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ABSTRACT This paper presents a novel method for structural data recognition using a large number of graph
models. In general, prevalent methods for structural data recognition have two shortcomings: 1) only a single
model is used to capture structural variation and 2) naive classifiers are used, such as the nearest neighbor
method. In this paper, we propose strengthening the recognition performance of these models as well as their
ability to capture structural variation. The main contribution of this paper is a novel approach to structural
data recognition: graph model boosting. We construct a large number of graph models and train a strong
classifier using the models in a boosting framework. Comprehensive structural variation is captured with
a large number of graph models. Consequently, we can perform structural data recognition with powerful
recognition capability in the face of comprehensive structural variation. The experiments using IAM graph
database repository show that the proposed method achieves impressive results and outperforms existing
methods.

INDEX TERMS Pattern recognition, machine intelligence, structural data recognition.

I. INTRODUCTION
Structural data represented by graphs are a general and pow-
erful representation of objects and concepts. A molecule of
water can be represented as a graph with three vertices and
two edges, where the vertices represent hydrogen and oxygen,
and the relation is intuitively described by the edges. Struc-
tural data recognition is used in a wide range of applications;
for example, in handwritten characters, symbols from archi-
tectural and electronic drawings, images, bioinformatics, and
chemical compounds need to be recognized.

Graph recognition is not straightforward. Even measur-
ing the distance between graphs requires various techniques.
The problem of graph recognition has recently been actively
studied [1]–[6]. Past research has led to two notable progress
in two aspects. First, graph models have been developed
to capture structural variations. Second, the embedding of
graphs into Euclidean space has been used to apply sophis-
ticated classifiers in the vector domain. However, both these
aspects have drawbacks. The drawback of the former is that
only naive classifiers are applicable, such as the nearest
neighbor (NN) or the k-nearest neighbor (k-NN) methods.
The drawback of the second aspect above is the loss of struc-
tural variation in the classifiers through embedding process.1

1The embedding process typically involves information loss, local and
structural. In contrast, we fully exploit structural information of graphs.

Our aim in this paper is to overcome the drawbacks of
the previous methods. The challenge is how to integrate
structural variation into a sophisticated classifier. Inspired
by boosting algorithms, we construct a strong classifier by
aggregating naive classifiers which use graph models. Hence,
the strong classifier can be equipped with comprehensive
structural variations because it includes a large number of
graph models. Specifically, we construct graph models with
weighted training graphs and then train a naive classifier
using the models. We update the weight so that we can focus
on various graphs. Finally, we construct a strong classifier by
aggregating the naive classifiers. We call this novel approach
graph model boosting (GMB).
The main contribution of this paper is a novel approach

to simultaneously strengthen capability of classification and
capturing structural variation. In order to capture structural
variation comprehensively, we construct a large number of
models in a boosting framework so that the models can
contain different structural variations and compensate one
another. The capability of classification is strengthened by
aggregating naive classifiers constructed with graph mod-
els. Consequently, we can equip the classifier with com-
prehensive structural variation and a powerful recognition
capability.

In experiments, we demonstrated structural data recog-
nition using GMB on eight graph datasets that were pub-
licly available. We confirmed that accuracy of GMB notably
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increased as the boosting process continued. Consequently,
the accuracy was comparable with the state-of-the-art meth-
ods. The experimental results thus show the effectiveness of
the GMB.

A preliminary version of the work reported here was
first presented in a conference paper [7]. We consolidate
and expand our previous description and results. Firstly,
we provide additional technical details concerning the graph
model and GMB. Our contributions are highlighted clearly
in the Abstract and Introduction. Secondly, we carried out a
wider survey about related work to clarify the significance
of the proposed method. Lastly, additional experimental
results are presented: time complexity to evaluate practicality,
the impact of the parameters for robustness assessment to
various datasets, and using other graph model to show the
capability of GMB. The number of datasets used in the exper-
iments is expanded from five to eight by adding datasets in
bioinformatics.

II. RELATED WORK
Existing methods for graph recognition can be broadly cat-
egorized into three approaches: the one-vs-one approach,
the model-based approach, and the embedding approach.

