
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2013 Wirtschaftsinformatik

2013

Energy-aware Service Allocation for Cloud
Computing
Tobias Widmer
University of Hohenheim, Department of Information Systems 2, Stuttgart, Germany, tobias.widmer@uni-hohenheim.de

Marc Premm
University of Hohenheim, Department of Information Systems 2, Stuttgart, Germany, marc.premm@uni-hohenheim.de

Paul Karaenke
University of Hohenheim, Department of Information Systems 2, Stuttgart, Germany; FZI Forschungszentrum Informatik,
Karlsruhe, Germany, paul.karaenke@uni-hohenheim.de

Follow this and additional works at: http://aisel.aisnet.org/wi2013

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2013 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Widmer, Tobias; Premm, Marc; and Karaenke, Paul, "Energy-aware Service Allocation for Cloud Computing" (2013).
Wirtschaftsinformatik Proceedings 2013. 72.
http://aisel.aisnet.org/wi2013/72

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2013%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2013?utm_source=aisel.aisnet.org%2Fwi2013%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2013%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2013?utm_source=aisel.aisnet.org%2Fwi2013%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2013/72?utm_source=aisel.aisnet.org%2Fwi2013%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1147

11th International Conference on Wirtschaftsinformatik,
27th February – 01st March 2013, Leipzig, Germany

Energy-aware Service Allocation for
Cloud Computing

Tobias Widmer1, Marc Premm1, and Paul Karaenke1,2

1 University of Hohenheim, Department of Information Systems 2, Stuttgart, Germany
{tobias.widmer,marc.premm,paul.karaenke}@uni-hohenheim.de

2 FZI Forschungszentrum Informatik, Karlsruhe, Germany

Abstract. Energy efficiency has become an important managerial variable of IT
management. Whereas cloud computing promises significantly higher levels of
energy efficiency, it is still not known, if and to what extent outsourcing of
software applications to cloud service providers affects the overall energy effi-
ciency. This research is concerned with the allocation of cloud services from
providers to customers and addresses the problem of energy-aware service allo-
cation. The distributed nature of the problem, i.e., the multiple loci of control,
entails the failure of centralised solutions. Hence, we approach this problem
from a multiagent system perspective, which preserves the distributed setting of
multiple service providers and customers. The contribution of our research is a
game-theoretic framework for analysing service provider and customer interac-
tions and a novel distributed allocation mechanism based on this framework to
approximate energy-efficient, optimal allocations. We demonstrate the useful-
ness and efficacy of the proposed artifact in several simulation experiments.

Keywords: Game Theory, Green IT, Multiagent Systems, Negotiation, Re-
source Allocation

1 Introduction

Cloud-based service providers (SPs) such as Amazon and Google offer a portfolio of
cloud services. Customers rent internet-accessible computing resources including
CPU time and data storage services. Customers reserve such resources on demand
without having to face particular operational setup costs [1] and are commonly
charged according to the pricing-schemes “pay-per-use” or subscriptions [2]. Cloud
computing, however, does not only promise significant cost reduction by lower IT
system maintenance and operational costs, but also provides potential for increased
energy efficiency, since the resources of large data centres can be managed more
efficiently [3].

We consider a setting where customers intend to outsource software applications to
cloud-based SPs to reduce costs and energy consumption of their IT systems. There-
fore, we address the problem of service allocation from SPs to customers, i.e., the
allocation of individual customer requests to matching available services. When allo-

1148

cating scarce resources, a typical objective is to find allocations which are optimal
regarding a metric that depends on the preferences of the individual actors. Individual
preferences can be aggregated using the notion of social welfare from welfare eco-
nomics [4]. We assume that individual actors model their preferences by utility func-
tions and thus apply the concept of utilitarian social welfare, denoting the sum of all
individuals’ utility for a given allocation. However, the problem of finding optimal
allocations is often computationally infeasible in network settings such as in cloud
computing with multiple SPs and customers, since computing optimal allocations is
NP-complete [5].

Resource allocation is a well established field in multiagent systems research [6].
Thus, each actor (i.e., SPs and customers) is represented as a software agent in the
proposed approach. These agents are able to perform autonomous actions in order to
pursue its individual objectives [7]. Participating agents reason about the processes of
coordination among themselves and negotiate bilateral agreements [8]. Existing ap-
proaches, however, do not consider energy efficiency, do not address utilitarian social
welfare maximisation, or require a central coordinating agent which does not exist in
the setting considered.

We develop a distributed heuristic for energy-aware cloud service allocation and
evaluate this artifact in a set of experiments to demonstrate its usefulness and effica-
cy. This research makes two specific contributions: (i) a formal framework for model-
ling energy-aware cloud service allocation and (ii) a novel distributed allocation
mechanism that integrates energy efficiency into the allocation rationale. The formal
framework is based on game theory which provides formal means to analyse the most
rational choice of actions for the interacting agents. We analyse optimal allocations
based on the proposed framework and show that the utilitarian social welfare maximi-
sation problem is NP-complete. While applying the second-score auction proposed by
Che [9] to our setting, we design a distributed heuristic for this problem as an auction-
based allocation mechanism, where rational SP agents are incentivised to truthfully
reveal private information such as marginal costs.

