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Abstract: In practice, solving realistically sized combinatorial optimization problems 

(COPs) to optimality is often too time-consuming to be affordable; therefore, heuristics are 

typically implemented within most applications software. A specific category of heuristics 

has attracted considerable attention, namely, local search methods. Most local search 

methods are primal in nature; that is, they start the search with a feasible solution and 

explore the feasible space for better feasible solutions. In this research, we propose a dual 

local search method and customise it to solve the traveling salesman problem (TSP); that is, 

a search method that starts with an infeasible solution, explores the dual space – each time 

reducing infeasibility, and lands in the primal space to deliver a feasible solution. The 

proposed design aims to replicate the designs of optimal solution methodologies in a 

heuristic way. To be more specific, we solve a combinatorial relaxation of a TSP 

formulation, design a neighborhood structure to repair such an infeasible starting solution, 

and improve components of intermediate dual solutions locally. Sample-based evidence 

along with statistically significant t-tests support the superiority of this dual design 

compared to its primal design counterpart. 

Keywords: Dual Local Search, Relaxation, Optimization, Travelling Salesman, Routing 

and Scheduling 

1. Introduction 

Nowadays, operational research is a well-established discipline with applications in very 

many different areas both in the public and the private sectors. One application area that 

has attracted the attention of both academics and practitioners for several decades is the 



2 

 

transportation of people and merchandise. Regardless of whether transportation services 

are designed for people or merchandise and whether they are provided by public or private 

entities, transport is both a major economic driver and a major cost factor. In fact, in the 

United Kingdom, about 10.25% to 12.63% of national expenditure is accounted for by 

transportation between 2008 and 2014 (HM Treasury, 2014) – these figures highlight the 

importance of transportation in the economy. From an optimisation perspective, 

transportation accounts for some of the most challenging combinatorial optimisation 

problems (COPs) such as the traveling salesman problem (TSP), the Chinese postman 

problem, and their generalizations to incorporate more realistic settings as encountered in 

real-life applications. Both optimal and heuristic approaches have been proposed to address 

such COPs. In practice, however, either heuristics or hybrids that combine optimal and 

heuristic methodologies are typically implemented within most applications software to 

realistically manage the computational requirements of the sizes of the instances 

practitioners have to solve. A specific category of heuristics has attracted considerable 

attention, namely, local search methods. Most local search methods – whether classical 

local search or metaheuristics – are primal in nature; that is, they start the search with a 

feasible solution and explore the feasible space for better feasible solutions. In this research, 

we propose a dual local search (DLS) method and customise it to solve the TSP. Recall 

that the TSP is concerned with determining a minimal cost Hamiltonian cycle; that is, a 

minimum cost route for a single uncapacitated vehicle that starts at the depot, visits each 

customer once and only once, and returns to the depot. In sum, the proposed DLS starts 

with an infeasible solution, explores the dual space – each time reducing infeasibility, and 

lands in the primal space to deliver a feasible solution, which could be improved further. 

As the proposed design aims to replicate the designs of optimal solution methodologies in 

a heuristic way, the components of intermediate dual solutions are locally improved using 

an equivalent of primal local search that we refer to as Type II moves. Conceptually, Type 

II moves are the means by which more children of a node in a branch-and-bound tree are 

explored – see section 3.2 for details. To be more specific, we solve a combinatorial 

relaxation of a TSP formulation and design a neighborhood structure defined by what we 

refer to as Type I moves to repair such an infeasible starting solution and locally improve 

its components using classical local improvement moves that we refer to as Type II moves. 
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Sample-based performance along with statistically significant t-tests support the 

superiority of DLS compared to its primal design counterpart. Thus, the proposed dual 

design offers a viable alternative to primal search designs. 

The remainder of this paper is organised as follows. In section 2, we provide the landscape 

of research on solution approaches and methods for the TSP and position our contribution 

with respect to the literature. In section 3, we present our dual local search framework 

along with its implementation decisions, discuss the rationale behind the proposed design, 

provide a comparative analysis with branch-and-bound (B&B) algorithms, and summarise 

some theoretical insights. In section 4, we provide statistical evidence that dual local 

search outperforms primal local search and discuss the performance of the different 

implementation schema proposed. Finally, section 5 concludes the paper. 

2. Solution Approaches and Methods for TSP 

In this section, we present the outcome of our literature survey on optimal and heuristic 

solution approaches and methods designed to address the TSP in the form of a 

classification (see sections 2.1 and 2.2). Then, we position our contribution with respect to 

the literature after introducing new classification criteria. 

2.1 Optimal Approaches and Methods 

The design of optimal solution procedures, also referred to as exact methods or algorithms, 

for the TSP dates back to the 1950s. Optimal solution procedures can be divided into three 

main categories; namely, branch-and-bound (B&B) algorithms, cutting plane algorithms, 

and their hybrids such as branch-and-cut (B&C) algorithms. 

B&B is a generic optimal design and as such its implementation for solving a particular 

COP such as the TSP requires customisation; in sum, a number of decisions have to be 

made such as the choice of the bounding scheme to use and the choice of the branching 

rule to use. The design of bounding schema for B&B algorithms is of prime importance as 

the computational time requirements strongly depend on the quality of the bounding 

scheme. Recall that a bounding scheme consists of a couple of bounds; namely, a primal 

bound and a dual bound, where the primal bound corresponds to the objective function 

value of the best feasible solution found so far during the course of the algorithm, and the 
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dual bound corresponds to the objective function value of the best solution found so far 

during the course of the algorithm to a chosen relaxation of the problem. For the TSP, the 

primal bound is typically computed using one of the construction heuristics proposed in the 

literature, which could be tightened using an improvement heuristic such as classical local 

search or metaheuristics. For example, Padberg and Rinaldi (1987, 1991) use Lin 

Kernighan type of heuristic, whereas Miller and Pekny (1992), Carpaneto et al. (1995), and 

Turkensteen et al. (2006) use Patching heuristics. As to the dual bounds for the TSP, 

several types of relaxations have been used in the literature such as Assignment Problem-

based relaxations (e.g., Eastman, 1958; Shapiro, 1966; Bellmore and Malone, 1971; 

Carpaneto and Toth, 1980; Balas and Christofides, 1981; Germs et al., 2012), 2-Matching 

Problem-based Relaxations (e.g., Bellmore and Malone, 1971), 1-Tree Problem-based 

Relaxations (e.g., Held and Karp, 1971; Helbig et al, 1974; Volgenant and Jonker, 1982; 

Gavish and Srikanth, 1983), and Shortest n-Arc Path Problem-based Relaxations (e.g., 

Houck et al., 1980). On the other hand, with respect to the choice of the branching rule, 

which often depends on the type of relaxation and the sub-tour breaking constraints used, 

several branching rules have been proposed; for example, within a B&B framework that 

makes use of an Assignment Problem-based relaxation, Eastman (1958), Shapiro (1966), 

and Bellmore and Malone (1971) used branching rules that are based on the sub-tour 

elimination constraints proposed by Dantzig et al. (1954) while Murty (1968), Bellmore 

and Malone (1971), and Carpaneto and Toth (1980) used branching rules that are based on 

the sub-tour elimination constraints commonly referred to as the connectivity constraints. 