A. ONE-VS-ONE APPROACH
Methods in the one-vs-one approach attempt to classify
graphs according to a criterion that can be measured for two
graphs, such as graph isomorphism, subgraph isomorphism,
and graph edit distance. Two graphs are graph isomorphic if
the mapping of their vertices and edges is bijective. Subgraph
isomorphism is the case where subgraphs of two graphs
satisfy graph isomorphism. Isomorphism is determined by
tree search [8] or backtracking [9]. However, it is difficult
to determine subgraph isomorphism in case of noisy vertices
and edges. Therefore, methods using graph edit distance have
been developed. The graph edit distance is defined as the
minimum sum of the costs of edit operations that transform
the source graph into the target graph by substitution, dele-
tion, and insertion [10], [11]. Since it is expensive to search
every combination of edit operations, approximate edit oper-
ations are searched. The method developed in [12] applies
the A-star algorithm [13], the one in [4] exploits Munkres’s
algorithm [14], the one in [15] is based on a Hungarian algo-
rithm, and the one in [16] uses simulated annealing. The
literature [17], [18] will help readers find more details related
to graph matching and edit distance. The advantage of this
approach is that the calculation is completed in polynomial
time. However, the methods in this approach only adopt
naive classifiers, such as the NN method and the k-NN
method. The performance of NN and k-NN depend on a
metric between graphs, hence we need to define it carefully.
However, this approach focuses on two graphs. Consequently,
the methods measure a metric without structural variation;
only two graphs are considered, whereas other graphs are
ignored.

B. MODEL-BASED APPROACH
Methods in the model-based approach attempt to capture
structural variation and classify graphs using a model. The
median graph [19] is a model that captures global informa-
tion concerning graphs. The median graph minimizes the
total distance between training graphs. A random graph [20]
is a model that specializes in capturing attribute varia-
tions at each vertex and edge. The random graph con-
tains variables ranging from 0 to 1, which are associated
with attribute values. The variables represent the proba-
bilities of the attribute that the vertices take. However,
numerous variables are required when attributes are con-
tinuous values. Improved models [21]–[23] based on ran-
dom graph have been developed as well. There are three
such models: First-order Gaussian graph, or FOGG [21],
function-described graph, or FDG [22], and second-order
random graphs, or SORGs [23]. The FOGG is a model
designed to avoid increasing number of variables by replacing
those of a random graph with parameters of a Gaussian distri-
bution. FDG and SORG incorporate joint probabilities among
the vertices and the edges to describe structural information.
The difference between FDG and SORG is the numbers of
vertices and edges at the calculation of joint probability. FDG
uses pairs of vertices or edges, whereas multiple vertices
and edges are used in SORG. Recently, models exploiting
unsupervised learning methods have been developed [24].
Torsello and Hancock presented a framework to integrate
tree graphs into one model by minimizing the minimum
description length [25]. Furthermore, Torsello [26] expanded
tree graphs to graphs and adopted a sampling strategy [27] to
improve calculation efficiency. The EM algorithm has been
applied to construct a model [28]. The methods in [24], [26],
and [28] concentrate on capturing variations in vertex and
edge composition. For computational efficiency, a closure
tree [29] has been developed. Each vertex of the tree con-
tains information concerning its descendants, so that effective
pruning can be carried out. The model-based approach can
measure distance based on structural variation. The drawback
of this approach is to use NN and k-NN classifiers using only
a single model. A metric is important for this approach. How-
ever, themethods use only a singlemodel tomeasure ametric.
We stress that minor structural information is lost in a single
model. Consequently, a metric is measured by considering
only major variation, whereas minor variation is ignored.

C. EMBEDDING APPROACH
Methods in the embedding approach attempt to apply
sophisticated classifiers that are widely used in the vec-
tor domain. The main obstacle to embedding graphs is
the lack of a straightforward and unique transformation
from a graph to a vector. For example, a graph with
N vertices can be transformed into N ! adjacency matri-
ces, since there are N ! permutations of vertex labeling.
Jain and Wysotzki [30] embedded graphs into Euclidean
space using the Schur–Hadamard inner product and
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performed k-means clustering by utilizing neural networks.
Bunke and Riesen [5] used the graph edit algorithm to
embed graphs into a vector space and applied a support
vector machine [31]. Some methods [3], [32], [33] involve
applying AdaBoost to graphs. We categorize them as part
of this approach because they use sophisticated classifiers.
Kudo et al. [32] developed a decision stump that responds
to whether a query graph includes a specific subgraph
and constructs a classifier using stumps in AdaBoost.
Nowozin et al. [33] developed a classifier based on LPBoost.
Zhang et al. [3] improved classifiers by incorporating an
error-correcting coding matrix method [34] into boost-
ing. Both [3] and [33] adopted the decision stump as a
weak classifier. The difference between GMB and these
methods [3], [32], [33] is the structural variation in the clas-
sifiers. Comprehensive structural variation is incorporated
into the GMB, whereas local structural variation is used
in [3], [32], and [33] because of the subgraphs. The advantage
of the embedding approach is that it can exploit powerful
classifiers. However, a disadvantage is that it ignores struc-
tural variation, since the graphs cannot be recovered from
the vectors. In addition, embedding graphs with structural
variation is a challenging task.

