

Vol.7 (2017) No. 2

ISSN: 2088-5334

Water Flow-Like Algorithm with Simulated Annealing for Travelling
Salesman Problems

 Zulaiha Ali Othman, Nasser Hamed Al-Dhwai, Ayman Srour, Wu Diyi

Centre of Artificial Intelligence Technology (CAIT) Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia,
Selangor, 43600 Malaysia.

 E-mail: zao@ukm.edu.my, laylawi@gmail.com, aymansrour@gmail.com, zzwudiyi@126.com

Abstract— Water Flow-like Algorithm (WFA) has been proved its ability obtaining a fast and quality solution for solving Travelling
Salesman Problem (TSP). The WFA uses the insertion move with 2-neighbourhood search to get better flow splitting and moving
decision. However, the algorithms can be improved by making a good balance between its solution search exploitation and
exploration. Such improvement can be achieved by hybridizing good search algorithm with WFA. This paper presents a hybrid of
WFA with various three neighbourhood search in Simulated Annealing (SA) for TSP problem. The performance of the proposed
method is evaluated using 18 large TSP benchmark datasets. The experimental result shows that the hybrid method has improved the
solution quality compare with the basic WFA and state of art algorithm for TSP.

Keywords— Travelling Salesman problem; Water flow-like algorithm; Simulated Annealing; Meta-heuristics; combinatorial
optimization.

I. INTRODUCTION

The Travelling Salesman Problem (TSP) is a classic
routing problem that attracts many researchers from different
fields, including operational research, mathematics and
several scientific and engineering fields. The TSP solution
has contributed many real world applications such as
decision making, navigation, stock market, transportation
and problems. The TSP searches for the shortest path among
a set of cities with known distances between a pairs of cities,
and it can be formulated as a complete graph with a set of
vertices, which is a set of edges weighted by the distance
between two vertices (cities). The problem is finding the
most inexpensive Hamiltonian cycle associated with visiting
each city exactly once and returning to the original city. The
TSP is well known as a Non-deterministic Polynomial time
(NP-hard) problem, and the determination of the exact
solution is difficult [1]. Previous studies have considered
many approaches for solving the TSP problem, which are
varied in their complexity and efficiency. There have been
important advances in the development of exact and
approximate algorithms. The exact algorithms are the oldest
approaches used to solve the problem. Dantzig, et al. [2] [3-6]
[7] [8-10]. The exact methods can only be used for small
problem instances. Therefore, for large problem instances,
the recent researches have been focused on applying
approximate methods, i.e., greedy constructive heuristics,

iterative improvement or local search heuristics and meta-
heuristics, in solving the problem.

Earliest greedy constructive heuristics for the TSP build
solutions from scratch by adding an unvisited city in each
step based on cost-saving path. These methods are relatively
fast to generate feasible solution and the solution can be
iteratively improving by using local search heuristics such as
2-opt or 3-opt. Nevertheless, the main drawback of applying
the local search heuristics only is the fact that the algorithm
is easy to trap in local optima. Past researches has shown
meta-heuristics can improved the problem, where the two
algorithms such as tabu search (TS) [11], simulated
annealing (SA) [12-16], etc, are popular used as local search
in meta-heuristic. They have achieved some success with
solving TSP in an acceptable amount of computation.
Recently, Water Flow-like Algorithm (WFA) [32 - 34] has
successfully applied to solve TSP [17]. The major key
success of WFA for TSP (WFA-TSP) is the fact that WFA-
TSP search problem solution space with dynamic population
(solution search agents) size. Unlike traditional
metaheuristic such as genetic algorithm or ant colony
system which search problem solution space with fixed
population size. The main advantages WFA is the fact that it
presented a dynamic behaviour in which the WFA has the
ability to adapt its population number during the
optimization process according to problem instance size and
complexity.

669

Now a day, the current research trend is move toward
developing an efficient and effective algorithm for solving
TSP by improving the existing meta-heuristics.
Hybridization meta-heuristics with other meta-heuristics is a
famous method used to improve a metaheuristic by
employing the strength of other metaheuristic feature and by
exploiting the complementary character of different
optimization strategies. thus, having an adequate
combination of complementary algorithmic concepts can be
the key for achieving top performance in solving many hard
optimization problems [18, 19].