Note that these two categories of branching rules both exploit the TSP structure and are 

based on sub-tour elimination constraints; however, the second category generates more 

tightly constrained sub-problems, as proved by Bellmore and Malone (1971), which is a 

desirable feature of branching rules. For a comprehensive coverage of the main branching 

rules for the TSP, the reader is referred to Lawler et al. (1985). 

Cutting plane algorithms have also been proposed for the TSP. Cutting plane algorithms 

are also generic designs and their customisation for a specific problem requires an 

understanding of the polyhedral structure of the problem to design effective cuts. Examples 

of cuts for the TSP include Comb inequalities (Chvatal, 1973), Brush inequalities (Naddef 
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and Rinaldi, 1991), Star inequalities (Fleischmann, 1988), Path inequalities (Cornuejols et 

al., 1985), Binested inequalities (Naddef, 1992), Clique Tree inequalities (Grötschel and 

Pulleyblank, 1986), Bipartition inequalities (Boyd and Cunningham, 1991), Ladder 

inequalities (Boyd and Cunningham, 1991), and Chain inequalities (Padberg and Hong, 

1980). 

In order to further strengthen B&B and cutting plane algorithms, hybrids have been 

proposed whereby one would typically use cuts within a B&B framework resulting in 

B&C algorithms (e.g., Crowder and Padberg, 1980; Padberg and Rinaldi, 1991; Fischetti 

and Toth, 1997; Fischetti et al., 2003; Applegate et al., 2007). To the best of our 

knowledge, the B&C algorithm proposed by Applegate et al. (2007), which is commonly 

referred to as “concorde” code, remains the state-of-the-art code for the TSP. 

Although optimal methodologies guarantee the delivery of an optimal solution, for large 

scale TSPs either heuristics or hybrids that combine optimal and heuristic methodologies 

are typically used in practice. In the next sub-section, we shall provide an outlook of 

heuristics for TSP. 

2.2. Heuristic Approaches and Methods 

The design of heuristics – sometimes referred to as approximate solution procedures – for 

the TSP dates back to the 1960s. Recall that heuristics are solution procedures that deliver 

a feasible solution to a problem, but without any guarantee of optimality. Heuristics for the 

TSP could be divided into two main categories depending on whether they are construction 

procedures or improvement procedures.  

For the TSP, several construction procedures have been proposed including the Nearest 

Neighbor procedure (Rosenkrantz et al., 1977), the Clark and Wright Savings procedures 

(Clark and Wright, 1964; for Complexity see Ong, 1981), Insertion procedures such as 

Arbitrary, Farthest, Nearest, and Cheapest insertions (Rosenkrantz et al., 1977), the 

Minimal Spanning Tree procedure (Kim, 1975), Christofides' heuristic (Christofides, 1976), 

the Partitioning procedure (Karp, 1977), the Nearest Merger procedure (Rosenkrantz et al., 

1977), the Patching algorithm (Karp, 1979), the Modified Patching algorithm (Glover et al., 
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2001), the Contract-or-Patch heuristics (Glover et al., 2001; Goldengorin et al. 2006; Gutin 

and Zverovich, 2005), and GENI (Gendreau et al., 1992). 

On the other hand, improvement procedures could be further divided into two sub-

categories; namely, classical local search methods and metaheuristics. Note that, as 

compared to construction methods which are problem-specific, improvement methods are 

rather generic frameworks that need customisation. Well-known classical local search 

methods for the TSP include 2-Opt and 3-Opt heuristics (Lin, 1965), r-Opt heuristic (Lin 

and Kernighan, 1973), and Or-Opt heuristic (Or, 1976). By design, classical local search 

methods typically get stuck in a local optimum. In order to address this design issue, 

metaheuristics have been proposed. Recall that metaheuristics are generic solution 

procedures equipped with strategies or mechanisms for avoiding getting and remaining 

stuck in local optima. Note that most metaheuristics were inspired by natural phenomena 

and designed as imitations of such phenomena. Metaheuristics for the TSP could be 

divided into several sub-categories depending on the chosen classification criterion or 

criteria. For example, one might divide metaheuristics into two categories depending on 

whether they are pure or hybrid. Examples of pure metaheuristics for the TSP include 

Simulated Annealing (Kirkpatrick et al., 1983; Malek et al., 1989), Tabu Search (Malek, 

1988; Malek et al., 1989; Tsubakitani and Evans, 1998a), Guided Local Search (Voudouris 

and Tsang, 1999), Jump Search (Tsubakitani and Evans, 1998b), Randomized Priority 

Search (DePuy, Moraga and Whitehouse, 2005), Greedy Heuristic with Regret (Hassin and 

Keinan, 2008), Genetic Algorithms (Jayalakshmi et al., 2001; Tsai et al., 2003; Albayrak 

and Allahverdi, 2011; Nagata and Soler, 2012), Evolutionary Algorithms (Liao et al., 

2012), Ant Colony Optimization (Dorigo and Gambardella, 1997), Artificial Neural 

Networks (Leung et al., 2004; Li et al., 2009), Water Drops Algorithm (Alijla et al., 2014), 

Discrete Firefly Algorithm (Jati et al., 2013), Invasive Weed Optimization (Zhou et al., 

2015), Gravitational Search (Dowlatshahi et al., 2014), and Membrane Algorithms (He et 

al., 2014). Examples of hybrid metaheuristics include Simulated Annealing with Learning 

(Lo and Hsu, 1998), Genetic Algorithm with Learning (Liu and Zeng, 2009), Self-

Organizing Neural Networks and Immune System (Masutti and de Castro, 2009), Genetic 

Algorithm and Local Search (Albayrak and Allahverdi, 2011), Genetic Algorithm and Ant 
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Colony Optimization (Dong at al., 2012), Honey Bees Mating and GRASP (Marinakis et 

al., 2011), and Particle Swarm Optimization and Ant Colony Optimization (Elloumi et al., 

2014). 

