the metro and core network, respectively. Compared to the EDCs and CDCs,

MEC servers have fewer computing, OE, and EO conversion resources. All the computing nodes

and switching nodes in the access, metro, and core network are connected via optical fibre links

and OXCs, which means wavelength continuity should be satisfied [1].

The game-based latency-aware SFCs placement problem in this network topology can be

defined as how to find appropriate computing nodes to instantiate the VNFs and appropriate

optical fibre links to interconnect them while satisfying the E2E latency and resource capacity

constraints of all the involved players [70]. Thus, each network service request is a selfish player

in this game who strives to improve its own objective function while competing with other players

for resources.

According to 3GPP, each network service request generated by the UE will be sent to UPF

and third-party functions such as FW and DPI [151]. UPF is responsible for setting the data

path between the UE and the data network and routing traffic towards the desired application
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FIGURE 7.1. 5G Network Topology and Resource Competition.

based on network information [151]. Network services routed along the same path compete for

the computing and network resources. Figure 7.1 also illustrates an example of such competition.

There are four network service routing configurations. Network services requested by UE1, UE2,

UE3 and UE4 shall be forwarded to their nearest available UPFs first [151]. Then, the UPF

decides the resource allocation for each request assisted by algorithms and the traffic will be

routed to the network accordingly. It can be seen that the network service from UE1 (red solid

line) competes for the resources with network services from UE2 (black dotted line) in the core

network and UE3 (black solid line) in the metro network. Instead of having UPF in MEC servers

only, we also include UPF in EDC. The traffic from UE4 (red dotted line) is routed by UPF3 to

the core network and this service competes with the traffic from UE2 (black dotted line) in the

core network.

SFCs that request the same ordered VNFs but different sources, destinations, data rates,

packet sizes, and E2E latencies are players in our game. From the source to the destination,

computing resources, OE and EO conversion resources in various places can be chosen for these

SFCs. Because processing latency, OE, and EO conversion latency are calculated using the M/M/1

queueing model, the higher the number of SFCs accessing the same resource, the worse the

congestion is, the longer the latency will be. As a result, we should avoid using resources that

have much traffic and congestion.

7.3 Game Model

In this section, firstly, the congestion game of SFCs is formulated with all the parameters related

to the network, service requests, and the game model itself. Secondly, the formulated congestion

game is proved to be a potential game holding both pure Nash Equilibrium (PNE) and Finite
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Improvement Property (FIP) properties, which helps for the later distributed algorithm design.

7.3.1 Congestion Game Formulation

1) Input Parameters of network and SFC requests

The network and SFC requests are coded in Table. 7.1. The network is represented as a

directed network (N,L), where N is a set of nodes including MEC servers NMEC, edge DCs NEDC,

core DCs NCDC, and switching nodes NSWN . L denotes a set of physical links. The physical link

connecting physical node n and m can be represented as (n,m), with length denoted by len(n,m).

In the optical link system, W defines the set of wavelength.

For all the service requests, there are total O types of VNFs. o is used to define the o− th VNF

in each SFC and the set of required VNFs in the same SFC F can be defined as F = { f1, f2, ..., fO}.

We assume that each computing node has total O types of VNF instances with CPU resources

rCPU
o,n . Similarly, we use rOE

n , rEO
n and rw

(n,m) to indicate the OE conversion resource on node n,

EO conversion resource on node n, and wavelength w on link (n,m), respectively. Each kind of

resource has its own unit price.

Table 7.1: Network Parameters and SFC Parameters

(N,L) directed network including the set of nodes N and physical links L. N
is composed by MEC nodes NMEC , edge DCs NEDC , core DCs NCDC
and switching nodes NSWN

n the node n in the network, n ∈ N

(n,m) the physical link connecting node n and m, (n,m) ∈ L

len(n,m) the length of the physical link (n,m)

W the set of wavelengths in the network

rw
(n,m) the wavelength w on the link (n,m), w ∈W

O the total number of VNFs in the SFC

o the o− th VNF in the SFC request, o ∈ [1, |O|]z
1 2

F the set of required VNFs in the same SFC, F = { f1, f2, ..., fO}

R the set of resources in the network

rCPU
o,n , rOE

n , rEO
n the CPU on the o− th VNF in the node n, OE conversion and EO

conversion resource in the node n, rCPU
o,n , rOE

n , rEO
n ∈ R

v the data rate of the network service

βCPU
o , βOE

o , βEO
o CPU, OE and EO conversion resources required by the o− th VNF. All

the VNFs have the same βOE
o and the same βEO

o (e.g., βOE
1 =βOE

2 )

µCPU
o,n , µOE

n , µEO
n , µ(n,m) the unit price of using CPU, OE and EO resources on node n, and the

unit price of using link (n,m)

2) Game Model Parameters
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Table. 7.2 contains all the parameters defining the congestion game for service requests. The

set of players S includes all the received SFC requests s at the same time. Each SFC is a player i

in this game characterised by its source ai, destination bi, E2E latency τi, the set of VNFs F i,

data rate vi, holding time T i, and ρ i indicating how the service request cares about resource

consumption cost. The resource required by each player i depends on the resource type, the VNF

type, and the traffic data rate, for example, the CPU required by the o− th VNF for the i− th

player can be calculated by θi,CPU
o =βCPU

o ·vi.

Each player has its own strategy ψi of choosing the CPU, OE, EO resource and wavelength.

We use ψ to represent strategies for all the players and ψ−i to represent strategies for all the

other players.

Table 7.2: Game Model Parameters

S the set of players including all the network service requests received at
the same time

i the player i in the game, i ∈ S

P the total number of players in the game

s(ai,bi,τi,F i,vi,T i,ρ i) service request of the player i including source ai, destination bi, E2E
latency τi, the set of VNFs F i, data rate vi, holding time T i, and
parameter ρ i indicating how the service request cares about resource
consumption cost

θ
i,CPU
o , θi,OE

o , θi,EO
o the CPU, OE and EO conversion resources required by the player i,

θ
i,CPU
o =βCPU

o ·vi, θi,OE
o =βOE

o ·vi, θi,EO
o =βEO

o ·vi

ψi the strategy for the player i is the CPU, OE and EO conversion re-
sources chosen by each VNFs

ψ= (ψ1, ...,ψP ) the strategy profile of all the players

ψ−i =ψ\ψi the strategies of other players, ψ−i = (ψ1, ...,ψi−1,ψi+1, ...,ψP )

ϵ
i,CPU
o , ϵi,OE

o , ϵi,EO
o the CPU, OE and EO conversion resources on the node ϵ is chosen by

the o− th VNF for the player i

ϵi
(ai ,1)

, ϵi
(o,o+1), ϵ

i
(O,bi)

the physical link ϵ is chosen by the player i for the traffic from the
source node ai to the first VNF, between VNFs or from the last VNF to
the destination node bi

αCPU
o,n , αOE

n , αEO
n the number of players choosing the o− th VNF CPU, the OE and EO

conversion resource on node n

3) Latency Parameters

The packet processing latency dp within each VNF instance, OE conversion latency do and

EO conversion latency de at each computing nodes experienced by the player i in the chosen

rCPU
o,n , rOE

n and rEO
n resource can be calculated by (7.1)-(7.3), respectively. As shown in these

equations, these latency are also influenced by other players’ strategies.

(7.1) dp(ψi ,ψ−i)
rCPU

o,n
= 1/(rCPU

o,n −βCPU
o · ∑

j∈αCPU
o,n (ψi ,ψ−i)

v)
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(7.2) do(ψi ,ψ−i)
rOE

n
= 1/(rOE

n −βOE
o · ∑

j∈αOE
n (ψi ,ψ−i)

v)

(7.3) de(ψi ,ψ−i)
rEO

n
= 1/(rEO

n −βEO
o · ∑

j∈αEO
n (ψi ,ψ−i)

v)

The propagation latency dg for the player i on the chosen link (n,m) can be calculated by

(7.4), which includes the propagation latency for the traffic between VNFs (o, o+1), between the

source node and the first VNF (ai,ϵi,CPU
1 ), and between the last VNF to the destination node

(ϵi,CPU
O ,bi).

(7.4) dg(o,o+1)
(n,m) = len(n,m)/v, dg(ai ,ϵi,CPU

1 )
(n,m) = len(n,m)/v, dg

(ϵi,CPU
O ,bi)

(n,m) = len(n,m)/v

Equation (7.5)-(7.8) are processing latency DPψi
, OE conversion latency DOψi

, EO conversion

latency DEψi
, and propagation latency DGψi

experienced by the player i, respectively.

(7.5) DP(ψi ,ψ−i) = ∑
rCPU

o,n ∈ψi

dp(ψi ,ψ−i)
rCPU

o,n

(7.6) DO(ψi ,ψ−i) = ∑
rOE

n ∈ψi

do(ψi ,ψ−i)
rOE

n

(7.7) DE(ψi ,ψ−i) = ∑
rEO

n ∈ψi

de(ψi ,ψ−i)
rEO

n

(7.8) DGψi = dg(ai ,ϵi,CPU
1 )

(n,m) + ∑
o∈[1,|O|]z

dg(o,o+1)
(n,m) +dg

(ϵi,CPU
O ,bi)

(n,m)

4) Cost Parameters

In this model, the cost for using CPU resource CPψi
, OE conversion resource COψi

, EO

conversion resource CEψi
, and link resources CLψi

are considered. Equation (7.9)-(7.12) calculate

these latency for each player i, individually.

(7.9) CPψi = ∑
o∈[1,|O|]z

µCPU
o,ϵi,CPU

o
·θi,CPU

o

(7.10) COψi = ∑
o∈[1,|O|]z

µOE
ϵ

i,OE
o

·θi,OE
o

(7.11) CEψi = ∑
o∈[1,|O|]z

µEO
ϵ

i,EO
o

·θi,EO
o

(7.12) CLψi = v · [µ(ai ,ϵi,CPU
1 ) +

∑
o∈[1,|O|]z

µ(ϵi,CPU
o ,ϵi,CPU

o+1 ) +µ(ϵi,CPU
O ,bi)]
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5) Objective Function

Equation (7.13) is the weighted-sum objective function for each player i minimising both E2E

latency and resource consumption cost. Various ρ weights are assigned to services with different

latency needs.

(7.13) C(ψi,ψ−i)= DP(ψi ,ψ−i)+DO(ψi ,ψ−i)+DE(ψi ,ψ−i)+DGψi +ρ i ·(CPψi +COψi +CEψi +CLψi
)

6) Resource Constraints

The VNF can only be mapped on the node with sufficient computing, OE and EO conversion

resource (equation (7.14)-(7.16)). The virtual link can also only be mapped to the physical link

which has enough bandwidth resources (equation (7.17)).

