187 research outputs found

    A Robust Solver for a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation

    Get PDF
    We develop a robust solver for a second order mixed finite element splitting scheme for the Cahn-Hilliard equation. This work is an extension of our previous work in which we developed a robust solver for a first order mixed finite element splitting scheme for the Cahn-Hilliard equaion. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spacial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild.Comment: 17 pages, 3 figures, 4 tables. arXiv admin note: substantial text overlap with arXiv:1709.0400

    Numerical Methods for Deterministic and Stochastic Phase Field Models of Phase Transition and Related Geometric Flows

    Get PDF
    This dissertation consists of three integral parts with each part focusing on numerical approximations of several partial differential equations (PDEs). The goals of each part are to design, to analyze and to implement continuous or discontinuous Galerkin finite element methods for the underlying PDE problem. Part One studies discontinuous Galerkin (DG) approximations of two phase field models, namely, the Allen-Cahn and Cahn-Hilliard equations, and their related curvature-driven geometric problems, namely, the mean curvature flow and the Hele-Shaw flow. We derive two discrete spectrum estimates, which play an important role in proving the sharper error estimates which only depend on a negative power of the singular perturbation parameter ε [epsilon] instead of an exponential power. It is also proved that the zero level sets of the numerical solutions of the Allen-Cahn equation and the Cahn-Hilliard equation approximate the mean curvature flow and the Hele-Shaw flow respectively. Numerical experiments are carried out to verify the theoretical results and to compare the zero level sets of the numerical solutions and the geometric motions. Part Two focuses on finite element approximations of stochastic geometric PDEs including the phase field formulation of a stochastic mean curvature flow and the level set formulation of the stochastic mean curvature flow. Both formulations give PDEs with gradient-type multiplicative noises. We establish PDE energy laws and the Hölder [Holder] continuity in time for the exact solutions. Moreover, optimal error estimates are derived, and various numerical experiments are carried out to study the interplay of the geometric evolution and gradient-type noises. Part Three studies finite element methods for a quasi-static model of poroelasticity, which is a fluid-solid interaction multiphysics system at pore scale. We reformulate the original multiphysics system into a new system which explicitly reveals the diffusion process and has a built-in mechanism to overcome the locking phenomenon . Fully discrete finite element methods are proposed for approximating the new system. We derive a discrete energy law and optimal error estimates for our finite element methods. Numerical experiments are also provided to verify the theoretical results and to confirm that the locking phenomenon has indeed been overcome

    Isogeometric analysis of the Cahn-Hilliard equation - a convergence study

    Get PDF
    Herein, we present a numerical convergence study of the Cahn-Hilliard phase-field model within an isogeometric finite element analysis framework. Using a manufactured solution, a mixed formulation of the Cahn-Hilliard equation and the direct discretisation of the weak form, which requires a C1-continuous approximation, are compared in terms of convergence rates. For approximations that are higher than second-order in space, the direct discretisation is found to be superior. Suboptimal convergence rates occur when splines of order p=2 are used. This is validated with a priori error estimates for linear problems. The convergence analysis is completed with an investigation of the temporal discretisation. Second-order accuracy is found for the generalised-α method. This ensures the functionality of an adaptive time stepping scheme which is required for the efficient numerical solution of the Cahn-Hilliard equation. The isogeometric finite element framework is eventually validated by two numerical examples of spinodal decomposition
    • …
    corecore