In general, population based meta-heuristics are
characterized by a good exploration of the problem search
space, whereas single solution-based meta-heuristics are
good for exploitation [20]. Therefore, the combination
between both populations based meta-heuristics and single
solution-based meta-heuristics have been widely recorded in
the literature [18, 19, 21-25]. One of the major key usage of
such combination is the fact that it can provides a good
balance between exploration and exploitation, which then
can improve the overall performance of the algorithm [26].
The balancing between exploration and exploitation in
population based meta-heuristics is performed by increasing
the algorithm exploitation capability. The algorithm might
combine with strong local search or single solution meta-
heuristic algorithm in order to achieve a such balance, as the
single solution-based meta-heuristics are strong in solution
search exploitation Zhao, et al. [27].

Simulated annealing algorithm have been widely used as
local search algorithm to improve the population based
meta-heuristics [28-31]. The main feature of using SA is it
can improve the solution search exploitation without being
trap in local optima. In this study, a combination between
WFA algorithm and SA algorithm is proposed in order to
improve the overall performance of WFA algorithm by
balancing between exploration and exploitation. Making
such balance between exploration and exploitation can be
achieved by improving WFA algorithm exploitation using
SA algorithm.

This paper is organised as follows. Section 2 discusses the
related works including a brief background of WFA and SA
algorithms performance. Section 3 details the propose hybrid
WFA with SA for solving TSP problem. The experimental
results and conclusion is presented in sections 4 and 5
respectively.

II. MATERIAL AND METHOD

A. Water flow-like algorithm

Water flow-like algorithm (WFA) [32] considered as a
new meta-heuristic algorithm, inspired by the natural
behaviour of water flowing from higher to lower levels. The
water flows can split or merge according to the surface
scenery. The advantages of the WFA are that it is self-
adaptive and dynamic in its population sizes and parameter
settings. The solution agent size is not fixed, unlike in the
traditional population based meta-heuristics. The flow
number is subject to increase or decrease during the
optimisation process. The population size changes are based
on the problem diminution and solution quality found by the

agents. However, Yang and Wang [32] describe and map the
dynamic size of the solution agents based on the natural
behaviour of water flows as they split, move and merge.

The first version of the WFA was developed by Yang and
Wang as the bin-packing [32]. WFA also has presented is
good performance is various domain such [32],
manufacturing cell fraction [33] and nurse scheduling
problems [34] and recent work [17] has been applied in
Travel sales problem. The most advantages of WFA is the
fact that its ability to reach the quality solution very fast,
especially in large data set. WFA has performed more 90%
faster than ACS. This is because the nature of WFA itself
behave dynamic population size. The number changes over
the time and the needs of agent solution optimized during the
finding the solutions.

The basic operations of the WFA for solving the
Travelling salesman Problem (TSP) include initialization,
flow splitting and moving, flow merging, water evaporation,
and water precipitation [17]. Initialization includes
parameter setting and initial solution generation. The
original WFA is adopted for the parameter setting [2]. The
initial solution is generated by the Nearest Neighbour (NN).
Normally, the process of enhancement of the WFA only
starts after the initialization process. The flow splitting
operation is conducted and depends on the flow momentum
value. After that, the moving operation is conducted where
the design is based on the type of target problem being
solved. The algorithm for the flow moving process combines
two types of neighbourhood structures, namely the insertion
move and k-opt.

The flow merging operation is the operation that
combines more than two flow moves to the same location.
This operation merges more than one flow into a single flow.
Masses and momentums accumulate to compose an
integrated flow to reinforce the solution search. This
accumulation helps the stagnant flow to escape from the
trapped location. This operation checks a flow with others
whether they share the same location, and if it does, the
latter flow will merge into the former one. The merging
operation is executed to eliminate redundant flows.