D. BRIEF SUMMARY
Summarizing the one-vs-one approach and the model-based
approach require a powerful classifier. The methods in the
embedding approach need to incorporate structural varia-
tions. The advantages of the model-based and the embed-
ding approaches can complement each other to mitigate their
disadvantages. Therefore, our strategy for overcoming the
disadvantages is to integrate the model-based approach with a
sophisticated classifier. In this paper, we build several graph
models and incorporate them into AdaBoost to construct a
graph classifier that can consider comprehensive structural
variation.

III. GRAPH MODEL
We propose a graph model that is fast constructible so
that GMB can construct models repeatedly in a feasible
amount of time. Generally, we need vertex correspondence
among graphs for model construction, but it is challenging
to obtain such correspondences. Most existing methods con-
sider correspondence between two graphs [35]–[38]. There-
fore, We propose searching vertex correspondences among
multiple graphs by assigning labels to vertices with median
graphs [19] since the calculation of the median graph is fairly
fast.

A. DEFINITION OF GRAPH MODEL
We propose a graph model that captures four types of struc-
tural variation in graphs: vertex composition, edge composi-
tion, vertex attributes, and edge attributes. The graph model
P is defined as

P = (V ,E,B,2). (1)

We call this graph model probabilistic attribute graph gen-
eration model, PAGGM. V and E are the sets of vertices and
edges, respectively. B is a set of probabilities of the vertices
and edges, B = {bi, bij | vi ∈ V , eij ∈ E, 0 ≤ bi, bij ≤ 1}.
2 is a set of parameters of a probability density function
in attributes at the vertices and edges, 2 = {θi, θij | vi ∈
V , eij ∈ E}. For instance, θi will consist of a mean and a
standard deviation if we use a normal distribution to describe
attributes at the node vi. The compositions and attribute vari-
ations are captured by B and 2, respectively. We use prob-
ability density function fpdf to calculate the probability that
vertex vi takes attribute a as fpdf(a|θi). We give an example
of how the model describes variation in vertex composition.
Let {v1, v2, v3} and {b1, b2, b3} be elements of V and B,
respectively. The vertex compositions and probabilities are as
follows: {v1} at b1(1−b2)(1−b3), {v2} at (1−b1)b2(1−b3),
{v3} at (1 − b1)(1 − b2)b3, {v1, v2} at b1b2(1 − b3), {v1, v3}
at b1(1 − b2)b3, {v2, v3} at (1 − b1)b2b3, and {v1, v2, v3} at
b1b2b3. We can include attribute variations by multiplying
fpdf(a|θ ).
We define likelihood function fL whereby a model gen-

erates an attributed graph G′ = (V ′,E ′,A′), A′ is a set of
attributes of the nodes and edges, A′ = {a′i, a

′
ij | v

′
i ∈

V ′, e′ij ∈ E ′}. Let Y ∈ {0, 1}|V |×|V
′
| be a matching matrix

between P and G′, where Y is subject to
∑|V |

i=1 Yik ≤ 1 and∑|V ′|
k=1 Yik ≤ 1 for any vertex vi in V and v′k in V ′. If two

vertices vi and v′k are matched, Yik = 1, Yik = 0 otherwise.
Therefore, Y provides the correspondence between P and G′.
We use function π to refer to the corresponding vertex π :
v in Vmatch → v′ in V ′match, where Vmatch and V ′match are
sets of corresponding vertices. Specific form is described in
Eq. (3). We calculate the likelihood of G′ as

fL(G′,P) = max
Y

∏
vi∈Vmatch

bifpdf(a′π (vi) | θi)
∏

vī∈Vmiss

(1− bī)

∏
eij∈Ematch

bijfpdf(a′π (vi)π (vj) | θij)
∏

eīj̄∈Emiss

(1− bīj̄),

(2)

Vmatch = {vi | vi ∈ V , v′k ∈ V
′,Yik = 1}, (3)

Vmiss = V \ Vmatch, (4)

Ematch = {eij | eij ∈ E, e′kl ∈ E
′,Yik = Yjl = 1}, (5)

Emiss = E \ Ematch. (6)

How to find Y maximizing Eq. (2) is the crucial step of the
proposed method. In order to construct the model, we need
a set of correspondences Y = {Y 1, · · · ,Y n} between P and
training data G = {G1, · · ·Gn}. However, searching Y is a
difficult problem. Attempts have been made to estimate Y by
minimizing objective functions, such asminimumdescription
length [24], [39] and entropy [40]. Unfortunately, they are
not applicable to our study because we search Y for over
thousands of subsets of G.
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We propose a method to quickly calculate the correspon-
dence Y . The key idea is to convert searching for Y into
labeling vertices, where vertices in G corresponding to the
same vertex in P share the same label. We exploit median
graphs for labeling. The procedure for the assignment of
labels is illustrated in Algorithm 1.M is used for calculating
correspondences betweenP and a graph.We calculatemedian
graph M as

M = argmin
G∈G

∑
Gi∈G

fd (G,Gi), (7)

Algorithm 1 Vertex Label Assignment
1: Assign null label to every vertex of all graphs in G.
2: Calculate the median graph M of G.
3: Assign a new label to each null-labeled vertex of M.
4: Calculate matching matrices between M and all graphs
in G.
4.1: Calculate edit operations (substitution, deletion,
insertion) from M to G by [12].
4.2: Match substituted vertices between M and G.

