
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2015

Numerical Methods for Deterministic and
Stochastic Phase Field Models of Phase Transition
and Related Geometric Flows
Yukun Li
University of Tennessee - Knoxville, yli70@vols.utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Li, Yukun, "Numerical Methods for Deterministic and Stochastic Phase Field Models of Phase Transition and Related Geometric
Flows. " PhD diss., University of Tennessee, 2015.
https://trace.tennessee.edu/utk_graddiss/3439

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by Yukun Li entitled "Numerical Methods for
Deterministic and Stochastic Phase Field Models of Phase Transition and Related Geometric Flows." I
have examined the final electronic copy of this dissertation for form and content and recommend that it
be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a
major in Mathematics.

Xiaobing Feng, Major Professor

We have read this dissertation and recommend its acceptance:

Ohannes Karakashian, Vasileios Maroulas, Xiaopeng Zhao

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



Numerical Methods for

Deterministic and Stochastic Phase

Field Models of Phase Transition

and Related Geometric Flows

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Yukun Li

August 2015



c© by Yukun Li, 2015

All Rights Reserved.

ii



To my beloved parents Yangyu Li and Dinglan Hu, for their continuous

understanding

iii



Acknowledgements

I would like to express my deepest appreciation to my advisor Professor Xiaobing Feng

for his careful guidance through my whole graduate studies. I could not go this far

without his guidance and encouragement. I am very grateful to Professors Ohannes

Karakashian, Vasilios Alexiades, Steven Wise, Yulong Xing and Vasileios Maroulas

for their teachings and for being always kind and patient to answer my questions.

I would also like to thank Professers Ohannes Karakashian, Vasileios Maroulas and

Xiaopeng Zhao for serving on my doctoral committee. Moreover, I would like to

thank my collaborators, Professors Andreas Prohl, Yulong Xing, Zhihao Ge, and Dr.

Yi Zhang, for their teachings and stimulating discussions. Furthermore, I would like

to thank Professor Balram Rajput for his valuable suggestions on my teaching. My

gratitude extends to my fellow graduate students and friends Zhen Guan, Yi Zhang,

Liguo Wang and Wenqiang Feng for their friendship, help and for sharing knowledge

with me. Finally, I would like to acknowledge the support of the NSF grants DMS-

1016173 and DMS-1318486 for my research from August of 2013 to May of 2015.

iv



“Learning without thought is labor lost; thought without learning is perilous.”—

Confucius

v



Abstract

This dissertation consists of three integral parts with each part focusing on numerical

approximations of several partial differential equations (PDEs). The goals of each

part are to design, to analyze and to implement continuous or discontinuous Galerkin

finite element methods for the underlying PDE problem.

Part One studies discontinuous Galerkin (DG) approximations of two phase field

models, namely, the Allen-Cahn and Cahn-Hilliard equations, and their related

curvature-driven geometric problems, namely, the mean curvature flow and the Hele-

Shaw flow. We derive two discrete spectrum estimates, which play an important role

in proving the sharper error estimates which only depend on a negative power of

the singular perturbation parameter ε [epsilon] instead of an exponential power. It

is also proved that the zero level sets of the numerical solutions of the Allen-Cahn

equation and the Cahn-Hilliard equation approximate the mean curvature flow and

the Hele-Shaw flow respectively. Numerical experiments are carried out to verify the

theoretical results and to compare the zero level sets of the numerical solutions and

the geometric motions.

Part Two focuses on finite element approximations of stochastic geometric PDEs

including the phase field formulation of a stochastic mean curvature flow and the

level set formulation of the stochastic mean curvature flow. Both formulations give

PDEs with gradient-type multiplicative noises. We establish PDE energy laws and

the Hölder [Holder] continuity in time for the exact solutions. Moreover, optimal error
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estimates are derived, and various numerical experiments are carried out to study the

interplay of the geometric evolution and gradient-type noises.

Part Three studies finite element methods for a quasi-static model of poroe-

lasticity, which is a fluid-solid interaction multiphysics system at pore scale. We

reformulate the original multiphysics system into a new system which explicitly

reveals the diffusion process and has a built-in mechanism to overcome the “locking

phenomenon”. Fully discrete finite element methods are proposed for approximating

the new system. We derive a discrete energy law and optimal error estimates for

our finite element methods. Numerical experiments are also provided to verify the

theoretical results and to confirm that the “locking phenomenon” has indeed been

overcome.
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Chapter 1

Introduction

1.1 Background

This section introduces some background materials related to mathematical models

(i.e. partial differential equations) to be studied in this dissertation.

1.1.1 The moving interface problem

An interface in this dissertation refers to a hypersurface in Rd. A moving interface

means that the location and/or shape of the interface vary in time. How an interface

moves is often described by its (pointwise) velocity V or the normal velocity Vn :=

V ·n. Such a formula for V or Vn is called a geometric law. It may depend on intrinsic

features (such as curvatures) of the interface and on external factors (such as flow

velocity) of the environment where the interface exists. The moving interface problem

arises in many scientific and engineering fields such as fluid mechanics, materials

science and biology. The pioneer work on the moving interface was done by Jozef

Stefan around 1890 when he studied the problem about melting of the polar ice cap.

