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Abstract— Water Flow-like Algorithm (WFA) has been proved its ability obtaining a fast and quality solution for solving Travelling 
Salesman Problem (TSP). The WFA uses the insertion move with 2-neighbourhood search to get better flow splitting and moving 
decision. However, the algorithms can be improved by making a good balance between its solution search exploitation and 
exploration. Such improvement can be achieved by hybridizing good search algorithm with WFA.  This paper presents a hybrid of 
WFA with various three neighbourhood search in Simulated Annealing (SA) for TSP problem. The performance of the proposed 
method is evaluated using 18 large TSP benchmark datasets. The experimental result shows that the hybrid method has improved the 
solution quality compare with the basic WFA and state of art algorithm for TSP. 
 
Keywords— Travelling Salesman problem; Water flow-like algorithm; Simulated Annealing; Meta-heuristics; combinatorial 
optimization. 
 
 

I. INTRODUCTION 

The Travelling Salesman Problem (TSP) is a classic 
routing problem that attracts many researchers from different 
fields, including operational research, mathematics and 
several scientific and engineering fields. The TSP solution 
has contributed many real world applications such as 
decision making, navigation, stock market, transportation 
and problems. The TSP searches for the shortest path among 
a set of cities with known distances between a pairs of cities, 
and it can be formulated as a complete graph with a set of 
vertices, which is a set of edges weighted by the distance 
between two vertices (cities). The problem is finding the 
most inexpensive Hamiltonian cycle associated with visiting 
each city exactly once and returning to the original city. The 
TSP is well known as a Non-deterministic Polynomial time 
(NP-hard) problem, and the determination of the exact 
solution is difficult [1]. Previous studies have considered 
many approaches for solving the TSP problem, which are 
varied in their complexity and efficiency. There have been 
important advances in the development of exact and 
approximate algorithms. The exact algorithms are the oldest 
approaches used to solve the problem. Dantzig, et al. [2] [3-6] 
[7] [8-10]. The exact methods can only be used for small 
problem instances. Therefore, for large problem instances, 
the recent researches have been focused on applying 
approximate methods, i.e., greedy constructive heuristics, 

iterative improvement or local search heuristics and meta-
heuristics, in solving the problem. 

Earliest greedy constructive heuristics for the TSP build 
solutions from scratch by adding an unvisited city in each 
step based on cost-saving path. These methods are relatively 
fast to generate feasible solution and the solution can be 
iteratively improving by using local search heuristics such as 
2-opt or 3-opt. Nevertheless, the main drawback of applying 
the local search heuristics only is the fact that the algorithm 
is easy to trap in local optima. Past researches has shown 
meta-heuristics can improved the problem, where the two 
algorithms such as tabu search (TS) [11], simulated 
annealing (SA) [12-16], etc, are popular used as local search 
in meta-heuristic. They have achieved some success with 
solving TSP in an acceptable amount of computation. 
Recently, Water Flow-like Algorithm (WFA) [32 - 34] has 
successfully applied to solve TSP [17]. The major key 
success of WFA for TSP (WFA-TSP) is the fact that WFA-
TSP search problem solution space with dynamic population 
(solution search agents) size. Unlike traditional 
metaheuristic such as genetic algorithm  or ant colony 
system  which search problem solution space with fixed 
population size. The main advantages WFA is the fact that it 
presented a dynamic behaviour in which the WFA has the 
ability to adapt its population number during the 
optimization process according to problem instance size and 
complexity. 
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Now a day, the current research trend is move toward 
developing an efficient and effective algorithm for solving 
TSP by improving the existing meta-heuristics. 
Hybridization meta-heuristics with other meta-heuristics is a 
famous method used to improve a metaheuristic by 
employing the strength of other metaheuristic feature and by 
exploiting the complementary character of different 
optimization strategies.  thus, having an adequate 
combination of complementary algorithmic concepts can be 
the key for achieving top performance in solving many hard 
optimization problems [18, 19]. 