5: Assign vertex labels of M to null-labeled vertices of
graphs in G according to the matching matrices.

6: Go to 9 if G is empty, otherwise go to 7.
7: Remove a graph from G if all of its vertices have labels.
8: Put M into a set of median graphsM.
9: Stop if G is empty; otherwise, go to Step 2.

where fd is a function used to calculate the distance between
graphs. We adopt an edit distance algorithm [12] as fd in this
paper.

B. MODEL CONSTRUCTION
The construction of P involves the use of training data G and
correspondences Y . Specifically, we calculate B and 2 from
vertices and attributes that correspond using Y .

We create as many vertices and edges of PAGGM as the
number of labels assigned by Algorithm 1. It is straightfor-
ward to organize the labels of edges in G when the vertex
labels of G are available. Edges in G have the same label if
the connected vertices of the edges have the same label. Let
L be a function that refers to the labels of vertices; two edges
eij and ekl belong to the same labels if {L(vi),L(vj)} is equal
to {L(vk ),L(vl)}.
We calculate bi and bij in B using the labels as

bi =
1
|G|

∑
Gk∈G

∑
v∈Vk

I (L(v) = i) , (8)

bij =
1
|G|

∑
Gk∈G

∑
evv′∈Ek

I
(
{L(v),L(v′)} = {i, j}

)
, (9)

where I is a function of proposition p and takes 1 if p is true,
and otherwise takes 0. We can accumulate the attributes of

FIGURE 1. Calculation of matching matrix between graph (a) and PAGGM
(b). The colors represent labels. The correspondence develops from left to
right in (c).

vertex vi and edge eij in P as

Ai =
⋃
Gk∈G

⋃
vl∈Vk
L(vl )=i

{al}, (10)

Aij =
⋃
Gk∈G

⋃
elm∈Ek

{L(vl ),L(vm)}={i,j}

{alm}. (11)

Then, we calculate 2 using Ai and Aij. However, we need to
determine the type of the probability density function before
calculating 2. There is a miscellany of types of attributes,
such as continuous or discrete values, finite or infinite set,
etc. A suitable function is determined by a type of attribute.
In this paper, we adopt a normal density function and a
discrete density function for continuous and discrete values,
respectively.

C. SIMILARITY
We describe similarity between graphs and the PAGGM.
An intuitive choice for similarity is the logarithm of Eq. (2).
This choice is favorable when every vertex and edge in G′

matches that in P. However, unmatched vertices and edges
in G′ occur often. In such cases, the logarithm of Eq. (2) is
unsuitable because the unmatched vertices and edges in G′

are not accounted for in Eq. (2). Therefore, we impose penalty
η on unmatched vertices and edges. We define similarity
function fs of graph G′ to a PAGGM P as

fs(G′,P) = log
(
fL(G′,P)

)
− η

(
|V̄ ′| + |Ē ′|

)
, (12)

where V̄ ′ and Ē ′ represent sets of unmatched vertices and
edges of G′, respectively. In Section V-B, we provided the
experimental results for the effects of η so that the optimal η
can be obtained.
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FIGURE 2. Overview of graph model boosting.

Y should be an correspondence maximizing fL(G′,P).
However, Y is not easily obtained because the number of
vertices of P is large. Therefore, we propose calculating Y
by a set of median graphs M = {Mi | i = 1, · · · }, where i
represents the order constructed in Algorithm 1. Specifically,
we take M1 and assign labels to G′ using a correspondence
betweenM1 andG′. We repeat this assignment by taking next
Mi until all vertices in G′ corresponding to P or all median
graphs have been used. Finally, we obtain Y . Note that Y may
change if the order of Mi changes. We keep the order so that
Y is consistent with the correspondences that P is constructed
with the training graphs.

