

Edinburgh Research Explorer

A dual local search framework for combinatorial optimization
problems with TSP application

Citation for published version:
Ouenniche, J, Ramaswamy, PK & Gendreau, M 2017, 'A dual local search framework for combinatorial
optimization problems with TSP application' Journal of the Operational Research Society, vol. 68, no. 11,
pp. 1377-1398. DOI: 10.1057/s41274-016-0173-4

Digital Object Identifier (DOI):
10.1057/s41274-016-0173-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of the Operational Research Society

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1057/s41274-016-0173-4

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1057/s41274-016-0173-4
https://www.research.ed.ac.uk/portal/en/publications/a-dual-local-search-framework-for-combinatorial-optimization-problems-with-tsp-application(fb389dc1-1dd9-46cf-99ad-96d927d2af07).html

A Dual Local Search Framework for Combinatorial Optimization Problems

with TSP Application

Jamal Ouenniche1*, Prasanna K. Ramaswamy1 and Michel Gendreau2

1Business School, University of Edinburgh, 29 Buccleuch Place, Edinburgh EH8 9JS, UK;

2CIRRELT and Ecole Polytechnique de Montreal, Montreal, Canada

Manuscript submitted to Journal of the Operational Research Society (JORS) and accepted

for publication. It is currently online (DOI: 10.1057/s41274-016-0173-4)

Abstract: In practice, solving realistically sized combinatorial optimization problems

(COPs) to optimality is often too time-consuming to be affordable; therefore, heuristics are

typically implemented within most applications software. A specific category of heuristics

has attracted considerable attention, namely, local search methods. Most local search

methods are primal in nature; that is, they start the search with a feasible solution and

explore the feasible space for better feasible solutions. In this research, we propose a dual

local search method and customise it to solve the traveling salesman problem (TSP); that is,

a search method that starts with an infeasible solution, explores the dual space – each time

reducing infeasibility, and lands in the primal space to deliver a feasible solution. The

proposed design aims to replicate the designs of optimal solution methodologies in a

heuristic way. To be more specific, we solve a combinatorial relaxation of a TSP

formulation, design a neighborhood structure to repair such an infeasible starting solution,

and improve components of intermediate dual solutions locally. Sample-based evidence

along with statistically significant t-tests support the superiority of this dual design

compared to its primal design counterpart.

Keywords: Dual Local Search, Relaxation, Optimization, Travelling Salesman, Routing

and Scheduling

1. Introduction

Nowadays, operational research is a well-established discipline with applications in very

many different areas both in the public and the private sectors. One application area that

has attracted the attention of both academics and practitioners for several decades is the

2

transportation of people and merchandise. Regardless of whether transportation services

are designed for people or merchandise and whether they are provided by public or private

entities, transport is both a major economic driver and a major cost factor. In fact, in the

United Kingdom, about 10.25% to 12.63% of national expenditure is accounted for by

transportation between 2008 and 2014 (HM Treasury, 2014) – these figures highlight the

importance of transportation in the economy. From an optimisation perspective,

transportation accounts for some of the most challenging combinatorial optimisation

problems (COPs) such as the traveling salesman problem (TSP), the Chinese postman

problem, and their generalizations to incorporate more realistic settings as encountered in

real-life applications. Both optimal and heuristic approaches have been proposed to address

such COPs. In practice, however, either heuristics or hybrids that combine optimal and

heuristic methodologies are typically implemented within most applications software to

realistically manage the computational requirements of the sizes of the instances

practitioners have to solve. A specific category of heuristics has attracted considerable

attention, namely, local search methods. Most local search methods – whether classical

local search or metaheuristics – are primal in nature; that is, they start the search with a

feasible solution and explore the feasible space for better feasible solutions. In this research,

we propose a dual local search (DLS) method and customise it to solve the TSP. Recall

that the TSP is concerned with determining a minimal cost Hamiltonian cycle; that is, a

minimum cost route for a single uncapacitated vehicle that starts at the depot, visits each

customer once and only once, and returns to the depot. In sum, the proposed DLS starts

with an infeasible solution, explores the dual space – each time reducing infeasibility, and

lands in the primal space to deliver a feasible solution, which could be improved further.

As the proposed design aims to replicate the designs of optimal solution methodologies in

a heuristic way, the components of intermediate dual solutions are locally improved using

an equivalent of primal local search that we refer to as Type II moves. Conceptually, Type

II moves are the means by which more children of a node in a branch-and-bound tree are

explored – see section 3.2 for details. To be more specific, we solve a combinatorial

relaxation of a TSP formulation and design a neighborhood structure defined by what we

refer to as Type I moves to repair such an infeasible starting solution and locally improve

its components using classical local improvement moves that we refer to as Type II moves.

3

Sample-based performance along with statistically significant t-tests support the

superiority of DLS compared to its primal design counterpart. Thus, the proposed dual

design offers a viable alternative to primal search designs.

The remainder of this paper is organised as follows. In section 2, we provide the landscape

of research on solution approaches and methods for the TSP and position our contribution

with respect to the literature. In section 3, we present our dual local search framework

along with its implementation decisions, discuss the rationale behind the proposed design,

provide a comparative analysis with branch-and-bound (B&B) algorithms, and summarise

some theoretical insights. In section 4, we provide statistical evidence that dual local

search outperforms primal local search and discuss the performance of the different

implementation schema proposed. Finally, section 5 concludes the paper.

2. Solution Approaches and Methods for TSP

In this section, we present the outcome of our literature survey on optimal and heuristic

solution approaches and methods designed to address the TSP in the form of a

classification (see sections 2.1 and 2.2). Then, we position our contribution with respect to

the literature after introducing new classification criteria.

2.1 Optimal Approaches and Methods

The design of optimal solution procedures, also referred to as exact methods or algorithms,

for the TSP dates back to the 1950s. Optimal solution procedures can be divided into three

main categories; namely, branch-and-bound (B&B) algorithms, cutting plane algorithms,

and their hybrids such as branch-and-cut (B&C) algorithms.

B&B is a generic optimal design and as such its implementation for solving a particular

COP such as the TSP requires customisation; in sum, a number of decisions have to be

made such as the choice of the bounding scheme to use and the choice of the branching

rule to use. The design of bounding schema for B&B algorithms is of prime importance as

the computational time requirements strongly depend on the quality of the bounding

scheme. Recall that a bounding scheme consists of a couple of bounds; namely, a primal

bound and a dual bound, where the primal bound corresponds to the objective function

value of the best feasible solution found so far during the course of the algorithm, and the

4

dual bound corresponds to the objective function value of the best solution found so far

during the course of the algorithm to a chosen relaxation of the problem. For the TSP, the

primal bound is typically computed using one of the construction heuristics proposed in the

literature, which could be tightened using an improvement heuristic such as classical local

search or metaheuristics. For example, Padberg and Rinaldi (1987, 1991) use Lin

Kernighan type of heuristic, whereas Miller and Pekny (1992), Carpaneto et al. (1995), and

Turkensteen et al. (2006) use Patching heuristics. As to the dual bounds for the TSP,

several types of relaxations have been used in the literature such as Assignment Problem-

based relaxations (e.g., Eastman, 1958; Shapiro, 1966; Bellmore and Malone, 1971;

Carpaneto and Toth, 1980; Balas and Christofides, 1981; Germs et al., 2012), 2-Matching

Problem-based Relaxations (e.g., Bellmore and Malone, 1971), 1-Tree Problem-based

Relaxations (e.g., Held and Karp, 1971; Helbig et al, 1974; Volgenant and Jonker, 1982;

Gavish and Srikanth, 1983), and Shortest n-Arc Path Problem-based Relaxations (e.g.,

Houck et al., 1980). On the other hand, with respect to the choice of the branching rule,

which often depends on the type of relaxation and the sub-tour breaking constraints used,

several branching rules have been proposed; for example, within a B&B framework that

makes use of an Assignment Problem-based relaxation, Eastman (1958), Shapiro (1966),

and Bellmore and Malone (1971) used branching rules that are based on the sub-tour

elimination constraints proposed by Dantzig et al. (1954) while Murty (1968), Bellmore

and Malone (1971), and Carpaneto and Toth (1980) used branching rules that are based on

the sub-tour elimination constraints commonly referred to as the connectivity constraints.