(7.14) rCPU
o,n −βCPU

o · ∑
j∈αCPU

o,n (ψi ,ψ−i)
v > 0, ∀ n ∈ N, o ∈ [1, |O|]z

(7.15) rOE
n −βOE

o · ∑
j∈αOE

n (ψi ,ψ−i)
v > 0, ∀ n ∈ N

(7.16) rEO
n −βEO

o · ∑
j∈αEO

n (ψi ,ψ−i)
v > 0, ∀ n ∈ N

(7.17) rw
(n,m) −

∑
j∈αi,w

(n,m)(ψ
i ,ψ−i)

v > 0, ∀ (n,m) ∈ L

7.3.2 Proof of Potential Game

The congestion game can be specified as G = (S,R,ψi, (C i)i∈[1,|P|]z ) with all parameters and

constraints given above, including the set of players, the resources, the strategies, and the payoff

functions associated with resource competition status.

Definition 1: a strategy profile ψi
⋆ is a Nash Equilibrium (NE) if, ∀i ∈ [1, |P|]z, we have:

C i(ψi
⋆,ψ−i

⋆ )≤ C i(ψi,ψ−i
⋆ )

Definition 2: for any congestion game, there is a potential function Φ(ψi,ψ−i) which satisfies:

Φ(ψi,ψ−i)−Φ(ψi′ ,ψ−i)= C(ψi,ψ−i)−C(ψi′ ,ψ−i)

Proposition: In this model the potential function is:

Φ(ψi,ψ−i)= ∑
i∈[1,|P|]z

ĉ(ψi)+ ∑
rCPU

o,n ∈R

αCPU
o,n (ψi ,ψ−i)∑

j=1

1
rCPU

o,n −βCPU
o · j ·v

+ ∑
rOE

n ∈R

αOE
n (ψi ,ψ−i)∑

j=1

1
rOE

n −βOE
o · j ·v + ∑

rEO
n ∈R

αEO
n (ψi ,ψ−i)∑

j=1

1
rEO

n −βEO
o · j ·v

(7.18)

where ĉ(ψi) = DGψi +ρ i · (CPψi +COψi +CEψi +CLψi
). The potential function is a real value

function that tracks the changes in each player’s objective function when the player unilaterally

modifies its strategy [71].
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In the following, the designed congestion game is proved to be a finite ordinal potential game

admitting a potential function and PNE.

Proof:

Φ(x,ψ−k)−Φ(y,ψ−k)= ĉk(x)− ĉk(y)+ ∑
rh∈R

αh(x,ψ−k)∑
j=1

1
rh −βh · j ·v − ∑

rh∈R

αh(y,ψ−k)∑
j=1

1
rh −βh · j ·v

= ĉk(x)− ĉk(y)+ ∑
rh∈R

(
αh(ψ−k)∑

j=1

1
rh −βh · j ·v + Arh∈(x) ·

1
rh −βh · [ ∑

j∈αh(ψ−k)
v+v]

)

− ∑
rh∈R

(
αh(ψ−k)∑

j=1

1
rh −βh · j ·v + Arh∈(y) ·

1
rh −βh · [ ∑

j∈αh(ψ−k)
v+v]

)

= ĉk(x)− ĉk(y)+ ∑
rh∈(x)

(Arh∈(x) ·
1

rh −βh · [( ∑
j∈αh(ψ−k)

v)+v]
− Arh∈(y) ·

1
rh −βh · [( ∑

j∈αh(ψ−k)
v)+v]

)

= ĉk(x)− ĉk(y)+ ∑
rh∈x

1
rh −βh · ∑

j∈αh(x,ψ−k)
v
− ∑

rh∈y

1
rh −βh · ∑

j∈αh(y,ψ−k)
v
= Ck(x,ψ−k)−Ck(y,ψ−k)

(7.19)

where rh represents rCPU
o,n , rOE

n or rEO
n , and βh represents βCPU

o , βOE
o or βEO

o in a generic way.

Arh = 1 if this resource is used by the strategy, otherwise, it is 0.

According to the COROLLARY 2.2 in [155], every finite ordinal potential game possess a

pure-strategy NE.

7.4 Distributed Algorithm

In the previous section, the proposed congestion game model for resource competition among

service requests is mathematically proved to be a finite ordinal potential game. Using the

Finite Improvement Property (FIP) of such finite ordinal potential game [155], we can construct a

distributed algorithm for all players. This appealing property permits the unilateral improvement

path that starts from any initial strategy and then converges to the NE in a finite number of

iterations [71]. The improvement path is the sequence of unilateral strategy modifications made

by each player to get better results in the game model. While, in this SFCs placement problem,

the improvement path means adjusting VNFs mapping and virtual links mapping for each SFC

request in the edge-cloud networks.

Algorithm 5 shows our designed distributed algorithm for the online SFCs placement. The

network parameters involving network topology and resource capacities and service request

parameters including source, destination, data rate, ordered VNFs, etc are input parameters for

this algorithm. The main steps are 1) At the beginning, for all the service requests received at

the same time, the same number of actors [156] will be created to process each of these requests

(line 3). 2) For each actor, after receiving the necessary information, such as the service request

associated with its requirements and the current network status like resource utilisation, it will
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Algorithm 5: Distributed Algorithm

1 Input: Network Information: (N,L), R, βCPU
o , βOE

o , βEO
o , P number of Service Requests:

s(ai,bi,τi,F i,vi,T i,ρ i)
2 Output: Resource Allocation Solutions for all the Service Requests: ϵi,CPU

o , ϵi,OE
o , ϵi,EO

o ,
ϵi

(ai ,1), ϵ
i
(o,o+1), ϵ

i
(O,bi)

3 Create P number of actors;
4 Send the p− th service request and network information to the p− th actor;
5 iteration = 1;
6 \⋆ In each actor run the f ollowing al gorithm⋆\
7 while The algorithm is not converged do
8 if iteration != 1 then
9 Receive all the resource allocation solutions from other SFCs of the previous

iteration;
10 Update the network status;
11 end if
12 for all the resources in the network do
13 Calculate the ob jective f unction;
14 if ob jective f unction is the minimum then
15 return ϵ

i,CPU
o ,ϵi,OE

o , ϵi,EO
o ,ϵi

(ai ,1), ϵ
i
(o,o+1),ϵ

i
(O,bi)

16 end if
17 end for
18 Send the minimum resource allocation solution to other actors;
19 Calculate the potential function;
20 iteration = iteration+1
21 end while

find the initial placement solution for the service request at the first iteration. All the required

VNFs are deployed at random nodes with sufficient resources on the shortest path from source

to destination in this solution. Such shortest path is found by the Dijkstra algorithm while

considering the transmission capacity and wavelength continuity. 3) Then, the initial solution

found by each actor will be broadcast to all the other actors. 4) In the following iterations, the

actor will update the network status based on all the received solutions before determining

the optimal solution leading to the player’s minimum objective function. 5) The actor will then

send all the other actors the best solution in this iteration. 6) After each iteration, the potential

function will be calculated (line 19). To decide whether the algorithm is converged or not, the

value difference of potential function between two neighbouring iterations will be compared. If

the algorithm does not converge, all the actors will repeat the steps from 4) to 6) until it does.

When the algorithm converges, the final placement solution will be used to route each network

service.
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7.5 Simulation-based Evaluation

7.5.1 Simulation Setup

Figure 7.1 shows the 17-node network topology considered for the simulation. In this topology,

computing nodes featuring different geographical locations are classified into MEC, EDC, and

CDC nodes. The CPU, OE and EO conversion resource capacities are different on different nodes.

Table. 7.3 summarizes these resource capacities on different nodes. Each MEC node is equipped

with 512 CPU cores [1]. While, each EDC and CDC is equipped with 2560 and 5120 CPU cores,

being 5 and 10 times of CPU cores in the MEC node, respectively [55]. The EO and OE conversion

resources are set according to [154]. Table. 7.3 also lists the price for each type of resource on

different nodes. In our setting, we set a higher price for resources at MEC servers compared to

that on EDC and CDC nodes because their capacities are limited in MEC nodes and they can

provide better QoS performance. Apart from MEC, EDC, and CDC nodes, others are switching

nodes with no computing capability.

Table 7.3: Node Resource Capacity and Price

Type
VNF1 VNF2 VNF3 OE or CPU OE or EO
CPU CPU CPU EO Price Price

MEC 128 128 256 6400 3 1.5

EDC 640 640 1280 32000 2 1

CDC 1280 1280 2560 64000 1 0.5

In this topology, all the nodes are connected via Wavelength Division Multiplexing (WDM)

fibre links. Each link has 4 wavelengths with a capacity of 25 Gbps per wavelength. The price for

each link is 1. The length of each link in the access, metro, and core network is set to be 10km,

25km, and 100km, respectively.

All network services require a data rate of 100 Mbps and three VNFs (i.e. FW, DPI, and

VLC Media Player (VLC)) in order. For these three VNFs, βCPU
o is set to be 0.01, 0.01, and 0.02

accordingly. All of the VNFs have βOE
o and βEO

o of 0.1. Each service’s E2E latency is generated

from 1ms, 5ms, 80ms, 100ms, and 500ms randomly [1]. The source and destination for 1ms

services are the same MEC server or EDC, while they are randomly chosen for the other services.

Each service’s holding time is determined by uniform distribution in the range of (300s and 900s).

In the designed congestion game, players fighting for resources are 10 service requests arriving at

the same time. In the simulations, we use Simpy [157] as the discrete event generator to produce

these service requests in Poisson distribution with λ= 0.1.
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7.5.2 Simulation Results and Analysis

To evaluate the performance of our proposed distributed algorithm, we conduct the distributed

online simulation in the setup simulation environment mentioned above. Different weights

are chosen for the objective function equation (7.13) in the distributed algorithm. When this

objective function considers only E2E latency with ρ i = 0, it is the baseline algorithm called

Latency_Minimisation algorithm. The simulation results (i.e., CPU, OE, and EO conversion

resources utilisation, network payoff, and SAR) of the distributed algorithm with different

weights and of the Latency_Minimisation algorithm are compared in this subsection.

FIGURE 7.2. Average CPU Utilisation in MEC Servers.

FIGURE 7.3. Average CPU Utilisation in Edge DC.

To be more specific, we compare the results of three distinct ρ value choices for the algorithm

with (7.13) as the objective function: 1) 1ms service: ρ = 0.01, 5ms service: ρ = 0.03; 2) 1ms service:

ρ = 0.1, 5ms service: ρ = 0.3; 3) 1ms service: ρ = 0.2, 5ms service: ρ = 0.4. other services always

assume ρ = 1 in these three configurations. The reason for such a setting is that ultra-low latency

services are willing to pay a higher price for a higher QoS, whereas others prefer to spend as
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FIGURE 7.4. Average CPU Utilisation in Core DC.

little as possible. The ρ value of 1ms services is used to name each algorithm. For example, if

ρ = 0.01 for 1ms service, this algorithm will be called as 0.01_Weighted_Parameter algorithm.

Figure 7.2, Figure 7.3 and Figure 7.4, respectively, demonstrate the dynamic average CPU

utilisation ratios (i.e. the average CPU utilisation ratio of FW, DPI, and VLC VNF instance

on the same node) obtained by the aforementioned four algorithms of MEC servers, EDC and

CDC. Compared to other approaches, the baseline method, Latency_Minimisation algorithm,

can route more services to MEC nodes and consume more MEC CPU resources. Especially

around the 1700s and 2800s, 98% MEC CPU can be exploited (green dashed line in Figure 7.2).