IV. GRAPH MODEL BOOSTING
The aim of GMB is to capture comprehensive variation and
construct a powerful classifier with a large number of graph
models. Although the PAGGM can contain structural vari-
ations, the PAGGM is single and tends to capture major
variations in the training graphs. Hence, minor but important
variations are lost. Consequently, recognition errors occur
on graphs in minor structures. To overcome this problem,
we adopt a boosting algorithm to generate a large number
of PAGGMs to complement one another. We provide an
overview of the GMB in Fig. 2. In each boosting round,
a PAGGM is constructed with a subset of weighted training
data for each class. Note that the PAGGM can focus on minor
graphs with large weights. Then, we form a decision tree that
classifies a graph by recursively branching left or right down
the tree according to the similarity between the graph and a
PAGGM. Finally, we form a strong classifier by integrating
the decision trees.

A. MODEL EXTENSION FOR WEIGHTED TRAINING DATA
We extend the PAGGM for weighted training data. We begin
by extending the median graph to a weighted median graph.
Let W be a set of weights for graphs in G. We define the
weighted median graph M̂ as

M̂ = argmin
G∈G

∑
Gi∈G

wifd (G,Gi). (13)

We replace the median graph in Algorithm 1 with the
weighted median graph. Therefore, M of P is composed

of M̂ . Subsequently, we extend the calculation of B and 2
to incorporate W as

b̂i =
1
|G|

∑
Gk∈G

∑
v∈Vk

wkI (L(v) = i) , (14)

b̂ij =
1
|G|

∑
Gk∈G

∑
evv′∈Ek

wkI
(
{L(v),L(v′)} = {i, j}

)
, (15)

Âi =
⋃
Gk∈G

⋃
vl∈Vk
L(vl )=i

{al} �O(wl), (16)

Âij =
⋃
Gk∈G

⋃
elm∈Ek

{L(vl ),L(vm)}={i,j}

{alm} �O(wlm), (17)

where O is a function that refers to the position of wk in
ascending order of W . For example, given W = {3, 6, 1, 9},
the ascending order ofW is {1, 3, 6, 9}. Therefore,O(6) = 3.
Let � represent a duplication operator, such as {x} � N =
{x, x, · · · , x︸ ︷︷ ︸

N times

}. We calculate 2̂ with Â. We replace B and 2

with B̂ and 2̂, respectively, when W is given.

B. BOOSTING FRAMEWORK
We propose GMB as shown in Algorithm 2, where C rep-
resents a set of class labels of G. GMB is based on the
AdaBoost algorithms [41]–[43], which are a suitable choice
for model construction because they provide different subsets
of training data. We construct PAGGMs using the subsets.
In addition to the different subsets, the weight can diversify
the PAGGMs. In the AdaBoost framework, the weights of
error-prone graphs become larger than those of recognized
graphs. Hence, we can focus on such error-prone graphs by
constructing PAGGMs using weights.

We use decision trees and NN as weak classifiers ht :
G → c ∈ C . The trees are trained by searching branching
rules composed of the PAGGM of a class and a threshold of
similarity. We use the CART algorithm [44] to set the thresh-
old. Specifically, we minimize Gini impurity, 1−

∑
c∈C p(c),

where p(c) = nc
|G| . nc is the number of samples in class c. The

trees have different PAGGMs and branching rules because
of randomness in the GMB. Subsequently, we use all trained
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TABLE 1. Summary of characteristics of datasets used in the experiments. The top row indicates the number of training data items, validation data, test
data, classes, attribute types of vertex and edge, average numbers of vertices and edges, maximum number of vertices and edges, and the number of
graphs in a class.

Algorithm 2 Graph Model Boosting, GMB

Initialize weights as wi = 1
|G| , i = 1, . . . , |W |.

FOR t = 1 to T
1: Extract a subset for each class from G.
2: Construct a model for each class using the subset.
3: Train a weak classifier ht using the models.
4: Calculate errt = 1∑

w∈W w

∑
Gi∈G

wiI(ht (G) 6= ci).

5: Calculate αt = log 1−errt
errt
+ log(|C|).

6: Renew wi ∈ W as wi← wi exp(αt · I(ht (Gi) 6= ci)).
7: Normalize W subjected to

∑
wi∈W

wi = 1.

End For

trees to construct the strong classifier H as

H (G) = argmax
c∈C

T∑
t=1

αtI (ht (G) = c) . (18)

In recognition, H evaluates test graphs using the trees and
recognizes them by majority voting on the trees. Hence,
the test graphs are comprehensively analyzed by measuring
similarities to the PAGGMs and using more sophisticated
classifiers than NN and k-NN. An alternative weak classifier
is the NN. We construct PAGGMs at each boosting round.
Hence, test graphs are analyzed with various PAGGMs as
well as the decision trees.

V. EXPERIMENTS
We carried out the experiments below to verify the effec-
tiveness of the proposed method. We measured recognition
accuracy for PAGGM and GMB on eight datasets.