The allocation mechanism is evaluated by means of multiagent simulation. This
evaluation provides evidence of the mechanism’s efficacy. Since the proposed ap-
proach constitutes a heuristic, it does not guarantee optimal solutions but provides
approximations. Another limitation of the mechanism results from the distributed
nature of the problem. There is no central coordinating agent in the setting considered.
Therefore, the communication complexity is relatively high as compared to a central-
ised heuristic.

The remainder of this paper is structured as follows. In section 2, we describe the
theoretical background of our research and discuss approaches in the extant literature.
In section 3, we present the formal framework. In section 4, we describe the proposed
allocation mechanism. Section 5 provides the experimental evaluation. Section 6 con-
cludes the paper.

1149

2 Related Work

Cloud service allocation is subject of inquiry in both multiagent systems and cloud
computing research. We first introduce constructs of multiagent systems. Then we
employ these constructs as a theoretical lens for reviewing the extant literature.

2.1 Multiagent Systems

Agent Definition. We adopt the definition of agents by Jennings: “An agent is an
encapsulated computer system that is situated in some environment and that is capa-
ble of flexible, autonomous action in that environment in order to meet its design
objectives” [10]. Apart from mere objects, agents have control over their internal state
and their own behaviour, i.e., they possess autonomy over their choice of action.
Thus, in line with [7], a software agent is specifically designed with the capability to
act independently on behalf of its user or owner. That is, an agent is equipped with
different goals of its user or owner and can discover by itself what needs to be done
for the achievement of these objectives. In the following we investigate agent proper-
ties and clarify the implications for our work. These properties include (i)
embeddedness in agent environments, (ii) autonomy, (iii) social ability, and (iv) de-
liberation and reactivity.

Agent Environment. From a technical perspective, the environment consists of any-
thing an agent can percept through its sensors and act on through its effectors [11].
The emerging organizational context between agents defines the agents’ relationship
with each other [12]. Agent organizations provide a framework of constraints and
expectations about the agents’ behaviour with focus on decision making and action of
specific agents [8]. The agents in our work are designed to take the task-specific roles
of service providers and customers. The underlying organizational structure of this
multiagent system describes the set of the agents’ long-term responsibilities and inter-
action patterns [13].

Agent Autonomy. Agent autonomy implies that agents have their own goals, i.e., the
agents’ actions are driven by their own interests. Autonomy is always a relational
concept [14]. An agent is autonomous in relation to the influence of other agents and
the agent’s environment, respectively. In our work, autonomous customer agents and
service provider agents are equipped with utilitarian preferences reflecting their own
delegated design objectives. Thus, our agents are self-interested, i.e., they are acting
so to maximise their own utility. Hence, our game-theoretic approach describes the
agents’ autonomy as a relational concept where each individual agent can be viewed
as a player in a negotiation game.

Agent Social Ability. The social ability of agents comprises the ability to communi-
cate and cooperate with other agents. Agents own the ability to interact with other
agents aiming at the satisfaction of their design objectives [7]. However, the agent’s
ability to merely exchange messages with other agents is insufficient from a goal

1150

autonomy perspective. Since other agents are autonomous themselves, they pursue
their own (potentially conflicting) delegated objectives. Thus, as we cannot assume
agents to share common goals, they must therefore negotiate and cooperate with other
agents to achieve their goals [15]. Customer and service provider agents communicate
by message passing. Messages are defined in the agents’ interaction protocol and
allow them to negotiate for the achievement of individual delegated objectives. In
detail, our agents negotiate about price and energy consumption for the provision of
cloud services.

Agent Deliberation and Reactivity. Deliberation is determining which state of the
world is desirable to be achieved (goals) and how this state can be reached by per-
forming appropriate actions. Reactivity denotes the agents’ capability to sense their
environments and to react upon recognised changes. In environments that involve
dynamic changes (e.g., by other agents), agents must be reactive. However, this does
not imply that the agent is capable of purely reactive behaviour, only. In contrast,
agents reason about appropriate actions to respond to changed in the environment [7].

The environmental changes indirectly affect the agents’ goals. Customer agents
may react to changes in their environment by considering market competition and
demand/supply ratios when requesting for services. Similarly, SP agents may react to
service requests by strategically composing their bids based on market changes.

Multiagent Systems. Considering many real-world scenarios such as the market en-
vironment presented in this work, the design of problem solving processes requires
more than a single agent, since there are multiple loci of control, i.e., there is a decen-
tralised nature of the problem [10]. Hence, the agents’ autonomy is of major im-
portance for the applicability in scenarios with multiple, conflicting objectives. Thus
it is necessary to move from the micro level of individual agents to the macro level of
multiagent systems. Following Jennings [10], we use the multiagent-based software
paradigm in order to (i) represent the distributed nature of the problem, (ii) enable
multiple loci of control, and (iii) support competing interests of entities.