Note that these two categories of branching rules both exploit the TSP structure and are

based on sub-tour elimination constraints; however, the second category generates more

tightly constrained sub-problems, as proved by Bellmore and Malone (1971), which is a

desirable feature of branching rules. For a comprehensive coverage of the main branching

rules for the TSP, the reader is referred to Lawler et al. (1985).

Cutting plane algorithms have also been proposed for the TSP. Cutting plane algorithms

are also generic designs and their customisation for a specific problem requires an

understanding of the polyhedral structure of the problem to design effective cuts. Examples

of cuts for the TSP include Comb inequalities (Chvatal, 1973), Brush inequalities (Naddef

5

and Rinaldi, 1991), Star inequalities (Fleischmann, 1988), Path inequalities (Cornuejols et

al., 1985), Binested inequalities (Naddef, 1992), Clique Tree inequalities (Grötschel and

Pulleyblank, 1986), Bipartition inequalities (Boyd and Cunningham, 1991), Ladder

inequalities (Boyd and Cunningham, 1991), and Chain inequalities (Padberg and Hong,

1980).

In order to further strengthen B&B and cutting plane algorithms, hybrids have been

proposed whereby one would typically use cuts within a B&B framework resulting in

B&C algorithms (e.g., Crowder and Padberg, 1980; Padberg and Rinaldi, 1991; Fischetti

and Toth, 1997; Fischetti et al., 2003; Applegate et al., 2007). To the best of our

knowledge, the B&C algorithm proposed by Applegate et al. (2007), which is commonly

referred to as “concorde” code, remains the state-of-the-art code for the TSP.

Although optimal methodologies guarantee the delivery of an optimal solution, for large

scale TSPs either heuristics or hybrids that combine optimal and heuristic methodologies

are typically used in practice. In the next sub-section, we shall provide an outlook of

heuristics for TSP.

2.2. Heuristic Approaches and Methods

The design of heuristics – sometimes referred to as approximate solution procedures – for

the TSP dates back to the 1960s. Recall that heuristics are solution procedures that deliver

a feasible solution to a problem, but without any guarantee of optimality. Heuristics for the

TSP could be divided into two main categories depending on whether they are construction

procedures or improvement procedures.

For the TSP, several construction procedures have been proposed including the Nearest

Neighbor procedure (Rosenkrantz et al., 1977), the Clark and Wright Savings procedures

(Clark and Wright, 1964; for Complexity see Ong, 1981), Insertion procedures such as

Arbitrary, Farthest, Nearest, and Cheapest insertions (Rosenkrantz et al., 1977), the

Minimal Spanning Tree procedure (Kim, 1975), Christofides' heuristic (Christofides, 1976),

the Partitioning procedure (Karp, 1977), the Nearest Merger procedure (Rosenkrantz et al.,

1977), the Patching algorithm (Karp, 1979), the Modified Patching algorithm (Glover et al.,

6

2001), the Contract-or-Patch heuristics (Glover et al., 2001; Goldengorin et al. 2006; Gutin

and Zverovich, 2005), and GENI (Gendreau et al., 1992).

On the other hand, improvement procedures could be further divided into two sub-

categories; namely, classical local search methods and metaheuristics. Note that, as

compared to construction methods which are problem-specific, improvement methods are

rather generic frameworks that need customisation. Well-known classical local search

methods for the TSP include 2-Opt and 3-Opt heuristics (Lin, 1965), r-Opt heuristic (Lin

and Kernighan, 1973), and Or-Opt heuristic (Or, 1976). By design, classical local search

methods typically get stuck in a local optimum. In order to address this design issue,

metaheuristics have been proposed. Recall that metaheuristics are generic solution

procedures equipped with strategies or mechanisms for avoiding getting and remaining

stuck in local optima. Note that most metaheuristics were inspired by natural phenomena

and designed as imitations of such phenomena. Metaheuristics for the TSP could be

divided into several sub-categories depending on the chosen classification criterion or

criteria. For example, one might divide metaheuristics into two categories depending on

whether they are pure or hybrid. Examples of pure metaheuristics for the TSP include

Simulated Annealing (Kirkpatrick et al., 1983; Malek et al., 1989), Tabu Search (Malek,

1988; Malek et al., 1989; Tsubakitani and Evans, 1998a), Guided Local Search (Voudouris

and Tsang, 1999), Jump Search (Tsubakitani and Evans, 1998b), Randomized Priority

Search (DePuy, Moraga and Whitehouse, 2005), Greedy Heuristic with Regret (Hassin and

Keinan, 2008), Genetic Algorithms (Jayalakshmi et al., 2001; Tsai et al., 2003; Albayrak

and Allahverdi, 2011; Nagata and Soler, 2012), Evolutionary Algorithms (Liao et al.,

2012), Ant Colony Optimization (Dorigo and Gambardella, 1997), Artificial Neural

Networks (Leung et al., 2004; Li et al., 2009), Water Drops Algorithm (Alijla et al., 2014),

Discrete Firefly Algorithm (Jati et al., 2013), Invasive Weed Optimization (Zhou et al.,

2015), Gravitational Search (Dowlatshahi et al., 2014), and Membrane Algorithms (He et

al., 2014). Examples of hybrid metaheuristics include Simulated Annealing with Learning

(Lo and Hsu, 1998), Genetic Algorithm with Learning (Liu and Zeng, 2009), Self-

Organizing Neural Networks and Immune System (Masutti and de Castro, 2009), Genetic

Algorithm and Local Search (Albayrak and Allahverdi, 2011), Genetic Algorithm and Ant

7

Colony Optimization (Dong at al., 2012), Honey Bees Mating and GRASP (Marinakis et

al., 2011), and Particle Swarm Optimization and Ant Colony Optimization (Elloumi et al.,

2014).

One might also divide metaheuristics into two categories depending on whether they are

individual-based or population-based. In this paper, an individual-based metaheuristic

refers to a search method that starts with a single or individual solution, often referred to as

the seed, and explores its neighborhood in search for a better solution to become the seed –

this process is repeated until a stopping condition is met. On the other hand, a population-

based metaheuristic refers to a search method that starts with a set of solutions, often

referred to as a population, a colony or a swarm, that communicate through a variety of

mechanisms to exchange information about solution features to generate a new set of

solutions of a better quality. Examples of individual-based metaheuristics include

Simulated Annealing (e.g., Kirkpatrick et al., 1983), Tabu Search (Malek, 1988; Malek et

al., 1989; Tsubakitani and Evans, 1998a) and Guided Local Search (Voudouris and Tsang,

1999). On the other hand, examples of population-based metaheuristics include Genetic

Algorithms (e.g., Jayalakshmi et al., 2001; Tsai et al., 2003; Albayrak and Allahverdi,

2011; Nagata and Soler, 2012), Evolutionary Algorithm (Liao et al., 2012), and Artificial

Neural Networks (Leung et al., 2004).

In this paper, we propose a classification criterion of the literature on metaheuristics that is

more relevant to our research; that is, primal metaheuristics, dual metaheuristics, and

primal-dual metaheuristics. In this paper, a primal metaheuristic refers to a search method

that starts the search from within the feasible space and explores it until a stopping

condition is met without allowing the method to leave the feasible space. A dual

metaheuristic refers to a search method that starts the search from within the infeasible or

dual space, explores the dual space – each time reducing infeasibility, and lands in the

primal space to deliver a feasible solution or a set of feasible solutions depending on

whether the search method is individual-based or population-based. Finally, a primal-dual

metaheuristic refers to a search method that could start the search either from within the

feasible space or the dual space and during the search for an optimal or near optimal

solution it is allowed to explore both spaces. Examples of primal metaheuristics include the

8

papers mentioned within the above classifications. As to dual and primal-dual

metaheuristics, to the best of our knowledge, there are no published journal articles. Thus,

as far as the TSP is concerned, this paper is a first contribution to the class of dual search

methods. In the next section, we shall present the main elements of such contribution.

3. A Dual Local Search Framework

In this section, we present our dual local search (DLS) framework and discuss the rationale

behind the proposed design along with its implementation decisions (see section 3.1), and

provide a comparative analysis with branch-and-bound (B&B) algorithms and summarise

some theoretical insights (see section 3.2).