One might also divide metaheuristics into two categories depending on whether they are 

individual-based or population-based. In this paper, an individual-based metaheuristic 

refers to a search method that starts with a single or individual solution, often referred to as 

the seed, and explores its neighborhood in search for a better solution to become the seed – 

this process is repeated until a stopping condition is met. On the other hand, a population-

based metaheuristic refers to a search method that starts with a set of solutions, often 

referred to as a population, a colony or a swarm, that communicate through a variety of 

mechanisms to exchange information about solution features to generate a new set of 

solutions of a better quality. Examples of individual-based metaheuristics include 

Simulated Annealing (e.g., Kirkpatrick et al., 1983), Tabu Search (Malek, 1988; Malek et 

al., 1989; Tsubakitani and Evans, 1998a) and Guided Local Search (Voudouris and Tsang, 

1999). On the other hand, examples of population-based metaheuristics include Genetic 

Algorithms (e.g., Jayalakshmi et al., 2001; Tsai et al., 2003; Albayrak and Allahverdi, 

2011; Nagata and Soler, 2012), Evolutionary Algorithm (Liao et al., 2012), and Artificial 

Neural Networks (Leung et al., 2004). 

In this paper, we propose a classification criterion of the literature on metaheuristics that is 

more relevant to our research; that is, primal metaheuristics, dual metaheuristics, and 

primal-dual metaheuristics. In this paper, a primal metaheuristic refers to a search method 

that starts the search from within the feasible space and explores it until a stopping 

condition is met without allowing the method to leave the feasible space. A dual 

metaheuristic refers to a search method that starts the search from within the infeasible or 

dual space, explores the dual space – each time reducing infeasibility, and lands in the 

primal space to deliver a feasible solution or a set of feasible solutions depending on 

whether the search method is individual-based or population-based. Finally, a primal-dual 

metaheuristic refers to a search method that could start the search either from within the 

feasible space or the dual space and during the search for an optimal or near optimal 

solution it is allowed to explore both spaces. Examples of primal metaheuristics include the 
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papers mentioned within the above classifications. As to dual and primal-dual 

metaheuristics, to the best of our knowledge, there are no published journal articles. Thus, 

as far as the TSP is concerned, this paper is a first contribution to the class of dual search 

methods. In the next section, we shall present the main elements of such contribution.  

3. A Dual Local Search Framework 

In this section, we present our dual local search (DLS) framework and discuss the rationale 

behind the proposed design along with its implementation decisions (see section 3.1), and 

provide a comparative analysis with branch-and-bound (B&B) algorithms and summarise 

some theoretical insights (see section 3.2). 

3.1 The General Framework, Its Underlying Rationale and Its Implementation Decisions 

As suggested by our classification of the literature on search methods into primal, dual, and 

primal-dual heuristics, and the scarcity of contributions within the sub-category of dual 

heuristics, we fill such a gap by proposing a dual search heuristic framework and discuss 

the underlying rationale along with its implementation decisions – see Figure 2 for pseud-

code. The proposed dual search algorithm customised for the TSP is summarised hereafter. 

As compared to primal local search (PLS)-based heuristics’ designs – whether classical 

local search or metaheuristics – we integrate design features of optimal algorithms. To be 

more specific, we start the search with an infeasible solution; namely, the solution of a 

relaxation of the problem under consideration. In this paper, we use an assignment 

problem-based relaxation to generate an initial dual solution, say {𝑆𝑘, 𝑘 = 1, … , 𝑁𝑠𝑏𝑡}, and 

progress towards the feasible space – each time reducing infeasibility, where 𝑆𝑘 denote the 

𝑘𝑡ℎ sub-tour and 𝑁𝑠𝑏𝑡 denote the total number of sub-tours in the seed.  

The search progress towards the feasible space requires a repairing mechanism or set of 

moves, referred to in this paper as Type I moves, which define a relevant neighborhood 

structure for our application; namely, the TSP. We refer to this neighborhood structure as 

the Dual 𝑠-subtour-𝑟-edge-exchange Neighborhood. Moves in this neighborhood consist of 

(𝑠 + 𝑟1 + … + 𝑟𝑠)-tuples, where the first 𝑠  entries correspond to the 𝑠  sub-tours to be 

merged (𝑠  𝑁𝑠𝑏𝑡), the next 𝑟1 entries correspond to the edges of the first sub-tour to be 

broken, say 𝑆1, the following 𝑟2 entries correspond to the edges of the second sub-tour to 



9 

 

be broken, say 𝑆2, and so on until the last 𝑟𝑠 entries that correspond to the edges of the last 

sub-tour to be broken, say 𝑆𝑠. In sum, a move could be formally represented as follows: 

(𝑆1, … , 𝑆𝑠, 𝑒𝑆1

1 , … , 𝑒𝑆1

𝑟1 , … , 𝑒𝑆𝑠

1 , … , 𝑒𝑆𝑠

𝑟𝑠), 

where 𝑆1, … , 𝑆𝑠 are the sub-tours to be merged, 𝑒𝑆1

𝑟1 , … , 𝑒𝑆𝑠

1  are the edges of sub-tour 𝑆1 to 

be broken, and 𝑒𝑆𝑠

1 , … , 𝑒𝑆𝑠

𝑟𝑠 are the edges of sub-tour 𝑆𝑠 to be broken. A couple of decisions 

need to be made to fully operationalize this neighborhood. These decisions are concerned 

with addressing the following questions: How to choose the 𝑠 sub-tours to be merged? and 

How to merge them? To address the first question, in our empirical experiments, we tested 

three criteria for selecting sub-tours to merge; namely, the farthest distance between sub-

tours; the nearest distance between sub-tours; and the cheapest cost of merger of sub-tours. 

As to the second question, sub-tours are merged or connected in the best possible way to 

form a larger and cheaper sub-tour. A graphical example is provided in Figure 1 to 

illustrate Type I moves, where the dual solution consists of two sub-tours which are 

merged by breaking one edge in each sub-tour and connecting the resulting paths to form a 

single tour. 

 

Figure 1: An Illustrative Example of Type I Moves 

The above described Dual 𝑠-subtour-𝑟-edge-exchange Neighborhood is a parameterized 

neighborhood structure, which allows one to control the rate at which the process 

converges to a feasible solution, on one hand, and to intensify or diversify the search 

depending on whether its parameters are set to relatively low or relatively high values, on 

the other hand. In fact, the number of iterations required for this dual search framework to 



10 

 

converge to a feasible solution depends on the number of sub-tours in the solution to the 

relevant relaxation of the problem formulation (e.g., assignment-based relaxation of a TSP 

formulation), say 𝑁𝑠𝑏𝑡
0  , and one of the parameters of the proposed dual neighborhood; i.e., 

the number of sub-tours to merge at a time, 𝑠. Let 𝑁𝑠𝑏𝑡
𝑘  denotes the number of sub-tours at 

iteration 𝑘. Then, the number of possible ways to choose 𝑠 sub-tours to be merged amongst 

𝑁𝑠𝑏𝑡
𝑘  is: 

(
𝑁𝑠𝑏𝑡

𝑘

𝑠
) =

𝑁𝑠𝑏𝑡
𝑘 !