In general, population based meta-heuristics are 
characterized by a good exploration of the problem search 
space, whereas single solution-based meta-heuristics are 
good for exploitation [20]. Therefore, the combination 
between both populations based meta-heuristics and single 
solution-based meta-heuristics have been widely recorded in 
the literature [18, 19, 21-25]. One of the major key usage of 
such combination is the fact that it can provides a good 
balance between exploration and exploitation, which then 
can improve the overall performance of the algorithm [26]. 
The balancing between exploration and exploitation in 
population based meta-heuristics is performed by increasing 
the algorithm exploitation capability. The algorithm might 
combine with strong local search or single solution meta-
heuristic algorithm in order to achieve a such balance, as the 
single solution-based meta-heuristics are strong in solution 
search exploitation Zhao, et al. [27]. 

Simulated annealing algorithm have been widely used as 
local search algorithm to improve the population based 
meta-heuristics [28-31]. The main feature of using SA is it 
can improve the solution search exploitation without being 
trap in local optima. In this study, a combination between 
WFA algorithm and SA algorithm is proposed in order to 
improve the overall performance of WFA algorithm by 
balancing between exploration and exploitation. Making 
such balance between exploration and exploitation can be 
achieved by improving WFA algorithm exploitation using 
SA algorithm. 

This paper is organised as follows. Section 2 discusses the 
related works including a brief background of WFA and SA 
algorithms performance. Section 3 details the propose hybrid 
WFA with SA for solving TSP problem. The experimental 
results and conclusion is presented in sections 4 and 5 
respectively. 

 

II. MATERIAL AND METHOD 

A. Water flow-like algorithm 

Water flow-like algorithm (WFA) [32] considered as a 
new meta-heuristic algorithm, inspired by the natural 
behaviour of water flowing from higher to lower levels. The 
water flows can split or merge according to the surface 
scenery. The advantages of the WFA are that it is self-
adaptive and dynamic in its population sizes and parameter 
settings. The solution agent size is not fixed, unlike in the 
traditional population based meta-heuristics. The flow 
number is subject to increase or decrease during the 
optimisation process. The population size changes are based 
on the problem diminution and solution quality found by the 

agents. However, Yang and Wang [32] describe and map the 
dynamic size of the solution agents based on the natural 
behaviour of water flows as they split, move and merge. 

The first version of the WFA was developed by Yang and 
Wang as the bin-packing [32].  WFA also has presented is 
good performance is various domain such [32], 
manufacturing cell fraction [33] and nurse scheduling 
problems [34] and recent work [17] has been applied in 
Travel sales problem. The most advantages of WFA is the 
fact that its ability to reach the quality solution very fast, 
especially in large data set. WFA has performed more 90% 
faster than ACS. This is because the nature of WFA itself 
behave dynamic population size. The number changes over 
the time and the needs of agent solution optimized during the 
finding the solutions.  

The basic operations of the WFA for solving the 
Travelling salesman Problem (TSP) include initialization, 
flow splitting and moving, flow merging, water evaporation, 
and water precipitation [17]. Initialization includes 
parameter setting and initial solution generation. The 
original WFA is adopted for the parameter setting [2]. The 
initial solution is generated by the Nearest Neighbour (NN). 
Normally, the process of enhancement of the WFA only 
starts after the initialization process. The flow splitting 
operation is conducted and depends on the flow momentum 
value. After that, the moving operation is conducted where 
the design is based on the type of target problem being 
solved. The algorithm for the flow moving process combines 
two types of neighbourhood structures, namely the insertion 
move and k-opt. 

The flow merging operation is the operation that 
combines more than two flow moves to the same location. 
This operation merges more than one flow into a single flow. 
Masses and momentums accumulate to compose an 
integrated flow to reinforce the solution search. This 
accumulation helps the stagnant flow to escape from the 
trapped location. This operation checks a flow with others 
whether they share the same location, and if it does, the 
latter flow will merge into the former one. The merging 
operation is executed to eliminate redundant flows. 

The water evaporation operation is performed after the 
flow merging operation. This operation aims to simulate the 
natural evaporation of water into the air. Water evaporation 
is executed when evaporation conditions are met. The WFA 
uses the concept of water evaporation for preparing 
regeneration flows to increase the wideness of a solution 
search. When the evaporated water accumulates to a certain 
amount, it will return to the ground. This process is known 
as the precipitation operation, and it is the natural rainfall 
behaviour. This operation achieves redistribution of flows 
that escape from the local optima and spread the solution 
search range. Two types of precipitation are used in the 
WFA known as the enforced precipitation and regular 
precipitation. 