Other approaches can only assume a maximum of 50% MEC CPU. As shown in Figure 7.2 and

Figure 7.3, the MEC CPU utilisation ratio of the Latency_Minimisation algorithm falls while

its EDC CPU utilisation ratio increases after the 2770s. Hence, it can be concluded that the

Latency_Minimisation algorithm can route traffic from MEC to EDC when the MEC server is

overloaded. However, it always uses fewer CPU resources on CDC than the other three options

since it cares about latency only and forwarding packets to CDC will definitely introduce more

transmission and propagation latency.

For algorithms that consider both latency and cost, all the non-real-time services are for-

warded to the CDC, resulting in the identical CDC CPU utilisation results shown in Figure 7.4.

The algorithm with a lower ρ value can deploy more ultra-low latency services on the MEC server.

However, even when the ρ value is set to 0.01, the MEC CPU usage ratio is still lower than that

of the baseline algorithm (solid blue line is always below the dotted green line in Figure 7.2).

In Figure 7.3, it can be found that algorithms with a lower ρ value achieve a higher EDC CPU

utilisation ratio. Because moving VNFs from the MEC server to the EDC saves money in our

simulation setting, the more network service cares about cost, the higher ρ value will be, and the

more ultra-low latency network services will be placed at the EDC. It is worth noting that these

approaches’ CPU utilisation ratios are not always constant. For example, the average MEC CPU

utilisation of algorithm with ρ = 0.01 and ρ = 0.1 drops dramatically around the 1500s, 2300s,

4500s, and 4800s (presented in Figure 7.2). Such sudden shifts are caused by two factors: 1) the
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release of resources after services are completed, and 2) incoming services do not use the released

resources at the same time.

FIGURE 7.5. Average OE Resource Utilisation in MEC Servers.

FIGURE 7.6. Average EO Resource Utilisation in MEC Servers.

Throughout the simulation, the average OE and EO conversion resource usage ratios of MEC

servers (shown in Figure 7.5 and Figure 7.6, respectively) are nearly the same for each algorithm.

Furthermore, each method’s MEC CPU, MEC OE, and EO conversion resource utilisation follows

a similar pattern. The algorithm, which can handle more services at the edge, consumes more

OE and EO conversion resources on MEC nodes. There are no sudden changes in Figure 7.5

and Figure 7.6, unlike the average MEC CPU utilisation ratios of 0.01_Weighted_Parameter

algorithm and 0.1_Weighted_Parameter algorithm. Because the average CPU utilisation ratio

at the MEC server is determined by the average of three VNFs’ resource usage, whereas the

average OE and EO conversion resource utilisation ratios are based solely on the average of

MEC nodes’ conversion resource usage, for example, suppose the VNF2 and VNF3 are all placed

at the destination node. In that case, the VNF2’s resource release will affect the average CPU

utilisation but not affect the average EO conversion resource utilisation since the traffic routing

happens at the same node without EO conversion.
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FIGURE 7.7. Network Payoff.

FIGURE 7.8. Service Acceptance Ratio.

Apart from resource usage results, the network payoff performance and the service acceptance

performance are also studied. Figure 7.7 presents the network payoff of each algorithm. For

algorithms that consider latency and cost jointly, the smaller the ρ value is, the larger the network

payoff will be. Although the Latency_Minimisation algorithm can deploy more services on MEC

servers, which are more expensive than EDC and CDC, its network payoff performance is not

always superior. Because when the MEC server is overloaded, ultra-low latency services are

rejected, which can also be proved by results in Figure 7.8. As we can see from this graph, the

Latency_Minimisation algorithm’s SAR is not always 100%, but the other algorithms can obtain

100% SAR at any moment. Taken advantage of 100% service acceptance performance, the 0.01,

0.1, and 0.2_Weighted_Parameter algorithm can achieve more stable network payoffs than the

Latency_Minimisation algorithm. To sum up, the 0.01_Weighted_Parameter approach is the best

in our simulation since it can always achieve 100% SAR, consume more resources at edge nodes,

and earn more profits than other algorithms.
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FIGURE 7.9. Experimental Testbed.

7.6 Experiment-based Evaluation

The real testbed experiment is carried out to validate our proposed online distributed algorithm.

Both the experimental setup and the corresponding results are reported here.

Figure 7.9 depicts the OpenStack-based experimental testbed, which consists of two COR-

SAIRONE PRO computers with 8-core processors acting as EDC and CDC, and two IBM x3455

servers with 4-core processors acting as MEC servers. The OE and EO conversion resources in

this testbed are Intel multi-mode SFP transceivers, and all of the computing nodes are connected

to the Corsa DP2100 switch through 10 Gbps Ethernet links on top of the optical fibres. Because

all the network services need the FW, DPI, and VLC in order, three VMs are built on each node,

each holding an FW, DPI, and VLC Media Player instance. Service-related parameters like data

rate and latency requirements are the same as those in the simulation. We add extra latency of

0.05ms, 0.12ms, and 1.47ms at the MEC server, EDC, and CDC during the experiment to reflect

the transmission latency produced by 10km, 25km, and 300km optical fibres between MEC node

and switch, EDC and switch, and CDC and switch, respectively.
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FIGURE 7.10. Potential Function on 5-Node Network.

Table 7.4: Application Latency and Ping Latency Results

Request
(source,destination)

Latency Requirement Application Latency Ping Latency

(EDC,MEC2) 100ms 14.27ms 1.868ms

(MEC1,CDC) 100ms 26.55ms 15.95ms

(MEC1,MEC1) 1ms 14.7ms 0.77ms

(EDC,MEC1) 80ms 12.175ms 0.868ms

(EDC,MEC2) 80ms 14.22ms 1.91ms

(MEC2,MEC2) 1ms 13.85ms 0.632ms

(EDC,CDC) 100ms 26.65ms 17.35ms

(MEC1,MEC1) 1ms 14.7ms 0.77ms

To run our proposed algorithm, actors (implemented as VMs) are established on the MEC

servers and the EDC. The actors collect the network topology and current CPU utilisation ratios of

all the VNFs through the management links. Firstly, each actor receives one service request from a

total of eight requests that arrive at the same time. The actors then run 0.01_Weighted_Parameter

algorithm to determine which strategy is the best for each service. Following each iteration of the

algorithm, actors communicate with one another to learn about the strategies of other services

and keep track of the current network status. The algorithm converges towards NE after the

second iteration, which takes just 40 seconds, as shown in Figure 7.10.

When the algorithm converges, these eight service requests are routed according to the

algorithm’s devised resource allocation strategy. The results are shown in Table. 7.4. The time

it takes to send a 270 Kbyte packet (the compressed size of MPEG video with the resolution

of 640x480) along the chain Source-FW-DPI-VLC-Destination is named the application latency.

The time it takes to send a 64-byte ping packet following the same chain is called the ping

latency. The experimental results show that the ultra-low latency 5G services can meet their
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latency requirements when transmitting 64-byte packets; however, if transmitting 270-Kbyte

video packets, even when all VNFs are put at the edge node, the latency is greater than 10ms. To

support 1ms services, since it is challenging to achieve 1ms E2E latency for enormous packet

transmission, we recommend sending traffic with small packet sizes unless the transmission

technologies are much improved to lower the packet transmission latency in the future.

7.7 Summary

In this chapter, the latency-aware SFCs placement problem was first modelled as a congestion

game to minimise the E2E latency and resource consumption cost for each network service

request. After proving the existence of potential function and pure NE theoretically, a distributed

online algorithm was designed to find an optimal solution. For ultra-low latency services, we

specify a lower cost weight in the goal function than the non-real-time services so that ultra-low

latency services can be routed to edge nodes and network operators can profit more. Simulation

findings demonstrate that algorithms with an objective function incorporating both latency and

cost minimisation can reach a 100% SAR. The lower the weighted parameter in the objective

function, the higher the edge resources utilisation and the greater the network payoff can be

attained. The experiments show that the designed algorithm can be employed online with a

convergence time of 40 seconds, and the E2E latency requirements for network services with

small packet sizes can all be satisfied. We intend to introduce a dynamic pricing mechanism for

resource allocation based on resource utilisation status in the future, which can further improve

network payoff performance.
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MULTI-AGENT DRL FOR SFCS PLACEMENT AND SCHEDULING

To fully address the NFV-RA problem in edge-cloud networks, the joint problem of SFCs

placement and scheduling is investigated. As the number of edge nodes and services are

numerous and the network status is dynamic and sometimes unpredictable, online scal-

able and dynamic solutions are needed. Motivated by these requirements, the multi-agent DRL

(MADRL) approach is adopted to enable all the computing nodes to make dynamic placement and

scheduling decisions in a distributed way. Firstly, this joint problem is formulated as a MADRL

model. Secondly, the multi-agent deep deterministic policy gradient (MADDPG) algorithm is

applied to two scenarios: 1) fully cooperation scenario where all agents have the same objective to

maximise the accepted service requests; 2) self-interest scenario where edge agents maximise the

ultra-low latency service acceptance ratio, while DC agents maximise all the service acceptance

ratio. Thirdly, simulations are carried out and simulation findings prove the self-interest design

can accept more ultra-low latency services than the fully-coordinated scenario. This is an ongoing

work, fully distributed training solutions based on Graph Neural Network (GNN) will be added

in the future.

8.1 Introduction

In real-world edge-cloud networks, the whole environments are always dynamic [158] as service

requests demanding various QoS arrive in a stochastic and unpredictable way. To cope with such

dynamic and diversified service requests, computing resources and network resources should be

supplied in a flexible and intelligent way. Thanks to the NFV technology, network services can be

processed flexibly on any network location. However, considering that ultra-low latency services

are mainly processed at MEC nodes, the limited MEC resources must be used efficiently under
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different workload scenarios.

To efficiently provide computing resources for network services in an online dynamic process,

the latency-aware SFCs resource allocation problem should be investigated on the edge-cloud

networks. The resource allocation involves both the placement and scheduling process. The SFCs

placement problem has been extensively studied, however, there are few works studying the SFCs

scheduling problem and among them, most assume that the SFCs have already been placed and

take the SFCs placement solutions as input parameters [48–50, 77]. Compared with solving them

separately, solving them together can definitely provide more realistic and adaptive solutions for

the variable network status because these two sub-problems have an impact on each other [38].

The joint SFCs placement and scheduling problem can be formulated as a flexible Job Shop

Scheduling Problem (JSSP), which allows a VNF to be processed by any same type of VNF

instances in the network. In this model, one VNF instance can only process one VNF requirement

at a time and each VNF processing is only assigned to one VNF instance, similarly, one link can

only transmit one traffic at a time and each traffic transmission is only assigned to one link.

The JSSP is proved to be an NP-hard combinatorial optimisation problem [159] and scalable

approaches are expected to solve this problem in large-scale edge-cloud networks. There are

only two works studying the joint problems by proposing simple heuristic algorithms [38, 43],

which are easy to be implemented but cannot guarantee the solution quality [153]. Although

meta-heuristic algorithms have been applied for the offline SFCs scheduling problem [48], it is

infeasible for real-time scheduling, especially when solving large-scale problems [153].