A. DATASETS
For the experiments, we used eight datasets from the
IAM graph database repository [45], which is widely
used for graph-based pattern recognition and machine
learning. We used the following datasets: Letter-LOW
(LOW), Letter-MED (MED), Letter-HIGH (HIGH), GREC,
COIL-RAG (COIL), AIDS, Mutagenicity, and Protein.

The LOW,MED, and HIGH contained graphs representing
distorted letters, which were the 15 capital letters of the
Roman alphabet composed of straight lines only, such as A,

E, F, H, I, K, L,M, N, T, V,W,X, Y, and Z. The terms ‘‘LOW,’’
‘‘MED,’’ and ‘‘HIGH’’ represent the levels of distortion.

The GREC consisted of graphs representing symbols from
architectural and electronic drawings. The symbols were con-
verted into graphs by assigning vertices to corners, intersec-
tions, and circles on the symbols. The lines between symbols
were edges. Therewere 22 classes in theGREC.As suggested
in [46], we used graphs consisting of only straight lines.

The COIL was composed of 100 classes of graphs
extracted from images of different objects of the
COIL-100 database [47]. The images were segmented into
regions according to color by the mean shift algorithm [48].
The vertices were assigned to the segmented regions, and
adjacent regions were connected by edges. The attributes
were color histograms.

The AIDSwas composed of graphs representingmolecular
compounds of AIDS Antiviral Screen Data.2 The compounds
were active against human immunodeficiency virus or not.
We assigned the vertices to the atoms, and covalent bounds
were the edges.

The Mutagenicity consisted of graphs representing molec-
ular compounds used in [49]. The compounds were divided
into two classes: compounds that have potential to become
a marketable drugs, or not. The vertices and edges were
assigned as same way as AIDS.

The Protein contained graphs representing proteins devel-
oped in [50]. The proteins were classified into six classes
according to enzyme classes. The vertices were assigned to
the secondary structure elements of a protein. The edges were
assigned to three nearest elements in space.

We summarize the characteristics of the datasets in Table 1.
We calculated 2 in the following probability density func-
tions: normal distribution for continuous values such as (x,y),
discrete distribution function for discontinuous values such as
line type, chemical symbol, and amino acid sequence.

B. EXPERIMENTS WITH PAGGM
We carried out experiments with PAGGM. In order to
evaluate PAGGM, we constructed one PAGGM for each
class by using all training data. We show the constructed
PAGGMs for the three classes ‘‘A’’, ‘‘E’’, and ‘‘F’’ in Fig. 3.

2https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+
Screen+Data
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FIGURE 3. Visualization of PAGGM. Red dots and blue lines represent vertices and edges, respectively. The sizes of the dots and thicknesses of the lines
represent probabilities B of vertices and edges, respectively; bigger and thicker are higher. The axes represent attribute values of the vertices: x- and
y-coordinates. The contours represent probabilities of attributes. We calculated probabilities with p(x, y ) =

∑
vi ∈V bi fpdf(x, y | θi ), where probability

density functions for the normal distribution are used for fpdf. (a) PAGGMs in LOW. (b) PAGGMs in MED. (c) PAGGMs in HIGH.

The vertices and edges compositions in PAGGMs became
more complex from LOW to MED, and to HIGH. The cap-
tured compositions are consistent with the distortion levels
of the dataset. Most importantly, the PAGGMs successfully
contain core structures of the classes with high probabilities.

We carried out experiments to show the effects of η in
Eq. (12). The effects are shown in Fig. 4. We randomly
extracted subsets of the training data and trained PAGGM
with them. Specifically, the numbers of training data for
a class are 25 in LOW, MED, HIGH and AIDS, 6 in
GREC, 12 in COIL, 360 in Mutagenicity, and 15 in Protein.

We classified the validation data to the nearest class with
similarity obtained by Eq. (12). We tried 10 times and
averaged recognition rates because the subsets were ran-
domly extracted. The effects show that the lowest aver-
age recognition rates were obtained when η = 0, i.e., no
penalty. The rates were increasedwhen η increased. However,
higher η, such as over 20, will decrease the rates. Therefore,
we adopted following η: 6 in LOW, 4 in MED, HIGH and
COIL, 10 in GREC, AIDS, and Mutagenicity, 8 in Protein.

We then classified the test data by applying the NN
method with similarity obtained by Eq. (12). For comparison,
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FIGURE 4. The effects of η in Eq. (12) on the validation data. The x- and y-axes represent η and average recognition rates (%) over
10 trials, respectively. (a) LOW. (b) MED. (c) HIGH. (d) GREC. (e) COIL. (f) AIDS. (g) Mutagenicity. (h) Protein.