The simple version of the Stefan problem is the melting model of a sheet of ice in

the water at an initial temperature 0 ◦C. The interface between the water and the

ice is raised at a temperature above zero through the whole process, and then the

1



interface moves toward the ice sheet. Other applications of the moving interface

problem include two-phase flow problems in fluid mechanics, the shock waves in gas

dynamics, and the phase transition problems in materials science. There are some

direct methods for the moving interface problem, i.e., the parametrization method

[95], the front tracking method [91] and the immersed interface method [64], and

some indirectly methods, i.e., the level set method [72] and the phase field method

[81, 92]. The direct methods are visual, qualitative, and the computational cost is

smaller than using the indirect methods. However, direct methods have difficulties

in handling with the topological changes, such as pinches, splits and merging. On

the other hand, the topological changes can be easily handled by indirect methods,

although the computational cost is higher. In this dissertation, we only consider

numerical methods based on the indirect approach for the moving interface problem.

1.1.2 The level set method and the phase field method

The level set method was introduced by Stanley Osher and James A. Sethian [72] to

compute and analyze the moving interface problem. For example, consider a closed

hypersurface Γt in Rd. Let Ω+ denote the outside of the hypersurface Γt and Ω−

denote the inside of the hypersurface Γt. The idea of the level set method is to

implicitly represent Γt as the zero level set of a function u(·, t) in Rd, that is,

Γt :=
{
x(t) ∈ Rd : u(x(t), t) = 0

}
. (1.1)

Taking the time derivative on both sides of the equation u(x(t), t) = 0, we get

ut +∇u · dx
dt

= 0 on Γt. (1.2)

Since V := dx
dt

is the velocity of the surface, then

ut +∇u · V = 0 on Γt. (1.3)

2



Equation (1.3) is often called the level set equation, and it is determined by the

velocity field V and the initial condition u0 such that Γ0 = {x ∈ Rd;u0(x) = 0}. To

illustrate, we consider the following mean curvature flow as an example:

Vn(t, ·) = −H(t, ·), (1.4)

here H denotes the mean curvature of Γt. By the facts from differential geometry

n =
∇u
|∇u|

and H = div (n), (1.5)

the level set equation (1.3) becomes

0 = ut +∇u · V = ut + |∇u|Vn = ut − |∇u|H = ut − |∇u|div

(
∇u
|∇u|

)
, (1.6)

or

ut − |∇u|div

(
∇u
|∇u|

)
= 0. (1.7)

Equation (1.7) is the famous level set formulation of the mean curvature flow [34, 52,

71].

The phase field method is another important method for the moving interface

problem proposed by Lord Rayleigh [81] and Van der Waals [92]. This method was

originally developed as a model of solidification, and it is also useful in many other

applications, such as crack propagation, electromigration, crystal and tumor growth.

The main idea of phase field method is to seek a phase field function uε such that the

interface lies in the narrow region (called the diffuse interface)

Γt ⊂ Qε
t :=

{
x(t) ∈ Rd : |uε(x(t), t)| ≤ 1−O(ε)

}
. (1.8)

3



Here ε is a small positive constant, which controls the width of Qε
t. The phase

field function takes two distinct value +1 and −1, which represent two distinct

phases, with a smooth change between −1 and +1 in Qε
t. The zero level set

Γεt := {x(t) ∈ Rd;uε(x(t), t) = 0} of uε, which is contained in the diffuse interface

Qε
t, is often chosen to represent Γt approximately. The diffuse interface approach

provides a convenient mathematical formalism for numerically approximating the

moving interface problems because explicitly tracking the interface is not needed in

the diffuse interface formulation. The main advantage of the diffuse interface method

is its ability to handle with ease singularities of the interfaces. Like many singular

perturbation problems, the main computational issue is to resolve the (small) scale

introduced by the parameter ε in the equation. Computationally, the problem could

become intractable, especially in three-dimensional cases if uniform meshes are used.

This difficulty is often overcome by exploiting the predictable (at least for small

ε) PDE solution profile and by using adaptive mesh techniques (cf. [49] and the

references therein), so fine meshes are only used in the diffuse interface region to

reduce the computational cost.

There is no general phase field equation for all moving interface problem and the

formulation is problem-dependent. Notice that the difficulty is due to the fact that

the interface lies inside Qε
t, but the specified location of the interface is unknown, so

the curvature at the interface can not be calculated exactly as in the level set method.

Again, we consider the phase field formulation of the mean curvature flow (1.4) as an

example. To the end, let d(x) denote the signed distance function between point x

and the interface Γt, and consider the fact that the solution approximates the tanh(·)

function, we heuristically assume

uε(x, t) := tanh

(
d(x)√

2ε

)
. (1.9)
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Then we have

tanh′(s) = 1− tanh2(s), (1.10)

tanh′′(s) = −2 tanh(s)(1− tanh2(s)), (1.11)

and

∇uε(x) =
tanh

(d(x)√
2ε

)
√

2ε
∇d(x), (1.12)

∆d(x) =

√
2ε

1− (uε(x))2

(
∆uε(x) +

2uε(x)

1− (uε(x))2
∇uε(x)⊗∇uε(x)

)
. (1.13)

Notice

|∇d(x)| = 1, (1.14)

|∇uε(x)|2 =
1

2ε2

(
1− (uε(x))2)2

)
, (1.15)

then

H = tr(∆d(x)) =

√
2ε

1− (uε(x))2

(
∆uε(x) +

1

ε2
(uε(x)− (uε(x))3)

)
. (1.16)

Hence, by (1.6) and (1.16), we obtain the phase field equation

uεt −∆uε +
1

ε2
(
(uε)3 − uε

)
= 0. (1.17)

It was proved in [33] that Γεt converges to Γt defined in (1.1) as ε→ 0.