RL-based scheduling methods have several successful applications on JSSP and could find

competitive solutions for JSSP benchmark problems [158]. In NFV-enabled edge-cloud networks,

the state space is huge and correlated with the number of computing nodes, the number of

physical links, and the number of arriving requests. The general RL approach, which maintains

a look-up table to store policies, is not capable of dealing with large infinite state space [33]. To

handle high-dimension problems, the DRL approach utilising a deep neural network (DNN) as

an approximation function can be adopted. It can on the one hand, efficiently handle a large

number of real-time arriving requests especially in large, frequently transferred network state

space, on the other hand, can flexible scale with different network topologies and can also be

easily applied to different application scenarios [153]. Hence, the dynamic SFCs placement and

scheduling problem formulated as flexible JSSP is supposed to be viewed as a Markov decision

process (MDP) and solved via the DRL approach.

Most works study the SFCs scheduling problem by providing a centralise algorithm [48–50].

However, it is not practical in real-world edge-cloud networks. Sometimes a central controller

simply does not exist or may be costly to install, sometimes the central controller needs to

communicate with each agent and the communication overhead at the single controller increases

[160]. Moreover, considering the huge amount of edge nodes with computing resources, the

centralised approach will degrade the scalability of the whole communication system as well as
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robustness to malicious attacks [160].

To overcome the drawbacks of centralised control, the multi-agent DRL approach is utilised

to make both MEC nodes and DCs agents make decisions by interacting with the environment in

a distributed scheme. Taken into consideration that network state and traffic typically exhibit

unpredictable variations due to stochastically arriving requests with different QoS requirements

[33]. The proposed MADRL approach is required to handle real-time network variations and

various service requests and perform adaptive scheduling for SFC requests with different QoS

requirements.

The main contributions can be summarised as follows.

1) The joint SFCs placement and scheduling problem is first modelled as a flexible JSSP

problem. Then, the JSSP is viewed as a sequential decision-making problem and a multi-agent

DRL model is proposed to tackle the dynamic network scenario.

2) The MADDPG algorithm is implemented to solve the multi-agent SFCs placement and

scheduling problem. It is applied to two scenarios: 1) fully cooperation scenario where all agents

maximise the accepted service requests, 2) self-interest scenario where MEC agents maximise the

accepted ultra-low latency service requests and DC agents maximise the overall service requests.

This chapter is organised as follows: Section 8.2 defines the joint SFCs placement and

scheduling problem in edge-cloud networks and formulates this joint problem with a MADRL

model. Section 8.3 provides the MADDPG algorithm for a fully cooperation scenario and a self-

interest scenario. Simulation settings, results, and analysis are given in Section 8.4. The final

section concludes the whole chapter.

8.2 Multi-Agent DRL Formulation for SFCs Scheduling

8.2.1 SFCs Placement and Scheduling Formulation

Given the resource constraints, the network function execution order for a particular service, and

the E2E latency requirements, the scheduling problem is characterised as a series of scheduling

decisions for network services through the activated VNFs [48]. The joint problem needs to decide

1) on which VNF instances the traffic should proceed, 2) on which links the traffic should be

transmitted, and 3) in which time slot the traffic should be executed.

Figure 8.1 shows the example of SFCs placement and scheduling in the edge-cloud network.

There are three different SFC requests composed of four VNFs in a chain (Figure 8.1 (a)). f k,o
m

represents that the o− th VNF required by the service request k is a m type VNF, which can

only be placed to the VNF instance of m type at each node. In SFC1 (blue), the processing order

is VNF1 → VNF2 → VNF3 → VNF2; in SFC2 (orange), the processing order is VNF1 → VNF2

→ VNF3 → VNF1; in SFC3 (green), the processing order is VNF3 → VNF1 → VNF2 → VNF3.

In Figure 8.1 (b), the network topology and SFCs placement results are shown. MEC nodes,

EDC, and CDC connected by optical links and switches, host all three types of VNF instances,
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FIGURE 8.1. SFCs Placement and Scheduling.

M1, M2, and M3. Each computing node owns its local agent where the scheduling algorithm is

running. The CDC also owns the function of global training using the global information to ease

the centralised training. In this example, the SFCs placement and scheduling decisions are taken

at the same time.

Apart from choosing the nodes to support VNFs and links to transmit traffic, in the scheduling

problem, the start time for processing and transmission should also be worked out. In Figure 8.1

(c), the horizontal axis represents the scheduling latency of SFCs. The total scheduling latency

includes queueing latency for processing, processing latency, queueing latency for transmission,

transmission latency, and propagation latency. In this subfigure, both f 1,1
m1 and f 1,2

m2 are placed

at the same MEC1, and the f 1,2
m2 starts processing right after the f 1,1

m1 finished processing at t1.

While for SFC3, the f 3,1
m3 and f 3,2

m1 are placed at different nodes, so the f 3,2
m1 starts processing at t3

after the transmission and propagation finished, which takes t3− t2. For these three SFCs, the

total scheduling latency for the SFC1 and the SFC2 are both t7 and for the SFC3 is t6.

The processing latency depends on the VNF type and the allocated resources. Each type of

VNF instance has its own processing latency with unit resources [161]. The same type of VNF

instance on the MEC nodes requires a longer processing time than that on the DCs because more

resources are allocated to the VNFs on DC than VNFs on MEC. In this example, the MEC nodes

and DCs equipped with different amounts of computing resources have different processing times

for the same type of VNF, for example, the processing time of VNF1 is t1 at MEC1 and t4− t3

at EDC. The VNF requests of different SFCs are supposed to be processed by VNF instances in
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serial mode. For example, on the VNF1 instance hosting at MEC1, the processing of f 2,1
m1 needs to

wait until the processing of f 1,1
m1 is completed, which results in the queueing latency for processing

for SFC2. Similarly, the queueing latency for transmission happens because the traffic needs to

wait for other traffic finished transmission. In the algorithm, once the SFC starts transmitting, it

takes up all the bandwidth resources until the transmission ends.

In the NFV-enabled network infrastructure, we represent the network as a connected graph

G(N,LP ), where N is the set of nodes, and LP is the set of links that connect every two nodes,

∀(n,n′) ∈ LP ,n,n′ ∈ N. The set of nodes includes the computing nodes (MEC servers and DCs)

Nv = NMEC ∪NDCs and the switching nodes NSWN . In fact, each computing node has a resource

capacity, which contains the computing resources (i.e., CPU) and buffering resources, denoted

as rcpu
n and rbuf

n , respectively. Each link has length len(n,n′). It contains the number of |W |
wavelengths and the transmission capacity for each wavelength w ∈ [1, |W |]z is denoted as rw

(n,n′).

Considering the optical layer in our model, we use Ll p to represent the set of lightpath and each

lightpath connects two computing nodes ∀(l, l′) ∈ Ll p, l, l′ ∈ Nv. lv represents the light speed in

the fibre.

We use |M| to represent the number of different VNF types in the system. Each VNF m ∈
[1, |M|]z is associated with the specific scaling attribute δm, which can be used to calculate the

output data rate voutput = vinput ·δm. Different types of VNF have their own processing time tpm.

Each VNF instance on the computing node has a certain amount of computing resource capacities

rcpu
m,n and we assume that only one instance of each type VNF is placed on each node and can be

shared by different services.

To deal with the real-time network variations caused by the stochastic arrival of service

requests, we introduce the concept of constant time unit ∆t = 1µs, time slot τ, which is the

integral multiple of a time unit τ= i ·∆t, i ∈N, and the total time horizon T, during which the

arriving service requests are accepted, processed or rejected. The beginning of each time slot

is the time step denoted as t. Then, we use K to represent all the SFC requests in the time

horizon, and K(t) to represent the set of SFCs at time step t including already existing and

newly arrival SFCs. For each service k ∈ K(t), it is featured by the source node snk(t), destination

node dnk(t), the required o ∈ [0, |Ok|+1]z VNF in the chain, the E2E latency DRk, the arriving

time ATk, the data rate vk, and the traffic size TSk. To simplify the model, we use o = 0 and

o = |Ok|+1 to represent the source and destination node required by the SFC, and m = 0 and

m = |M|+1 to indicate the ’type’ of source and destination, respectively. The o VNF in the request

k demands the CPU capacity ck,o,cpu
m (t)= vk,o

m · tpm/TSk [161]. Considering different E2E latency

requirements, each service is given a priority factor ρk, with the higher value showing the lower

E2E latency requirement. The packet arrival rate λk is modelled as a Poisson process.

At each time step t, the network status such as the current CPU resource utilisation ratio

ucpu
n (t), buffer utilisation ratio ubuf

n (t), bandwidth resource utilisation ratio uw
(n,n′)(t) are calcu-

lated. The available CPU capacity for the m type VNF instance arcpu
n,m(t), available buffer capacity
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of the node arbuf
n (t), available bandwidth capacity of link arw

(n,n′)(t), the residual time of request

RTk, the residual processing time drpk,o
m (t), and the residual transmission and propagation time

drtk,o
(l,l′)(t) for the VNF o in service request k are updated for the resource allocation at this time

step.

8.2.1.1 Constraints

1) Placement constraint: the VNF can only be mapped on one node at time t.

(8.1)
∑

n∈Nv

xk,o
n,m(t)= 1

2) Resource constraints: equation (8.2) ensures that at time step t, the CPU capacity required

by all the m type VNFs on the node n cannot exceed the CPU capacity of m type VNF instance

on node n.

(8.2)
∑

k∈Kn(t)

∑
o∈[1,|Ok|]z

αk · xk,o
n,m(t) ·Ck,o,cpu

m (t)≤ rcpu
n,m ∀n ∈ Nv,m ∈ [1, |M|]z

The allocated resource for all types of VNF instance on node n cannot exceed its CPU resource

capacity.

(8.3)
∑

m∈[1,|M|]z

rcpu
n,m ≤ rcpu

n ∀n ∈ Nv

Constraint (8.4) shows that, at time step t, the required buffering resource should not exceed

the available buffering resources on node l′. Service chains buffered at node l′ when there is not

enough computing capacity to serve the SFC.

(8.4)
∑

k∈Kn(t)
αk · xk,1

l′m ·PSk + ∑
k∈Kn(t)

∑
o∈[2,|Ok|]z

∑
l∈Nv

∑
w∈[1,|W |]z

αk · ywk,(o,o+1)
(l,l′),w (t) ·PSk ≤ rbuf

l′ ∀l′ ∈ Nv

Equation (8.5) illustrates the optical link resource constraint.