FIGURE 5. The graph of ‘‘Z’’ in HIGH, which was misclassified to ‘‘X’’ using the medians, whereas the PAGGMs successfully classified it to ‘‘Z.’’ The red vertices
and edges in the medians and PAGGMs matched to the graph. The numbers represent the correspondences. The vertex and edge composition with
probabilities are only shown in the PAGGMs. See text for details.

TABLE 2. Recognition rates (%) of median graph and PAGGM using the
NN method on the test data.

we calculated the median graphs [19] and classified test data
by the edit distance algorithm [12]. The recognition rates are
shown in Table 2. The experimental results showed the impor-
tance of structural variation. The recognition rates of the
PAGGM outperformed the median graph for every dataset.

Although both the PAGGM and the median graph were cat-
egorized into the model-based approach, the main difference
is whether it contains structural variation.

We show the case that the classification was failed in
the median graphs whereas PAGGMs succeeded; see Fig. 5.
The graph in HIGH was misclassified to ‘‘X’’ because the
median ‘‘X’’ has only one edge that did not match but two
edges in the median ‘‘Z.’’ On the other hand, the graph was
successfully classified by the PAGGMs. Although the whole
graph was contained in both the PAGGMs, the vertices and
edges with high probability were matched in PAGGM ‘‘Z’’
but mismatched in ‘‘X;’’ see the edges (1,4) in ‘‘X.’’

C. EXPERIMENTS WITH GRAPH MODEL BOOSTING
In this experiment, we demonstrated GMB. We set the car-
dinality of subset nc to 5 in LOW, MED, and HIGH, 9 in
GREC, 6 in COIL, 5 in AIDS, 60 in Mutagenicity, and 27 in
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FIGURE 6. PAGGMs constructed by GMB for ‘‘A’’ in LOW.

FIGURE 7. Evolutions of average recognition rates of GMB using PAGGM in 100 boosting rounds. The x- and y-axes represent boosting round and average
recognition rates, respectively. (a) LOW. (b) MED. (c) HIGH. (d) GREC. (e) COIL. (f) AIDS. (g) Mutagenicity. (h) Protein.

Protein, where the number of boosting rounds T was 100.
We adopted decision trees as weak classifiers in LOW, MED,
HIGH, GREC, COIL, and AIDS. NN weak classifiers are
used inMutagenicity and Protein. In each round, the PAGGM
was constructed with a different subset and weights, hence,
we obtained various PAGGMs as shown in Fig. 6. They
have unique vertex and edge compositions that are different
from the core structure of ‘‘A’’ because we focused to the
subset.

We proved the effectiveness of GMBby showing the evolu-
tion of its recognition rate in Fig. 7. The recognition rate fluc-
tuated during the trials due to random sampling. We repeated
the experiments 10 times and calculated the average recogni-
tion rate. The evolutions showed that the average recognition
rates increased steadily on every dataset. The improvements
were 4.4 in LOW, 17.3 inMED, 28.2 in HIGH, 19.0 in GREC,
and 22.0 in COIL, 0.6 inAIDS, 4.4 inMutagenicity, and 8.0 in
Protein. The average recognition rates with T = 1 were lower
than the results with the single PAGGM, shown in Table 2.
At the beginning, GMB only captured the structural variation

in subsets of the training data, resulting in poor results. How-
ever, the accuracy of GMB increased as the process continued
and, finally, exceeded the results of the single PAGGM. This
phenomenon signifies that comprehensive structural varia-
tions were successfully incorporated into the classifier of
the GMB.

We investigated the inference results by counting the num-
ber of weak classifiers voting to correct classes and others.
The purpose of this investigation is to reveal how many
PAGGMs of weak classifiers contributed to the inference
results. As shown in Eq. (18), the GMB votes confidence αt
to inference classes using weak classifiers ht . We counted the
number of votes to the classes, and averaged the numbers
for each class. The maximum number is 100 since GMB
proceeded 100 rounds. Table 3 shows the average num-
bers. Generally, the correct classes obtained larger votes than
other classes in most of datasets. In Mutagenicity, the num-
bers of votes are comparable. These results show that most
PAGGMs in weak classifiers contributed to the inference
results.
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FIGURE 8. The effects of the cardinality of a subset nc . The y- and x-axes represent average recognition rate (%) and nc , respectively. The black and
red lines represent different weak classifiers, decision tree and NN, respectively. (a) LOW. (b) MED. (c) HIGH. (d) GREC. (e) COIL. (f) AIDS.
(g) Mutagenicity. (h) Protein.

TABLE 3. Average numbers of weak classifiers voting to correct and other
classes. The maximum number is 100 since 100 rounds are proceeded.