𝑠! (𝑁𝑠𝑏𝑡
𝑘 − 𝑠)!

 

Obviously, the number of iterations, say 𝐾, required for this dual search framework to 

converge to a feasible solution is upper bounded by the number of sub-tours in the solution 

to the relevant relaxation of the problem formulation (e.g., assignment-based relaxation of 

a TSP formulation), 𝑁𝑠𝑏𝑡
0 : 

𝐾 ≤ 𝑁𝑠𝑏𝑡
0 . 

However, a tighter upper bound, 𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0), that takes account of the initial choice of 𝑠𝑘, 

say 𝑠0, could be obtained as follows, where 𝑠𝑘 denotes the number of sub-tours to merge at 

iteration 𝑘: 

𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0) = ⌈

𝑁𝑠𝑏𝑡
0 − 1

𝑠0 − 1
⌉. 

Note that, in a static implementation where the parameters of the algorithm do not change 

(e.g., 𝑠𝑘 ), depending on the values of 𝑁𝑠𝑏𝑡
0  and 𝑠0 , the value of 𝑠𝑘  might have to be 

changed just before the start of the last iteration. To be more specific, one would use 𝑠0 up 

to iteration ⌊(𝑁𝑠𝑏𝑡
0 − 1) (𝑠0 − 1)⁄ ⌋ and then change 𝑠𝐾  to 𝑁𝑠𝑏𝑡

𝐾−1. Notice that, for a given 

value of 𝑁𝑠𝑏𝑡
0 , 𝐾(𝑁𝑠𝑏𝑡

0 , 𝑠0)  decreases as 𝑠0  increases. Therefore, from a computational 

perspective, a trade-off should be made between choosing relatively high values for 

parameter 𝑠0, which would require a relatively small number of iterations 𝐾 to converge 

but would require exploring a relatively large number of possibilities for breaking 𝑠0 sub-

tours and merging them, or choosing relatively low values for parameter 𝑠0, which would 

require a relatively large number of iterations 𝐾 to converge but would require exploring a 

relatively small number of possibilities for breaking 𝑠0 sub-tours and merging them.  
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Recall that the basic move of the proposed dual neighborhood structure (i.e., Type I moves) 

consists of breaking some edges of some sub-tours and connecting such sub-tours in the 

best possible way to form a larger one. Type I moves lead to successive partial solutions 

that have many similarities. In order to diversify the structure of our solutions, we use a 

second type of moves to perturb or locally improve their components using classical local 

improvement moves that we refer to in this paper as Type II moves. In our experiments, we 

used 2-opt and 3-opt moves and the improvement moves used in GENI (Gendreau et al., 

1992) – referred to in this paper as US moves – as Type II moves. 

 

Initialization Step 

Choose and solve an appropriate relaxation and use its (typically) infeasible solution to 

initialize the seed, say 𝑥0, and record the corresponding objective function value, say 𝑧(𝑥0); 

Choose the neighborhood structure to use for repairing the dual solution; that is, Type I 

moves; 

Choose the criterion for selecting sub-tours to merge; 

Choose the neighborhood structure to use for improving locally the components of 

intermediate dual solutions; that is, Type II moves; 

Iterative Step 

REPEAT until stopping condition = true // (e.g., 𝑥0 is feasible) 

Search the neighborhood of 𝑥0, denoted 𝑁(𝑥0), for the “best” neighbour 𝑥 with respect 

to the sub-tours selection criterion, perform the merge operation, improve the resulting 

larger sub-tour using Type II moves, and update the seed; that is, set 𝑥 = 𝑥0; 

END REPEAT 

Figure 2: Pseudo-Code of Dual Local Search 

In order to reduce the computational requirements of the proposed framework, one might 

call upon a local search mechanism based on Type II moves according to a proportion of 

use, say 𝑝 (0 ≤ 𝑝 ≤ 1), which could be either static or dynamic and could be implemented 

in a deterministic fashion (e.g., using deterministic decision rule) or a stochastic fashion 

(e.g., using probabilistic decision rule). In the deterministic and static scheme, one would 

fix to a pre-specified value the proportion of use of local improvement for the entire search. 

The feasible values for 𝑝 should satisfy the following conditions: 𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0) 𝑚𝑜𝑑 𝑝 ≡ 0 

and 𝑝 < 𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0). On the other hand, in the deterministic and dynamic scheme, the 

proportion of use of local improvement varies during the course of the search according to 

a deterministic decision rule. The feasible values for 𝑝  should satisfy the following 

conditions: 𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0) 𝑚𝑜𝑑 𝑝 ≡ 0  and 𝑝 < 𝐾(𝑁𝑠𝑏𝑡

0 , 𝑠0) ; let 𝑚  denote the number of 
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values of 𝑝 that satisfy these conditions, 𝑝1 ,…, 𝑝𝑚  denote such feasible values and 𝜋𝑘 

denote the value of 𝑝 at iteration 𝑘. In our numerical experiment, we used the following 

deterministic decision rule: set 𝜋0 to 𝑝1 and update 𝜋𝑘 to 𝑝2 after 𝑝1 iterations, then to 𝑝3 

after 𝑝2 iterations and so on until its value is updated to 𝑝𝑚. Note that, when ∑ 𝑝𝑗
𝑚
𝑗=1 <

𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0), this decision rule is implemented in a cyclical manner. Note also that, in case 

the last value of 𝜋𝑘  used does not allow for improving the last tour, such final tour is 

exceptionally improved. Finally, in the stochastic scheme, at each iteration one would 

generate a random number between 0 and 1 and if such number is greater than a pre-

specified threshold (e.g., 0.5, 0.7, 0.9), then local improvement is called upon.  

3.2 Comparative Analysis with B&B and Some Theoretical Insights 

In this section, we perform a conceptual comparative analysis with B&B, and summarise 

some theoretical insights – see Table 1 for a snapshot summary. For ease of exposition, we 

shall present the comparative analysis for a specific B&B design; namely, B&B with 

Bellmore and Malone (1971) branching rule. In sum, we shall address the following 

question: How the use of DLS with Type I and Type II moves compares to B&B with 

Bellmore and Malone (1971) branching rule? Before proceeding with the comparative 

analysis, we would like to remind the reader that, at each node of the B&B tree, the 

Bellmore and Malone (1971) branching rule consists of generating several successors 

where the first successor excludes a first arc from the arc set of a minimum cardinality sub-

tour of the solution of the parent node, the second successor includes the previously 

excluded arc and excludes a new arc, the third successor includes the previously excluded 

arcs and excludes a new arc, and so on until all arcs are included but one. Note that 

including (respectively, excluding) an arc consists of setting the decision variable 

associated with that arc to 1 (respectively, 0) before solving the assignment problem at the 

successor nodes. 