There are many methods that can improve the meta-
heuristic solution quality such as a hybrid of different meta-
heuristics, adding heuristics and using some memory to 
avoid redundant searches. However, this research aims to 
improve the local search using simulated annealing. 
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B. Simulated Annealing 

Simulated Annealing (SA) is one of the oldest among the 
metaheuristic methods, which is developed for solving 
COP’s by locating a good approximation to the global 
optimum of the objective function in the search space. SA 
was first proposed by [35, 36]. The basic idea of SA is 
stimulating the physical process, where the annealing 
process requires heating, then slowly cooling of the material 
in order to increase the size of its crystals and reduce their 
defects and then obtaining a strong crystalline structure [36, 
37]. 

SA has obtained some degrees of successes [12-16]. 
Although it differs from other meta-heuristics, [12-16] SA 
has shown a comparative performance in improving local 
optimization in terms of computation time. This is due to its 
requirement of less memory space, in comparison to the 
population-based meta-heuristics. Therefore, SA has a 
potential to improve several meta-heuristics. As recorded in 
literature, SA have been widely used as local search 
algorithm to improve the population based meta-heuristics 
[28-31]. The main feature of using SA is it can improve the 
solution search exploitation without being trap in local 
optima. 

C. Proposed Method 

The proposed solution approach has adopted WFA-TSP 
basic operations of initialization, flow splitting and moving, 
flow merging, water evaporation and water precipitation [3]. 
The SA is embedded into WFA-TSP as local search 
procedure in order to improve solutions by making an 
intensive search for the best solution that produced by WFA-
TSP after flow moving and splitting operation. Ayman in [17] 
has used 2-opt local search. The search process of the 
embedded SA depends on the neighbourhood structure of the 
TSP.  There are 4 additional steps added to the original 
algorithm between steps 6 and 7 in [17], which earlier uses 
different random move of neighbourhood. However this 
research has used various structure such as random swap 
move, 2-opt move, 3-opt move and 4-opt move in SA and 
the step 7 in [17] move to steps 11 onwards.   
 
Step 7: Start and initialized the SA procedure. 
Step 8: Search for new neighbourhood solution of 
SolutionBest using random neighbourhood move. If the new 
solution found is better than SolutionBest, Then update the 
best solution and skip to step 9, else accept the new solution 
with probability.  
Step 9: Update the temperature. 
Step 10: Repeat steps 8 and 9 until the termination condition 
is met. 

Figure 1 shows the algorithm WFA with SA for TSP 
adopt WFA for TSP  in [17], where line 6  is call the three 
variants Simulated Annealing using three neighbourhood 
structures show in Figure 2 (a), (b) and (c). 

 
 
 
 
 
 

1  WFA_SA_Algorithm () 

2   Generate an initial solution using NN  

(nearest neighbor) //refer step1 in [17] 

3   WHILE (stop criterion is false) { 

4   Cal. no. of sub-flows; //refer equation 1 in 

[17] 

5  Assign sub-flows new locations using insertion 

move //refer step 3 in [17] 

6   Apply the Simulated Annealing () 

7  Distribute mass of flow to its sub-flows; 

//refer equation 2 and 3 in [17] 

8  Calculate the improvement in objective function; 

9  Flow merging. //refer step 6 in [17] 

10  Water evaporation. //refer step 7 in [17] 

11  IF (rainfall required) { 

12    Precipitation. //refer step 8 and step 9 in 

[17] 

13    Flow Merging. //refer step 6 in [17] 

14    } 

15  IF (new best solution found) 

16      Update best solution record. 

17  } 
 

Fig. 1 WFA with Simulated Annealing 
 

The SA implementation starts from a single solution, 
which is obtained by the best subflows after flow splitting 
and moving operation. It search systematically a random 
move generation of solution neighbourhood and allow worst 
move to be accepted or to be rejected according to the SA 
criterion. In the pseudo-code, the algorithm starts with 
initializing the SA parameters such as initial solution Sinitial, 
initial temperature T0, current temperature Tc, max iteration 
Maxitr and cooling rate C. Next, each iteration in the SA 
procedure, a stochastic approach is used to guide the search. 
It guides the search in the following way. If the generated 
neighbourhood solution S’ using one move of solution S 
decreases the objective value or leaves it unchanged, then 
the move is always accepted.  Formally, the solution S’ is 
always accepted as current solution in case of ∆≤0, where ∆ 
=f(s)-f(s') and the f(s) is the value of the objective function. 
On the other hand, the solution s’ is accepted with 
probability e^(∆/T_c ) in order to allow the search to explore 
more region in the search space and to prevent it to be 
trapped in local optimum. 