1.1.3 The mean curvature flow and the Hele-Shaw flow

The mean curvature flow (MCF) refers to a one-parameter family of hypersurfaces

{Γt}t≥0 ⊂ Rd which starts from a given initial surface Γ0 and evolves according to

the geometric law in (1.4). The MCF is the best known curvature-driven geometric
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flow which finds many applications in differential geometry, geometric measure

theory, image processing and materials science and has been extensively studied both

analytically and numerically (cf. [27, 52, 71, 87, 96] and the references therein).

As a geometric problem, the MCF can be described using different formulations.

Among them, we mention the classical parametric formulation [56], Brakke’s varifold

formulation [11], De Giorgi’s barrier function formulation [53, 8, 9], the variational

formulation [5], the level set formulation [72, 34, 21], and the phase field formulation

[33, 57]. We remark that different formulations often lead to different solution

concepts and also lead to developing different analytical (and numerical) concepts and

techniques to analyze and approximate the MCF. However, all these formulations of

the MCF give rise to difficult but interesting nonlinear geometric partial differential

equations (PDEs), and the resolution of the MCF then depends on the solutions

of these nonlinear geometric PDEs. One interesting feature of the MCF is the

development of singularities, in particular singularities which may occur in finite

time, even when the initial hypersurface is smooth. The singularities may appear

in different forms such as self-intersection, pinch-off, merging, and fattening. To

understand and characterize these singularities have been the focus of the analytical

and numerical research on the MCF (cf. [21, 27, 34, 45, 71, 87, 96], and the references

therein).

The Hele-Shaw flow was originally defined as the Stokes flow between two parallel

flat plates separated by an infinitesimally small gap. It describes the intricate

patterns that appear in the gas-liquid interface problems when the upper plate is

lifted slowly. It has significant applications since many problems in fluid mechanics

can be considered as the approximations of the Hele-Shaw flow, and it has connections

with the asymptotic behavior of phase field models. The mathematical model of the
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Hele-Shaw problem is given as follows

∆w = 0 in D \ Γt, t ∈ [0, T ], (1.18)

∂w

∂n
= 0 on ∂D, t ∈ [0, T ], (1.19)

w = σH on Γt, t ∈ [0, T ], (1.20)

Vn =
1

2

[∂w
∂n

]
Γt

on Γt, t ∈ [0, T ], (1.21)

Γ0 = Γ00, when t = 0. (1.22)

Here
[
∂w
∂n

]
Γt

represents the jump of the outward normal derivatives across the interface

Γt, and

σ =

∫ 1

−1

√
F (s)

2
ds. (1.23)

It was proven by Xinfu Chen [18] that the solution of the Hele-Shaw problem exists

locally if the initial interface Γ0 is smooth, and the solution exists globally if Γ0 is

close to a circle. If (1.18) is replaced by a heat equation wt−∆w = 0, the Hele-Shaw

problem is called the Stefan problem with Gibbs-Thomson relation for the equilibrium

of the solid-liquid interface. It was proven by Fred Almgren and Lihe Wang [6] and

Stephan Luckhaus [65] that the global weak solution exists, and by E. Radkevitch

[80] that the local classical solution exists.

1.1.4 The Allen-Cahn equation and the Cahn-Hilliard equa-

tion

The first PDE to be considered in this dissertation is the following singularly

perturbed heat equation

ut −∆u+
1

ε2
f(u) = 0 in DT := D × (0, T ), (1.24)
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where D ⊆ Rd (d = 2, 3) is a bounded domain, f = F ′ for some double well potential

density function F and ε, which is called the interaction length, is a small positive

number. Here we focus on the following widely used quartic density function:

F (u) =
1

4
(u2 − 1)2. (1.25)

Equation (1.24), which is known as the Allen-Cahn equation in the literature, was

originally introduced by Samuel M. Allen and John W. Cahn in [4] as a model to

describe the phase separation process of a binary alloy at a fixed temperature. In the

equation u denotes the concentration of one of the two species of the alloy. We remark

that equation (1.24) differs from the original Allen-Cahn equation in the scaling of

the time, t here represents t
ε2

in the original formulation, hence, it is a fast time. The

Allen-Cahn equation is not mass-conserved because
∫
D u dx is not a constant in t. To

completely describe the physical (and mathematical) problem, equation (1.24) must

be complemented with appropriate initial and boundary conditions. The following

boundary and initial conditions will be considered in this dissertation:

∂u

∂n
= 0 in ∂DT , (1.26)

u = u0 in D × {t = 0}. (1.27)

The Allen-Cahn equation is a phase field formulation of the mean curvature flow

[33, 57], and it is well known [33, 57] that the Allen-Cahn equation (1.24) can be

interpreted as the L2-gradient flow for the following Cahn-Hilliard energy functional

Jε(v) :=

∫
D

(1

2
|∇v|2 +

1

ε2
F (v)

)
dx. (1.28)
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The second PDE to be considered in this dissertation is the following singularly

perturbed fourth order PDE

ut + ∆
(
ε∆u− 1

ε
f(u)

)
= 0 in DT . (1.29)

Equation (1.29) is known as the Cahn-Hilliard equation. It was originally introduced

by John W. Cahn and John E. Hilliard in [16] to describe the process of phase

separation, by which the two components of a binary fluid spontaneously separate

and form domains. Here u and 1 − u denote respectively the concentrations of the

two fluids, with {u = ±1} indicating domains of the two components. It is often

written as the following system of two second order PDEs along with two boundary

conditions and one initial condition [42]

ut −∆w = 0 in DT , (1.30)

w + ε∆u− 1

ε
f(u) = 0 in DT , (1.31)

∂u

∂n
=
∂w

∂n
= 0 on ∂DT , (1.32)

u = u0 in D × {t = 0}. (1.33)

Here w is called the chemical potential in the literature. Notice that equation (1.29)

differs from the original Cahn-Hilliard equation in the scaling of the time, and t here

corresponds to t
ε

in the original formulation.