3.1 The General Framework, Its Underlying Rationale and Its Implementation Decisions

As suggested by our classification of the literature on search methods into primal, dual, and

primal-dual heuristics, and the scarcity of contributions within the sub-category of dual

heuristics, we fill such a gap by proposing a dual search heuristic framework and discuss

the underlying rationale along with its implementation decisions – see Figure 2 for pseud-

code. The proposed dual search algorithm customised for the TSP is summarised hereafter.

As compared to primal local search (PLS)-based heuristics’ designs – whether classical

local search or metaheuristics – we integrate design features of optimal algorithms. To be

more specific, we start the search with an infeasible solution; namely, the solution of a

relaxation of the problem under consideration. In this paper, we use an assignment

problem-based relaxation to generate an initial dual solution, say {𝑆𝑘, 𝑘 = 1, … , 𝑁𝑠𝑏𝑡}, and

progress towards the feasible space – each time reducing infeasibility, where 𝑆𝑘 denote the

𝑘𝑡ℎ sub-tour and 𝑁𝑠𝑏𝑡 denote the total number of sub-tours in the seed.

The search progress towards the feasible space requires a repairing mechanism or set of

moves, referred to in this paper as Type I moves, which define a relevant neighborhood

structure for our application; namely, the TSP. We refer to this neighborhood structure as

the Dual 𝑠-subtour-𝑟-edge-exchange Neighborhood. Moves in this neighborhood consist of

(𝑠 + 𝑟1 + … + 𝑟𝑠)-tuples, where the first 𝑠 entries correspond to the 𝑠 sub-tours to be

merged (𝑠 𝑁𝑠𝑏𝑡), the next 𝑟1 entries correspond to the edges of the first sub-tour to be

broken, say 𝑆1, the following 𝑟2 entries correspond to the edges of the second sub-tour to

9

be broken, say 𝑆2, and so on until the last 𝑟𝑠 entries that correspond to the edges of the last

sub-tour to be broken, say 𝑆𝑠. In sum, a move could be formally represented as follows:

(𝑆1, … , 𝑆𝑠, 𝑒𝑆1

1 , … , 𝑒𝑆1

𝑟1 , … , 𝑒𝑆𝑠

1 , … , 𝑒𝑆𝑠

𝑟𝑠),

where 𝑆1, … , 𝑆𝑠 are the sub-tours to be merged, 𝑒𝑆1

𝑟1 , … , 𝑒𝑆𝑠

1 are the edges of sub-tour 𝑆1 to

be broken, and 𝑒𝑆𝑠

1 , … , 𝑒𝑆𝑠

𝑟𝑠 are the edges of sub-tour 𝑆𝑠 to be broken. A couple of decisions

need to be made to fully operationalize this neighborhood. These decisions are concerned

with addressing the following questions: How to choose the 𝑠 sub-tours to be merged? and

How to merge them? To address the first question, in our empirical experiments, we tested

three criteria for selecting sub-tours to merge; namely, the farthest distance between sub-

tours; the nearest distance between sub-tours; and the cheapest cost of merger of sub-tours.

As to the second question, sub-tours are merged or connected in the best possible way to

form a larger and cheaper sub-tour. A graphical example is provided in Figure 1 to

illustrate Type I moves, where the dual solution consists of two sub-tours which are

merged by breaking one edge in each sub-tour and connecting the resulting paths to form a

single tour.

Figure 1: An Illustrative Example of Type I Moves

The above described Dual 𝑠-subtour-𝑟-edge-exchange Neighborhood is a parameterized

neighborhood structure, which allows one to control the rate at which the process

converges to a feasible solution, on one hand, and to intensify or diversify the search

depending on whether its parameters are set to relatively low or relatively high values, on

the other hand. In fact, the number of iterations required for this dual search framework to

10

converge to a feasible solution depends on the number of sub-tours in the solution to the

relevant relaxation of the problem formulation (e.g., assignment-based relaxation of a TSP

formulation), say 𝑁𝑠𝑏𝑡
0 , and one of the parameters of the proposed dual neighborhood; i.e.,

the number of sub-tours to merge at a time, 𝑠. Let 𝑁𝑠𝑏𝑡
𝑘 denotes the number of sub-tours at

iteration 𝑘. Then, the number of possible ways to choose 𝑠 sub-tours to be merged amongst

𝑁𝑠𝑏𝑡
𝑘 is:

(
𝑁𝑠𝑏𝑡

𝑘

𝑠
) =

𝑁𝑠𝑏𝑡
𝑘 !

𝑠! (𝑁𝑠𝑏𝑡
𝑘 − 𝑠)!

Obviously, the number of iterations, say 𝐾, required for this dual search framework to

converge to a feasible solution is upper bounded by the number of sub-tours in the solution

to the relevant relaxation of the problem formulation (e.g., assignment-based relaxation of

a TSP formulation), 𝑁𝑠𝑏𝑡
0 :

𝐾 ≤ 𝑁𝑠𝑏𝑡
0 .

However, a tighter upper bound, 𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0), that takes account of the initial choice of 𝑠𝑘,

say 𝑠0, could be obtained as follows, where 𝑠𝑘 denotes the number of sub-tours to merge at

iteration 𝑘:

𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0) = ⌈

𝑁𝑠𝑏𝑡
0 − 1

𝑠0 − 1
⌉.

Note that, in a static implementation where the parameters of the algorithm do not change

(e.g., 𝑠𝑘), depending on the values of 𝑁𝑠𝑏𝑡
0 and 𝑠0 , the value of 𝑠𝑘 might have to be

changed just before the start of the last iteration. To be more specific, one would use 𝑠0 up

to iteration ⌊(𝑁𝑠𝑏𝑡
0 − 1) (𝑠0 − 1)⁄ ⌋ and then change 𝑠𝐾 to 𝑁𝑠𝑏𝑡

𝐾−1. Notice that, for a given

value of 𝑁𝑠𝑏𝑡
0 , 𝐾(𝑁𝑠𝑏𝑡

0 , 𝑠0) decreases as 𝑠0 increases. Therefore, from a computational

perspective, a trade-off should be made between choosing relatively high values for

parameter 𝑠0, which would require a relatively small number of iterations 𝐾 to converge

but would require exploring a relatively large number of possibilities for breaking 𝑠0 sub-

tours and merging them, or choosing relatively low values for parameter 𝑠0, which would

require a relatively large number of iterations 𝐾 to converge but would require exploring a

relatively small number of possibilities for breaking 𝑠0 sub-tours and merging them.

11

Recall that the basic move of the proposed dual neighborhood structure (i.e., Type I moves)

consists of breaking some edges of some sub-tours and connecting such sub-tours in the

best possible way to form a larger one. Type I moves lead to successive partial solutions

that have many similarities. In order to diversify the structure of our solutions, we use a

second type of moves to perturb or locally improve their components using classical local

improvement moves that we refer to in this paper as Type II moves. In our experiments, we

used 2-opt and 3-opt moves and the improvement moves used in GENI (Gendreau et al.,

1992) – referred to in this paper as US moves – as Type II moves.

Initialization Step

Choose and solve an appropriate relaxation and use its (typically) infeasible solution to

initialize the seed, say 𝑥0, and record the corresponding objective function value, say 𝑧(𝑥0);

Choose the neighborhood structure to use for repairing the dual solution; that is, Type I

moves;

Choose the criterion for selecting sub-tours to merge;

Choose the neighborhood structure to use for improving locally the components of

intermediate dual solutions; that is, Type II moves;

Iterative Step

REPEAT until stopping condition = true // (e.g., 𝑥0 is feasible)

Search the neighborhood of 𝑥0, denoted 𝑁(𝑥0), for the “best” neighbour 𝑥 with respect

to the sub-tours selection criterion, perform the merge operation, improve the resulting

larger sub-tour using Type II moves, and update the seed; that is, set 𝑥 = 𝑥0;

END REPEAT

Figure 2: Pseudo-Code of Dual Local Search

In order to reduce the computational requirements of the proposed framework, one might

call upon a local search mechanism based on Type II moves according to a proportion of

use, say 𝑝 (0 ≤ 𝑝 ≤ 1), which could be either static or dynamic and could be implemented

in a deterministic fashion (e.g., using deterministic decision rule) or a stochastic fashion

(e.g., using probabilistic decision rule). In the deterministic and static scheme, one would

fix to a pre-specified value the proportion of use of local improvement for the entire search.