Hereafter, we shall break the comparative analysis of DLS with Type I and Type II moves 

and B&B with Bellmore and Malone (1971) branching rule into several points according to 

their main design features to highlight their similarities and differences. First, B&B breaks 

one sub-tour at a time, whereas DLS breaks two or more sub-tours at a time. Second, B&B 
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examines all possible ways of breaking one sub-tour – one edge at a time, as compared to 

DLS where Type I moves allow one to examine all possible ways of breaking two or more 

sub-tours (e.g., breaking one or more edges in each sub-tour) and connecting them. Third, 

within a B&B framework, at each level of the B&B tree – except level 0, the first branch 

excludes one edge of one of the sub-tours and the following branches each includes the 

edges previously excluded, excludes a new edge, and keeps all the remaining edges free 

except those fixed at higher levels of the tree, if any. On the other hand, within the 

proposed DLS framework, at each iteration Type I moves exclude two or more edges from 

two or more sub-tours, respectively, and connects such sub-tours. Note that this type of 

moves partially preserves the structure of the current infeasible solution in that the 

sequence(s) that have not been affected remain unchanged; in other words, Type I moves 

include in the next solution all the edges in the sub-tours that have not been excluded. Note 

also that Type I moves do not allow one to explore the “equivalent” of as many branches 

as those explored within a B&B framework. In order to explore the “equivalent” of those 

branches, we use Type II moves which consist of edge exchanges of the newly formed sub-

tour. Fourth, at each node of the B&B tree, a re-optimization process is invoked, which 

could lead to a new infeasible or feasible solution, whereas at each iteration of the DLS, a 

“restricted” optimization process is invoked, which could lead to a new infeasible or 

feasible solution, but with potentially more similarity to the solution of the previous 

iteration as compared to B&B where the optimization process refers to the way the broken 

sub-tours could possibly be connected or equivalently the way to choose the sets of edges 

to include and exclude in the B&B terminology. Note that the restrictive nature of the 

optimization process depends on the values of the parameters chosen; in sum, the higher 

the values of the parameters s and r’s, the less restrictive is the optimization process. Last, 

but not least, within a B&B framework, a new branch would not necessarily lead to a 

reduction in the number of sub-tours, whereas in DLS each dual s-subtour-r-edge-exchange 

neighborhood move of type I systematically reduces the number of sub-tours by one or 

more. Therefore, convergence to a feasible solution is guaranteed in a finite number of 

iterations. 

 



14 

 

B&B DLS 

Break one sub-tour at a time Break two or more sub-tours at a time 

Examine all possible ways of excluding or 

including one edge at a time of one sub-tour 

Examine all possible ways of breaking two 

or more sub-tours (e.g., breaking one or 

more edges in each sub-tour) and 

connecting them 

At each level of the B&B tree – except level 

0, exclude (resp., include) one edge of one 

of the sub-tours & keep all the remaining 

edges free except those fixed at higher 

levels of the tree, if any 

Exclude two edges, one from each sub-tour, 

and include in the next solution all the 

remaining edges in the sub-tours 

At each node of the tree, a re-optimization 

process is invoked, which could lead to a 

new infeasible or feasible solution 

At each node of the tree, a “restricted” 

optimization process is invoked, which 

could lead to a new infeasible or feasible 

solution, but with potentially more 

similarity to the solution of the parent node 

as compared to B&B. In order to diversity 

in terms of structure of partial solutions and 

explore more nodes as done in B&B, we use 

a second type of moves similar in spirit to 

branch exchange improvement 

A new branch would not necessarily lead to 

a reduction in the number of sub-tours 

Each dual s-subtour-r-edge-exchange 

neighborhood move systematically reduces 

the number of sub-tours by one or more 

Table 1: Comparative Analysis between B&B and DLS 

To conclude this section, we hereafter summarise a couple of important theoretical insights. 

The first theoretical insight is summarized in the following axiom: 

Axiom: The size of the primal search space is initial solution-independent as compared to 

the size of the dual search space. To be more specific, the size of the primal search space is 

the same regardless of the construction method used for initializing PLS. However, in the 

dual case, the size of the search space depends on the type of relaxation used. 

This axiom suggests that within a DLS framework the quality of the dual solution the 

search starts with would have an impact on the search process and where it would 

potentially land in the primal space. Furthermore, the size of the dual search space depends 

on the starting solution or equivalently the type of relaxation used. For example, if one 

uses a linear programming relaxation as compared to an assignment problem-based 

relaxation, one would have to explore a much larger dual search space. As to comparing 

the sizes of the primal search space and the dual search space, the following proposition 

summarizes the second theoretical insight. 
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Proposition: The dual search space is much larger than the primal search space. 

Proof: The number of feasible solutions to a TSP of size 𝑛 is (𝑛 − 1)! Notice that, within a 

PLS framework, only a subset of these solutions are visited and the cardinality of such 

subset depends on the type of neighborhood used and its parameters, if any. Furthermore, 

the cardinality of such subset is independent of the solution that PLS starts with. Note that 

the number of dual solutions could potentially be infinite. However, within a dual local 

search (DLS) framework initialized with an assignment problem-based relaxation, and 

assuming that during the search solution components (i.e., 𝑥𝑖𝑗s) remain binary, the number 

of dual solutions that could potentially be reached from the initial dual solution becomes 

finite but remains larger than the (𝑛 − 1)! number of primal solutions. For illustration 

purposes, consider for example a situation where one starts with a dual solution consisting 

of two sub-tours of sizes 𝑛1 and 𝑛2, respectively, and the parameters of DLS are set to 𝑠 =

2 and 𝑟 = (1, 1). Then, the size of the dual search space is  
1

2
∑ ( 𝑛

𝑛1
) (𝑛1 − 1)! (𝑛 −𝑛−2

𝑛1=2

𝑛1 − 1)!, which is much higher than the size of the entire primal search space (𝑛 − 1)!, 

which is easily proven by induction.  