In our implementation and after experimentation, the 
initial parameter for cooling rate is set to at T0=100, 
Tc=0.001, and max iteration is set Maxitr=50. The 
temperature is decreased according to the cooling rate C 
which was set to 0.5. 

In the implemented SA, the random move generation 
method of solution neighbourhood can be performed using 
any applicable neighbourhood structure of TSP. However, in 
this paper we test and implement four common types of 
neighbourhood structure, namely, swap move (swap two 
randomly selected cities), 2-opt move, 3-opt move and 4 opt 
move. Each single neighbourhood structure are implemented 
and tested separately with SA.  The pseudo-code for the four 
neighbourhood structures used in this paper are illustrated in 
Figures 2 (a), (b) and (c) , respectively. 
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1  SA-swap-move () 
2  Begin 
3  While (Max itr bound   reached)  
4   s = flow best. getsoliution();  
5   s’ = s.clone(); 
6   Begin 
7    City_A = s’.gettour.getRandomCity(); 
8    City_B = s’.gettour.getRandomCity(); 
9   Aux = city_A; 
10  City_A = City_B; 
11   City_B = Aux; 
12  End 
13  If (s’.SolutionCost < s.SolutionCost) 
14   s = s’; 
15  Else 
16   Accept s’ with probability 
17  End if  
18  Update temp. 
19  End while  
20 End 

 
Fig. 2(a) Algorithm Simulated Annealing with Swap 

 
 
1  SA-2-opt-move() 
2  Begin 
3  While (Max itr bound reached)  
4   s = flow best. getsoliution();  
5   s’ = s.clone(); 
6   Begin 
7   Do 
8   If (Edge1 > Edge2)  
9  Edge1 = Edge 2; Else Edge2 = Aux; 
10   End If 
11  While (Edge1 = Edge2)  
12   Newtour = currenttour  
13   int i =0; 
14   While (i < Edge1); 
15   
Newtour.CityIndex[i]=currenttour.CityIndex[i]; 
16   i++; 
17   j++; 
18  End While; 
19    int j =Edge2; 
20    While (i < Edge2+1); 
21      Newtour.CityIndex[i] = 
currenttour.CityIndex[j]; 
22      i++; 
23      j++; 
24    End While; 
25    While (i < tour.CityNumber); 
26      Newtour.CityIndex[i] = 
currenttour.CityIndex[i]; 
27      j++; 
28    End While;  
29    Return   Newtour; 
30    End Do  
31   If (s’.SolutionCost < s.SolutionCost) 
32    s = s’;  
33   Else 
34    Accept s’ with probability 
35   End If 
36    Update Temp. 
37  End while 
38  End 

 
Fig. 2(b) Algorithm Simulated Annealing with Swap 

 
 
 
 
 
 
 
 

1  // k denote to 3opt or 4-opt  
2  SA-k-opt-move() 
3  Begin 
4  While (Max itr bound   reached)  
5   s = flow best. getsoliution();  
6 s’ = s.clone(); 
7 Begin 
8  Int Opt = 2; 
9  Int i = CurrentTour.GetRandomEdge;  
10  Int j = CurrentTour.GetRandomEdge;  
11  NewTour = TwoOpt(Currenttour,i,j); 
12  Do 
13  TempTour1=twoOpt(NewTour , i,  
14      NewTour. Get RandomEdge) ; 
15  TempTour2=twoOpt(NewTour , NewTour. 
16  GetRandomEdge, j ) ;  
17  If (TempTour1.GetTourLength <  
18  TempTour2.G et TourLeng t h)  
19   NewTour= TempTour1 El se  
20    Opt++ ; 