The feasible values for 𝑝 should satisfy the following conditions: 𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0) 𝑚𝑜𝑑 𝑝 ≡ 0

and 𝑝 < 𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0). On the other hand, in the deterministic and dynamic scheme, the

proportion of use of local improvement varies during the course of the search according to

a deterministic decision rule. The feasible values for 𝑝 should satisfy the following

conditions: 𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0) 𝑚𝑜𝑑 𝑝 ≡ 0 and 𝑝 < 𝐾(𝑁𝑠𝑏𝑡

0 , 𝑠0) ; let 𝑚 denote the number of

12

values of 𝑝 that satisfy these conditions, 𝑝1 ,…, 𝑝𝑚 denote such feasible values and 𝜋𝑘

denote the value of 𝑝 at iteration 𝑘. In our numerical experiment, we used the following

deterministic decision rule: set 𝜋0 to 𝑝1 and update 𝜋𝑘 to 𝑝2 after 𝑝1 iterations, then to 𝑝3

after 𝑝2 iterations and so on until its value is updated to 𝑝𝑚. Note that, when ∑ 𝑝𝑗
𝑚
𝑗=1 <

𝐾(𝑁𝑠𝑏𝑡
0 , 𝑠0), this decision rule is implemented in a cyclical manner. Note also that, in case

the last value of 𝜋𝑘 used does not allow for improving the last tour, such final tour is

exceptionally improved. Finally, in the stochastic scheme, at each iteration one would

generate a random number between 0 and 1 and if such number is greater than a pre-

specified threshold (e.g., 0.5, 0.7, 0.9), then local improvement is called upon.

3.2 Comparative Analysis with B&B and Some Theoretical Insights

In this section, we perform a conceptual comparative analysis with B&B, and summarise

some theoretical insights – see Table 1 for a snapshot summary. For ease of exposition, we

shall present the comparative analysis for a specific B&B design; namely, B&B with

Bellmore and Malone (1971) branching rule. In sum, we shall address the following

question: How the use of DLS with Type I and Type II moves compares to B&B with

Bellmore and Malone (1971) branching rule? Before proceeding with the comparative

analysis, we would like to remind the reader that, at each node of the B&B tree, the

Bellmore and Malone (1971) branching rule consists of generating several successors

where the first successor excludes a first arc from the arc set of a minimum cardinality sub-

tour of the solution of the parent node, the second successor includes the previously

excluded arc and excludes a new arc, the third successor includes the previously excluded

arcs and excludes a new arc, and so on until all arcs are included but one. Note that

including (respectively, excluding) an arc consists of setting the decision variable

associated with that arc to 1 (respectively, 0) before solving the assignment problem at the

successor nodes.

Hereafter, we shall break the comparative analysis of DLS with Type I and Type II moves

and B&B with Bellmore and Malone (1971) branching rule into several points according to

their main design features to highlight their similarities and differences. First, B&B breaks

one sub-tour at a time, whereas DLS breaks two or more sub-tours at a time. Second, B&B

13

examines all possible ways of breaking one sub-tour – one edge at a time, as compared to

DLS where Type I moves allow one to examine all possible ways of breaking two or more

sub-tours (e.g., breaking one or more edges in each sub-tour) and connecting them. Third,

within a B&B framework, at each level of the B&B tree – except level 0, the first branch

excludes one edge of one of the sub-tours and the following branches each includes the

edges previously excluded, excludes a new edge, and keeps all the remaining edges free

except those fixed at higher levels of the tree, if any. On the other hand, within the

proposed DLS framework, at each iteration Type I moves exclude two or more edges from

two or more sub-tours, respectively, and connects such sub-tours. Note that this type of

moves partially preserves the structure of the current infeasible solution in that the

sequence(s) that have not been affected remain unchanged; in other words, Type I moves

include in the next solution all the edges in the sub-tours that have not been excluded. Note

also that Type I moves do not allow one to explore the “equivalent” of as many branches

as those explored within a B&B framework. In order to explore the “equivalent” of those

branches, we use Type II moves which consist of edge exchanges of the newly formed sub-

tour. Fourth, at each node of the B&B tree, a re-optimization process is invoked, which

could lead to a new infeasible or feasible solution, whereas at each iteration of the DLS, a

“restricted” optimization process is invoked, which could lead to a new infeasible or

feasible solution, but with potentially more similarity to the solution of the previous

iteration as compared to B&B where the optimization process refers to the way the broken

sub-tours could possibly be connected or equivalently the way to choose the sets of edges

to include and exclude in the B&B terminology. Note that the restrictive nature of the

optimization process depends on the values of the parameters chosen; in sum, the higher

the values of the parameters s and r’s, the less restrictive is the optimization process. Last,

but not least, within a B&B framework, a new branch would not necessarily lead to a

reduction in the number of sub-tours, whereas in DLS each dual s-subtour-r-edge-exchange

neighborhood move of type I systematically reduces the number of sub-tours by one or

more. Therefore, convergence to a feasible solution is guaranteed in a finite number of

iterations.

14

B&B DLS

Break one sub-tour at a time Break two or more sub-tours at a time

Examine all possible ways of excluding or

including one edge at a time of one sub-tour

Examine all possible ways of breaking two

or more sub-tours (e.g., breaking one or

more edges in each sub-tour) and

connecting them

At each level of the B&B tree – except level

0, exclude (resp., include) one edge of one

of the sub-tours & keep all the remaining

edges free except those fixed at higher

levels of the tree, if any

Exclude two edges, one from each sub-tour,

and include in the next solution all the

remaining edges in the sub-tours

At each node of the tree, a re-optimization

process is invoked, which could lead to a

new infeasible or feasible solution

At each node of the tree, a “restricted”

optimization process is invoked, which

could lead to a new infeasible or feasible

solution, but with potentially more

similarity to the solution of the parent node

as compared to B&B. In order to diversity

in terms of structure of partial solutions and

explore more nodes as done in B&B, we use

a second type of moves similar in spirit to

branch exchange improvement

A new branch would not necessarily lead to

a reduction in the number of sub-tours

Each dual s-subtour-r-edge-exchange

neighborhood move systematically reduces

the number of sub-tours by one or more

Table 1: Comparative Analysis between B&B and DLS

To conclude this section, we hereafter summarise a couple of important theoretical insights.

The first theoretical insight is summarized in the following axiom:

Axiom: The size of the primal search space is initial solution-independent as compared to

the size of the dual search space. To be more specific, the size of the primal search space is

the same regardless of the construction method used for initializing PLS. However, in the

dual case, the size of the search space depends on the type of relaxation used.

This axiom suggests that within a DLS framework the quality of the dual solution the

search starts with would have an impact on the search process and where it would

potentially land in the primal space. Furthermore, the size of the dual search space depends

on the starting solution or equivalently the type of relaxation used. For example, if one

uses a linear programming relaxation as compared to an assignment problem-based

relaxation, one would have to explore a much larger dual search space. As to comparing

the sizes of the primal search space and the dual search space, the following proposition

summarizes the second theoretical insight.

15

Proposition: The dual search space is much larger than the primal search space.

Proof: The number of feasible solutions to a TSP of size 𝑛 is (𝑛 − 1)! Notice that, within a

PLS framework, only a subset of these solutions are visited and the cardinality of such

subset depends on the type of neighborhood used and its parameters, if any. Furthermore,

the cardinality of such subset is independent of the solution that PLS starts with. Note that

the number of dual solutions could potentially be infinite. However, within a dual local

search (DLS) framework initialized with an assignment problem-based relaxation, and

assuming that during the search solution components (i.e., 𝑥𝑖𝑗s) remain binary, the number

of dual solutions that could potentially be reached from the initial dual solution becomes

finite but remains larger than the (𝑛 − 1)! number of primal solutions. For illustration

purposes, consider for example a situation where one starts with a dual solution consisting

of two sub-tours of sizes 𝑛1 and 𝑛2, respectively, and the parameters of DLS are set to 𝑠 =

2 and 𝑟 = (1, 1). Then, the size of the dual search space is
1

2
∑ (𝑛

𝑛1
) (𝑛1 − 1)! (𝑛 −𝑛−2

𝑛1=2

𝑛1 − 1)!, which is much higher than the size of the entire primal search space (𝑛 − 1)!,

which is easily proven by induction.