The water evaporation operation is performed after the
flow merging operation. This operation aims to simulate the
natural evaporation of water into the air. Water evaporation
is executed when evaporation conditions are met. The WFA
uses the concept of water evaporation for preparing
regeneration flows to increase the wideness of a solution
search. When the evaporated water accumulates to a certain
amount, it will return to the ground. This process is known
as the precipitation operation, and it is the natural rainfall
behaviour. This operation achieves redistribution of flows
that escape from the local optima and spread the solution
search range. Two types of precipitation are used in the
WFA known as the enforced precipitation and regular
precipitation.

There are many methods that can improve the meta-
heuristic solution quality such as a hybrid of different meta-
heuristics, adding heuristics and using some memory to
avoid redundant searches. However, this research aims to
improve the local search using simulated annealing.

670

B. Simulated Annealing

Simulated Annealing (SA) is one of the oldest among the
metaheuristic methods, which is developed for solving
COP’s by locating a good approximation to the global
optimum of the objective function in the search space. SA
was first proposed by [35, 36]. The basic idea of SA is
stimulating the physical process, where the annealing
process requires heating, then slowly cooling of the material
in order to increase the size of its crystals and reduce their
defects and then obtaining a strong crystalline structure [36,
37].

SA has obtained some degrees of successes [12-16].
Although it differs from other meta-heuristics, [12-16] SA
has shown a comparative performance in improving local
optimization in terms of computation time. This is due to its
requirement of less memory space, in comparison to the
population-based meta-heuristics. Therefore, SA has a
potential to improve several meta-heuristics. As recorded in
literature, SA have been widely used as local search
algorithm to improve the population based meta-heuristics
[28-31]. The main feature of using SA is it can improve the
solution search exploitation without being trap in local
optima.

C. Proposed Method

The proposed solution approach has adopted WFA-TSP
basic operations of initialization, flow splitting and moving,
flow merging, water evaporation and water precipitation [3].
The SA is embedded into WFA-TSP as local search
procedure in order to improve solutions by making an
intensive search for the best solution that produced by WFA-
TSP after flow moving and splitting operation. Ayman in [17]
has used 2-opt local search. The search process of the
embedded SA depends on the neighbourhood structure of the
TSP. There are 4 additional steps added to the original
algorithm between steps 6 and 7 in [17], which earlier uses
different random move of neighbourhood. However this
research has used various structure such as random swap
move, 2-opt move, 3-opt move and 4-opt move in SA and
the step 7 in [17] move to steps 11 onwards.

Step 7: Start and initialized the SA procedure.
Step 8: Search for new neighbourhood solution of
SolutionBest using random neighbourhood move. If the new
solution found is better than SolutionBest, Then update the
best solution and skip to step 9, else accept the new solution
with probability.
Step 9: Update the temperature.
Step 10: Repeat steps 8 and 9 until the termination condition
is met.

Figure 1 shows the algorithm WFA with SA for TSP
adopt WFA for TSP in [17], where line 6 is call the three
variants Simulated Annealing using three neighbourhood
structures show in Figure 2 (a), (b) and (c).

1 WFA_SA_Algorithm ()

2 Generate an initial solution using NN

(nearest neighbor) //refer step1 in [17]

3 WHILE (stop criterion is false) {

4 Cal. no. of sub-flows; //refer equation 1 in

[17]

5 Assign sub-flows new locations using insertion

move //refer step 3 in [17]

6 Apply the Simulated Annealing ()

7 Distribute mass of flow to its sub-flows;

//refer equation 2 and 3 in [17]

8 Calculate the improvement in objective function;

9 Flow merging. //refer step 6 in [17]

10 Water evaporation. //refer step 7 in [17]

11 IF (rainfall required) {

12 Precipitation. //refer step 8 and step 9 in

[17]