Both customer and SP agents act on behalf of independent enterprises that may be
organisationally or geographically distributed. Centralized approaches employing
some kind of global control are not applicable in this setting, as knowledge about data
and resources is private information of the different stakeholders. Distributing control
to multiple entities reduces the system’s control complexity as a whole and causes
individual components to be less coupled [10]. Further, both customer and SP agents
are self-interested agents and pursue their individual business objectives as each agent
tries to maximize its designated utility.

2.2 Energy-aware Service Allocation for Cloud Computing

Energy-efficient Cloud Computing. Most existing approaches addressing energy
efficiency in cloud computing aim at the reduction of energy consumption in a single
data centre. This goal is achieved by scheduling techniques and resource management
for distributing thermal load or powering down server in times of low demand. Most

1151

of these approaches also fit for conventional data centres which are run and used by
the same enterprise. [16] gives an overview of potential strategies to improve energy-
efficiency in cloud environments. A theoretical evaluation of scenarios in which cloud
computing has an advantage above local computing resources in terms of energy-
efficiency is done by [17]. The authors evaluate the balance between computing, stor-
age and network resources on a formal basis. [18] propose a low-energy scheduling
model for the optimisation of energy-efficiency and use a welfare-maximisation ap-
proach. However, these approaches are limited to the optimisation of energy efficien-
cy of a single enterprise. A global view on the energy efficiency of cloud computing
and its impact in terms of carbon dioxide emissions is examined in [19].

Agent-based Cloud Service Allocation. Multiagent resource allocation is concerned
with the way resources are distributed among multiple intelligent agents [6]. Though
the notion of a “resource” can be used in its most general way, the resources we con-
sider in this work are computational services. These services are discrete, i.e., they
cannot be divided into smaller units, and non-shareable, i.e., a service cannot be used
by multiple agents at the same time.

Bo and Lesser [5] investigate multiagent resource allocation across computational
networks, where a set of selfish agents route traffic for individual users. Before user
agents can route traffic through node entities, contracts between user agents and the
participating nodes need to be established. The negotiation approach proposed is of
distributed nature, i.e., agents act on behalf of themselves, and the corresponding
resource allocation emerges from sequences of distributed negotiations. In addition to
mutual contracting, nodes are allowed to decommit from existing contracts at a penal-
ty cost. The authors investigate the relationship between stability and optimality of the
network resource allocation game. Parkes et al. [20] present guidelines for the devel-
opment of distributed allocation mechanism implementations based on the Vickrey-
Clarke-Groves [21] mechanism. The aim of the approach is to distribute as much
computation load as possible onto network nodes and thus help to determine a suita-
ble allocation result. However, the proposed approach requires a ‘center’ entity which
communicates with network nodes through a trusted channel and selects and enforces
allocation outcomes.

In [22], a market-based approach is employed to efficiently allocate computing re-
sources by means of an automated negotiation mechanism. Agents make bilateral
contracts for resource leases and are given the ability to decommit from a contract by
paying a negotiated penalty to the other contract party. However, the work above does
not consider energy efficient allocation of computing resources.

3 Formal Framework

This section introduces a formal framework allowing us to calculate the optimal ser-
vice allocation from a social welfare perspective. By assumption, switching off host-
ing servers results in the reduction of power consumption. Thus, each customer agent
seeks to migrate all applications (henceforth services) running on the same physical

1152

machine to cloud-based SP agents. Since these services often depend on each other,
they can only be migrated as bundles of services. However, customer agents will only
move service bundles to cloud-based SP agents (and thus switch off physical servers)
if cloud-based SP agents are able to offer a more energy-efficient way to execute the
designated services. Thus, we assume each SP agent is aware of its energy efficiency.
With regards to the standardized measurement of IT energy efficiency, we employ the
widely accepted metric “performance-per-watt” (see [23] for a justification).

3.1 Agents and Services

To induce a migration decision, agents have to consider services executed on hosts,
computational capacities, as well as energy efficiency specifications.

Agents. The set of customer agents is denoted by AC and the set of SP agents is ASP.
The set of all agents is given by A = AC 笈 ASP.

Services. The tuple of all services is denoted by S = (s1,s2,…,sn). Each service has a
required computational capacity given by w(sk) with k 株 {1,…,n} measured in perfor-
mance, i.e., computing operations per second. For example, a common performance
metric, server side java operations per second (ssj_ops), is defined in
SPECpower_ssj2008 [24]. We assume that different machines support the same per-
formance metric.