3.3 Comparative Analysis with The Literature

As part of positioning our contribution, we shall hereafter compare our dual local search

(DLS) to some of the contributions that have some comparable features. Within the

category of construction methods, heuristics such as the nearest merger procedure

(Rosenkrantz et al., 1977), the patching heuristic (Karp, 1979; Karp and Steele, 1985) and

the modified patching heuristic (Glover et al., 2001) have some similarities with our DLS

in that they all are cycle merging methods. However, they differ with respect to the basic

ideas behind their designs. To be more specific, the nearest merger procedure, the patching

heuristic and the modified patching heuristic are all “pure” construction methods as

opposed to our DLS which is a parameterized search method designed to replicate an

optimal search design; namely, the B&B design. In addition, the sets of moves used within

our design are inclusive of the rather restricted “set of moves” used by these pure

construction methods. Finally, our DLS could also be viewed or categorized as a

construction method because of its dual nature.

16

4. How Dual Search Compares to Primal Search

In this section, we shall provide statistical evidence of the superiority of the proposed dual

local search to its primal counterpart. Such evidence is based on a sample of 43 TSP

instances from the TSPLIB along with a set of statistically significant t-tests. The choice of

this number of instances is the result of limiting the size of problems to solve to less than

or equal to 200 nodes, which was motivated by the application context of urban logistics.

We also discuss the performance of the different implementation schema proposed. Both

the primal local search and the dual local search frameworks were implemented in C++ on

a Dell Inspiron machine with 2.26GHz Core i3 processor and 4GB of RAM, and the

assignment problem-based relaxations were solved using CPLEX 12.4.

Recall that the implementation of the proposed DLS framework for the TSP requires one to

address several questions. First, how to choose the 𝑠 sub-tours to be merged? In our

empirical experiments, we tested three criteria for selecting sub-tours to merge; namely,

the farthest distance between sub-tours; the nearest distance between sub-tours; and the

cheapest cost of merger of sub-tours. Our empirical results revealed that the farthest

distance criterion produces the best results, then the cheapest cost criterion produced the

second best results and finally the nearest distance criterion does not perform as well as the

other two criteria. For space constraints, in the remainder of this section we shall only

present the numerical results for the first criterion, but conclusions are inclusive of the

other results. The second question to be addressed is related to the choice of the parameters

of the proposed parameterized neighborhood structure; namely, 𝑠 and 𝑟. In our empirical

experiments, the following parameter choices were made: {𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1} , {𝑠 =

2, 𝑟1 = 2, 𝑟2 = 1} and {𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1, 𝑟3 = 1}. The choice of these values has been

motivated by seeking an acceptable balance between intensification, diversification,

convergence rate, and computational time. The third question to be addressed is concerned

with how often to call upon a local search mechanism based on Type II moves to explore

those branches of the B&B tree not explored by Type I moves. Let 𝑝 (0 ≤ 𝑝 ≤ 1) denote

the proportion of use of a local search mechanism based on Type II moves. As previously

mentioned, in order to reduce the computational requirements of the proposed framework,

the value of 𝑝 could be either static or dynamic and could be implemented in a

17

deterministic fashion (e.g., using a deterministic decision rule) or a stochastic fashion (e.g.,

using a probabilistic decision rule). The reader is referred to section 3.1 for a detailed

description of these implementation schema. As to the Type II moves used in our

experiments, they are divided into two categories; namely, 2-opt and 3-opt moves and the

improvement moves used in GENI, see Gendreau et al. (1992) for details, that we refer to

in this paper as US moves.

The performance of the proposed dual local search framework is benchmarked against the

performance of the classical primal local search framework where the initial primal

solution is computed using the nearest merger construction method and improved using the

same Type II moves; namely, 2-opt moves, 3-opt moves or US moves. The choice of the

initial solution for the primal local search is motivated by “fair” benchmarking; that is,

benchmarking against a method that is conceptually similar in spirit. Note however that

several other initial solutions were also tested for; namely, farthest insertion, nearest

insertion, and random insertion. Again, for space constraints, in the remainder of this

section we shall only present the numerical results for the nearest merger solution as the

initial solution for primal local search, but conclusions are inclusive of the other results.

First, we shall provide statistical evidence that DLS outperforms PLS. To be more specific,

we tested the hull hypothesis (𝐻0) that the average percentage increase in distance of DLS

solutions over PLS solutions is greater than or equal to zero. Therefore, the alternative

hypothesis (𝐻1) states that the average percentage increase in distance of DLS solutions

over PLS solutions is less than zero; that is, DLS outperforms PLS. The null hypothesis 𝐻0

is tested for all combinations of search parameters; i.e., 𝑠 and 𝑟, and local improvement

schema resulting in a total of 36 statistical tests. The chosen hypothesis test is a one-tailed

𝑡-test performed under the p-value approach. The p-values are summarised in Table 2.

Under the first set of parameters; that is, {𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1}, all results are statistically

significant at 0.1% regardless of the local improvement scheme and type of move used.

Under the second set of parameters; that is, {𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1} , all results are

statistically significant at 0.1%, except for the combination { Deterministic & Static Local

Improvement Scheme, 2-opt} whose result is statistically significant at 5% and the

combination {Deterministic & Dynamic Local Improvement Scheme, US} whose result is

18

statistically significant at 1%. Finally, under the third set of parameters; that is, {𝑠 =

3, 𝑟1 = 1, 𝑟2 = 1, 𝑟3 = 1}, all results are statistically significant at 0.1% or 1%, except for

the combinations {Deterministic & Dynamic Local Improvement Scheme, 3-opt} and

{Deterministic & Dynamic Local Improvement Scheme, US} whose results are not

statistically significant; however, when TSP instances hk48, kroB150, pr144 and si175 are

dropped from the sample, the result of the first combination becomes statistically

significant at 0.1% (p-value = 0.0040) and the result of the second combination becomes

statistically significant at 0.5% (p-value = 0.0279). In sum, hypothesis testing proves that

DLS outperforms PLS under most of the settings considered in our computational

experiments.

Move 𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1, 𝑟3 = 1

Local Improvement at Each Iteration

2-opt 0.0002*** 0.0001*** 0.0041**

3-opt 0.0000*** 0.0000*** 0.0000***

US 0.0000*** 0.0001*** 0.0001***

Deterministic & Static Local Improvement Scheme

2-opt 0.0000*** 0.0157* 0.0020**

3-opt 0.0001*** 0.0001*** 0.0021**

US 0.0000*** 0.0001*** 0.0002***

Deterministic & Dynamic Local Improvement Scheme

2-opt 0.0006*** 0.0003*** 0.0021**

3-opt 0.0000*** 0.0002*** 0.1351

US 0.0002*** 0.0052** 0.2270

Stochastic Local Improvement Scheme

2-opt 0.0002*** 0.0001*** 0.0021**

3-opt 0.0002*** 0.0001*** 0.0017**

US 0.0000*** 0.0000*** 0.0001***

*5% significant at 𝑝 < 0.05; **1% significant at 𝑝 < 0.01; ***0.1% significant at 𝑝 < 0.001

Table 2: p-values of one-tailed t-tests of hypothesis

Hereafter, we shall discuss the performance of the different implementation schema and

values of search parameters based on sample evidence. First, both when a local search

mechanism based on Type II moves is called upon at each iteration and when the dynamic

frequency-based improvement scheme is used, on most choices of parameters 𝑠 and 𝑟 ,

DLS outperforms Random, Farthest, and Nearest Insertions as well as Nearest Merger

solutions improved with PLS using 2-Opt, 3-Opt, and US moves – see, for example,

Figures 4b-6b and 13b-15b. As some of the commonly reported statistics in these Figures

are affected by outliers, we provide a more reliable “picture” in Figures 4a-6a and 13a-15a,