(8.5)
∑

k∈Kn(t)

∑
o∈[0,|Ok|]z

∑
(l,l′)∈Ll p

αk · twk,(o,o+1)
(l,l′),(n,n′),w(t) ·vk,o

m ≤ rw
(n,n′) ∀(n,n′) ∈ LP ,w ∈ [1, |W |]z

3) Link mapping constraints: flow conservation, the egress flow amount shall be equal to its

ingress flow

∑
(l,l′)∈Ll p

∑
w∈[1,|W |]z

∑
n′∈Nv

αk · twk,(o,o+1)
(l,l′),(n,n′),w(t) ·vk,o

m − ∑
(l,l′)∈Ll p

∑
w∈[1,|W |]z

∑
n′∈Nv

αk · twk,(o,o+1)
(l,l′),(n′,n),w(t) ·vk,o

m

= xk,o
n,m(t)− xk,o+1

n,m′ (t) ∀k ∈ K(t), o ∈ [0, |Ok|]z,n ∈ Nv

(8.6)

Wavelength continuity should be satisfied when the previous and latter VNF are placed on

different nodes

(8.7)
∑

w∈[1,|W |]z

αk · ywk,(o,o+1)
(l,l′),w (t)≤ 1 ∀k ∈ K(t), o ∈ [0, |Ok|]z, (l, l′) ∈ Ll p
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Table 8.1: Input Parameters of Multi-agent DRL Model

T the time horizon

∆t time unit, in this paper, each time unit is 1 µs

τ= i ·∆t, i ∈N the total time horizon is divided into discrete time slot, which is an
integral multiple of time unit

G(N,LP ) the network topology consisting of a set of nodes N and a set of physical
fiber links LP

n ∈ N physical node

Nv ∈ N the set of computing nodes with computing and buffer resources

NMEC ∪NDCs = Nv MEC servers, Edge DCs, and Core DCs

Nv ∪NSWN = N Switching nodes with only switching capability

rcpu
n , rbuf

n ,n ∈ Nv CPU processing capacity and buffer capacity on computing node n

ucpu
n (t),ubuf

n (t) cpu and buffer resource utilization ratio on computing node n at time t

(n,n′) ∈ LP ,n ∈ N,n′ ∈
N

physical link connecting node n and n’

len(n,n′) the length of physical link

lv the light speed in the fibre

W the number of wavelengths in the network

w ∈ [1, |W |]z the wth wavelength in the set of wavelengths

rw
(n,n′), (n,n′) ∈ LP transmission capacity of the wth wavelength in the physical link (n,n′)

uw
(n,n′)(t) bandwidth resource utilization ratio on link (n,n′) at time t

Ll p the set of lightpath in the network

(l, l′) ∈ Ll p, l ∈ Nv, l′ ∈
Nv

the lightpath connecting computing node l and l’

M the number of different VNF types

m ∈ [0, |M|+1]z the mth type of VNF, 0 and |M|+1 represent the start and destination
dummy function, which should be placed at source node and destination
node but require no resource, just for the simplicity of modelling

δm = voutput/vinput,m ∈
[0, |M|+1]z

the scaling attribute of the VNF, which can be used to calculate the
output data rate

rcpu
m,n the computing capacity of mth type VNF instance on node n, the SFC

can be processed immediately if there’s enough resource, otherwise, it
needs to wait

tpm the packet processing time of mth type VNF with unit resource

arcpu
n,m(t),n ∈ Nv available cpu capacity at mth type VNF instance on node n at time t

arbuf
n (t),n ∈ Nv available buffer capacity at node n at time t

arw
(n,n′)(t), (n,n′) ∈ LP available bandwidth capacity on wth wavelength of physical link (n,n′)

at time t
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Table 8.2: Service Requests of Multi-agent DRL Model

K all the service requests in the time horizon

K(t) the set of SFCs at time t including already exist SFCs and newly arrival
SFCs

snk(t),k ∈ K(t) source node of service request k

dnk(t),k ∈ K(t) destination node of service request k

Ok,k ∈ K(t) the number of VNFs required by the service request k

o, o ∈ [0, |Ok|+1]z the oth VNF in the service request k, 0 represents the start node and
|Ok|+1 represents the destination node

DRk = ik
dr · τ, ik

dr ∈
N,k ∈ K(t)

the E2E latency requirement should be integer multiples of time slot

ATk = ik
at ·τ, ik

at ∈N,k ∈
K(t)

the arriving time of service request k should be integer multiples of
time slot

RTk,k ∈ K(t) the residual time of service request k

Kn(t),n ∈ Nv the set of SFCs observed by agent n at time t, including the newly
arriving SFCs has source node n, the SFCs just finished its VNF
processing at node n, and SFCs routed to this node n

λk,k ∈ K(t) the packet arrival rate of service request k, as a Poisson process with
arrival rate (packet/s)

vk,k ∈ K(t) the data rate required by the service request k

vk,o
m = δm · vk,o−1

m , i f o >
1;= vk, i f o ≤ 1

the data rate for the oth VNF in the service request k

TSk the traffic size of the service request k

ck,o,cpu
m (t) = vk,o

m ·
tpm/TSk

cpu resource capacity required by the oth VNF in the service request k

TSk buffer resource required by the VNF in the service request k

ρk the priority of service request k, the k with the lowest E2E latency has
the highest priority

drpk,o
m (t) the residual processing time of the oth VNF in the service request k

drtk,o
(l,l′)(t) the residual transmission and propagation time of the oth VNF in the

service request k
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Table 8.3: Output Variables of Multi-agent DRL Model

xk,o
n,m(t),k ∈ Kn(t) a binary variable indicating whether the node n is chosen for processing

the oth VNF in the kth service request at time t

ywk,(o,o+1)
(l,l′),w (t), o ∈

[0, |Ok|]z,k ∈ K l(t)

a binary variable indicating whether the lightpath (l, l′) is chosen for
the (o, o+1) virtual link mapping for the kth service request at time t

twk,(o,o+1)
(l,l′),(n,n′),w(t), o ∈

[0, |Ok|]z,k ∈ K l(t)

a binary variable indicating whether the physical link (n,n′) is chosen
for the (o, o+1) virtual link mapping for the kth service request at time
t

stdpk,o
n,m, o ∈ [0, |Ok| +

1]z,k ∈ Kn(t)
the starting time of the oth VNF for processing at m type VNF instance
on node n

stdtk,(o,o+1)
(l,l′),w , o ∈

[0, |Ok|]z,k ∈ Kn(t)

the starting time of the oth VNF for transmission at (l, l′) lightpath

αk a binary variable indicating if the service request k is accepted or not,
it equals 1 if the E2E latency requirement and other constraints are
satisfied, otherwise, it equals 0 and rejected

The physical link can be selected only when the lightpath is selected.

(8.8)

αk · twk,(o,o+1)
(l,l′),(n,n′),w(t)≤αk · ywk,(o,o+1)

(l,l′),w (t) ∀k ∈ K(t), o ∈ [0, |Ok|]z, (l, l′) ∈ Ll p,w ∈ [1, |W |]z, (n,n′) ∈ LP

Constraint (8.9) defines the relationship between the lightpath and the physical link.

∑
n∈N

αk · twk,(o,o+1)
(l,l′),(n,n′),w − ∑

n∈N
αk · twk,(o,o+1)

(l,l′),(n′,n),w =


αk · ywk,(o,o+1)

(l,l′),w i f n′ = l′

−αk · ywk,(o,o+1),m
(l,l′),w i f n′ = l

0 otherwise

∀k ∈ K(t), o ∈ [0, |Ok|]z, (l, l′) ∈ Ll p,w ∈ [1, |Wk|]z

(8.9)

Equation (8.10) can help avoid loops for switching nodes.

(8.10)
∑

n∈N
αk · twk,(o,o+1)

(l,l′),(n,n′),w(t)≤ 1 ∀k ∈ K(t), o ∈ [0, |Ok|]z, (l, l′) ∈ Ll p,w ∈ [1, |W |]z,n′ ∈ NSWN

3) Latency constraints: The E2E latency contains the queueing latency for processing dqpk,o,

the processing latency dpk,o, the queueing latency for transmission dqtk,(o,o+1), the transimission

latency dtk,(o,o+1), the propagation latency dgk,(o,o+1).

In this model: 1) The queueing latency for processing depends on the agent’s decision, if it is

chosen to be processed now, there is no queueing latency, if not, it needs to wait for other VNFs to

finish processing. 2) The processing latency is the packet processing latency of the m type VNF

(shown in equation (8.11)) because only the VNF provided with enough computing resources can

be processed. 3) The queueing latency for transmission also depends on the agent’s decision, if it

is chosen to be transmitted now, there is no such latency, if not, it needs to wait for other VNFs to
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finish transmission and propagation. These two latencies are 0 for 0 and |Ok|+1 VNF, which are

included for the model simplification. 4) The transmission latency happens only at computing

nodes (shown in equation (8.12)). 5) The propagation latency of the oth VNF in the k service

request can be calculated by equation (8.13).

(8.11) dpk,o = ∑
n∈Nv

xk,o
n,m(t) · tpm ∀k ∈ Kn(t), o ∈ [0, |Ok|+1]z

(8.12) dtk,(o,o+1) = ∑
(l,l′)∈Ll p

∑
w∈[1,|W |]z

ywk,(o,o+1)
(l,l′),w (t) ·TSk/rw

(n,n′) ∀k ∈ Kn(t), o ∈ [0, |Ok|]z

(8.13) dgk,(o,o+1) = ∑
(l,l′)∈Ll p

∑
w∈[1,|W |]z

∑
(n,n′)∈LP

twk,(o,o+1)
(l,l′),(n,n′),w(t) · len(n,n′)/lv ∀k ∈ Kn(t), o ∈ [0, |Ok|]z

The total scheduling E2E latency for service k, completion time is the time sfc finished after

completion of its last operation.

(8.14) Dk = stdpk,|Ok|+1
n,m +dqpk,|Ok|+1 +dpk,|Ok|+1 − ATk ∀k ∈ K

The total scheduling E2E latency experienced by all functions in the service request should not

exceed its E2E latency requirement.

(8.15) Dk ≤ DRk ∀k ∈ K

4) Scheduling constraints: Equation (8.16) guarantees that at most one VNF of all SFCs can be

processed on m type VNF instance on node n at time t. Equation (8.17) guarantees that at most

one VNF of all SFCs can be transmitted on the wth wavelength of link (n,n′) at time t. At the

beginning of each time slot, the agent updates the resource availability.

(8.16)

αk · xk,o
n,m(t)+ ∑

k′∈Kn(t),k′ ̸=k

∑
o∈[1,|Ok|]z

αk′ · xk′,o
n,m(t)≤ 1 ∀k ∈ Kn(t), o ∈ [1, |Ok|]z,n ∈ Nv,m ∈ [1, |M|]z

(8.17)

αk·ywk,(o,o+1)
(l,l′),w (t)+ ∑

k′∈Kn(t),k′ ̸=k

∑
o∈[1,|Ok|]z

αk′ ·ywk′,(o,o+1)
(l,l′),w (t)≤ 1 ∀k ∈ Kn(t), o ∈ [0, |Ok|]z, (l, l′) ∈ Ll p,w ∈ [1, |W |]z

Forwarding a packet cannot start until the VNF finishes its processing.