Hosts. Each customer agent i 株 AC owns a set of hosts (e.g., servers) denoted by
Hi = {h1

i,h2
i,…,hmi

i} with mi 株 桶. The average energy consumption rate (in watt) of
each host is given by Ei(h

i
l) with l 株 {1,...,mi }. Each host is defined by the binary tuple

hi
l = (r1,r2,…,rn), where rk = 1 if service sk is hosted on hl

i and rk = 0 if not. Due to the
fact that i can only switch off its hosting hardware (and thus enhance its energy effi-
ciency) once all services hosted by that particular hardware are migrated to SP agents,
a customer agent i derives a valuation Vi(hl

i) for host hl
i if all services hosted by hl

i
 are

allocated to SP agents.

Capacity. Each SP agent j 株 ASP owns an infrastructure which provides a limited
computational capacity denoted by Wj. Further, the energy efficiency of j is given by
Ej (measured in performance/watt).

3.2 Agent Utility

The agents’ individual utilities are influenced by their costs, payments for service
provisioning, migration valuation and energy savings of specific hosts.

Cost. The cost of SP agent j for providing computational capacity for service sk at
energy consumption rate ek is given by cj(w(sk),ek), where cj(w(sk),ek) = 0 if no service
is provided.

1153

Payment. The payment from i to j for providing service sk is represented by pijk. Since
i seeks to migrate all services hosted by hl

i, the total payment for host hl
i
 is defined as

the sum of payments of all services hosted by hl
i, i.e.

1
()

SP

ni l
i l ijkj A k

P h p

 where pl
ijk is the price for sk hosted by hl

i.

Allocation. An allocation is given by the tuple Xijk = (i, j, sk, eijk, pijk), where eijk de-
notes the contracted energy consumption rate of sk. Let X denote the set of final allo-
cations (“winning” allocations). The binary variable xijk is defined as xijk = 1 if Xijk 株
X, and xijk = 0 otherwise.

Utilities. The utilities of each customer agent i and SP agent j are given by

1

(() ()) ,
i

SP

m
i i

i i l i l ijk
j A l

U V h P h x

1

(((),))
C

n

j ijk j k k ijk
i A k

U p c w s e x

 .

3.3 Optimality of Service Allocations

We consider an allocation being optimal if the sum of all agents’ individual utilities is
maximised. Literature denotes this criterion as utilitarian social welfare, the standard
performance metric in multiagent resource allocation. Such a metric is often used to
measure the quality of an allocation with regards to the system as a whole [6]. The
utilitarian social welfare is calculated as

C SP

i j
i A j A

W U U

, 1 1

(() ()) (((),))
im n

i i
i l i l ijk ijk j k k ijk

i j A l k

V h P h x p c w s e x

 (1)

, 1 1

() ((),) .
im n

i
i l ijk j k k ijk

i j A l k

V h x c w s e x

Note that the payments do not appear in this equation since these simply redistribute
the wealth between the agents. In the following we are interested in finding the opti-
mal set of services that needs to be allocated to SP agents such that the social welfare
is being maximized, i.e.,

*

, 1 1

max () ((),)
im n

i
i l ijk j k k ijk

x
i j A l k

W V h x c w s e x

 (2)

. .s t

1154

1

: () .
C

n

SP k ijk j
i A k

j A w s x W

 (3)

Theorem 1. The computation problem for the socially optimal allocation is NP-
complete.

Proof. NP membership is easy, since for any given solution to our allocation prob-
lem the calculation of the resulting social welfare and the verification of the capacity
constraints defined in (3) can obviously be done in polynomial time. For hardness, we
define a reduction from the 0-1 Knapsack problem which is known to be NP-complete
[25]. The 0-1 Knapsack problem is defined as follow. Let U be a finite set and let u 株
U. Further, g(u) denotes the weight and b(u) the valuation of element u, and K is a
positive integer. Further, a(u) is a non-negative integer for each u 株 U. Now maxim-

ize () () . . () ()
u U u U

a u b u s t a u g u K

 (cf. [26]). Any instance of the 0-1

Knapsack problem can be reduced to our optimization problem as follows. Let mi = n
= 1 in equation (2), i.e., each customer agent in AC has exactly one service bundle (l =
1) containing exactly one service (k = 1), and let l = 1, i.e., one SP agent only, then
we can rewrite equation (2) as

 *
1 1 1 1 11max () ((),)

C

i i
x

i A

W V h c w s e x

 (4)

with constraint 1 11 1()
Ci A iw s x W . Further, set AC = U, xi11 = a(u),

Vi(h1) - c1(w(s1),e1) = b1, w(s1) = g(u) for all u 株 U and W1 = K. Obviously, this reduc-
tion can be done in polynomial time. Hence, each SP agent’s optimization problem
and therewith the utilitarian social welfare maximization problem is NP-complete.