The Cahn-Hilliard equation is the phase field formulation of the Hele-Shaw flow,

and it is well known [3, 74, 20] that the Cahn-Hilliard equation (1.29) can be

interpreted as the H−1-gradient flow for the Cahn-Hilliard energy functional

Jε(v) :=

∫
D

( ε
2
|∇v|2 +

1

ε
F (v)

)
dx. (1.34)

In addition to their important roles in materials phase transition, the Allen-

Cahn equation [40] and the Cahn-Hilliard equation [42] have emerged as fundamental
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equations as well as a building block in the phase field methodology (or the diffuse

interface methodology) for moving boundary and free boundary problems arising from

various applications such as fluid dynamics, materials science, image processing and

biology (cf. [36, 67] and the references therein).

1.1.5 Stochastic mean curvature flow and stochastic Hele-

Shaw flow

For application problems of the mean curvature flow and the Hele-Shaw flow, there

may exist uncertainty which arises from various sources such as thermal fluctuation,

impurities of the materials and the intrinsic instabilities of the deterministic

evolutions. Therefore, it is interesting and necessary to consider the stochastic effects,

and to study the impact of the noises on regularities of the solutions and their long-

time behaviors. This motivates us to consider the following stochastically perturbed

mean curvature flow [41]:

Vn(t, ·) = H(t, ·) + ε
◦
W t, (1.35)

where
◦
W denotes a R-valued white in time noise, ε > 0 is a constant, and ‘◦’ refers

to the Stratonovich derivative of the Wiener process Wt.

We also consider a general space dependent noise [59, 83, 43]:

Vn(t, ·) = H(t, ·) + δX(x) · n
◦
W t, (1.36)

where δ is a (small) positive constant, n is the outward normal vector to the interface

Γt and X(x) is a Rd-valued smooth function with compact support.
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Similarly, to obtain our stochastic Hele-Shaw flow, instead of modifying the PDE,

a noise is added to the velocity of the underlying moving interface [44], that is

Vn =
1

2

[
∂w

∂n

]
Γt

+ δX(x) · n
◦
W t . (1.37)

The reason and motivation for introducing the above form of noises were briefly

explained in [83].

1.2 Scope of the dissertation research

The focuses of this dissertation are design, analysis, and implementation of efficient

continuous and discontinuous Galerkin finite element methods for solving determin-

istic and stochastic nonlinear PDEs which arise from materials science, fluid and

solid mechanics, and differential geometry. The reason why we favor discontinuous

Galerkin methods is due to their advantages compared to the classical finite element

method in regard to designing adaptive mesh methods and algorithms, which is an

indispensable strategy with the diffuse interface methodology. Below we shall outline

the main specific issues to be addressed in this dissertation.

Let Γεt := {x ∈ D;u(x, t) = 0.} be the zero level set of the Allen-Cahn problem

(1.24)-(1.27). It was proved in [33] that Γεt converges to Γt (the solution of the MCF)

as ε → 0 and u → ±1 uniformly in D \ Γt. The connection between the Allen-Cahn

equation and the MCF opens a door for approximating and computing the latter via

the former. Indeed, such a connection is the basis for the phase field methodology

for approximating curvature-driven moving interfaces. It has been widely used in

many practical simulations. Let uεh,τ denote the (post-processed if needed) numerical

solution and Γεt,h,τ := {x ∈ D; uεh,τ (x, t) = 0} be the numerical interface. The

first rigorous proof of the convergence Γεt,h,τ to Γt as h, τ, ε → 0 (uεh,τ happens to

be a continuous finite element solution) was given by Feng and Prohl in [45]. A

natural question is that whether the result of [45] still holds for nonconforming and
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discontinuous Galerkin method (DG). This question has been open in the past ten

years even some unsuccessful attempts were made. To settle down this open question

is one of the main goals of this dissertation.

Analogously, it was proved in [3] that the zero level set Γεt of u, which is the solution

of the Cahn-Hilliard problem (1.30)-(1.33), converges to the sharp interface Γt (the

solution of the Hele-Shaw flow) and µε := −ε∆u + 1
ε
f(u) converges to w as ε → 0,

provided that w and Γt are smooth. Such a convergence result serves the theoretical

basis for using the former to approximate the latter. This approach has been used in

many practical applications. Let uεh,τ denote the (post-processed if needed) numerical

solution and Γεt,h,τ := {x ∈ D; uεh,τ (x, t) = 0} be the numerical interface. The first

rigorous proof of the convergence Γεt,h,τ to Γt as h, τ, ε → 0 (uεh,τ happens to be a

mixed finite element solution) was given by Feng and Prohl in [47]. Again, a natural

question is that whether the result of [47] can be extended to nonconforming and

discontinuous Galerkin methods. This question has been open in the past ten years.

To resolve this open question is another main goal of this dissertation.