3.3 Comparative Analysis with The Literature 

As part of positioning our contribution, we shall hereafter compare our dual local search 

(DLS) to some of the contributions that have some comparable features. Within the 

category of construction methods, heuristics such as the nearest merger procedure 

(Rosenkrantz et al., 1977), the patching heuristic (Karp, 1979; Karp and Steele, 1985) and 

the modified patching heuristic (Glover et al., 2001) have some similarities with our DLS 

in that they all are cycle merging methods. However, they differ with respect to the basic 

ideas behind their designs. To be more specific, the nearest merger procedure, the patching 

heuristic and the modified patching heuristic are all “pure” construction methods as 

opposed to our DLS which is a parameterized search method designed to replicate an 

optimal search design; namely, the B&B design. In addition, the sets of moves used within 

our design are inclusive of the rather restricted “set of moves” used by these pure 

construction methods. Finally, our DLS could also be viewed or categorized as a 

construction method because of its dual nature. 
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4. How Dual Search Compares to Primal Search 

In this section, we shall provide statistical evidence of the superiority of the proposed dual 

local search to its primal counterpart. Such evidence is based on a sample of 43 TSP 

instances from the TSPLIB along with a set of statistically significant t-tests. The choice of 

this number of instances is the result of limiting the size of problems to solve to less than 

or equal to 200 nodes, which was motivated by the application context of urban logistics. 

We also discuss the performance of the different implementation schema proposed. Both 

the primal local search and the dual local search frameworks were implemented in C++ on 

a Dell Inspiron machine with 2.26GHz Core i3 processor and 4GB of RAM, and the 

assignment problem-based relaxations were solved using CPLEX 12.4.  

Recall that the implementation of the proposed DLS framework for the TSP requires one to 

address several questions. First, how to choose the 𝑠  sub-tours to be merged? In our 

empirical experiments, we tested three criteria for selecting sub-tours to merge; namely, 

the farthest distance between sub-tours; the nearest distance between sub-tours; and the 

cheapest cost of merger of sub-tours. Our empirical results revealed that the farthest 

distance criterion produces the best results, then the cheapest cost criterion produced the 

second best results and finally the nearest distance criterion does not perform as well as the 

other two criteria. For space constraints, in the remainder of this section we shall only 

present the numerical results for the first criterion, but conclusions are inclusive of the 

other results. The second question to be addressed is related to the choice of the parameters 

of the proposed parameterized neighborhood structure; namely, 𝑠 and 𝑟.  In our empirical 

experiments, the following parameter choices were made: {𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1} , {𝑠 =

2, 𝑟1 = 2, 𝑟2 = 1} and {𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1, 𝑟3 = 1}. The choice of these values has been 

motivated by seeking an acceptable balance between intensification, diversification, 

convergence rate, and computational time. The third question to be addressed is concerned 

with how often to call upon a local search mechanism based on Type II moves to explore 

those branches of the B&B tree not explored by Type I moves. Let 𝑝 (0 ≤ 𝑝 ≤ 1) denote 

the proportion of use of a local search mechanism based on Type II moves. As previously 

mentioned, in order to reduce the computational requirements of the proposed framework, 

the value of 𝑝  could be either static or dynamic and could be implemented in a 
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deterministic fashion (e.g., using a deterministic decision rule) or a stochastic fashion (e.g., 

using a probabilistic decision rule). The reader is referred to section 3.1 for a detailed 

description of these implementation schema. As to the Type II moves used in our 

experiments, they are divided into two categories; namely, 2-opt and 3-opt moves and the 

improvement moves used in GENI, see Gendreau et al. (1992) for details, that we refer to 

in this paper as US moves. 

The performance of the proposed dual local search framework is benchmarked against the 

performance of the classical primal local search framework where the initial primal 

solution is computed using the nearest merger construction method and improved using the 

same Type II moves; namely, 2-opt moves, 3-opt moves or US moves. The choice of the 

initial solution for the primal local search is motivated by “fair” benchmarking; that is, 

benchmarking against a method that is conceptually similar in spirit. Note however that 

several other initial solutions were also tested for; namely, farthest insertion, nearest 

insertion, and random insertion. Again, for space constraints, in the remainder of this 

section we shall only present the numerical results for the nearest merger solution as the 

initial solution for primal local search, but conclusions are inclusive of the other results. 

First, we shall provide statistical evidence that DLS outperforms PLS. To be more specific, 

we tested the hull hypothesis (𝐻0) that the average percentage increase in distance of DLS 

solutions over PLS solutions is greater than or equal to zero. Therefore, the alternative 

hypothesis (𝐻1) states that the average percentage increase in distance of DLS solutions 

over PLS solutions is less than zero; that is, DLS outperforms PLS. The null hypothesis 𝐻0 

is tested for all combinations of search parameters; i.e., 𝑠 and 𝑟, and local improvement 

schema resulting in a total of 36 statistical tests. The chosen hypothesis test is a one-tailed 

𝑡-test performed under the p-value approach. The p-values are summarised in Table 2. 

Under the first set of parameters; that is, {𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1}, all results are statistically 

significant at 0.1% regardless of the local improvement scheme and type of move used. 

Under the second set of parameters; that is, {𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1} , all results are 

statistically significant at 0.1%, except for the combination { Deterministic & Static Local 

Improvement Scheme, 2-opt} whose result is statistically significant at 5% and the 

combination {Deterministic & Dynamic Local Improvement Scheme, US} whose result is 
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statistically significant at 1%. Finally, under the third set of parameters; that is, {𝑠 =

3, 𝑟1 = 1, 𝑟2 = 1, 𝑟3 = 1}, all results are statistically significant at 0.1% or 1%, except for 

the combinations {Deterministic & Dynamic Local Improvement Scheme, 3-opt} and 

{Deterministic & Dynamic Local Improvement Scheme, US} whose results are not 

statistically significant; however, when TSP instances hk48, kroB150, pr144 and si175 are 

dropped from the sample, the result of the first combination becomes statistically 

significant at 0.1% (p-value = 0.0040) and the result of the second combination becomes 

statistically significant at 0.5% (p-value = 0.0279). In sum, hypothesis testing proves that 

DLS outperforms PLS under most of the settings considered in our computational 

experiments. 