3.4 Illustrative Example

We provide an example to illustrate the formal framework. This examples considers
two customers c1 and c2, three service providers sp1, sp2, and sp3, and a set of ser-
vices S = {s1,s2,s3} as depicted in figure 1. Each SP has an energy efficiency Ei in
performance per watt, a capacity Wj in the performance metric ssj_ops, and a cost in €

to provide its services cj with j = {1,2,3}. On the demand side, both c1 and c2 own one
host h1 and derive a valuation Vi(h1) with i = {1,2}, if that particular host can be
switched off. Hence, c1 requests for computing capacities w(s1) and w(s2) and c2 for
w(s3). Table 1 shows all possible service allocations denoted by a1 to a16 and presents
the social welfare achieved by each allocation. For the calculation, customer valuation
and SP cost are used as per computing unit, e.g., the valuation per computing unit of
c1 equals 85.5/450 = 0.19. Obviously, allocation a1 with 85.5 + 41.4 − 26.0 − 27.5
− 27.6 = 45.8 maximizes the social welfare for the given setting.

1155

sp3

V1(h1) = 85.5

w(s1) = 200 ssj_ops

w(s2) = 250 ssj_ops

V2(h1) = 41.4

w(s3) = 230 ssj_ops

E1 = 1,200 ssj_ops/W

W1 = 350 ssj_ops

c1(s1) = 26.0 €

E2 = 1,000 ssj_ops/W

W1 = 390 ssj_ops

c2(s2) = 27.5 €

E3 = 1,100 ssj_ops/W

W1 = 375 ssj_ops

c3(s3) = 27.6 €

sp1

sp2

c1

c2

customersservice providers

Fig. 1. Example 1 with two customers and three service providers

Table 1. Possible allocations and social welfare for example 1

Service request a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

c1
s1
s2

sp1 sp2 sp3 sp1 sp2 sp3 sp1 sp1 sp2 sp2 sp3 sp3 - - - -

sp2 sp1 sp2 sp3 sp3 sp1 sp2 sp3 sp1 sp3 sp1 sp2 - - - -

c2 s3 sp3 sp3 sp1 sp2 sp1 sp2 - - - - - - sp1 sp2 sp3 -

Social welfare 45.8 44.8 45.5 45.6 45.0 45.1 32.0 29.5 31.0 33.5 29.0 34.0 11.5 16.1 13.8 0.0

4 Allocation Mechanism

Since finding the optimal service allocation is a computationally infeasible problem,
we propose a distributed heuristic for energy-aware cloud service allocation in order
to approximate agents’ decision-making. We employ a multi-attribute combinatorial
procurement auction where multiple customer agents request for bundles of energy-
efficient cloud services from strategic service provider agents. At first, we introduce a
formal auction model and then describe an allocation protocol that is incentive-
compatible for SP agents. An auction protocol is called incentive-compatible if it is
each SP agents’ dominant strategy to declare its true preference over the requested
services regardless of other SP agents’ actions [27].

4.1 Auction Model

The agents’ participation in the auction requires service requests and bids as well as a
score combining price with energy consumption.

Request. Each customer agent i 株 AC requests for service bundles defined by
Ri = (R1

i,R2
i,…,Rmi

i), where each service bundle Rl
i is represented by the binary request

bundle of the form Rl
i = (r1,r2,…,rn), i.e., rk = 1 if service sk belongs to the requested

bundle and rk = 0 if not.

Score. Let ek denote the energy consumption rate of service sk and pk the price for
service provisioning. For each tuple (ek,pk) we adopt the notion of [9] and define a
quasi-linear scoring function by

1156

ji(sk, ek, pk) = gi w(sk)/ek –くipk, (5)

where gi,くi 株 温+ are used for scaling purposes. The scoring function is assumed to be
publicly known to all SP agents at the start of bidding. As in [9], we consider the se-
cond-score auction where the winning SP agent is obligated to match the second
highest score. However, in meeting this score, the winner may choose any tuple
(ek,pk). As an example, let SP agent A’s bid for service s1 be (5, 0.2) and
B’s bid (6, 0.15), and the scoring function is such that ji(s1, 5, 0.2) = 10 and
ji(s1, 6, 0.15) = 9. Here, SP agent A wins the auction and is free to choose any tuple
(e’,p’) such that ji(s1, e’, p’) = 9 is fulfilled.

Bids. Each SP agent j’s bid is given by the n-tuple Bj = (Bj

1,B
j
2,…,Bj

n), where each Bj
k

is a tuple of the form Bj
k = (ji(sk, ek, pk), ek) with the score ji(sk, ek, pk), and the prom-

ised energy consumption rate ek for providing service sk. If j does not bid for service
sk, we set Bj

k = (0,0).

4.2 Auction Protocol

We consider the widely used one-shot protocol described in [28]. Further, our proto-
col is assumed to be individually rational, i.e., no agent will commit to a contract for
service provision if its cost exceeds the payment received. This is natural as no agent
is willing to participate in an auction where it spends more than what it earns. In the
following we describe the individual steps of the protocol.