As is mentioned early, the physical environment is seldom a deterministic system,

and the noises could come from the thermal fluctuation, impurities of the materials

and the intrinsic instabilities of the deterministic evolutions, so there is a need

to consider the stochastic effects. The white-in-time noise is the most basic and

fundamental noise, which can be the start point of the research. Moreover, in the

dissertation, the noise is added to the velocity of the interface, instead of being

added to the equation directly. This leads to considering the stochastic Allen-Cahn

and Cahn-Hilliard equations with gradient-type multiplicative noises. There is no

numerical analysis result in the literature for such nonlinear stochastic PDEs partly

because most numerical analysis techniques for deterministic PDEs do not work for

stochastic PDEs. In addition to the goal of developing efficient numerical methods

for these stochastic PDEs, another overreaching goal of this dissertation is to use

these nonlinear stochastic PDEs as a testbed for developing new numerical analysis

techniques which hopefully are applicable to many other stochastic PDEs.
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A poroelastic material is a fluid-solid system, and the displacement-pressure

formulation for linear poroelasticity can be found in [75]. Its dynamic can be

described by a multiphysics fluid-solid interaction process at pore scale. Unlike

standard (macroscopic) fluid-solid interaction systems, some physical phenomena of

the multiphysics process of a poroelastic material may not be explicitly revealed

in its mathematical model. Instead, they are hidden in the model. Numerical

methods based on the displacement-pressure formulation have been proposed earlier

[75]. However, those methods require to solve large linear systems which have

no “good” structure, especially, they are not symmetric positive definite (SPD).

Moreover, those numerical methods often suffer a “locking phenomenon” so that the

computed pressure exhibits some oscillations, especially, for small time t. To develop

multiphysics finite element methods which can avoid these limitations and drawbacks

and better capture the multiphysics (deformation and diffusion) of the poroelastic

system is the final goal of this dissertation.

1.3 Summary of main contributions

This dissertation is comprised of several research projects in the area of numerical

PDEs. Based on the research topics, it can be divided into three parts.

Part one (Chapter 2 and Chapter 3) of the dissertation studies interior penalty

discontinuous Galerkin (IPDG) approximation of the Allen-Cahn equation [40] (reps.

mixed interior penalty discontinuous Galerkin (MIPDG) approximation of the Cahn-

Hilliard equation [42]), and its related curvature-driven geometric problem the mean

curvature flow (resp. the Hele-Shaw flow). Two fully discrete (interior penalty)

discontinuous Galerkin (DG) methods for the Allen-Cahn problem (1.24)-(1.27) based

on two different time-stepping schemes are proposed. One is fully implicit with

fm+1 := (um+1)3−um+1 and the other is convex-splitting with fm+1 := (um+1)3−um.

It is shown that the fully implicit method is conditionally stable but the convex-

splitting method is unconditionally stable. The discrete spectrum estimates for these
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two equations are proven separately based on a perturbation argument. With the

help of the discrete spectrum estimates, the sharper error which only depend on the

negative power of ε instead of the exponential power, are derived. Furthermore, it

is proven that the zero-level set of the IPDG solution for the Allen-Cahn equation

(resp. the Cahn-Hilliard equation) converges to the mean curvature flow (resp. the

Hele-Shaw flow). It should be pointed out that the analysis for the Cahn-Hilliard

equation is much more involved than that for the Allen-Cahn equation.

Part two (Chapter 4 and Chapter 5) of the dissertation concerns with numerical

methods for nonlinear stochastic partial differential equations (SPDEs). The focuses

of the study are on the stochastic Allen-Cahn equation [43], the stochastic Cahn-

Hilliard equation [44], and the level set equation of the stochastic mean curvature

flow [41]. These SPDEs all contain gradient type multiplicative (white-in-time) noises,

which belong to the strongest forms of noises for second order quasilinear PDEs. In

this dissertation, several fully discrete finite element methods for approximating these

three nonlinear stochastic PDEs are proposed and analyzed. In each case, a discrete

energy law which mimics the corresponding PDE energy law is derived, and strong

convergence is proven by establishing optimal order error estimates for the proposed

finite element methods. Those are first strong convergence results for SPDEs with

gradient type multiplicative (white-in-time) noises, the analysis techniques developed

in the dissertation are quite involved and new (in particular, in comparison with

deterministic techniques), they will certainly be useful and adaptable for studying

other SPDEs.

Part three (Chapter 6) of the dissertation studies numerical methods for a quite

different PDE problem from poroelasticity [37]. It is well known that deformation and

diffusion are two common physical processes involved for an isothermal system. The

subtlety and difficulty for numerical approximations of poroelasticity are caused by

the fact that the diffusion process is not explicitly described in popular poroelasticity

PDE models, instead, it is hidden in the models. Moreover, the peculiar structure of
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poroelasticity PDE models often leads to so-called “locking phenomenon” for all direct

numerical approximations of these PDE models. In the dissertation, a prototypical

quasi-static poroelasticity model is considered and a novel reformulation of the model

is introduced. The reformulated model consists of a generalized Stokes problem for

the displacement vector and a “pseudo elastic pressure” coupled with a diffusion

problem for another “pseudo elastic pressure”, hence, the diffusion process is explicitly

revealed in the reformulated model. Based on this reformulation, some fully discrete

multiphysics finite element methods are constructed and the convergence with optimal

rates in the energy norm is shown. Moreover, the troublesome “locking phenomenon”

is completed avoided because the reformulated model has a built-in mechanism to

automatically enforce nearly divergence-free constraint for the displacement vector

near t = 0, which is verified by the extensive numerical tests.