13 Flow Merging. //refer step 6 in [17]

14 }

15 IF (new best solution found)

16 Update best solution record.

17 }

Fig. 1 WFA with Simulated Annealing

The SA implementation starts from a single solution,
which is obtained by the best subflows after flow splitting
and moving operation. It search systematically a random
move generation of solution neighbourhood and allow worst
move to be accepted or to be rejected according to the SA
criterion. In the pseudo-code, the algorithm starts with
initializing the SA parameters such as initial solution Sinitial,
initial temperature T0, current temperature Tc, max iteration
Maxitr and cooling rate C. Next, each iteration in the SA
procedure, a stochastic approach is used to guide the search.
It guides the search in the following way. If the generated
neighbourhood solution S’ using one move of solution S
decreases the objective value or leaves it unchanged, then
the move is always accepted. Formally, the solution S’ is
always accepted as current solution in case of ∆≤0, where ∆
=f(s)-f(s') and the f(s) is the value of the objective function.
On the other hand, the solution s’ is accepted with
probability e^(∆/T_c) in order to allow the search to explore
more region in the search space and to prevent it to be
trapped in local optimum.

In our implementation and after experimentation, the
initial parameter for cooling rate is set to at T0=100,
Tc=0.001, and max iteration is set Maxitr=50. The
temperature is decreased according to the cooling rate C
which was set to 0.5.

In the implemented SA, the random move generation
method of solution neighbourhood can be performed using
any applicable neighbourhood structure of TSP. However, in
this paper we test and implement four common types of
neighbourhood structure, namely, swap move (swap two
randomly selected cities), 2-opt move, 3-opt move and 4 opt
move. Each single neighbourhood structure are implemented
and tested separately with SA. The pseudo-code for the four
neighbourhood structures used in this paper are illustrated in
Figures 2 (a), (b) and (c) , respectively.

671

1 SA-swap-move ()
2 Begin
3 While (Max itr bound reached)
4 s = flow best. getsoliution();
5 s’ = s.clone();
6 Begin
7 City_A = s’.gettour.getRandomCity();
8 City_B = s’.gettour.getRandomCity();
9 Aux = city_A;
10 City_A = City_B;
11 City_B = Aux;
12 End
13 If (s’.SolutionCost < s.SolutionCost)
14 s = s’;
15 Else
16 Accept s’ with probability
17 End if
18 Update temp.
19 End while
20 End

Fig. 2(a) Algorithm Simulated Annealing with Swap

1 SA-2-opt-move()
2 Begin
3 While (Max itr bound reached)
4 s = flow best. getsoliution();
5 s’ = s.clone();
6 Begin
7 Do
8 If (Edge1 > Edge2)
9 Edge1 = Edge 2; Else Edge2 = Aux;
10 End If
11 While (Edge1 = Edge2)
12 Newtour = currenttour
13 int i =0;
14 While (i < Edge1);
15
Newtour.CityIndex[i]=currenttour.CityIndex[i];
16 i++;
17 j++;
18 End While;
19 int j =Edge2;
20 While (i < Edge2+1);
21 Newtour.CityIndex[i] =
currenttour.CityIndex[j];
22 i++;
23 j++;
24 End While;
25 While (i < tour.CityNumber);
26 Newtour.CityIndex[i] =
currenttour.CityIndex[i];
27 j++;
28 End While;
29 Return Newtour;
30 End Do
31 If (s’.SolutionCost < s.SolutionCost)
32 s = s’;
33 Else
34 Accept s’ with probability
35 End If
36 Update Temp.
37 End while
38 End

Fig. 2(b) Algorithm Simulated Annealing with Swap

1 // k denote to 3opt or 4-opt
2 SA-k-opt-move()
3 Begin
4 While (Max itr bound reached)
5 s = flow best. getsoliution();
6 s’ = s.clone();
7 Begin
8 Int Opt = 2;
9 Int i = CurrentTour.GetRandomEdge;
10 Int j = CurrentTour.GetRandomEdge;
11 NewTour = TwoOpt(Currenttour,i,j);
12 Do
13 TempTour1=twoOpt(NewTour , i,
14 NewTour. Get RandomEdge) ;
15 TempTour2=twoOpt(NewTour , NewTour.
16 GetRandomEdge, j) ;
17 If (TempTour1.GetTourLength <
18 TempTour2.G et TourLeng t h)
19 NewTour= TempTour1 El se
20 Opt++ ;