(8.18) stdpk,o
n,m +dqpk,o +dpk,o ≤ stdtk,(o,o+1)

(n,l′),w ∀k ∈ Kn(t), o ∈ [0, |Ok|]z

Processing a VNF on a downstream VM cannot start until the traffic is forwarded from an

upstream VM through a virtual link connecting the two VMs.

(8.19) stdtk,(o−1,o)
(l,n),w +dqtk,(o−1,o) +dtk,(o−1,o) +dgk,(o−1,o) ≤ stdpk,o

n,m ∀k ∈ Kn(t), o ∈ [1, |Ok|+1]z
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8.2.1.2 Performance Metric

1) Average service quality can be calculated separately for service requests with the same E2E

latency requirements.

(8.20)
∑
k∈K

αk · (1−Dk/DRk)

2) The node CPU utilisation ratio at time t

(8.21) ucpu
n = (

∑
m∈[1,|M|]z

xk,o
n,m(t) ·Ck,o,cpu

m (t))/rcpu
n ∀n ∈ Nv

The average CPU utilisation ratio of the whole network

(8.22) avecpu = ∑
n∈Nv

ucpu
n /|Nv|

The optical link resource utilisation ratio at time t can be calculated as equation (8.23).

u(n,n′)(t)= (
∑

n∈Nv

∑
k∈Kn(t)

∑
o∈[0,|Ok|]z

∑
(l,l′)∈Ll p

∑
w∈[1,|W |]z

αk · twk,(o,o+1)
(l,l′),(n,n′),w(t) ·vk,o

m )

/(
∑

w∈[1,|W |]z

rw
(n,n′)) ∀(n,n′) ∈ LP

(8.23)

8.2.2 DRL Formulation for SFCs Placement and Scheduling

To deal with the joint SFCs placement and scheduling problem in edge-cloud networks, we

consider a multi-agent DRL setting defined by a tuple <Ag,S,A,P,R,O>. Each computing node

is an agent in this model and a set of agents <Ag= (1, ..., |Nv|) is defined by a joint set of states

<S(t)= (s1(t), ..., sn(t), ..., s|Nv|(t)), a set of joint agent actions A(t)= (a1(t), ...,an(t), ...,a|Nv|(t)), and

a set of observations O(t)= (o1(t), ..., on(t), ..., o|Nv|(t)) for each agent at each time slot t.

At the beginning of each time slot, each agent has both its local state including available

resources, waiting SFCs to be processed and their properties, SFCs residual time, SFCs residual

VNFs, and also the global states like the network status (network topology and bandwidth

resource usage). |Nv| elementary actions are assumed to be executed concurrently, the agent on

node n must decide scheduling, which VNF to be processed at time t, which should be forwarded,

which should be rejected. For each agent the dimension of action space is |Kn(t)| · (|Nv|+1). At

each time slot, the agent first finds the feasible action set based on the current system state

sn(t), then chooses an action an(t) from the feasible action set according to the current scheduling

policy. 0 means the VNF still waiting at node n to be decided at the next time slot. If n equals the

numbering of the agent, it means the VNF starts processing at the agent, otherwise, the VNF

starts being forwarded to the n node.

A reward function R : S×A(s(t),a(t), s(t+1)) is fed back to the agent for updating the scheduling

policy through the RL algorithm, denoting the reward for executing a(t) in s(t) and transitioning

to s(t+1). Each agent n receives rewards based on the state and the agent’s action: rn : S×An 7→R.
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We calculate the accumulated reward for continuous state-action pairs before an episode (i.e.,

a sequence of agent-environment interactions between initial and completion states) finishes,

rather than giving the agent an instant reward after taking action at each time slot. Such

accumulated reward is then returned to the agent in order to assist in the improvement of its

VNF scheduling policy.

The state transition probabilities P : S×A×S(s(t+1)|s(t),a(t)), denoting the probability that

the system arrives at s(t+1) upon executing a(t) in s(t). A joint policy is a set of local policies

π|S×A= (π1, ...,πn, ...,π|Nv|).

8.3 Multi-Agent DRL Algorithm

To efficiently utilise the MEC resources for supporting ultra-low latency services, the MADDPG

algorithm is selected for training the multi-agent DRL model. This is a framework of centralised

training with decentralised execution which allows the policies to use extra information to ease

training and enables agents to use local information at execution time [91]. Since each agent

Q-value is learned separately in the MADDPG, agents can have arbitrary reward structures

[91]. Hence, we propose 1) a fully-cooperation scenario where both MEC agents and DC agents

maximise the overall accepted service requests. 2) a self-interest scenario where MEC agents

maximise the accepted ultra-low service requests, while DC agents maximise the overall accepted

service requests.

In the fully cooperative environment, equation (8.24) represents the objective of all agents, to

maximise the overall accepted service requests while satisfying all the constraints.

(8.24) Ob jn =max
k∈Kn

αk −ψ ∀n ∈ Nv

in which ψ represents the constraint violation [87].

In the self-interest environment, the DC agents hold the same objective function as that in

the cooperation environment, while MEC agents use equation (8.25) to calculate the objective of

maximising the accepted ultra-low latency services.

(8.25) Ob jn =max
k∈Kn

αk ·ρk −ψ ∀n ∈ NMEC

For MADDPG, the set of all agent policies is denoted by π= (π1, ...,πn, ...,π|Nv|), for these |Nv|
agents, policies are parameterised by θ = (θ1, ...,θn, ...,θ|Nv|). If all the agents’ actions are known,

the environment remains stationary even if the policies change. P(s′|s,a1, ...a|Nv|,π′
1, ...,π′

|Nv|)∀πn ̸=
π′

n. The main idea is to directly adjust the parameter θ of the policy in order to masimise the

objective, the objective is the expected return for agent n: J(θn) = E[Rn]. The gradient of the

expected return for agent n is ∇θn J(θn)= Es∼pµ,an∼πn [∇θn logπn(an|on)Qπ
n(x,a1, ...a|Nv|)], in which

Qπ
n(x,a1, ...a|Nv|)] is a centralised action value function that accepts all of the agents’ actions as

input, along with some state information x, and outputs the Q-value for agent n. This action
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value function is learned separately so agents can have arbitrary reward structures, including

conflicting rewards in competitive environments. In simple case, the state information consists of

the observations of all agents x= (o1, ..., o|Nv|).
The experience replay buffer D(x,x′,a1, ...a|Nv|, r1, ..., r|Nv|) constraints the tuples regarding

experiences of all agents, recording experiences of all agents. |Nv| continuous deterministic

policies can be denoted as µθn . The gradient of deterministic policies is shown in equation (8.26).

(8.26) ∇θn J(µn)= Ex,a∼D[∇θnµn(an|on)∇anQµ
n(x,a1, ...a|Nv||an=µn(on))]

The loss function is updated as equation (8.27), in which µ′ = µθ′1 , ...,µθ′|Nv |
is the set of target

policies with delayed parameter θ′n.

L(θn)= Ex,a,r,x′[Qµ
n(x,a1, ...a|Nv|)− y)2],

y= rn +γQµ′
n (x′,a′

1, ...,a′
|Nv|)|a′

j=µ′
j(o j)

(8.27)

Algorithm 6 presents the modified MADDPG algorithm for joint SFCs placement and schedul-

ing. Each DRL agent is divided into two parts, critic-network and actor-network. Hence, there are

|Nv| actors and |Nv| critics. In the critic-network, the agent is responsible for value estimation

and gives an approximation that allows the agent to make the action in the next step. In contrast,

actor-network estimates the behaviour distribution when the agent arrives at a new state and

relies on the approximation given by the critic-network to take actions.

The input parameters to this algorithm include the network topology, the network status, and

arriving service requests. The output parameters include the placement and scheduling results,

the service acceptance performance, and resource usage. The main loop starts from line 3. In the

beginning, a random process is initialised to explore actions. At the time step t = 0, the network

will be reset to the initialised status where there is no service processing and all the servers

and links are in an idle situation (line 6). Then services are coming according to the Poisson

distribution (line 9).

After receiving service requests, each agent selects actions based on current policy, the

network moves to the next step by executing these actions, and reward and the new state are

observed. Then, the tuple (x, A, R, x′) is stored in a replay buffer D. The training process for

each pair actor-critic network relies on these buffered tuples. According to the experience replay

technique, the agent randomly samples a mini-batch to train the neural network. The critic-

network is updated by minimising the loss function, while, the actor-network is updated according

to the sampled policy gradient. At the end of each iteration, we update the target neural network.

8.4 Simulation-based Evaluation

8.4.1 Simulation Setup

The simulation network topologies, resource capacities, VNF properties, SFC-related parameters,

and other simulation settings are the same as those in Section 5.4 of Chapter 5. The MADDPG

145



CHAPTER 8. MULTI-AGENT DRL FOR SFCS PLACEMENT AND SCHEDULING

Algorithm 6: MADDPG Algorithm for SFCs Placement and Scheduling

1 Input: Network Topology G(N,LP ), Network Status arcpu
n,m(t), arbuf

n (t), arw
(n,n′)(t), Service

requests k and their properties
2 Output: Placement and scheduling solutions: xk,o

n,m(t), ywk,(o,o+1)
(l,l′),w (t), twk,(o,o+1)

(l,l′),(n,n′),w(t),

stdpk,o
n,m, stdtk,(o,o+1)

(l,l′),w , Service acceptance performance αk and Dk, and Resource

utilisation performance ucpu
n (t),ubuf

n (t) and uw
(n,n′)(t)

3 for episode = 1 to 10000 do
4 Initialise a random process for action exploration;
5 if episode is integral multiple of T then
6 Reset the network state x;
7 end if
8 t = 0.1∗ (episode%T);
9 Read service requests coming at time t;

10 For each agent n, select action an(t) w.r.t the current policy and exploration;
11 Execute actions A(t) and observe reward R and new state x′;
12 Store (x, A, R, x′) in replay buffer D;
13 x ← x’;
14 for agent n = 1 to Nv do
15 Sample a random minibatch of S samples from D;

16 Set y j = r j
n +γQµ′

n (x′,a′
1, ...,a′

|Nv|)|a′
k=µ′

k(o j
k);

17 Update critic by minimising the loss L(θn)= 1
S

∑
j
[(y j −Qµ

n(x j,a j
1, ...a j

|Nv|)
2];

18 Update actor using the sampled policy gradient:
∇θn J ≈ 1

S
∑
j
∇θnµn(o j

i )∇anQµ
n(x j,a j

1, ...a j
|Nv||an=µn(o j

n))];

19 end for
20 Update target network parameters for each agent n: θ

′
n ← τθn + (1−τ)θ

′
n

21 end for

algorithm runs on the 29-node network shown in Figure 5.3. In the self-interest environment,

accepting 1ms, 5ms, 100ms, and 500ms service requests at MEC nodes can generate 500, 100, 5,

and 1 reward, respectively. Vice versa, rejecting services lead to corresponding negative rewards.

While accepting any services at CDC get 100 rewards and rejecting any services get -100 rewards.

In the cooperation environment, accepting services generates 100 rewards and rejecting services

leads to -100 rewards at all nodes. A service can only be accepted if all the chained VNFs are

finished processing, the traffic is transmitted from the source node to the destination node, and

the E2E latency is within the requirement.

