83 research outputs found

    A knowledge-based machine vision system for space station automation

    Get PDF
    A simple knowledge-based approach to the recognition of objects in man-made scenes is being developed. Specifically, the system under development is a proposed enhancement to a robot arm for use in the space station laboratory module. The system will take a request from a user to find a specific object, and locate that object by using its camera input and information from a knowledge base describing the scene layout and attributes of the object types included in the scene. In order to use realistic test images in developing the system, researchers are using photographs of actual NASA simulator panels, which provide similar types of scenes to those expected in the space station environment. Figure 1 shows one of these photographs. In traditional approaches to image analysis, the image is transformed step by step into a symbolic representation of the scene. Often the first steps of the transformation are done without any reference to knowledge of the scene or objects. Segmentation of an image into regions generally produces a counterintuitive result in which regions do not correspond to objects in the image. After segmentation, a merging procedure attempts to group regions into meaningful units that will more nearly correspond to objects. Here, researchers avoid segmenting the image as a whole, and instead use a knowledge-directed approach to locate objects in the scene. The knowledge-based approach to scene analysis is described and the categories of knowledge used in the system are discussed

    Anytime and Distributed Approaches for Graph Matching

    Get PDF
    Due to the inherent genericity of graph-based representations, and thanks to the improvement of computer capacities, structural representations have become more and more popular in the field of Pattern Recognition (PR). In a graph-based representation, vertices and their attributes describe objects (or part of them) while edges represent interrelationships between the objects. Representing objects by graphs turns the problem of object comparison into graph matching (GM) where correspondences between vertices and edges of two graphs have to be found.In the domain of GM, over the last decade, Graph Edit Distance (GED) has been given a specific attention due to its flexibility to match many types of graphs. GED has been applied to a wide range of specific applications from molecule recognition to image classification. Researchers have shed light on the approximate methods that can find suboptimal solutions hopefully close to the optimal ones but the gap between optimal and suboptimal solutions has not been deeply studied yet. For that reason, in this thesis, we focus on exact GED algorithms. Unfortunately, exact GED methods have an exponential complexity. Thus, coming up with an exact GED algorithm that can be scaled up to match graphs involved in PR tasks is a great challenge. Two promising ways to cut-off computational time are search space pruning and distributed algorithms. To this end, we first propose a depth-first GED algorithm which requires less memory and search time. An evaluation of all possible solutions is performed without explicitly enumerating all of them. Candidates are discarded using an upper and lower bounds strategy.To find a trade-off between speed and optimality, we describe how to convert the proposed depth-first GED method into an anytime one that is capable of delivering a first solution very quickly. It also can find a list of improved solutions and eventually converges to the optimal solution instead of providing one and only one solution (i.e., the optimal solution). With the delight of more time, anytime methods can also reach the optimal solution. To illustrate the usage of anytime GM algorithms, we convert our depth-first GED algorithm into an anytime one. We analyze the properties of such methods to solve GM problems and consider the performance in terms of accuracy of the provided solution compared to the optimal or the best one found by a state-of-the-art methods.This thesis is also considered as a first attempt to reduce the run time of exact GED methods usingparallel and distributed fashions. Two parallel and distributed GED approaches are put forward; both of them are based on the depth-first GED method. The search space is decomposed into smaller search trees which are solved independently in a parallel or a distributed manner.To benchmark the proposed GED methods, we propose not only assessing GED methods in a classification context but also evaluating them in a graph-level one (i.e., evaluating their distance and matchin accuracy). Due to the exponential complexity of exact GED algorithms and in order to obtain this kind of information about methods, we propose analyzing the behavior of the eight compared methods under time and memory constraints. In addition to the performance evaluations metrics, we propose a graph database repository dedicated to GED. In this repository, we add graph-level information to well-known and publicly used databases. Added information consists of the best found edit distance of each pair of graphs as well as their vertex-to-vertex and edge-to-edge mappings corresponding to the best found distance. This information helps in assessing the feasibility of exact and approximate GED methods. This thesis brings into question the usual evidences saying that it is impossible to use exact errortolerant GM methods in real-world applications when matching large graphs, or even in a classification context. However, we argue and show that a new type of GM, referred to as anytime methods, can be successful in a graph-level context as well as a classification one. Anytime videos, pseudo-codes and the publications related to the thesis are publicly available at: http://www.rfai.li.univ-tours.fr/ PagesPerso/zabuaisheh/home.html. The thesis is also publicly available at: http://www.rfai.li.univ-tours.fr/Documents/Articles_RFAI/PhD2016zeina.pd