 21 While (Opt<K);
 22 Return NewTour;

23 NewTour= TempTour2;
24 End
25 End

Fig. 2(c): Algorithm Simulated Annealing with k-opt

III. RESULTS AND DISCUSSION

In this section, the experimental results of WFA-SA-TSP
are presented. However, to measure the performance of
WFA-SA-TSP, a number of experiments were carried out
using TSP benchmark datasets. Eighteen TSP benchmark
datasets, available at TSPLIB [38], were used in the
conducted experiments as similar in [17]. The number of
cities of the datasets are ranged from 51 to 3705 cities. The
WFA-TSP and WFA-SA-TSP were implemented using Java
platform JDK 1.6, a Windows environment and a personal
computer with an Intel core i5 (3.00 GHz CPU speed and 4
GB RAM). The WFA-TSP and WFA-SA-TSP were
implemented to compare them and measure their
performance. The experiments used the parameter setting as
in [17].

 Table 1 and Table 2 present a comparison results in terms
of the best solution quality, average iterations number and
computation time of the algorithms tested. The tables also
show the comparison between WFA-TSP and WFA-SA-TSP
in terms of the solution accuracy (in percentage) and the
solution deviation of the mean values regarding the best-
known solution. The p-values are provided for solution
quality to see if there is any significant difference between
the WFA-TSP and WFA-SA-TSP algorithms.

The experiments measured the solution quality of the
WFA-SA-TSP obtained from 10 runs for each
neighbourhood structure, such as swap, 2- opt, 3-opt and 4-
opt. That means for each data sets, the WFA-SA-TSP was
executed 40 times. The termination condition of the WFA-
SA-TSP is activated once it reach 10,000 iterations for each
independent run. The number of iterations required to reach
the best solution was also considered. The results of top 10
out of 40 independent run that includes the best solution, the
time elapsed to find the best solution, the average of the
solution cost and the best neighbourhood structure were also
recorded.

672

The results of the experiments are presented in Table 2 in
which the performance of the WFA-SA-TSP is compared
with the basic WFA-TSP, by considering the best solution
found and the average solutions from 10 independent runs.
In the table, BKS represents the best-known solution, Mean
represents the average, best represents the best solution
found and Best NS represents the best neighbourhood
structure of 4o independent ruins. It can be seen that the
results of the WFA-SA-TSP when the embedded SA use the
four-neighbourhood structure are generally better than
WFA-TSP in large size datasets. Where the WFA-SA-TSP
outperformed the WFA-TSP 9 datasets in terms of the best
solution found. These datasets are lin318, rat576, rat787,
u1060, fl1400, d1655, u1817, d2103 and fl3795. In small
size datasets, both the WFA-TSP and the WFA-SA-TSP can
obtain the optimal solution in 9 out of 18 datasets in terms of
the best solution found. The WFA-SA-TSP also
outperformed the WFA-TSP in nearly all datasets in terms of
the average solutions, except for datasets eil76, eil101 and
ch150.

Table 1 shows the average computational time of both
algorithms changes when the number of cities is increased. It
can be seen from the table that the average computation time
of both algorithms is clearly increasing with the larger
dataset size in both algorithms. From the table, it can be
deduced that with small, medium and large dataset size, the
computation time of WFA-SA-TSP is only slightly higher
that WFA-TSP.

TABLE I
RESULTS OF THE COMPARISON BETWEEN WFA-TSP AND WFA-SA-TSP

ALGORITHMS

Table 2 presents a comparison of the experimental results

by using the percentage deviations of the average and best
solutions from the best-known solution of the WFA-TSP and
WFA-SA-TSP. The percentage deviation of the average
solution from the best-known solution as PDavg while the
calculated deviation of the best solution from the best-known
solution is denoted as PDbest. The table shows that the
deviation of the average solution from the PDavg of the
WFA-SA-TSP for the major datasets was significantly better
than that of the other algorithms. The difference in the
performance of WFA-SA-TSP in each dataset compared
with that of the WFA-TSP in terms of the PDavg value.
Table 2 also shows that the deviation of the best solution
from the best-known solution (PDbest) of the WFA-SA-
TSP is generally better than that of WFA-TSP for datasets
lin318, rat576, rat787, u1060, fl1400, d1655, u1817, d2103

and fl3795. The table also demonstrates the significant of the
statistical results of all datasets. It can be seen that WFA-
SA-TSP with 4-opt has a significant improvement in terms
of the solution quality where the p-values for the large size
datasets are less than 0.05.