｠ Each customer agent i asks for bids from SP agents by announcing its request
Ri = (Ri

1,R
i
2,…,Ri

mi) to all SP agents.
｠ For each service sk in i’s request bundles Ri

l, SP agents send their binding bids Bi to
customer agents.

｠ Customer agent i evaluates the received bids and informs SP agents about the ac-
ceptance of their bids by transferring the second highest score.

｠ The winning SP agents calculate the price based on the second highest score. A
contract is established and second score payments are transferred. For each rejected
bid, no contract is established.

Since customer agent i only derives non-zero valuations for complete service bundles,
it is individually rational for i to establish contracts if and only if it has received ac-
ceptable bids for each service in the current bundle. Once this is the case, i selects the
SP agent with the highest score for each requested service. The winning SP agent is
then informed about the acceptance of its bid and the value of the auction’s second
highest score denoted by ji,2. Based on the scoring function defined in (5), the win-
ning SP agent chooses an energy-price tuple (e’,p’) such that ji(sk, ek, pk) = ji,2. A
contract is established for each service sk within the bundle specifying the price p’ and
the energy consumption e’ for service sk .

Note that SP agents may choose to lie when bidding, i.e., they may systematically
overvalue their offered energy efficiency and base the transmitted score defined in (5)
on costs that are higher than its true valuation. In the following we apply [9] and show

1157

that this protocol is incentive-compatible for SP agents, i.e., it is each SP agent’s
dominant strategy to declare its true preferences for service allocations. Thus, each
individually rational SP agent will always calculate its bidding score on its true mar-
ginal cost.

Theorem 2. The proposed auction protocol is incentive-compatible for SP agents,
where each SP agent’s bid for providing service sk is calculated using
pijk = cj(w(sk),eijk).
Proof. Applying lemma 1 from [9], we set q = ek,s(q) = giw(sk)/ek, c(q,し)
= くicj(w(sk), ek) and qs(し) = eijk. Then eijk = arg max(giw(sk)/ek – くicj(w(sk),ek)) which
reduces the two-dimensional auction to a one-dimensional problem. Hence, proposi-
tion 1 (ii) in [9] yields pijk = くicj(w(sk),eijk). Consequently, SP agents’ dominant strate-
gy consists in calculating their bidding scores based on their marginal costs
cj(w(sk),eijk).

From this result it becomes clear that SP agents will always calculate their score
based on their true marginal cost, no matter on how other SP agents choose their
score. With this in mind, we can deduce the following corollary.

Corollary 1. For a single customer agent request, the proposed protocol results in an
optimal service allocation.
Proof. By theorem 2, it is individually rational for each SP agent to calculate its bid
for providing service sk by using its marginal cost cj(w(sk),ek). That is, only SP agents
that offer minimal cost will be contracted by the customer agent. As customer agent’s
valuation for each service bundle h

i
l is given by Vi(h

i
l) and costs cj(w(sk),ek) are mini-

mized, the resulting service allocation is optimal.

5 Evaluation

This section provides the experimental evaluation of the proposed allocation mecha-
nism. We describe the experimental setup, report the results, and discuss the findings.

5.1 Experimental Setup

The parameters used in our experiments are based on pricing models of Amazon in
2012 and latest power and performance information found in the SPECpower stand-
ard. According to the Amazon EC2 User Guide and SPECpower, the performance of
a Dell PowerEdge R720 approximately corresponds to the computing capabilities of
88 EC2 small instances [24]. Hence, on average, one million ssj_ops cost 6.75 € and
consume 186 Watt power. Thus, in our setup, costs are normally distributed with たc =
6.75 and standard deviation jc = 0.1. Based on Amazon and SPECpower data, the
energy efficiency of SPs and customer agents’ hosts are assumed to follow a normal
distribution with expectation たE = 5365 ssj_ops/W and jE = 268.2. We assume that SP
agents’ costs correlate positively with its energy efficiency. The following random
numbers were generated using normal distribution:

1158

｠ Xc,j ~ N(たc; jc
2) refers to SP agent j's fixed cost component incurred for service

provisioning,
｠ XE,j ~ N(たE; jE

2) refers to SP agent j's energy efficiency,
｠ cj = Xc,j (XE,j / たE) refers to SP agent j's cost for one million ssj_ops,
｠ Xc,j ~ N(たc; jc

2) refers to customer agent i's fixed valuation component,
｠ Vi(hl

i) = Xc,j + たE / XE,j) refers to customer agent i's valuation per computing unit for
host hl

i
 .

The number of hosts per customer agent is Poisson distributed with an expectation ぢk = 10. The number of services per host is also Poisson distributed with an expecta-
tion ぢs = s and each service is taken by uniform distribution from a set of 10 services
with performance ranging from 0.3 to 2.1 million ssj_ops. The number of SP agents is
set to 5 as we assume there exists a relatively small number of large cloud SPs on the
market, e.g., Amazon and IBM. SP agents’ computational capacities are generated by
normal distribution such that demand and supply are balanced at 50 customer agents.
Each experiment was performed 100 times. The optimal values of the allocations’
social welfare are computed using CPLEX (a commercial optimization software by
IBM).

