7 research outputs found

    Finding the best tour for travelling salesman problem using artificial ecosystem optimization

    Get PDF
    This paper presents a new method based on the artificial ecosystem optimization (AEO) algorithm for finding the shortest tour of the travelling salesman problem (TSP). Wherein, AEO is a newly developed algorithm based on the idea of the energy flow of living organisms in the ecosystem consisting of production, consumption and decomposition mechanisms. In order to improve the efficiency of the AEO for the TSP problem, the 2-opt movement technique is equipped to enhance the quality of the solutions created by the AEO. The effectiveness of AEO for the TSP problem has been verified on four TSP instances consisting of the 14, 30, 48 and 52 cities. Based on the calculated results and the compared results with the previous methods, the proposed AEO method is one of the effective approaches for solving the TSP problem

    Water Flow-Like Algorithm with Simulated Annealing for Travelling Salesman Problems

    Get PDF
    Water Flow-like Algorithm (WFA) has been proved its ability obtaining a fast and quality solution for solving Travelling Salesman Problem (TSP). The WFA uses the insertion move with 2-neighbourhood search to get better flow splitting and moving decision. However, the algorithms can be improved by making a good balance between its solution search exploitation and exploration. Such improvement can be achieved by hybridizing good search algorithm with WFA.  This paper presents a hybrid of WFA with various three neighbourhood search in Simulated Annealing (SA) for TSP problem. The performance of the proposed method is evaluated using 18 large TSP benchmark datasets. The experimental result shows that the hybrid method has improved the solution quality compare with the basic WFA and state of art algorithm for TSP

    Generalization and Completeness of Evolutionary Computation

    Get PDF
    The need of a structured framework for evolutionary computation has been acknowledged. In order to achieve this we designed a set of operational semantics and defined a “general form” of evolutionary computation. Our second approach towards a generalization was to study the relationship between different algorithms and the problems they solve from a performance standpoint. Lastly, we tried to analyze the convergence and complexity of evolutionary algorithms. This led to a set of computability results, the main one being that evolutionary computation is Turing-complete

    Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem

    Get PDF
    Symbiotic Organisms Search (SOS) algorithm is an effective new metaheuristic search algorithm, which has recently recorded wider application in solving complex optimization problems. SOS mimics the symbiotic relationship strategies adopted by organisms in the ecosystem for survival. This paper, presents a study on the application of SOS with Simulated Annealing (SA) to solve the well-known traveling salesman problems (TSPs). The TSP is known to be NP-hard, which consist of a set of (n − 1)!/2 feasible solutions. The intent of the proposed hybrid method is to evaluate the convergence behaviour and scalability of the symbiotic organism’s search with simulated annealing to solve both small and large-scale travelling salesman problems. The implementation of the SA based SOS (SOS-SA) algorithm was done in the MATLAB environment. To inspect the performance of the proposed hybrid optimization method, experiments on the solution convergence, average execution time, and percentage deviations of both the best and average solutions to the best known solution were conducted. Similarly, in order to obtain unbiased and comprehensive comparisons, descriptive statistics such as mean, standard deviation, minimum, maximum and range were used to describe each of the algorithms, in the analysis section. The oneway ANOVA and Kruskal-Wallis test were further used to compare the significant difference in performance between SOS-SA and the other selected state-of-the-art algorithms. The performances of SOS-SA and SOS are evaluated on different sets of TSP benchmarks obtained from TSPLIB (a library containing samples of TSP instances). The empirical analysis’ results show that the quality of the final results as well as the convergence rate of the new algorithm in some cases produced even more superior solutions than the best known TSP benchmarked results

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate
    corecore