Move 𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1, 𝑟3 = 1 

Local Improvement at Each Iteration 

2-opt 0.0002*** 0.0001*** 0.0041** 

3-opt 0.0000*** 0.0000*** 0.0000*** 

US 0.0000*** 0.0001*** 0.0001*** 

Deterministic & Static Local Improvement Scheme 

2-opt 0.0000*** 0.0157* 0.0020** 

3-opt 0.0001*** 0.0001*** 0.0021** 

US 0.0000*** 0.0001*** 0.0002*** 

Deterministic & Dynamic Local Improvement Scheme 

2-opt 0.0006*** 0.0003*** 0.0021** 

3-opt 0.0000*** 0.0002*** 0.1351 

US 0.0002*** 0.0052** 0.2270 

Stochastic Local Improvement Scheme 

2-opt 0.0002*** 0.0001*** 0.0021** 

3-opt 0.0002*** 0.0001*** 0.0017** 

US 0.0000*** 0.0000*** 0.0001*** 

*5% significant at 𝑝 < 0.05; **1% significant at 𝑝 < 0.01; ***0.1% significant at 𝑝 < 0.001 

Table 2: p-values of one-tailed t-tests of hypothesis 

Hereafter, we shall discuss the performance of the different implementation schema and 

values of search parameters based on sample evidence. First, both when a local search 

mechanism based on Type II moves is called upon at each iteration and when the dynamic 

frequency-based improvement scheme is used, on most choices of parameters 𝑠 and 𝑟 , 

DLS outperforms Random, Farthest, and Nearest Insertions as well as Nearest Merger 

solutions improved with PLS using 2-Opt, 3-Opt, and US moves – see, for example, 

Figures 4b-6b and 13b-15b. As some of the commonly reported statistics in these Figures 

are affected by outliers, we provide a more reliable “picture” in Figures 4a-6a and 13a-15a, 
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where the x-axis represents TSP instances and the y-axis represents the percentage increase 

in the objective function value of a DLS solution over the PLS solution. These figures 

clearly show that DLS outperforms PLS on most problem instances (i.e., more negative 

spikes than positive ones) and the difference in performance could be substantial. Notice 

that, with the exception of very few outlier instances where US moves require a prohibitive 

amount of time, computational requirements are comparable. Second, under both the 

deterministic static and the stochastic frequency-based improvement schema, on most 

choices of parameters, DLS outperforms Nearest, Farthest and Random Insertions as well 

as Nearest Merger solutions improved with PLS using 2-Opt, 3-Opt, and US moves – see, 

for example, Figures 7a-9a and 10a-12a and Figures 7b-9b and 10b-12b. Third, the 

performance of DLS as compared to PLS depends on the structure of the solution with 

which PLS starts the search, on one hand, and the frequency with which DLS intermediate 

solutions are perturbed, on the other hand. In fact, numerical results reveal that DLS is 

often outperformed whenever the structure of the solution with which PLS starts leaves 

room for substantial improvement by PLS moves; for example, initializing PLS with a 

random insertion solution tends to leave substantial room for improving such initial primal 

solution by some Type II moves. Furthermore, numerical results reveal that improving the 

dual solution too frequently (i.e., at each iteration) tends to perturb the solution structure in 

a relatively unattractive way in that the advantage of starting with a “good” relaxation 

solution is mildly lost in comparison to the deterministic static and stochastic improvement 

schema – see, for example, Figures 4a-6a and 7a-12a and Figures 4b-6b and 7b-12b. Also, 

when the dual solution is perturbed at increasingly large and irregular intervals (i.e., 

dynamic frequency based improvement), the resulting change in structure turns out to be 

relatively unattractive as one would “miss out” on improvement opportunities as the search 

process progresses – see, for example, Figures 13a-15a and Figures 13b-15b. Finally, 

between these two “extreme” cases lies deterministic static and stochastic frequency based 

improvements, which tend to perform the “right” amount of perturbation needed to 

converge towards a good primal solution – see, for example, Figures 7a-9a and 10a-12a 

and Figures 7b-9b and 10b-12b. 
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Figure 4a: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and 

Improvement is Performed at Each Iteration 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-11.27 

+3.55 

-3.21 

+3.20 

Min 

Max 

Mean 

Std. Dev. 

-1.027 

+0.572 

-0.169 

+0.357 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-13.46 

+5.36 

-3.94 

+3.32 

Min 

Max 

Mean 

Std. Dev. 

-0.665 

+1.345 

+0.037 

+0.480 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-9.48 

+4.34 

-2.62 

+3.00 

Min 

Max 

Mean 

Std. Dev. 

-1.38 

+0.523 

-0.359 

+0.436 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

**Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 4b: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and 

Improvement is Performed at Each Iteration 
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Figure 5a: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and 

Improvement is Performed at Each Iteration 

 

 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-5.76 

+2.48 

-0.98 

+2.02 

Min 

Max 

Mean 

Std. Dev. 

-1.957 

+20.654 

+1.584 

+4.468 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-5.76 

+1.93 

-1.15 

+2.02 

Min 

Max 

Mean 

Std. Dev. 

-0.981 

+17.839 

+2.344 

+4.459 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-5.44 

+2.54 

-1.22 

+2.07 

Min 

Max 

Mean 

Std. Dev. 

-1.164 

+34.934 

+5.371 

+8.908 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 5b: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and 

Improvement is Performed at Each Iteration 

 

 



22 

 

 

Figure 6a: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and 

Improvement is Performed at Each Iteration 

 

 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-15.98 

0.00 

-6.00 

+3.50 

Min 

Max 

Mean 

Std. Dev. 

-0.002 

+794.983 

+128.355 

+204.205 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-16.44 

0.00 

-5.81 

+3.62 

Min 

Max 

Mean 

Std. Dev. 

0.131 

+1029.559 

+158.915 

+254.520 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-15.95 

+15.95 

-6.01 

+3.39 

Min 

Max 

Mean 

Std. Dev. 

+0.05 

+1262.519 

+151.604 

+249.728 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 6b: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and 

Improvement is Performed at Each Iteration 
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Figure 7a: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and 

Improvement is Performed according to The Deterministic Scheme 

 

 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-13.67 

0.00 

-5.67 

+3.18 

Min 

Max 

Mean 

Std. Dev. 

-0.525 

+27.19 

+3.850 

+6.119 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-13.46 

+5.36 

-4.03 

+3.32 

Min 

Max 

Mean 

Std. Dev. 

-17.337 

+47.315 

+6.938 

+11.270 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-9.48 

+4.34 

-2.93 

+3.16 

Min 

Max 

Mean 

Std. Dev. 

-3.66 

+44.061 

+5.803 

+10.964 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 7b: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and 

Improvement is Performed according to The Deterministic Scheme 
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Figure 8a: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and 

Improvement is Performed according to The Deterministic Scheme 

 

 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-5.76 

+2.16 

-1.37 

+1.85 

Min 

Max 

Mean 

Std. Dev. 

-20.435 

+3.158 

-1.840 

+4.522 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-5.76 

+1.80 

-1.17 

+2.00 

Min 

Max 

Mean 

Std. Dev. 

-19.054 

+4.108 

-0.266 

+3.350 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-5.44 

+2.82 

-1.27 

+1.99 

Min 

Max 

Mean 

Std. Dev. 

-2.021 

+105.507 

+12.110 

+20.301 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 8b: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and 

Improvement is Performed according to The Deterministic Scheme 
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Figure 9a: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and 

Improvement is Performed according to The Deterministic Scheme 

 

 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-16.46 

0.00 

-6.24 

+3.49 

Min 

Max 

Mean 

Std. Dev. 