    Structural Data Recognition with Graph Model Boosting

    Get PDF
    This paper presents a novel method for structural data recognition using a large number of graph models. In general, prevalent methods for structural data recognition have two shortcomings: 1) Only a single model is used to capture structural variation. 2) Naive recognition methods are used, such as the nearest neighbor method. In this paper, we propose strengthening the recognition performance of these models as well as their ability to capture structural variation. The proposed method constructs a large number of graph models and trains decision trees using the models. This paper makes two main contributions. The first is a novel graph model that can quickly perform calculations, which allows us to construct several models in a feasible amount of time. The second contribution is a novel approach to structural data recognition: graph model boosting. Comprehensive structural variations can be captured with a large number of graph models constructed in a boosting framework, and a sophisticated classifier can be formed by aggregating the decision trees. Consequently, we can carry out structural data recognition with powerful recognition capability in the face of comprehensive structural variation. The experiments shows that the proposed method achieves impressive results and outperforms existing methods on datasets of IAM graph database repository.Comment: 8 page

    Data-efficient Neuroevolution with Kernel-Based Surrogate Models

    Get PDF
    Surrogate-assistance approaches have long been used in computationally expensive domains to improve the data-efficiency of optimization algorithms. Neuroevolution, however, has so far resisted the application of these techniques because it requires the surrogate model to make fitness predictions based on variable topologies, instead of a vector of parameters. Our main insight is that we can sidestep this problem by using kernel-based surrogate models, which require only the definition of a distance measure between individuals. Our second insight is that the well-established Neuroevolution of Augmenting Topologies (NEAT) algorithm provides a computationally efficient distance measure between dissimilar networks in the form of "compatibility distance", initially designed to maintain topological diversity. Combining these two ideas, we introduce a surrogate-assisted neuroevolution algorithm that combines NEAT and a surrogate model built using a compatibility distance kernel. We demonstrate the data-efficiency of this new algorithm on the low dimensional cart-pole swing-up problem, as well as the higher dimensional half-cheetah running task. In both tasks the surrogate-assisted variant achieves the same or better results with several times fewer function evaluations as the original NEAT.Comment: In GECCO 201

    A comparison between two representatives of a set of graphs: median vs barycenter graph

    Get PDF
    Trabajo presentado al Joint IAPR International Workshop on Structural, Syntactic and Statistical Pattern Recognition (SSPR&SPR) celebrado en Esmirna (Turquía) del 18 al 20 de agosto de 2010.In this paper we consider two existing methods to generate a representative of a given set of graphs, that satisfy the following two conditions. On the one hand, that they are applicable to graphs with any kind of labels in nodes and edges and on the other hand, that they can handle relatively large amount of data. Namely, the approximated algorithms to compute the Median Graph via graph embedding and a new method to compute the Barycenter Graph. Our contribution is to give a new algorithm for the barycenter computation and to compare it to the median Graph. To compare these two representatives, we take into account algorithmic considerations and experimental results on the quality of the representative and its robustness, on several datasets.This work was supported by projects: 'CONSOLIDER-INGENIO 2010 Multimodal interaction in pattern recognition and computer vision' (V-00069), 'Robotica ubicua para entornos urbanos' (J-01225).Peer Reviewe
    corecore