19

where the x-axis represents TSP instances and the y-axis represents the percentage increase

in the objective function value of a DLS solution over the PLS solution. These figures

clearly show that DLS outperforms PLS on most problem instances (i.e., more negative

spikes than positive ones) and the difference in performance could be substantial. Notice

that, with the exception of very few outlier instances where US moves require a prohibitive

amount of time, computational requirements are comparable. Second, under both the

deterministic static and the stochastic frequency-based improvement schema, on most

choices of parameters, DLS outperforms Nearest, Farthest and Random Insertions as well

as Nearest Merger solutions improved with PLS using 2-Opt, 3-Opt, and US moves – see,

for example, Figures 7a-9a and 10a-12a and Figures 7b-9b and 10b-12b. Third, the

performance of DLS as compared to PLS depends on the structure of the solution with

which PLS starts the search, on one hand, and the frequency with which DLS intermediate

solutions are perturbed, on the other hand. In fact, numerical results reveal that DLS is

often outperformed whenever the structure of the solution with which PLS starts leaves

room for substantial improvement by PLS moves; for example, initializing PLS with a

random insertion solution tends to leave substantial room for improving such initial primal

solution by some Type II moves. Furthermore, numerical results reveal that improving the

dual solution too frequently (i.e., at each iteration) tends to perturb the solution structure in

a relatively unattractive way in that the advantage of starting with a “good” relaxation

solution is mildly lost in comparison to the deterministic static and stochastic improvement

schema – see, for example, Figures 4a-6a and 7a-12a and Figures 4b-6b and 7b-12b. Also,

when the dual solution is perturbed at increasingly large and irregular intervals (i.e.,

dynamic frequency based improvement), the resulting change in structure turns out to be

relatively unattractive as one would “miss out” on improvement opportunities as the search

process progresses – see, for example, Figures 13a-15a and Figures 13b-15b. Finally,

between these two “extreme” cases lies deterministic static and stochastic frequency based

improvements, which tend to perform the “right” amount of perturbation needed to

converge towards a good primal solution – see, for example, Figures 7a-9a and 10a-12a

and Figures 7b-9b and 10b-12b.

20

Figure 4a: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and

Improvement is Performed at Each Iteration

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-11.27

+3.55

-3.21

+3.20

Min

Max

Mean

Std. Dev.

-1.027

+0.572

-0.169

+0.357

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-13.46

+5.36

-3.94

+3.32

Min

Max

Mean

Std. Dev.

-0.665

+1.345

+0.037

+0.480

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-9.48

+4.34

-2.62

+3.00

Min

Max

Mean

Std. Dev.

-1.38

+0.523

-0.359

+0.436

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

**Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 4b: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and

Improvement is Performed at Each Iteration

21

Figure 5a: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and

Improvement is Performed at Each Iteration

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-5.76

+2.48

-0.98

+2.02

Min

Max

Mean

Std. Dev.

-1.957

+20.654

+1.584

+4.468

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-5.76

+1.93

-1.15

+2.02

Min

Max

Mean

Std. Dev.

-0.981

+17.839

+2.344

+4.459

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-5.44

+2.54

-1.22

+2.07

Min

Max

Mean

Std. Dev.

-1.164

+34.934

+5.371

+8.908

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 5b: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and

Improvement is Performed at Each Iteration

22

Figure 6a: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and

Improvement is Performed at Each Iteration

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-15.98

0.00

-6.00

+3.50

Min

Max

Mean

Std. Dev.

-0.002

+794.983

+128.355

+204.205

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-16.44

0.00

-5.81

+3.62

Min

Max

Mean

Std. Dev.

0.131

+1029.559

+158.915

+254.520

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-15.95

+15.95

-6.01

+3.39

Min

Max

Mean

Std. Dev.

+0.05

+1262.519

+151.604

+249.728

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 6b: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and

Improvement is Performed at Each Iteration

23

Figure 7a: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and

Improvement is Performed according to The Deterministic Scheme

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-13.67

0.00

-5.67

+3.18

Min

Max

Mean

Std. Dev.

-0.525

+27.19

+3.850

+6.119

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-13.46

+5.36

-4.03

+3.32

Min

Max

Mean

Std. Dev.

-17.337

+47.315

+6.938

+11.270

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-9.48

+4.34

-2.93

+3.16

Min

Max

Mean

Std. Dev.

-3.66

+44.061

+5.803

+10.964

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 7b: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and

Improvement is Performed according to The Deterministic Scheme

24

Figure 8a: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and

Improvement is Performed according to The Deterministic Scheme

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-5.76

+2.16

-1.37

+1.85

Min

Max

Mean

Std. Dev.

-20.435

+3.158

-1.840

+4.522

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-5.76

+1.80

-1.17

+2.00

Min

Max

Mean

Std. Dev.

-19.054

+4.108

-0.266

+3.350

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-5.44

+2.82

-1.27

+1.99

Min

Max

Mean

Std. Dev.

-2.021

+105.507

+12.110

+20.301

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 8b: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and

Improvement is Performed according to The Deterministic Scheme

25

Figure 9a: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and

Improvement is Performed according to The Deterministic Scheme

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-16.46

0.00

-6.24

+3.49

Min

Max

Mean

Std. Dev.

-2.041

+1019.37

+124.414

+217.785

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-16.44

0.00

-6.01

+3.62

Min

Max

Mean

Std. Dev.

+0.261

+931.186

+127.148

+210.612

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-15.95

+3.76

-5.91

+3.78

Min

Max

Mean

Std. Dev.

-0.11

+548.603

+88.311

+143.835

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 9b: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and

Improvement is Performed according to The Deterministic Scheme

26

Figure 10a: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and

Improvement is Performed according to The Stochastic Scheme

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-12.82

+1.83

-3.98

+3.10

Min

Max

Mean

Std. Dev.

-1.859

+0.052

-0.498

+0.550

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-12.73

+1.59

-4.27

+3.20

Min

Max

Mean

Std. Dev.

-1.006

+12.406

+0.993

+2.942

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-10.48

+1.44

-3.30

+3.05

Min

Max

Mean

Std. Dev.

-1.925

+12.365

+0.616

+3.240

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 10b: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and

Improvement is Performed according to The Stochastic Scheme

27

Figure 11a: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and

Improvement is Performed according to The Stochastic Scheme

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-5.76

+1.63

-1.21

+1.83

Min

Max

Mean

Std. Dev.

-16.445

+0.838

-1.811

+3.506

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-5.76

+2.52

-1.04

+2.11

Min

Max

Mean

Std. Dev.

-12.326

+4.216

-1.175

+2.814

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-4.94

+2.82

-0.96

+2.09

Min

Max

Mean

Std. Dev.

-7.603

+10.178

-0.391

+3.017

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 11b: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and

Improvement is Performed according to The Stochastic Scheme

28

Figure 12a: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and

Improvement is Performed according to The Stochastic Scheme

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-16.07

0.00

-6.20

+3.38

Min

Max

Mean

Std. Dev.

-1.33

+1014.537

+121.055

+220.051

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-14.99

0.00

-5.85

+3.45

Min

Max

Mean

Std. Dev.

-0.418

+451.444

+67.394

+108.029

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-15.92

+0.20

-5.77

+3.71

Min

Max

Mean

Std. Dev.

-3.853

+238.543

-29.351

+49.289

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 12b: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and

Improvement is Performed according to The Stochastic Scheme

29

Figure 13a: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and

Improvement is Performed according to The Dynamic Scheme

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-11.61

+2.43

-3.27

+3.21

Min

Max

Mean

Std. Dev.

+0.033

+44.821

+7.118

+10.211

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-13.46

+5.07

-3.53

+3.22

Min

Max

Mean

Std. Dev.

+0.009

+49.512

+8.657

+12.305

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-8.76

+23.71

+0.06

+6.73

Min

Max

Mean

Std. Dev.

+0.003

+44.754

+8.667

+11.743

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 13b: DLS vs. PLS Improving Nearest Merger Solution with 2-Opt Moves, and

Improvement is Performed according to The Dynamic Scheme

30

Figure 14a: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and

Improvement is Performed according to The Dynamic Scheme

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-5.76

+4.10

-0.96

+2.04

Min

Max

Mean

Std. Dev.