In the dynamic network environment, we adopt the Markov modulated process [77] to

simulate service requests arrivals with two states low and high, represented by arrival rates λl

and λh, respectively. The probability of transition from low to high state is denoted as ph, and

the probability of transition from high to low state is denoted as pl . We set the λl = 1/240µs,

146



8.4. SIMULATION-BASED EVALUATION

λh = 1/24µs, pl = 0.56, ph = 0.4 [77].

The MADDPG algorithm is implemented with PyTorch on an IBM System, with 24GB RAM

and dual-core AMD opteron processor.

8.4.2 Simulation Results and Analysis

In this subsection, the simulation results are compared and analysed. For both self-interest and

cooperation scenarios, we design two training schemes: 1) each agent takes action for a single

waiting service request at each time slot and the first coming service request will be processed

first (named as the self-interest1 and the cooperation1 training patterns); 2) each agent takes

action for five waiting service request at the same time for each time slot and the first five coming

service requests will be processed first (named as the self-interest5 and the cooperation5 training

patterns).

Figure 8.2 compares the resource utilisation performance for all the training patterns. It can

be found that training five service requests simultaneously can get better results than training

a single service request. To be more specific, in Figure 8.2 (a), the self-interest5 can achieve the

highest average CPU utilisation ratio of MEC nodes (around 50%), the cooperation5 achieves

the second-highest (around 40%), while the self-interest1 and the cooperation1 use lower edge

CPU resources. In addition, we consider the CPU usage for a single MEC node (MEC0). In

Figure 8.2 (c), we can find that better results can always be obtained by training five service

requests than by training one. However, for this MEC0 agent, the cooperation5 performs better

than the self-interest5 in terms of both stability and CPU utilisation ratio. Figure 8.2 (b) compares

the CPU utilisation ratio on the CDC, which also demonstrates that the cooperation5 and the

self-interest5 are capable of utilising more DC resources than the other two schemes. Furthermore,

the link resource usage performance is also taken into account. Figure 8.2 (d) shows the obvious

bandwidth utilisation difference between the 5-services training pattern (0.11%) and 1-service

training pattern (0.02%).

From these four sub-figures, it can be concluded that 1) a 5-services training pattern can get

better overall resource utilisation performance than a 1-service training pattern because more

services can be processed and transmitted instead of waiting at the queueing list; 2) there is

no significant difference between the self-interest and the cooperation environment in terms of

the resource usage, for example, the self-interest5 and the cooperation5 can get comparable link

bandwidth utilisation ratio.

Figure 8.3 presents the obtained rewards for MEC nodes and CDC. It can be seen from

Figure 8.3 (a) and (b) that the self-interest5 training pattern can earn the highest rewards

for both MEC nodes and CDC. In the Figure 8.3 (a), the self-interest5 achieves around 30000

reward, the cooperation5 achieves around 18000 reward, followed by the self-interest1 and

cooperation1 achieving around 4800 reward. In the Figure 8.3 (b), the self-interest5 achieves

around 4000 reward, the cooperation5 achieves around 2500 reward, followed by the self-interest1
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FIGURE 8.2. Resource Utilisation Ratio: (a) Average MEC Node CPU Utilisation Ratio,
(b) CDC CPU Utilisation Ratio, (c) MEC0 Node CPU Utilisation Ratio, (d) Average
Link Bandwidth Utilisation Ratio.

148



8.4. SIMULATION-BASED EVALUATION

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

A
ve

ra
ge

 M
EC

 R
ew

ar
d

s

Episode

Ave_MEC_Rewards_Selfinterest1 Ave_MEC_Rewards_Cooperation1

Ave_MEC_Rewards_Selfinterest5 Ave_MEC_Rewards_Cooperation5

(a)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

D
C

 R
ew

ar
d

s

Episode

DC_Rewards_Selfinterest1 DC_Rewards_Cooperation1

DC_Rewards_Selfinterest5 DC_Rewards_Cooperation5

(b)

FIGURE 8.3. Rewards: (a) Average MEC Rewards, (b) CDC Rewards.

and cooperation1 achieving around 0 reward. The reward difference is not obvious when training

a single service in both the self-interest and the cooperation environment. However, when the

number of trained services increases, the self-interest environment outperforms the cooperation

one. Especially for the MEC nodes, the self-interest5 can process more ultra-low latency services

(also proved in the Figure 8.4) and gain almost double rewards compared to the cooperation5.

The SAR results for all types of services and 1ms services are compared in Figure 8.3

(a) and (b), respectively. The 5-services training scheme can make decisions for five services

simultaneously and, therefore, get higher SAR than the 1-service training scheme. Among all the

training schemes, the self-interest5 gets the best overall performance with the highest 25% SAR

and 23% 1ms SAR, the cooperation5 gets the second-highest 20% SAR and 21% 1ms SAR, while

the other two 1-service training schemes get around 5% SAR and 5% 1ms SAR. More service

requests can be accepted in the self-interest environment than in the cooperation environment

because different services can give different rewards, and MEC agents can be trained to accept

more ultra-low latency services and earn more rewards in the self-interest scenario. While in

the cooperation scenario, because all kinds of services produce the same reward, the MEC agent

will not be trained to get more 1ms service requests and these ultra-low latency services may be

rejected due to occupied resources by other service requests.
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FIGURE 8.4. Service Acceptance Performance: (a) All Service Acceptance Performance,
(b) 1ms Service Acceptance Performance.

From all the results, we can conclude that training more service requests at the same time

can produce higher rewards for different agents, reach higher service acceptance performance

for different services, and use more node and link resources to avoid resource wastage compared

to process a single service request each time. Between two 5-services training patterns, the

self-interest5 can produce better results in terms of rewards and SAR than the cooperation5

since MEC agents can be trained to use limited resources for ultra-low latency services in the

self-interest environment. However, the simulation results prove the scalability limitation of the

multi-agent RL, which is caused by the interaction among agents after taking actions. In the

future, the algorithm will be trained for more episodes to see the convergence performance of the

MARL.

8.5 Summary

In this chapter, to cope with the high capacity and low latency 5G service requirements in densely

deployed edge nodes environment, the joint SFCs placement and scheduling problem is solved

by a multi-agent DRL approach. The proposed approach enables the agents to make their own

decisions with local information, which satisfies both the privacy and scalability requirements.
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8.5. SUMMARY

This is ongoing work, and at the current stage, the MADDPG algorithm is modified to solve this

joint problem. Simulation results prove that the self-interest setup can achieve higher rewards

for different agents and higher service acceptance performance for various QoS services.
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CONCLUSION AND FUTURE WORK

This thesis focuses on the resource allocation for SFCs in multi-layer edge-cloud networks.

Different methodologies and techniques, ranging from MILP, DRL, and game theory

modelling to heuristic, meta-heuristic, and DRL algorithms, are adopted to solve the QoS-

aware SFCs placement and scheduling problems from different aspects. The proposed multi-layer

models and algorithms can effectively improve the service acceptance performance, especially

for ultra-low latency services, with limited edge resources. Based on these research works, six

directions can be explored in the future, including 1) machine-learning assisted dynamic price

mechanism for SFCs placement, 2) online resource allocation for SFCs in the real testbed, 3) fully

distributed resource allocation for open multi-agent systems, 4) fuzzy logic control for practical

resource allocation, and 5) resource allocation digital twin.

9.1 Summary and Achievements

The combination of MEC and NFV plays a crucial role in the 5G and beyond 5G networks as edge

computing provides resources at the network edge to host VNFs for more flexible and dynamic

network services with more diversified QoS requirements [78]. To deploy the NFV-based network

infrastructure, resource allocation is one of the main challenges of demanded network services

[21], thus, the NFV-Resource Allocation (NFV-RA) problem has drawn great attention from both

industry and academics in recent years.

However, not many of the state-of-the-art research works solve this problem in edge-cloud

networks and the following challenges are not properly addressed: 1) support services with various

QoS requirements, especially those demanding large capacities and low latency requirements

in the same network infrastructure; 2) efficiently utilise limited resources at edge nodes under
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different workload scenarios; 3) solve large scale problems involving the rising number of service

requests and a large number of edge nodes; 4) different relationship among edge nodes and DCs,

such as competence, cooperative and self-interested.

In this thesis, the NFV-RA problem has been studied in the edge-cloud networks and the

aforementioned challenges have been well addressed. The main contributions include: 1) define

the QoS-aware SFCs placement and scheduling problems in the multi-layer networks consisting

of the virtual layer, IP layer and optical layer; 2) introduce the optical layer into the model design

by considering the optical resources and constraints to support low latency and large-capacity

communications; 3) design different models for the MEC nodes and DCs to capture their different

resource capacity and geo-location features and improve the edge resource utilisation and ultra-

low latency service acceptance performance under different workload scenarios; 4) provide

a comprehensive solution for the SFCs placement and scheduling problems under different

situations by proposing a wide range of algorithms based on different methods such as MILP,

heuristic algorithms, EAs, game theory, and DRL algorithms; 5) both simulation and real testbed

experiment evaluation are carried out to verify the performance of proposed algorithms, with

results showing the improvement in terms of QoS, resource utilisation, congestion control, service

acceptance ratio, as well as revenue.

Chapters 4-6 provide centralised offline solutions for the QoS-aware SFCs placement problem.

In chapter 4, a single-objective MILP optimisation model is proposed to minimise the total service

E2E latency to satisfy the QoS requirements. The proposed Data Rate-based heuristic algorithm

can route SFCs from MEC nodes to the DCs when the workload is very high to ease congestion of

MEC nodes and accept more ultra-low latency services. Then, this model is expanded to multi-

objective by adding a total congestion minimisation objective in chapter 5. With two objectives,

the resource usage between edge and cloud can be consistently balanced under different workload

scenarios. The EAs are adapted to this multi-objective problem to find non-dominated solutions.

However, both MILP and EAs are not scalable. Hence, in chapter 6, the DRL approach is adopted

for solving the large-scale multi-objective problems. A pointer network is used for modelling and

a Chebyshev-assisted Actor-Critic algorithm is proposed to find the non-dominated solutions.

By selecting different weights, it can improve both the MEC resource usage and the service

acceptance performance under different scenarios.

Chapter 7 provides distributed online solution for the SFCs placement problem. The SFC

requests are modelled as a congestion game competing for the computing and network resources.

In the objective function, both E2E latency and cost are included. We set a high price for the MEC

nodes’ resources and a low price for the DCs’ resources. Therefore, services requiring ultra-low

E2E latency care more about the QoS and would pay more to be processed at the MEC nodes to

increase the payoff for network operators. Both chapter 6 and chapter 7 involve the real testbed

experiments to validate the proposed algorithms.

Chapter 8 offers centralised training and decentralised execution online solutions for the
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SFCs scheduling problem. This is an ongoing work, and in this stage, the DRL model is designed

and a MADDPG algorithm is adapted to solve this problem.