TABLE III
COMPARISONS OF THE SOLUTION DEVIATION OF WFA-SA-TSP RESULTS

WITH WFA-TSP RESULTS

Figure 3 shows a general WFA-SA-TSP searching

behaviour and the performance of the algorithm in terms of
exploration and exploitation when using SA with swap, 2-
opt, 3-opt and 4-opt move to solve ch130 dataset problem.
The use of SA as local search algorithm has improved the
algorithm performance in finding good solution in less
amount of time, which prevents the algorithm from early
convergence and avoids it to trap in local optima.

The dashed lime arrow points to the best objective values
that obtained by WFA-SA-TSP in respect to WFA-TSP. The
pointed area indicates that the exploitation process which
using SA is performed better in this region comparing to the
WFA-TSP. On the other hand, the solid line arrow point to a
sample of solution exploration regions with worst solution
area more that WFA-TSP which are clearly shows that the
WFA-SA-TSP can explore move more solution area in the
problem search space.

Fig. 3 A comparison of searching behaviour between the WFA-TSP and
ASA-TSP with swap, 2-opt, 3-opt and 4-opt move when solve ch130
dataset

673

Figure 4 also shows the log file of WFA-SA-TSP for
four individual datasets which include the global and the
local best of solutions obtained during the first 200 iterations.
As shown in the figure sketch a, b, c and d, a good balancing
between exploration and exploitation process is clearly seen
in data sets ch130, lin318, rat783 and d1655, respectively,
where the shaded area of the local best values are fluctuating
somehow in more systematic way.

Fig. 4 Comparison of the global best and local best of the objective value
during the optimization process of WFA-SA-TSP

A. Performance of WFA-SA-TSP versus other meta-
heuristics

This section provides the comparisons among WFA-SA-
TSP and Discrete Cuckoo Search Algorithm (DCS) [39] and
Genetic Simulated Annealing Ant Colony System with
Particle Swarm Optimization Techniques (GSAACS-PSOT)
by Chen & Chien (2011), Pastiand Castro algorithm by Pasti
& De Castro (2006) and Masutti,and Castro algorithm by
Masutti & de Castro (2009) in [17] in terms of solution
quality using in 18 TSP datasets (see Table 3).

TABLE IIIII
RESULTS OF THE COMPARISONS BETWEEN WFA-SA-TSP AND OTHER META-

HEURISTICS

In this table, the best results are marked in bold. It can be
seen that the experimental results of WFA-SA-TSP in the 18

datasets is generally better than Pasti and Castro (2006),
Masutti and Castro (2009), GSAACS-PSOT (2011) and
DCS [39] algorithms. The WFA-SA-TSP also better
compare with discrete invasive weed optimization algorithm,
in all three data sets shown in [40].

IV. CONCLUSION

WFA for TSP has shown its abilities in solving TSP, as it
characterized with dynamic population size which make it
more suitable of solving variant instance size of TSP without
reconfiguring the parameter setting. In this paper, we
propose an improved version of WFA for solving TSP
problem (WFA-SA-TSP). The performance of WFA- SA-
TSP was tested using 18 TSP benchmark datasets
considering the best solution, average solution, and standard
deviation, the percentage deviation of the average solution to
the best-known solution and the percentage deviation of the
best solution to the best-known solution. The experimental
results show that the WFA-SA-TSP is generally outperforms
the WFA-TSP. This study demonstrates that the WFA-TSP.
can be subject for further improvement in terms of
solution search exploration and exploitation using various
neighborhood structure.