-18.114

+14.185

-1.222

+4.493

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-5.76

+9.82

-0.01

+3.00

Min

Max

Mean

Std. Dev.

-16.264

+29.878

+3.476

+8.682

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-5.44

+27.38

+2.51

+8.20

Min

Max

Mean

Std. Dev.

-7.603

+10.178

+0.391

+3.017

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 14b: DLS vs. PLS Improving Nearest Merger Solution with 3-Opt Moves, and

Improvement is Performed according to The Dynamic Scheme

31

Figure 15a: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and

Improvement is Performed according to The Dynamic Scheme

Parameters of DLS Statistics* CPU Difference**

𝑠 = 2, 𝑟1 = 1, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-15.88

0.00

-5.66

+3.35

Min

Max

Mean

Std. Dev.

-0.26

+326.478

+61.436

+84.905

𝑠 = 2, 𝑟1 = 2, 𝑟2 = 1 Min

Max

Mean

Std. Dev.

-15.44

+1.63

-4.71

+3.61

Min

Max

Mean

Std. Dev.

-5.992

+335.461

+54.358

+71.608

𝑠 = 3, 𝑟1 = 1, 𝑟2 = 1

& 𝑟3 = 1

Min

Max

Mean

Std. Dev.

-12.94

+18.53

-2.31

+7.14

Min

Max

Mean

Std. Dev.

+0.177

+1191.159

+73.805

+185.187

*Statistics on Percentage Increase in Distance of DLS Solution over PLS Solution, where a

negative value of a measure reflects that DLS outperforms PLS

** Statistics on the Increase in CPU time required by DLS over PLS, where a negative value of a

measure reflects that DLS outperforms PLS

Figure 15b: DLS vs. PLS Improving Nearest Merger Solution with US Moves, and

Improvement is Performed according to The Dynamic Scheme

32

With respect to delivering the optimal solution or a near optimal solution (i.e., within 1%),

DLS seems to achieve a relatively high performance given the design limitations of local

search. In fact, the percentage of optimal solutions delivered reaches up to 35% depending

on the choice of the parameters of DLS and the nature of type II moves. Furthermore, the

percentage of near optimal solutions delivered ranges from 23% to 79% depending on the

choice of the parameters of DLS and the nature of type II moves. Last, but not least, the

dual search framework performs competitively with respect to CPU as compared to the

primal search framework with the exception of very few outlier instances where US moves

require a prohibitive amount of time. Once again, CPU requirements depend on the choice

of the parameters of DLS and the nature of type II moves.

5. Conclusion

In practice, heuristics are typically used to solve realistically sized combinatorial

optimization problems such as the traveling salesman problem (TSP). A specific category

of heuristics has attracted considerable attention; namely, local search methods. Most local

search methods are primal in nature in that they start the search with a feasible solution and

explore the feasible space for better feasible solutions. In this research, we designed a dual

local search method to solve the TSP; that is, a search method that starts with an infeasible

solution, explores the dual space – each time reducing infeasibility, and lands in the primal

space to deliver a feasible solution. The basic idea behind the proposed design is to

replicate the designs of optimal solution methodologies in a heuristic way. To be more

specific, our dual local search framework first solves an assignment problem relaxation of

a TSP formulation and then repairs its typically infeasible solution using a new

parameterized neighborhood and intermediate dual solutions are improved locally.

Statistically significant t-tests support the superiority of this dual design compared to its

primal design counterpart. Thus, the proposed dual local search method is a promising

search framework.

References

Albayrak M and Allahverdi N (2011). Development a new mutation operator to solve the

Traveling Salesman Problem by aid of Genetic Algorithms. Expert Systems with

Applications 38(3): 1313-1320.

33

Alijla B. O., Wong L-P, Lim C. P., Khader A. T. and Al-Betar M. Z. (2014). A modified

Intelligent Water Drops algorithm and its application to optimization problems.

Expert Systems with Applications 41(15): 6555–6569.

Applegate D, Bixby R, Chvatal V and Cook W (2007). The traveling salesman problem: a

computational study. Princeton University Press: Princeton.

Balas E and Christofides N (1981). A restricted Lagrangean approach to the travelling

salesman problem. Mathematical Programming 21(1): 19-46.

Bellmore M and Malone J C (1971). Pathology of travelling-salesman problem subtour-

elimination algorithms. Operations Research 19(2): 278-307.

Boyd S and Cunningham W (1991). Small Travelling salesman polytopes. Mathematics of

operations Research 16(2): 259-271.

Carpaneto G, Dell'Amico M and Toth P (1995). Exact Solution of Large Scale,

Asymmetric Travelling Salesman Problems. ACM Transactions on Mathematical

Software 21(4): 394-409.

Carpaneto G and Toth P (1980). Some new Branching and Bounding Criteria for the

Asymmetric Travelling Salesman Problem. Management Science 26(7): 736-743.

Christofides N (1976). Worst-Case Analysis of a new heuristic for the travelling salesman

problem. Report 388. Graduate School of Industrial Administration: Carnegie Mellon

University.

Chvatal V (1973). Edmond Polytopes and Weakly Hamiltonian Graphs. Mathematical

Programming 5(1): 29-40.

Cornuejols G, Fonlupt J and Naddef D (1985). The travelling salesman on a graph and

some related polyhedra. Mathematical Programming 33(1): 1-27.

Crowder H and Padberg M W (1980). Solving Large-Scale Symmetric Travelling

Salesman Problems to Optimality. Management Science 26(5): 495-509.

Dantzig G B, Fulkerson D R and Johnson S M (1954). Solution of a large-scale travelling-

salesman problem. Operations Research 2(4): 393-410.

DePuy G W, Moraga R J and Whitehouse G E (2005). Meta-RaPS: A Simple and Effective

Approach For Solving The Traveling Salesman Problem. Transportation Research

Part E: Logistics and Transportation Review 41(2): 115-130.

34

Dong G, Guo W W and Tickle K (2012). Solving the traveling salesman problem using

cooperative genetic ant systems. Expert Systems with Applications 39(5): 5006-5011.

Dorigo M and Gambardella L M (1997). Ant Colony System: A Cooperative Learning

Approach to the Travelling Salesman Problem. IEEE Transactions on Evolutionary

Computation 1(1): 53-66

Dowlatshahi M. B., Nezamabadi-pour H. and Mashinchi M. (2014). A discrete

gravitational search algorithm for solving combinatorial optimization problems.

Information Sciences 258, February: 94–107.

Eastman W (1958). Linear Programming with Pattern Constraints. PhD thesis, Harvard

University.

Elloumi W., El Abed H., Abraham A. and Alimi A. M. (2014). A comparative study of the

improvement of performance using a PSO modified by ACO applied to TSP. Applied

Soft Computing 25, December: 234–241.

Fischetti M and Toth P (1997). A Polyhedral Approach to the Asymmetric Traveling

Salesman Problem. Management Science 43(11): 1520-1536.

Fischetti M, Lodi A and Toth P (2003). Solving real-world ATSP instances by branch-and-

cut. Lecture Notes in Computer Science 2570. Springer: Berlin.

Fleischmann B (1988). A new class of cutting planes of the symmetric travelling salesman

problem. Mathematical Programming 40(1-3): 225-246.

Gavish B and Srikanth K (1983). Efficient Branch and Bound Code for Solving Large

Scale Travelling Salesman Problems to Optimality. Working Paper QM 8329,

University of Rochester.

Germs R., Goldengorin B. and Turkensteen M. (2012). Lower tolerance-based Branch and

Bound algorithms for the ATSP. Computers & Operations Research 39(2): 291–298.

Gendreau M, Hertz A and Laporte G (1992). New Insertion and Postoptimization

Procedures for the Traveling Salesman Problem. Operations Research 40(6):1086-

1094.

Glover F, Gutin G, Yeo A and Zverovich A (2001). Construction heuristics for the

asymmetric TSP. European Journal of Operational Research 129(3): 555-568

35

Goldengorin B, Jager G and Molitor P (2006). Tolerance based Contract-or-Patch

heuristic for the asymmetric TSP. Combinatorial and Algorithmic Aspects of

Networking, Lecture Notes in Computer Science, Volume 4235, pp 86-97.