We carefully determined nc since random sampling is an
important process. We repeated this experiment 10 times for
each nc and calculated the maximum values of the average
recognition rates. Fig. 8 shows the results. The results show
the robustness of GMB. In general, the effects were within
a few points of one another on the datasets. GMB achieved
good results on the datasets using various nc. Note that the
results in LOW and GREC signified that performance can
be maximized when the number of samples is small. The
small number of samples facilitated the generation of differ-
ent PAGGMs. Consequently, more comprehensive structural
variations were incorporated into the GMB.

We compared GMB with existing graph recognition
methods, categorized into the one-vs-one [4], the model-
based [19], [20], [22], [23], [29], and the embedding
approaches [5], [51]–[54]. The comparisons on LOW, HIGH,

TABLE 4. Comparison of recognition rate.

and GREC are summarized in Table 4, where the results of
GMB are obtained with 1,000 boosting rounds. We referred
to the results of [4], [20], [22], [23], [29] to [46] on the IAM
database, because they were not evaluated in the original
papers. The method of the one-vs-one approach recorded
high scores, and the methods of the model-based approach
obtained even higher scores. These results signify the impor-
tance of structural information. The PAGGM obtained high
scores on all the datasets. Furthermore, GMB outperformed
the other methods of the model-based approach, and the
results of GMB are comparable with the methods of the
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FIGURE 9. Evolutions of average recognition rates of GMB using median graph as model. (a) LOW. (b) MED. (c) HIGH. (d) GREC. (e) COIL. (f) AIDS.
(g) Mutagenicity. (h) Protein.

embedding approach. It was shown that the proposed method
can incorporate a large amount of structural information into
a powerful classifier. These comparison results verified the
effectiveness of GMB.

Finally, to demonstrate the capability of GMB, we car-
ried out further experiments whether GMB works well with
other graph models. To this end, we used the median graph
as graph models constructed in GMB. The parameters nc
and T are same as the experiment using PAGGM. We also
calculated average recognition rates, and Fig. 9 shows the
results. The average recognition rates using median graphs
increased on every dataset, likewise the GMB using PAGGM.
The improvements were 2.6 in LOW, 10.7 in MED, 18.0 in
HIGH, 10.7 in GREC, and 13.2 in COIL, 0.9 in AIDS, 9.2 in
Mutagenicity, and 2.9 in Protein. The GMB successfully cap-
tured structural variation using the generated median graphs,
and the recognition performance was significantly improved.
These results signify the capability of GMB for graphmodels.

D. TIME COMPLEXITY ANALYSIS
PAGGM construction demands steps for an edit distance
matrix and vertex label assignment: n2 and mv steps, respec-
tively. Where n and mv are the number of the training graphs
and vertices in the training graphs, respectively. GMB repeats
PAGGM construction over T rounds, resulting in a consider-
able amount of time. Therefore, to reduce the steps, we cal-
culated the edit distance matrix only once, prior to GMB.
We simply referred to the matrix at PAGGM construction
in GMB. Consequently, the complexity of GMB is O(mv).
We stress that the computational time of GMB is feasible.
For instance, FOGG [21] requires O(m2

v) steps.

FIGURE 10. Computational time of one round in GMB. The x-axis
represents ratio of the subset to the all training graphs. The right y-axis is
for COIL and Mutagenicity, and the left one is for the others.

We show the computational time of GMB in Fig. 10.
The times in COIL and Mutagenicity are long due to the
large numbers of training graphs. Generally, the times were
proportional to the size of the training data n. Note that the
number of vertices mv is correlated with n.
The details of processing times in GMB were shown

in Table 5. The constructions for PAGGM and weak classi-
fiers are composed of most of the processing times.
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TABLE 5. The details of processing times (sec/round) in GMB.

VI. CONCLUSIONS
In this paper, we proposed a novel algorithm for graph
recognition called GMB. The proposed method constructs
a graph model, PAGGM, to capture structural variations in
composition and attribute of vertex and edge. We developed
an efficient algorithm for searching vertex correspondences
amongmultiple graphs. The algorithm enables us to construct
PAGGM in a feasible amount of time. GMB constructs a large
number of PAGGMs to comprehensively capture the struc-
tural variation of graphs. Then, we formed a strong classifier
using the constructed PAGGMs in the boosting framework.
Consequently, the classifier was equipped with the requisite
information concerning structural variation and a powerful
recognition ability.

The experimental results showed that PAGGM success-
fully captured structural variation and GMB significantly
enhances recognition performance. Furthermore, GMB out-
performed the existingmethods of themodel-based approach,
and the results of GMB are comparable with the meth-
ods of the embedding approach. Therefore, we successfully
strengthened the recognition capability and the ability to deal
with structural variation in graphs.

Structural data are a powerful representation of objects
even in images. The proposed method can be applied to
computer vision tasks where relation of visual features needs
to be considered. Developing object recognition applications
using the proposed method is planned for future work.
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