5.2 Results

Both figures 2 and 3 show the average behaviour of the utility ratio (agents’ social
welfare relative to optimal utility) as a function of the number of customer agents
where energy efficiency and price are weighted using three different ratios. Different
weights can be set by means of gi and くi as defined in the scoring function (5) and are
equal for all customer agents. In the following, energy-price weighting ratios are
simply written in the form energy:price (e.g., 1:1 means energy and price are
weighted equally).

Figure 2 shows a setting where higher weights are placed on energy efficiency. The
utility ratio at 1:1 monotonically increases in the interval [2,44] until the maximum
close to 1.0 is reached at 44 customer agents. The utility ratio then decreases again
and seemingly converges to 0.9. Similarly, the utility ratio for 3:2 also increases in the
interval [2,44], but starts at a lower utility ratio as compared to the function with 1:1,
showing a higher slope. It then decreases and indicates a convergence to the utility
ratio of 0.9. Further, the utility ratio for 4:1 is significantly low for a small number of
customer agents while it increases at a high slope until the maximum close to 1.0 is
reached at 44 customer agents. Hence, it finally decreases and reaches a utility ratio of
0.9.

Figure 3 shows a setting where higher weights are placed on price rather than on
energy efficiency. The utility ratio with 1:1 is the same as the one displayed in figure
2. At 2:3 the utility ratio dominates the one for 1:1 and increases monotonically in the
interval [2,44] until the maximum close to 1.0 is reached at customer agent number
44. Similarly, the weights 1:4 cause the utility ratio to exceed all other ratios while
constantly remaining close to 1.0 in the interval [2,44]. It then decreases for a growing
number of customer agents and reaches a utility ratio of 0.9.

1159

Fig. 2. Utility ratio as function of customer

number with higher weights on energy.
Fig. 3. Utility ratio as function of customer

number with higher weights on price.

5.3 Discussion

Our experiments demonstrate the influence of energy-aware customer agents on the
agents’ social welfare and provide evidence for the usefulness and efficacy of the
proposed auction mechanism. In the interval [2,44] all “energy-aware” utility ratios
displayed in figure 2 increase monotonically. This result demonstrates the impact of
the changing demand/supply-ratio with an increasing number of customer agents:
Within the interval [2,48], on average, service supply is greater than the requested
service demand. Hence, on a market with excess supply, energy-aware customer
agents easily satisfy their demand and choose energy-efficient services. The incurring
costs of SP agents, however, are high when providing services of high energy effi-
ciency. Therefore, customer agents that overvalue energy efficiency as compared to
price will purchase services from expensive SP agents. Hence, capacities of cheap SP
agents remain unused.

Since the social welfare decreases at higher SP agent costs and unchanging cus-
tomer agent valuation, both utility ratios for 4:1 and 3:2 are low for a small number of
customer agents but increase until the market is saturated (on average, this happens at
50 customer agents). That is, increasing weights for energy efficiency result in higher
costs for service provisioning and hence in lower utility ratios. When the market is
balanced, the utility ratios reach its maximum for all energy-price weights. The fact
that the utility ratios then decrease within the interval [46,100] is intuitive: Once ser-
vices for sale are beginning to be scarce, resource competition is high and the mecha-
nism can only achieve a high social welfare if services of high valuation can be mi-
grated to SP agents. In such situations, customer agents are willing to forgo their en-
ergy-price preferences in order to obtain their valuations. Further, with a growing
number of customer agents, the success rate of the mechanism decreases as it be-
comes more difficult for competing customer agents to migrate their services. Hence,
the utility ratios for all energy-price preferences reach 0.9.

Experiments for the setting with “price-aware” customer agents as displayed in
figure 3 confirm a rather trivial intuition: When placing higher weights on the price

1160

and lower weights on energy efficiency (e.g., 1:4), the mechanism achieves a constant
maximal utility ratio close to 1.0. Obviously, in a market with low competition, cus-
tomer agents acquire services from SP agents with lowest cost while paying only little
attention to energy efficiency. Once resources are being scarce (i.e., beyond 50 cus-
tomer agents), the high competition among customer agents causes the utility ratio to
finally reach 0.9 for all considered energy-price preferences.

6 Conclusion

This work presents a formal framework for modelling energy-aware cloud service
allocation and proposes a distributed allocation mechanism that integrates energy
efficiency into the allocation rationale. Customers and cloud SPs are represented as
software agents that autonomously negotiate service agreements based on a set of
different energy-price preference ratios. We employ game theory to analyse optimal
service allocation and show the NP-completeness of the underlying utilitarian social
welfare maximisation problem. We develop a distributed heuristic for the allocation
problem. The proposed allocation mechanism, a second-score auction protocol, is
shown to be incentive-compatible for SP agents. We evaluate this mechanism by
means of multiagent simulation. The current formal framework is limited to two non-
functional properties of services, i.e., energy efficiency and performance. In our fu-
ture work, we plan to include additional properties such as response time and availa-
bility.