 21  While (Opt<K); 
    22  Return NewTour; 

23   NewTour= TempTour2; 
24  End 
25  End  
 

Fig. 2(c): Algorithm Simulated Annealing with k-opt 
 

III.   RESULTS AND DISCUSSION 

In this section, the experimental results of WFA-SA-TSP 
are presented. However, to measure the performance of 
WFA-SA-TSP, a number of experiments were carried out 
using TSP benchmark datasets. Eighteen TSP benchmark 
datasets, available at TSPLIB [38], were used in the 
conducted experiments as similar in [17]. The number of 
cities of the datasets are ranged from 51 to 3705 cities.  The 
WFA-TSP and WFA-SA-TSP were implemented using Java 
platform JDK 1.6, a Windows environment and a personal 
computer with an Intel core i5 (3.00 GHz CPU speed and 4 
GB RAM). The WFA-TSP and WFA-SA-TSP were 
implemented to compare them and measure their 
performance. The experiments used the parameter setting as 
in [17]. 

 Table 1 and Table 2 present a comparison results in terms 
of the best solution quality, average iterations number and 
computation time of the algorithms tested. The tables also 
show the comparison between WFA-TSP and WFA-SA-TSP 
in terms of the solution accuracy (in percentage) and the 
solution deviation of the mean values regarding the best-
known solution. The p-values are provided for solution 
quality to see if there is any significant difference between 
the WFA-TSP and WFA-SA-TSP algorithms. 

The experiments measured the solution quality of the 
WFA-SA-TSP obtained from 10 runs for each 
neighbourhood structure, such as swap, 2- opt, 3-opt and 4-
opt. That means for each data sets, the WFA-SA-TSP was 
executed 40 times. The termination condition of the WFA-
SA-TSP is activated once it reach 10,000 iterations for each 
independent run. The number of iterations required to reach 
the best solution was also considered. The results of top 10 
out of 40 independent run that includes the best solution, the 
time elapsed to find the best solution, the average of the 
solution cost and the best neighbourhood structure were also 
recorded. 
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The results of the experiments are presented in Table 2 in 
which the performance of the WFA-SA-TSP is compared 
with the basic WFA-TSP, by considering the best solution 
found and the average solutions from 10 independent runs. 
In the table, BKS represents the best-known solution, Mean 
represents the average, best represents the best solution 
found and Best NS represents the best neighbourhood 
structure of 4o independent ruins. It can be seen that the 
results of the WFA-SA-TSP when the embedded SA use the 
four-neighbourhood structure are generally better than 
WFA-TSP in large size datasets. Where the WFA-SA-TSP 
outperformed the WFA-TSP 9 datasets in terms of the best 
solution found. These datasets are lin318, rat576, rat787, 
u1060, fl1400, d1655, u1817, d2103 and fl3795. In small 
size datasets, both the WFA-TSP and the WFA-SA-TSP can 
obtain the optimal solution in 9 out of 18 datasets in terms of 
the best solution found. The WFA-SA-TSP also 
outperformed the WFA-TSP in nearly all datasets in terms of 
the average solutions, except for datasets eil76, eil101 and 
ch150. 

Table 1 shows the average computational time of both 
algorithms changes when the number of cities is increased. It 
can be seen from the table that the average computation time 
of both algorithms is clearly increasing with the larger 
dataset size in both algorithms. From the table, it can be 
deduced that with small, medium and large dataset size, the 
computation time of WFA-SA-TSP is only slightly higher 
that WFA-TSP. 

TABLE I 
RESULTS OF THE COMPARISON BETWEEN WFA-TSP AND WFA-SA-TSP 

ALGORITHMS 

 
 
Table 2 presents a comparison of the experimental results 

by using the percentage deviations of the average and best 
solutions from the best-known solution of the WFA-TSP and 
WFA-SA-TSP. The percentage deviation of the average 
solution from the best-known solution as PDavg while the 
calculated deviation of the best solution from the best-known 
solution is denoted as PDbest. The table shows that the 
deviation of the average solution from the PDavg of the 
WFA-SA-TSP for the major datasets was significantly better 
than that of the other algorithms. The difference in the 
performance of WFA-SA-TSP in each dataset compared 
with that of the WFA-TSP in terms of the PDavg value. 
Table 2 also shows that the deviation of the best solution 
from the best-known solution (PDbest) of the WFA-SA- 
TSP is generally better than that of WFA-TSP for datasets 
lin318, rat576, rat787, u1060, fl1400, d1655, u1817, d2103 

and fl3795. The table also demonstrates the significant of the 
statistical results of all datasets. It can be seen that WFA-
SA-TSP with 4-opt has a significant improvement in terms 
of the solution quality where the p-values for the large size 
datasets are less than 0.05. 