Since WFA-TSP consists of several components that
influencing in the algorithm therefore many potential
improvements can be made using the WFA algorithm for the
TSP especially improving the water flow splitting and
movement using more better neighbor search strategies.

REFERENCES
[1] E. L. Lawler, The Travelling Salesman Problem: A Guided Tour of

Combinatorial Optimization. Wiley-Interscience Series in Discrete
Mathematics, 1985.

[2] Nur Ariffin Mohd Zin, Siti Norul Huda Sheikh Abdullah, Noor
Faridatul Ainun Zainal, Esmayuzi Ismail, A Comparison of
Exhaustive, Heuristic and Genetic Algorithm for Travelling
Salesman Problem in PROLOG. International Journal on Advanced
Science, Engineering and Information Technology (IJASEIT), vol. 2,
2012.

[3] Mansour Alssager, Zulaiha Ali Othman, Masri Ayob, Cheapest
Insertion Constructive Heuristic based on Two Combination Seed
Customer Criterion for the Capacitated Vehicle Routing Problem.
Mathematical programming, International Journal on Advanced
Science, Engineering and Information Technology (IJASEIT), vol. 7,
no. 1, 2017.

[4] T. H. C. Smith, V., Srinivasan, and G. Thompson,
Computational performance of three subtour elimination algorithms
for solving asymmetric travelling salesman problems. Annals of
Discrete, 1977.

[5] G. Carpeneto and P. Toth, Some new branching and bounding
criteria for the asymmetric travelling salesman problem.
Management Science, pp. 736-743, 1980.

[6] E. Balas and N. Christofides, A restricted Lagrangean approach to
the travelling salesman problem. Mathematical programming, vol. 21,
pp. 19-46, 1981.

[7] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel, An algorithm
for the travelling salesman problem. Operations research, vol. 11, pp.
972-989, 1963.

[8] H. Crowder and M. W. Padberg, Solving large-scale symmetric
travelling salesman problems to optimality. Management Science, pp.
495-509, 1980.

[9] G. Reinelt, The travelling salesman: computational solutions for
TSP applications. Springer-Verlag, 1994.

[10] M. Grötschel and O. Holland, Solution of large-scale symmetric
travelling salesman problems. Mathematical programming, vol. 51,
pp. 141-202, 1991.

674

[11] F. Glover, Tabu search-part I. ORSA Journal on computing, vol. 1,
pp. 190-206, 1989.

[12] T. Peng, W. Huanchen, and Z. Dongmo, Solving the Travelling
Salesman Problem by Simulated Annealing. Journal of Shanghai
Jiaotong University, 1995.

[13] E. Bonomi and J. L. Lutton, The N-city travelling salesman
problem: Statistical mechanics and the Metropolis algorithm. SIAM
review, pp. 551-568, 1984.

[14] B. L. Golden and C. C. Skiscim, Using simulated annealing to solve
routing and location problems. Naval Research Logistics Quarterly,
vol. 33, pp. 261-279, 1986.

[15] S. Nahar, S. Sahni, and E. Shragowitz, Simulated annealing
and combinatorial optimization. pp. 293-299, 1986.

[16] C. C. Lo and C. C. Hsu, An annealing framework with learning
memory. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, vol. 28, pp. 648-661, 1998.

[17] Ayman Srour, Zulaiha Ali Othman, Abdul Razak Hamdan, A Water
Flow-Like Algorithm for the Travelling Salesman Problem.
Advances in Computer Engineering, 2014.

[18] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, Hybrid meta-
heuristics in combinatorial optimization: A survey. Applied Soft
Computing, vol. 11, pp. 4135-4151, 2011.

[19] E. G. Talbi, Meta-heuristics: From Design to Implementation:
2009. Wiley Publishing, 2009.

[20] C. Blum, J. Puchinger, G. Raidl, and A. Roli, A brief survey on
hybrid meta-heuristics. Proceedings of BIOMA, pp. 3-18, 2010.

[21] C. Blum, A. Roli, and M. Sampels, Hybrid meta-heuristics: An
emerging approach to optimization. vol. 114: Springer, 2008.