Acknowledgements. This work has been supported by (1) the project MIGRATE!,
funded by the German Federal Ministry of Economics and Technology (BMWi, FKZ
01ME11052), and (2) the eHealthMonitor project (http://www.ehealthmonitor.eu),
funded by the European Commission under contract FP7-287509.

References

1. Weiss, A.: Computing in the clouds. netWorker 11 (4), 16–25 (2007)
2. Weinhardt, C., Anandasivam, A., Blau, B., Borissov, N., Meinl, T., Michalk, W., Ster, J.:

Cloud-computing. Wirtschaftsinformatik 51, 453–462 (2009)
3. The green grid consortium, http://www.thegreengrid.org (2011)
4. Sen, A.K.: Collective Choice and Social Welfare. Holden-Day, Michigan (1970)
5. Bo, A., Lesser, V.: Characterizing contract-based multi-agent resource allocation in net-

works. IEEE Sys. Man. Cybern. 40, 575–586 (2010)
6. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Padget, J.,

Phelps, S., Rodriguez-Aguilar, J.A., Sousa, P.: Issues in multiagent resource allocation.
Informatica 30, 3–31 (2006)

7. Wooldridge, M.: An Introduction to MultiAgent Systems. 2nd edn. John Wiley & Sons,
Chichester (2009)

8. Bond, A.H., Gasser, L. (eds.): Readings in Distributed Artificial Intelligence. Morgan
Kaufmann Publishers, San Mateo (1988)

1161

9. Che, Y.K.: Design competition through multidimensional auctions. Rand J. Econ. 24, 668–
680 (1993)

10. Jennings, N.: On agent-based software engineering. Artif. Intell. 117, 277–296 (2000)
11. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edn. Prentice

Hall, New Jersey (2003)
12. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in

multiagent systems. In: Proceedings on the Third International Conference on Multi-Agent
Sytstems (ICMAS-98) (1998)

13. Durfee, E.H., Lesser, V.R., Corkill, D.D.: Coherent cooperation among communicating
problem solvers. IEEE Transactions on Computers C-36, 1275–1291 (1987)

14. Castelfranchi, C., Falcone, R.: Founding Autonomy: The Dialectics Between (Social) En-
vironment and Agent’s Architecture and Powers. In: Nickles, M., Rovatsos, M., Weiss, G.
(eds.): Agents and Computational Autonomy. LNCS, Vol. 2969, pp. 40-54. Springer, Hei-
delberg (2004)

15. Castelfranchi, C.: Modelling social action for AI agents. Artif. Intell. 103, 157–182 (1998)
16. Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M.Q.,

Pentikousis, K.: Energy-efficient cloud computing. Comput. J. 53, 1045–1051 (2009)
17. Baliga, B.J., Ayre, R.W.A., Hinton, K., Tucker, R.S.: Green cloud computing: Balancing

energy in processing, storage and transport. In: Proceedings of the IEEE 99, pp. 149–167
(2010)

18. Bodenstein, C., Hedwig, M., Neumann, D.: Low-energy automated scheduling of compu-
ting resources. In: 1st IEEE/ACM Workshop on Autonomic Computing for Economics
(2011)

19. Garg, S.K., Yeo, C.S., Buyya, R.: Green cloud framework for improving carbon efficiency
of clouds. In: Jeannot, E., Namyst, R., Roman, J. (eds.): Euro-Par 2011. LNCS, Vol. 6852,
pp. 491–502. Springer, Heidelberg (2011)

20. Parkes, D., Shneidman, J.: Distributed implementations of Vickrey-Clarke-Groves mecha-
nisms. In: Proceedings of the 3rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS'04), pp. 261–268. ACM, New York (2004)

21. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Financ. 16,
8–37 (1961)

22. Bo, A., Lesser, V., Irwin, D., Zink, M.: Automated negotiation with decommitment for
dynamic resource allocation in cloud computing. In: Ninth International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS'10), pp. 981–988 (2010)

23. Sharma, S., Hsu, C., Feng, W.: Making a case for a green500 list. In: Proceedings of the
Workshop on High-Performance, Power-Aware Computing (2006)

24. SPEC: Standard performance evaluation corporation, http://www.spec.org (2012)
25. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.):

Complexity of Computer Computations. Plenum Press, New York (1972)
26. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, New York (1979)
27. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University

Press (1995)
28. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50, 97–109

(2006)

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2013

	Energy-aware Service Allocation for Cloud Computing
	Tobias Widmer
	Marc Premm
	Paul Karaenke
	Recommended Citation

	Untitled