Grotschel M and Pulleyblank W (1986). Clique tree inequalities and the symmetric

traveling salesman problem. Mathematics of Operations Research 11(4): 537-569.

Gutin G and Zverovich A (2005). Evaluation of the Contract-Or-Patch Heuristics for the

Asymmetric TSP. INFOR 43(1): 23–31.

Hassin R and Keinan A (2008). Greedy heuristics with regret, with application to the

cheapest insertion algorithm for the TSP. Operations Research Letters 36(2): 243-

246.

He J., Xiao J. and Shao Z. (2014). An Adaptive Membrane Algorithm for Solving

Combinatorial Optimization Problems. Acta Mathematica Scientia 34B(5):1377–

1394.

Helbig H K and Krarup J (1974). Improvements of the Held-Karp Algorithm for the

Symmetric Travelling-Salesman Problem. Mathematical Programming 7(1): 87-96.

Held M and Karp R (1971). The traveling salesman problem and minimum spanning trees

Part II. Mathematical Programming 1(1): 6-25.

Houck D, Picard J, Queyranne M and Vemuganti R (1980). The travelling salesman

problem as a constrained shortest path problem: theory and computational

experience. Operations Research 17(2&3): 93-109.

HM Treasury (2014). Public Expenditure Statistical Analyses, UK Government

Publications, London.

Jati G. K., Manurung R. and Suyanto (2013). Discrete Firefly Algorithm for Traveling

Salesman Problem: A New Movement Scheme. In Swarm Intelligence and Bio-

Inspired Computation - Theory and Applications: 295–312, edited by Xin-She Yang,

Zhihua Cui, Renbin Xiao, Amir Hossein Gandomi and Mehmet Karamanoglu.

Elsevier.

Jayalakshmi G A, Sathiamoorthy and Rajaram R (2001). A Hybrid Genetic Algorithm – A

new approach to solve travelling salesman problem. International Journal of

Computational Engineering Science 2(2): 339-355

36

Karp R M (1977). Probabilistic analysis of partitioning algorithms for the traveling

salesman problem in the plane. Mathematics of Operations Research 2(3): 209-224.

Karp R M (1979). A patching algorithm for the non-symmetric travelling salesman

problem. SIAM Journal on Computing 8(4): 561–573.

Karp M R and Steele J M (1985). Probabilistic Analysis of Heuristics. In The traveling

salesman problem, edited by Lawler et al (1985). John Wiley and Sons: Chichester.

Kim C (1975). A Minimal Spanning Tree and Approximate tours for a travelling salesman.

Computer Science Technical Report: University of Maryland.

Kirkpatrick S, Gelatt C D and Veechi M P (1983). Optimization by Simulated Annealing.

Science 220(4598): 671-680.

Lawler E L, Lenstra J K, Rinnooy Kan A H G and Shmoys D B (1985). The traveling

salesman problem. John Wiley and Sons: Chichester.

Liao Y-F, Yau D-H, and Chen C-L (2012). Evolutionary algorithm to traveling salesman

problems. Computers and Mathematics with Applications 64(5): 788-797.

Leung K-S, Jin H-D and Xu Z-B (2004). An expanding self-organizing neural network for

the traveling salesman problem. Neurocomputing 62, December: 267-292.

Li M., Yi Z and Zhu M. (2009). Solving TSP by using Lotka–Volterra neural networks.

Neurocomputing 63(16): 3873–3880.

Lin S (1965). Computer Solutions of the travelling salesman problem. Bell System

Technical Journal 44(10): 2245-2269.

Lin S and Kernighan B (1973). An effective heuristic algorithm for the travelling salesman

problem. Operations Research 21(2): 498-516.

Liu F. and Zeng G. (2009). Study of genetic algorithm with reinforcement learning to solve

the TSP. Expert Systems with Applications 36(3): 6995–7001.

Lo C-C and Hsu C-C (1998). An Annealing Framework with Learning Memory. IEEE

Transactions on Systems, Man and Cybernetics – Part A: Systems and Humans

28(5): 648-661

Malek M (1988). Search Methods for the Travelling Salesman Problems. University of

Texas: Austin.

37

Malek M, Guruswamy M, Pandya M and Owens H (1989). Serial and parallel simulated

annealing and tabu search algorithms for the traveling salesman problem. Annals of

Operations Research 21(1): 59-84.

Marinakis Y, Marinaki M and Dounias G (2011): Honey bees mating optimization

algorithm for the Euclidean traveling salesman problem. Information Science

181(20): 4684-4698.

Masutti T A S and de Castro L N (2009). A self-organizing neural network using ideas

from the immune system to solve the traveling salesman problem. Information

Science 179(10): 1454-1468

Miller D and Pekny J (1992). A Parallel Branch-and-bound for solving large scale

asymmetric travelling salesman problem. Mathematical Programming 55 (1-3): 17-

33.

Murty K (1968). An Algorithm for ranking all the assignments in the order of increasing

cost. Operations Research 16(3): 682-687.

Naddef D (1992). The binested inequalities of the symmetric traveling salesman polytope.

Mathematics of Operations Research 17(4): 882-900.

Naddef D and Rinaldi G (1991). The Symmetric Travelling Salesman Polytope and its

Graphical relaxation: Composition of Valid Inequalities. Mathematical

Programming 51(1-3): 359-400.

Nagata Y and Soler D (2012). A new genetic algorithm for the asymmetric traveling

salesman problem. Expert Systems with Applications 39(10): 8947-8953.

Ong H (1981). Design and analysis of heuristics for some routing and packing problems.

Ph.D. Thesis: University of Waterloo.

Or I (1976). Traveling Salesman-Type Combinatorial Problems and Their Relation to the

Logistics of Regional Blood Banking. Ph.D. Thesis: Northwestern University.

Padberg M and Hong S (1980). On the Symmetric Travelling Salesman Problem: A

Computational Study. In Combinatorial Optimization: 78-107. Springer Berlin

Heidelberg.

Padberg M and Rinaldi G (1987). Optimization of a 532 city Symmetric Travelling

Salesman Problem using Branch-and-cut. Operations Research Letters 6 (1): 1-7.

http://www.informatik.uni-trier.de/~ley/pers/hd/s/Soler:David.html

38

Padberg M and Rinaldi G (1991). A Branch-and-Cut Algorithm for the Resolution of

Large-Scale Symmetric Travelling Salesman Problems. SIAM Review 33(1): 60-100.

Rosenkratz D, Sterns R and Lewis P (1977). An analysis of several Heuristics for the

Travelling Salesman Problem. SIAM Journal of computer 6(3): 563-581.

Shapiro D (1966). Algorithms for the Solution of the Optimal Cost and Bottleneck

Travelling Salesman Problems. Sc.D Thesis, Washington University.

Tsai H K, Yang J M, Tsai Y F and Kao C Y (2003). Heterogeneous selection genetic

algorithms for traveling salesman problems. Engineering Optimization 35(3): 297-

311.

Tsubakitani S and Evans J R (1998a). Optimizing tabu list size for the Travelling Salesman

Problem. Computers and Operations Research 25(2): 91-97.

Tsubakitani S and James R E (1998b). An empirical study of a new metaheuristic for the

traveling salesman problem. European Journal of Operational Research 104(1):

113-128.

Turkensteen M, Ghosh D, Goldengorin B and Sierksma G (2006). Iterative patching and

the asymmetric traveling salesman problem. Discrete Optimization 3(1): 63-77.

Volgenant T and Jonker R (1982). A branch and bound algorithm for the symmetric

travelling salesman problem based on the 1-tree relaxation. European Journal of

Operational Research 9(1): 83-89.

Voudouris C and Tsang E (1999). Guided local search and its application to the traveling

salesman problem. European Journal of Operational Research 113(2): 469-499

Wright J and Clarke G (1964). Scheduling of Crews from a central depot to a number of

delivery points. Operations Research 12(4): 568-581.

Zhou Y., Luo Q., Chen H., He A. and Wu J. (2015). A discrete invasive weed optimization

algorithm for solving traveling salesman problem. Neurocomputing 151, March:

1227–1236.