In summary, two stages of the QoS-aware NFV-RA problem (i.e., the SFCs placement problem

and the SFCs scheduling problem) in multi-layer edge-cloud networks have been studied in

depth. For small-scale, large-scale, centralised, distributed, offline, online, cooperative, and

competitive circumstances, the corresponding multi-layer models and algorithms are designed

based on different methods. These proposed models and algorithms are evaluated via simulation

and real testbed experiments to show their effective improvement on the metrics of service

acceptance ratio, E2E latency, resource utilisation, congestion ratio, and payoff. Notably, they can

significantly enhance the service acceptance performance for the ultra-low latency services with

limited edge resources.

9.2 Future Work

For the future 6G network of the ’Internet of Intelligence’, the resource allocation problem for

SFCs at the network edge is still a very hot topic, which can help to fully unleash the potential of

the 6G network for the continued rise of mobile devices, IoT devices, and interactive applications.

However, the combination of MEC and NFV is still at the early stage and no effort should be

spared in this area for foreseeing future demands. In this subsection, some future directions are

provided to help gain more benefits from the NFV-enabled edge-cloud networks.

1) Machine-learning assisted dynamic price mechanism for SFCs placement. Cost

minimisation or revenue maximisation has been widely studied for the SFCs placement problem.

Although, different prices are set for resources at different locations in the edge-cloud networks

or multi-domain networks [71, 78, 162, 163], the prices for resources and VNF instances are fixed.

Such a setting can ease the problem complexity but may not gain all benefits from NFV. If there is

a dynamic price mechanism that is capable of attracting more services at low workload scenarios

and earning more money at high workload scenarios, the network payoff can be further improved.

Especially with the assistance of ML approaches, the price can be charged intelligently. Future

research can take this as a direction and find the best ML approach for resource allocation.

2) Online resource allocation for SFCs in a real testbed. Based on our best knowledge,

there is no research work carried out testbed experiments for online SFCs placement or scheduling.

Some focus on the implementation of SFC in the network [164, 165], others design placement

algorithms and test their offline performance [163, 166, 167]. To realise this goal, the node

resource and network resource utilisation ratios need to be monitored dynamically; the online

algorithm needs to dynamically collect network status and SFC requests; the VNFs need to be

automatically instantiated, scaled, and deleted; and the SFCs need to be automatically chained,

set up, and deleted under the control of the algorithm. As the SFCs can now be supported by the

OpenStack and OpenDaylight [164, 166], the aforementioned functions should be developed to
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practically support the flexible and dynamic SFCs.

3) Fully distributed resource allocation for open multi-agent systems. Although

centralised training and decentralised execution methods can guarantee the convergence of

the multi-agent DRL, there are still some problems that can not be solved, such as the single

point failure and privacy issues. In addition, this kind of method also suffers from the limitation

of prior coordination for the joint training, which restricts the flexibility of the multi-agent

system requiring quickly adaptive coordination [168]. Moreover, the number of agents can be

variable instead of the fixed number, for example, agent breakdown. To support more flexible and

scalable multi-agent systems, fully distributed algorithms are required for the open multi-agent

system. Research has been carried out using Graph Neural Network (GNN) to realise such

distributed multi-agent learning [168, 169]. Their proposed methods could be modified to the

resource allocation problem for SFCs.

4) Fuzzy logic control for practical resource allocation. Considering the variation of

a practical system parameter, the uncertainty of workload, as well as the nonlinearity charac-

teristics of system performance, it is difficult and sometimes impossible to achieve the accurate

modelling [170]. For example, in chapter 6, the results of the simulation and testbed experiment

are different when the same SFCs placement algorithm is utilised because firstly, the CPU

utilisation ratio does not linearly increase with the placed VNFs, secondly, the queueing model

used for the simulation is mean oriented and not precise for the practical scenario [170]. Hence,

the model-independent fuzzy logic control requiring less knowledge of the networks but providing

more robust solutions needs to be designed. The design objective is to convert human knowledge

and experience into a set of control rules that can be used to govern resource allocation without

models. Authors in [171] study the resource allocation in virtualised environments for web ser-

vices and develop a fuzzy control for QoS assurance with respect to response time. Authors in

[172] propose a VM monitor to allocate resources for VMs in cloud computing dynamically. To

provide scalability, they provide a multi-agent version of the fuzzy controller that can guarantee

application service level agreements (SLAs) and save operating costs. Motivated by the good

performance of their solutions, future research should consider fuzzy control as an approach for

the practical SFCs resource allocation problems.

5) Resource Allocation Digital Twin. Faced with the increased network complexity

owing to virtualised infrastructure and stringent QoS requirements, the dynamic resource

allocation for SFCs requires the real-time interaction between simulation and real network.

Digital Twin (DT), therefore, attracts both attention of academics and industry for its capability

of digitally simulating the network’s behaviours, predicting the time-varying performance, and

providing the real-time interaction between physical and virtual domains to enhance efficient

time-varying network management [173]. It is a virtual representation of the physical system

utilising optimisation algorithms and ML algorithms to study the dynamics of the given physical

system [174]. DT has already been applied to the resource allocation area. In [173], researchers
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develop a GNN-based network DT for network slicing to get the real-time E2E slicing latency

under different resource utilisation situations before making any resource allocation decisions. In

[175], authors design a federated learning-based DT of edge networks for real-time data analysis

and network resource optimisation. The proposed DT model based on the historical running data

of devices aims to improve communication efficiency and reduce energy costs for IoT devices. In

the future, the potential of DT can be further fulfilled by combining with SFCs in edge-cloud

networks.
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This appendix includes, on the one hand, detailed designs for Neural Networks in Chapter 6 and

Chapter 8, on the other hand, the training performance of the proposed DRL agents in Chapter 6

and Chapter 8.

A.1 Hyperparameters and Training Performance for
Multi-Objective DRL

The main hyperparameters configured in the model are presented in the following Table. A.1.

Table A.1: Hyperparameter Configuration for Pointer Network

Learning rate (agent) 0.0001

Batch size 1

Number of layer 1

Encoder/Decoder layers x Hidden size 1x128

Dimension of actor/critic input Number of VNFs × Number of
SFCs

Dimension of actor output Number of Computing Nodes

Embedding size 10

Learning rate (baseline) 0.1

The number of training steps 800

Gradients clipped to the norm 1
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FIGURE A.1. Training Performance for Multi-Objective DRL: (a) Actor Loss Perfor-
mance, (b) Critic Loss Performance, (c) Reward Performance.
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I employ a one-layer RNN with the hidden size of 128 for both encoder and decoder because

the encoder-decoder size needs to be sufficiently large to cope with the large features of the

SFCs placement problem. The actor-network contains an encoder and a decoder. The Xavier

initialised method is used to initialise the weights for the encoder. The actor is trained using the

Adam optimizer, with a learning rate of 0.0001. The batch size is 1 in this model because the

Stochastic Gradient Descent (SGD) is used for training. The critic is also trained using Adam

and the learning rate of baseline in the critic-network is set to be 0.1. The gradients are clipped

to the norm by a value of 1.

The whole training process for the multi-objective DRL includes a separate training process for

each sub-problem with different weights for total service E2E latency D and for total congestion

ratio U. In this appendix, one of the solutions in Pareto Front with αD
i = 0.6 and αU

i = 0.4 for

1200 service requests in a large scale network is chosen and its training process is visualised in

Figure A.1.

In this sub-problem, the model is trained for 10 runs and each run contains 800 episodes. For

each episode, a certain T number of service requests will be generated and placed on the network.

The input state dimension for both actor and critic network depends on the total number of

required VNFs, which can be calculated by the number of SFC requests and the number of VNFs

in each SFC request, and the output dimension of the actor-network depends on the number of

computing nodes, on which VNFs can be placed, in the network. During the training process, the

actor loss, critic loss, and episode reward are computed for the network weights update.

The actor loss is based on policy gradients. Figure A.1 (a) shows the average loss and its

standard deviation for the actor-network. The critic loss is calculated from the mean squared

error loss to a flatter value metric loss. Figure A.1 (b) shows the average loss and its standard

deviation for the critic-network. These two losses are minimised and after around 10 episodes

they are stable. The oscillation may be caused by the updated critic loss function following the

homotopy technique in each step. The final training critic loss is close to 0. Figure A.1 (c) presents

the averaged episode reward and the standard deviation. Episode reward eventually converged

to the maximum (around 1180) as the training progressed, which has the opposite trend to the

loss function. The oscillation may be caused by the randomness of action selection, the penalty

signal, and the varied loss minimization function.

A.2 Hyperparameters and Training Performance for
Multi-Agent DRL

The main hyperparameters configured in the model are presented in the following Table. A.2. For

both cooperation and self-interest scenarios, these hyperparameters are the same. In the proposed

MADDPG algorithm, each agent is represented by an actor-critic network. In this model design,

the hyperparameter configuration is the same for all types of agents ranging from the MEC agent
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to EDC and CDC agent. The actor-network contains 3 layers with each layer activated by the

ReLU function. The input size for the NN depends on observed queueing SFC requests at each

agent, while, the output size for the NN can be calculated by adding the number of computing

nodes and 2. In this specific training model with 10 computing nodes, the action size is 12. If the

output equals the index of the computing nodes, the queued VNF will be transmitted to the node

accordingly or processed at the current node, otherwise, it will be queued at the current node or

rejected. The critic-network contains 4 layers and the input/output size are shown in the table.

Both actor and critic network are trained using Adam with a learning rate of 0.001 and 0.01,

individually.

Table A.2: Hyperparameter Configuration for Multi-Agent DRL

Training step for each episode 1000

Buffer size 500000

Batch size 256

Noise 0.1

Discount rate 0.95

Actor network: Learning rate 0.001

Actor network: 1st layer input/output
size

[Number of Queued SFCs,64]

Actor network: 2nd layer input/output
size

[64,64]

Actor network: 3rd layer input/output
size

[64, Number of Computing Nodes+2]

Critic network: Learning rate 0.01

Critic network: 1st layer input/output
size

[1610,64]

Critic network: 2nd layer input/output
size

[64,64]

Critic network: 3rd layer input/output
size

[64,64]

Critic network: 4th layer input/output
size

[64,1]

Target network updating rate 0.01

During the training process, for each training episode, there are 1000 training steps. The

noise for actor-network is set to be 0.1. At the start, the action will be chosen randomly with

10% probability and chosen by the NN with 90% probability. Then, this value will be reduced

by 0.005 for each training step. Figure A.2 shows the training performance for the 5-service

self-interest situation, which is the best among all the situations. The actor loss and critic loss

are separated to avoid scaling. From this figure, it can be found that the training is not converged
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after 500 training episodes. Both the average value (black line) and the standard deviation (red

area) calculated based on 10 runs are non-stationary for actor loss, critic loss, and episode reward.

This is caused by the non-stable feature of the multi-agent RL. Although the MADDPG takes

the global environment for training, it may need much more training episodes to reach a stable

performance, which is time-consuming for the large-scale SFCs placement problem. As this is

ongoing work, more reliable solutions need to be explored in the future.
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FIGURE A.2. Training Performance for Multi-Agent DRL: (a) Actor Loss Performance,
(b) Critic Loss Performance, (c) Reward Performance.
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