[22] Moaath Shatnawi, Mohammad Faidzul Nasrudin, Shahnorbanun
Sahran, A new initialization technique in polar coordinates for
Particle Swarm Optimization and Polar PSO. International Journal on
Advanced Science, Engineering and Information Technology
(IJASEIT), vol. 7, no. 1, 2017.

[23] C. Grosan, A. Abraham, and H. Ishibuchi, Hybrid evolutionary
algorithms. Springer Publishing Company, Incorporated, 2007.

[24] E.-G. Talbi, A taxonomy of hybrid meta-heuristics. Journal of
heuristics, vol. 8, pp. 541-564, 2002.

[25] M. Lozano and C. García-Martínez, Hybrid meta-heuristics with
evolutionary algorithms specializing in intensification and
diversification: Overview and progress report. Computers &
Operations Research, vol. 37, pp. 481-497, 2010.

[26] G. Zhao, W. Luo, H. Nie, and C. Li, A Genetic Algorithm Balancing
Exploration and Exploitation for the Travelling Salesman Problem.
pp. 505-509, 2008.

[27] K. Ganesh and M. Punniyamoorthy, Optimization of continuous-time
production planning using hybrid genetic algorithms-simulated

annealing. The International Journal of Advanced Manufacturing
Technology, vol. 26, pp. 148-154, 2005.

[28] W.-M. Hung, W.-C. Hong, and T.-B. Chen, Application of hybrid
genetic algorithm and simulated annealing in a SVR traffic flow
forecasting model. Evolutionary Computation, 2009. CEC'09. IEEE
Congress. pp. 728-735, 2009.

[29] X.-G. Li and X. Wei, An improved genetic algorithm-simulated
annealing hybrid algorithm for the optimization of multiple
reservoirs. Water Resources Management, vol. 22, pp. 1031-1049,
2008.

[30] G. Nallakumarasamy, P. Srinivasan, K. V. Raja, and R.
Malayalamurthi, Optimization of Operation Sequencing in CAPP
Using Superhybrid Genetic Algorithms-Simulated Annealing
Technique. ISRN Mechanical Engineering, vol. 2011.

[31] F. C. Yang and Y. P. Wang, Water flow-like algorithm for object
grouping problems. Journal of the Chinese Institute of Industrial
Engineers, vol. 24, pp. 475-488, 2007.

[32] T. H. Wu, S. H. Chung, and C. C. Chang, A water flow-like
algorithm for manufacturing cell formation problems. European
Journal of Operational Research, vol. 205, pp. 346-360, 2010.

[33] P. S. Shahrezaei, R. T. Moghaddam, M. Azarkish, and A.
Sadeghnejad- Barkousaraie, Water Flow-Like and Differential
Evolution Algorithms for a Nurse Scheduling Problem. American
Journal of Scientific Research, pp. 12- 32, 2011.

[34] S.-M. Chen and C.-Y. Chien, Solving the travelling salesman
problem based on the genetic simulated annealing ant colony system
with particle swarm optimization techniques. Expert Systems with
Applications, vol. 38, pp. 14439-14450, 2011.

[35] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by
simulated annealing. Science, vol. 220, pp. 671, 1983.

[36] T. El-Ghazali, Meta-heuristics: from design to implementation. Jonh
Wiley and Sons Inc., Chichester, 2009.

[37] S. Lin and B. W. Kernighan, An effective heuristic algorithm for
the travelling-salesman problem. Operations research, pp. 498-516,
1973.

[38] G. Reinelt, TSPLIB - A travelling salesman problem library. ORSA
Journal on computing, vol. 3, pp. 376-384, 1991.

[39] A. Ouaarab, B. Ahiod, X. S. Yang, Discrete cuckoo search algorithm
for the travelling salesman problem. Neural Computing and
Applications; 24(7-8): 1659-1669, 2014.

[40] Y. Q. Zhou, H. C. Luo, H. Chen, A. P. He, J. Z. Wu, A discrete
invasive weed optimization algorithm for solving traveling salesman
problem. Neurocomputing; 151: 1227-1236, 2015.

675