 

TABLE III 
COMPARISONS OF THE SOLUTION DEVIATION OF WFA-SA-TSP RESULTS 

WITH WFA-TSP RESULTS 

 
 
Figure 3 shows a general WFA-SA-TSP searching 

behaviour and the performance of the algorithm in terms of 
exploration and exploitation when using SA with swap, 2-
opt, 3-opt and 4-opt move to solve ch130 dataset problem. 
The use of SA as local search algorithm has improved the 
algorithm performance in finding good solution in less 
amount of time, which prevents the algorithm from early 
convergence and avoids it to trap in local optima. 

The dashed lime arrow points to the best objective values 
that obtained by WFA-SA-TSP in respect to WFA-TSP. The 
pointed area indicates that the exploitation process which 
using SA is performed better in this region comparing to the 
WFA-TSP. On the other hand, the solid line arrow point to a 
sample of solution exploration regions with worst solution 
area more that WFA-TSP which are clearly shows that the 
WFA-SA-TSP can explore move more solution area in the 
problem search space. 

 

 
Fig. 3 A comparison of searching behaviour between the WFA-TSP and 
ASA-TSP with swap, 2-opt, 3-opt and 4-opt move when solve ch130 
dataset 
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Figure 4 also shows the log file of WFA-SA-TSP for 
four individual datasets which include the global and the 
local best of solutions obtained during the first 200 iterations. 
As shown in the figure sketch a, b, c and d, a good balancing 
between exploration and exploitation process is clearly seen 
in data sets ch130, lin318, rat783 and d1655, respectively, 
where the shaded area of the local best values are fluctuating 
somehow in more systematic way. 

 

 
Fig. 4 Comparison of the global best and local best of the objective value 
during the optimization process of WFA-SA-TSP 

A. Performance of WFA-SA-TSP versus other meta-
heuristics 

This section provides the comparisons among WFA-SA-
TSP and Discrete Cuckoo Search Algorithm (DCS) [39]  and 
Genetic Simulated Annealing Ant Colony  System  with  
Particle  Swarm Optimization Techniques (GSAACS-PSOT) 
by Chen & Chien (2011), Pastiand Castro algorithm by Pasti 
& De Castro (2006) and Masutti,and Castro algorithm by 
Masutti & de Castro (2009)  in [17] in terms of solution 
quality using in 18 TSP datasets (see Table 3).  

TABLE IIIII 
RESULTS OF THE COMPARISONS BETWEEN WFA-SA-TSP AND OTHER META-

HEURISTICS

 

In this table, the best results are marked in bold. It can be 
seen that the experimental results of WFA-SA-TSP in the 18 

datasets is generally better than Pasti and  Castro (2006), 
Masutti and Castro (2009), GSAACS-PSOT (2011) and 
DCS [39] algorithms. The WFA-SA-TSP also better 
compare with discrete invasive weed optimization algorithm, 
in all three data sets shown in [40]. 

 

IV.  CONCLUSION 

WFA for TSP has shown its abilities in solving TSP, as it 
characterized with dynamic population size which make it 
more suitable of solving variant instance size of TSP without 
reconfiguring the parameter setting. In this paper, we 
propose an improved version of WFA for solving TSP 
problem (WFA-SA-TSP). The performance of WFA- SA-
TSP was tested using 18 TSP benchmark datasets 
considering the best solution, average solution, and standard 
deviation, the percentage deviation of the average solution to 
the best-known solution and the percentage deviation of the 
best solution to the best-known solution. The experimental 
results show that the WFA-SA-TSP is generally outperforms 
the WFA-TSP. This study demonstrates that the WFA-TSP. 
can be  subject  for  further  improvement in  terms  of  
solution  search  exploration and exploitation  using  various  
neighborhood structure.   

Since  WFA-TSP  consists  of several components that 
influencing in the algorithm therefore many potential 
improvements can be made using the WFA algorithm for the 
TSP especially improving the water flow splitting and 
movement using more better neighbor search strategies. 
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