The dissertation is completed with a list of future research projects presented in

Chapter 7.
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Chapter 2

Discontinuous Galerkin Methods

for the Allen-Cahn Equation

2.1 Introduction

The Allen-Cahn equation (1.24) not only plays an important role in materials phase

transition, it has also been well-known and intensively studied in the past thirty years

due to its connection to the celebrated curvature driven geometric flow known as the

mean curvature flow or the motion by mean curvature (cf. [33, 57] and the references

therein). It was proved that [33] the zero-level set Γεt := {x ∈ D;u(x, t) = 0} of the

solution u to the problem (1.24)–(1.27) converges to the mean curvature flow which

refers to the evolution of a curve/surface governed by the geometric law Vn = −H,

where Vn and H respectively stand for the outward normal velocity and the mean

curvature of the curve/surface.

Numerical approximations of the Allen-Cahn equation have been extensively

investigated in the past thirty years (cf. [7, 30, 45] and the references therein).

However, most of these works were carried out for a fixed parameter ε. The error

estimates, which are obtained using the standard Gronwall inequality technique, show

an exponential dependence on 1
ε
. Such an estimate is clearly not useful for small ε,
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in particular, in addressing the issue whether the flow of the computed numerical

interfaces converge to the original sharp interface model: the mean curvature flow.

Better error estimates should only depend on 1
ε

in some (low) polynomial orders

because they can be used to provide an answer to the above convergence issue. In

fact, such an estimate is the best result (in terms of ε) one can expect. The first

such polynomial order in 1
ε

a priori estimate was obtained by Feng and Prohl in

[45] for standard finite element approximations of the Allen-Cahn problem (1.24)–

(1.27). Extensions of the results of [45], in particular, the sensitivity of the eigenvalue

to the topology was later considered, and some numerical tests were also given by

Bartels et al. in [7]. In addition, polynomial order in 1
ε

a posteriori error estimates

were obtained in [7, 48, 60]. One of the key ideas employed in all these works is to

use a nonstandard error estimate technique which is based on establishing a discrete

spectrum estimate (using its continuous counterpart) for the linearized Allen-Cahn

operator. An immediate application of the polynomial order in 1
ε

a priori and a

posteriori error estimates is to prove the convergence of the numerical interfaces of

the underlying finite element approximations to the mean curvature flow as ε and

mesh sizes h and τ all tend to zero, and to establish rates of convergence (in powers

of ε) for the numerical interfaces before the onset of singularities of the mean curvature

flow.

The primary objectives of this chapter are twofold: First, we want to develop

some interior penalty discontinuous Galerkin (IP-DG) methods and to establish

polynomial order in 1
ε

a priori error estimates as well as to prove convergence and

rates of convergence for the IP-DG numerical interfaces. This goal is motivated by

the advantages of DG methods in regard to designing adaptive mesh methods and

algorithms, which is an indispensable strategy with the diffuse interface methodology.

Second, we use the Allen-Cahn equation as a prototype to develop new analysis

techniques for analyzing convergence of numerical interfaces to the sharp interface for

DG (and nonconforming finite element) discretizations of phase field models. To the

best of our knowledge, no such convergence result and analysis technique is available
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in the literature. The main obstacle for adapting the techniques of [45] is that the

DG (and nonconforming finite element) spaces are not subspaces of H1(D). As a

result, whether the desired discrete spectrum estimate holds becomes a key question

to answer.

The remainder of this chapter is organized as follows. In section 2.2 we first

recall some facts about the Allen-Cahn equation. In particular, we cite the spectrum

estimate for the linearized Allen-Cahn operator from [19] and a nonlinear discrete

Gronwall inequality from [73]. In section 2.3 we present two fully nonlinear IP-DG

methods for problem (1.24)–(1.27) with the implicit Euler time stepping for the linear

terms. The two methods differ in how the nonlinear term is discretized in time. The

first is fully implicit and the second uses a well-known energy splitting idea due to

Eyre [35]. The rest of section 2.3 devotes to the convergence analysis of the proposed

IP-DG methods. The highlights of analysis include establishing a discrete spectrum

estimate for the linearized Allen-Cahn operator in DG spaces and deriving optimal

order (in h and τ) and polynomial order in 1
ε

a priori error estimates for the proposed

IP-DG methods. In section 2.4, using the error estimates of section 2.3 we prove

the convergence and rates of convergence for the numerical interfaces of the IP-DG

solutions to the sharp interface of the mean curvature flow. Finally, we present some

numerical experiment results in section 2.5 to gauge the performance of the proposed

fully discrete IP-DG methods.

2.2 Preliminaries

In this section, we first recall a few facts about the solution of the problem (1.24)–

(1.27) which can be found in [19, 45]. These facts will be used in the analysis of

section 2.3 and 2.4. We then cite a lemma which provides an upper bound for discrete

sequences that satisfy a Bernoulli-type inequality, and this lemma is crucially used in

our error analysis in section 2.3. Standard function and space notations are adopted

in this chapter. (·, ·)D denotes the standard inner product on L2(D), C and c denote
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generic positive constants which is independent of ε, space and time step sizes h and

τ .

In order to derive a priori solution estimates, as in [45] we assume the initial

condition u0 ∈ H1(D) ∩ H2(D) with ‖u0‖ ≤ 1 satisfies the following assumptions:

General Assumption (GA)

(1) There exists a nonnegative constant σ1 such that

Jε(u0) ≤ Cε−2σ1 . (2.1)

(2) There exists a nonnegative constant σ2 such that

‖∆u0 − ε−2f(u0)‖L2(D) ≤ Cε−σ2 . (2.2)

(3) There exists nonnegative constant σ3 such that

lim
s→0+

‖∇ut(s)‖L2(D) ≤ Cε−σ3 . (2.3)

The following solution estimates and their proofs can be found in [45].