-2.041 

+1019.37 

+124.414 

+217.785 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-16.44 

0.00 

-6.01 

+3.62 

Min 

Max 

Mean 

Std. Dev. 

+0.261 

+931.186 

+127.148 

+210.612 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-15.95 

+3.76 

-5.91 

+3.78 

Min 

Max 

Mean 

Std. Dev. 

-0.11 

+548.603 

+88.311 

+143.835 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 9b: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and 

Improvement is Performed according to The Deterministic Scheme 
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Figure 10a: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and 

Improvement is Performed according to The Stochastic Scheme 

 

 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-12.82 

+1.83 

-3.98 

+3.10 

Min 

Max 

Mean 

Std. Dev. 

-1.859 

+0.052 

-0.498 

+0.550 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-12.73 

+1.59 

-4.27 

+3.20 

Min 

Max 

Mean 

Std. Dev. 

-1.006 

+12.406 

+0.993 

+2.942 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-10.48 

+1.44 

-3.30 

+3.05 

Min 

Max 

Mean 

Std. Dev. 

-1.925 

+12.365 

+0.616 

+3.240 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 10b: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and 

Improvement is Performed according to The Stochastic Scheme 
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Figure 11a: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and 

Improvement is Performed according to The Stochastic Scheme 

 

 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-5.76 

+1.63 

-1.21 

+1.83 

Min 

Max 

Mean 

Std. Dev. 

-16.445 

+0.838 

-1.811 

+3.506 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-5.76 

+2.52 

-1.04 

+2.11 

Min 

Max 

Mean 

Std. Dev. 

-12.326 

+4.216 

-1.175 

+2.814 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-4.94 

+2.82 

-0.96 

+2.09 

Min 

Max 

Mean 

Std. Dev. 

-7.603 

+10.178 

-0.391 

+3.017 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 11b: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and 

Improvement is Performed according to The Stochastic Scheme 
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Figure 12a: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and 

Improvement is Performed according to The Stochastic Scheme 

 

 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-16.07 

0.00 

-6.20 

+3.38 

Min 

Max 

Mean 

Std. Dev. 

-1.33 

+1014.537 

+121.055 

+220.051 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-14.99 

0.00 

-5.85 

+3.45 

Min 

Max 

Mean 

Std. Dev. 

-0.418 

+451.444 

+67.394 

+108.029 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-15.92 

+0.20 

-5.77 

+3.71 

Min 

Max 

Mean 

Std. Dev. 

-3.853 

+238.543 

-29.351 

+49.289 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 12b: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and 

Improvement is Performed according to The Stochastic Scheme 
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Figure 13a: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and 

Improvement is Performed according to The Dynamic Scheme 

 

 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-11.61 

+2.43 

-3.27 

+3.21 

Min 

Max 

Mean 

Std. Dev. 

+0.033 

+44.821 

+7.118 

+10.211 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-13.46 

+5.07 

-3.53 

+3.22 

Min 

Max 

Mean 

Std. Dev. 

+0.009 

+49.512 

+8.657 

+12.305 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-8.76 

+23.71 

+0.06 

+6.73 

Min 

Max 

Mean 

Std. Dev. 

+0.003 

+44.754 

+8.667 

+11.743 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 13b: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and 

Improvement is Performed according to The Dynamic Scheme 



30 

 

 

 

Figure 14a: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and 

Improvement is Performed according to The Dynamic Scheme 

 

 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-5.76 

+4.10 

-0.96 

+2.04 

Min 

Max 

Mean 

Std. Dev. 

-18.114 

+14.185 

-1.222 

+4.493 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-5.76 

+9.82 

-0.01 

+3.00 

Min 

Max 

Mean 

Std. Dev. 

-16.264 

+29.878 

+3.476 

+8.682 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-5.44 

+27.38 

+2.51 

+8.20 

Min 

Max 

Mean 

Std. Dev. 

-7.603 

+10.178 

+0.391 

+3.017 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 14b: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and 

Improvement is Performed according to The Dynamic Scheme 
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Figure 15a: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and 

Improvement is Performed according to The Dynamic Scheme 

 

 

Parameters of DLS Statistics* CPU Difference** 

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-15.88 

0.00 

-5.66 

+3.35 

Min 

Max 

Mean 

Std. Dev. 

-0.26 

+326.478 

+61.436 

+84.905 

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min 

Max 

Mean 

Std. Dev. 

-15.44 

+1.63 

-4.71 

+3.61 

Min 

Max 

Mean 

Std. Dev. 

-5.992 

+335.461 

+54.358 

+71.608 

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1 

& 𝑟3 = 1 

Min 

Max 

Mean 

Std. Dev. 

-12.94 

+18.53 

-2.31 

+7.14 

Min 

Max 

Mean 

Std. Dev. 

+0.177 

+1191.159 

+73.805 

+185.187 

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a 

negative value of a measure reflects that DLS outperforms PLS 

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a 

measure reflects that DLS outperforms PLS 

Figure 15b: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and 

Improvement is Performed according to The Dynamic Scheme 
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With respect to delivering the optimal solution or a near optimal solution (i.e., within 1%), 

DLS seems to achieve a relatively high performance given the design limitations of local 

search. In fact, the percentage of optimal solutions delivered reaches up to 35% depending 

on the choice of the parameters of DLS and the nature of type II moves. Furthermore, the 

percentage of near optimal solutions delivered ranges from 23% to 79% depending on the 

choice of the parameters of DLS and the nature of type II moves. Last, but not least, the 

dual search framework performs competitively with respect to CPU as compared to the 

primal search framework with the exception of very few outlier instances where US moves 

require a prohibitive amount of time. Once again, CPU requirements depend on the choice 

of the parameters of DLS and the nature of type II moves. 

5. Conclusion 

In practice, heuristics are typically used to solve realistically sized combinatorial 

optimization problems such as the traveling salesman problem (TSP). A specific category 

of heuristics has attracted considerable attention; namely, local search methods. Most local 

search methods are primal in nature in that they start the search with a feasible solution and 

explore the feasible space for better feasible solutions. In this research, we designed a dual 

local search method to solve the TSP; that is, a search method that starts with an infeasible 

solution, explores the dual space – each time reducing infeasibility, and lands in the primal 

space to deliver a feasible solution. The basic idea behind the proposed design is to 

replicate the designs of optimal solution methodologies in a heuristic way. To be more 

specific, our dual local search framework first solves an assignment problem relaxation of 

a TSP formulation and then repairs its typically infeasible solution using a new 

parameterized neighborhood and intermediate dual solutions are improved locally. 

Statistically significant t-tests support the superiority of this dual design compared to its 

primal design counterpart. Thus, the proposed dual local search method is a promising 

search framework. 
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