Proposition 2.2.1. Suppose that (2.1) and (2.2) hold. Then the solution u of

problem (1.24)–(1.27) satisfies the following estimates:

(i) ess sup
t∈[0,∞)

‖u(t)‖L∞(D) ≤ 1,

(ii) ess sup
t∈[0,∞)

Jε(u) +

∫ ∞
0

‖ut(s)‖2
L2(D) ds ≤ Cε−2σ1 ,

(iii)

∫ T

0

‖∆u(s)‖2 ds ≤ Cε−2(σ1+1),

(iv) ess sup
t∈[0,∞)

(
‖ut‖2

L2(D) + ‖u‖2
H2(D)

)
+

∫ ∞
0

‖∇ut(s)‖2
L2(D) ds ≤ Cε−2 max{σ1+1,σ2},

(v)

∫ ∞
0

(
‖utt(s)‖2

H−1(D) + ‖∆ut(s)‖2
H−1(D)

)
ds ≤ Cε−2 max{σ1+1,σ2}.
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In addition to (2.1) and (2.2), suppose that (2.3) holds, then u also satisfies

(vi) ess sup
t∈[0,∞)

‖∇ut‖2
L2(D) +

∫ ∞
0

‖utt(s)‖2
L2 ds ≤ Cε−2 max{σ1+2,σ3},

(vii)

∫ ∞
0

‖∆ut(s)‖2
L2(D) ds ≤ Cε−2 max{σ1+2,σ3}.

Proof. (i). Define a function v as

v := (u− 1)+ :=

u− 1, u− 1 ≥ 0,

0, u− 1 < 0.

(2.4)

Then we have

∇v =

∇u, u− 1 ≥ 0,

0, u− 1 < 0,

(2.5)

and

ut(u− 1)+ =
1

2

d

dt
|(u− 1)+|2. (2.6)

Then

∇u · ∇v = (∇(u− 1)+)2, (2.7)

and

f(u)v = u(u+ 1)|(u− 1)+|2. (2.8)

Testing (1.24) with v, we get

(
ut, v

)
D +

(
∇u,∇v

)
D +

( 1

ε2
f(u), v

)
D = 0 ∀v ∈ H1(D). (2.9)

Then we have
d

dt

∫
D
|(u− 1)+|2dx ≤ 0. (2.10)
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Based on the assumption |u0| ≤ 1 and (2.10), we can easily prove u ≤ 1.

Similarly, when the function v is defined by

v = (u+ 1)− =

0, u+ 1 ≥ 0,

−u− 1, u+ 1 < 0,

(2.11)

we can prove u ≥ −1. (i) is proved.

(ii). Taking the derivative in t on both sides of (1.28), we get

d Jε(u)

dt
=

∫
D

(
∇u · ∇ut +

1

ε2
f(u)ut

)
dx, (2.12)

=

∫
D

(
−∆uut +

1

ε2
f(u)ut

)
dx,

=− ||ut||2L2(D).

Suppose the maximum of Jε(u(t)) is obtained at t = t1, then integrating (2.12)

over [0, t1] and [0,∞] respectively, we get

ess sup
t∈[0,∞)

Jε(u) ≤ Cε−2σ1 , (2.13)

and

∫ ∞
0

||ut(s)||2L2ds ≤ Cε−2σ1 . (2.14)

Plus (2.13) and (2.14), we get (ii).

(iii). Testing (1.24) with −∆u, we get

‖∆u‖2
L2(D) =

(
ut,∆u

)
D −

1

ε2
(
f ′(u), |∇u|2

)
D. (2.15)
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Using Schwarz inequality to the first term on the right of the above formula, we get

||∆u||2L2(D) ≤ ||ut||2L2(D) −
2

ε2
(f ′(u), |∇u|2)D. (2.16)

Integrating over [0, T ] on both sides of the above equation, we have

∫ T

0

||∆u(s)||2L2(D)ds ≤
∫ T

0

||ut(s)||2L2(D)ds−
∫ T

0

2

ε2
(f ′(u), |∇u|2)Dds. (2.17)

(iii) is immediately obtained by (2.17), (i) and (ii).

(iv). Taking the derivative in t on both sides of (1.24), we get

utt −∆ut +
1

ε2
f ′(u)ut = 0. (2.18)

Testing (2.18) with ut, then

1

2

d

dt
||ut||2L2(D) + ||∇ut||2L2(D) ≤

C

ε2
||ut||2L2(D). (2.19)

Suppose the maximum of ||ut||2L2 is obtained when t = t1, then integrating above

equality over [0, t1] and [0,∞] respectively, we get

1

2
||ut(t1)||2L2(D) +

∫ t1

0

||∇ut(s)||2L2(D)ds (2.20)

≤1

2
||ut(0)||2L2(D) +

C

ε2

∫ t1

0

||ut(s)||2L2(D)ds

and

∫ ∞
0

||∇ut(s)||2L2(D)ds ≤
C

ε2

∫ ∞
0

||ut(s)||2L2(D)ds. (2.21)
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By (2.2) and (ii), we have

1

2
||ut(t1)||2L2(D) +

∫ t1

0

||∇ut(s)||2L2(D)ds ≤ C(ε−2σ2 + ε−2σ1−2) (2.22)

≤ Cε2 min{−σ1−1,σ2}

and

∫ ∞
0

||∇ut(s)||2L2(D)ds ≤ Cε−2σ1−2. (2.23)

By (2.22) and (ii), we have

||∆u||2L2(D) ≤ C(ε2 min{−σ1−1,σ2} + ε−2σ1−2) (2.24)

≤ Cε2 min{−σ1−1,σ2}.

Then (iv) can proved by (2.24), (i) and (ii).

(v). By (2.18), we have

||utt||H−1(D) ≤||∇ut||L2(D) +
1

ε2
sup

φ∈H1(D)

(f ′(u)ut, φ)D
||φ||H1(D)

(2.25)

≤||∇ut||L2(D) +
C

ε2
||f ′(u)||L∞(D)||ut||L2(D)

≤C

{
||∇ut||L2(D) +

1

ε2
||ut||L2(D)

}
.

By (ii) and (iv), we get

∫ ∞
0

||utt(s)||2H−1(D)ds ≤2C

{∫ ∞
0

||ut(s)||2L2(D)ds+
1

ε4

∫ ∞
0

||∇ut(s)||2L2(D)ds

}
(2.26)

≤Cε2 min{−σ1−1,σ2} + C
1

ε4
ε−2σ1

≤Cε2 min{−σ1−2,σ2}.
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Using (iv), we have

∫ ∞
0

||∆ut(s)||2H−1(D)ds ≤
∫ ∞

0

||∇ut||2L2(D)ds ≤ Cε2 min{−σ1−1,σ2}. (2.27)

Then (v) is proved.

(vi). Testing (2.18) with utt, we get

||utt||2L2(D) +
1

2

d

dt
||∇ut||2L2(D) +

1

ε2
(f ′(u)ut, utt)D = 0. (2.28)

Then

||utt||2L2(D) +
1

2

d

dt
||∇ut||2L2(D) =− 1

ε2
(f ′(u)ut, utt)D (2.29)

≤1

2
||utt||2L2(D) +

1

2ε4
||f ′(u)||2L∞(D)||ut||2L2(D).

That is,

1

2
||utt||2L2(D) +

1

2

d

dt
||∇ut||2L2(D) ≤

1

2ε4
||f ′(u)||2L∞(D)||ut||2L2(D). (2.30)

Integrating both sides of (2.30) over [0,∞] and using (ii), we have

∫ ∞
0

||utt(s)||2L2(D)ds ≤ Cε2 min{−σ1−2,−σ3}. (2.31)

Suppose the maximum of ||∇ut||2L2(D) is obtained at t = t1, then integrating (2.30)

over [0, t1], and using (2.3) and (ii), we get

ess sup
t∈[0,∞)

||∇ut||2L2(D) ≤ Cε2 min{−σ1−2,−σ3}. (2.32)
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Adding (2.31) and (2.32), (vi) is derived.

(vii). Testing (2.18) with ∆ut, and integrating over [0,∞], we get

∫ ∞
0

||∆ut||2L2(D)dt =

∫ ∞
0

(utt,∆ut)Dds+

∫ ∞
0

(
1

ε2
f ′(u)ut,∆ut)Dds. (2.33)

Using Young’s inequality, (2.31) and (ii), we have

∫ ∞
0

||∆ut(s)||2L2(D)ds ≤ Cε2 min{−σ1−2,−σ3}. (2.34)

Then (vii) is proved.

Next, we quote a lower bound estimate for the principal eigenvalue of the following

linearized Allen-Cahn operator:

LAC := −∆ + f ′(u)I, (2.35)

where I stands for the identity operator.

Proposition 2.2.2. Suppose that (2.1) and (2.2) hold. Given a smooth initial

curve/surface Γ0, let u0 be a smooth function satisfying Γ0 = {x ∈ D;u0(x) = 0}

and some profile as described in [19]. Let u denote the solution of problem (1.24)–

(1.27). Then there exists a positive ε-independent constant C0 such that the principle

eigenvalue of the linearized Allen-Cahn operator LAC satisfies for 0 < ε << 1

λAC ≡ inf
ψ∈H1(D)
ψ 6=0

‖∇ψ‖2
L2(D) + ε−2

(
f ′(u)ψ, ψ

)
‖ψ‖2

L2(D)

≥ −C0. (2.36)

Remark 2.2.3. (a) A proof of Proposition 2.2.2 can be found in [19]. A discrete

generalization of (2.36) on C0 finite element spaces was proved in [45]. It plays a

pivotal role in the nonstandard convergence analysis of [45]. In the next section, we

shall prove another discrete generalization of (2.36) on DG finite element spaces.
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(b) The restriction on the initial function u0 is needed to guarantee that the

solution u(t) satisfies certain profile at later time t > 0 which is required in the

proof of [19]. One example of admissible initial functions is u0 = tanh(d0(x)
ε

), where

d0(x) stands for the signed distance function to the initial interface Γ0. Such a u0 is

smooth when Γ0 is smooth.

The classical Gronwall lemma derives an estimate for any function which satisfies

a first order linear differential inequality. It is a main technique for deriving

error estimates for continuous-in-time semi-discrete discretizations of many initial-

boundary value PDE problems. Similarly, the discrete counterpart of Gronwall

lemma is a main technical tool for deriving error estimates for fully discrete schemes.

However, for many nonlinear PDE problems, the classical Gronwall lemma does not

apply because of nonlinearity, instead, some nonlinear generalization must be used.

In case of the power (or Bernoulli-type) nonlinearity, a generalized Gronwall lemma

was proved in [48]. In the following we state a discrete counterpart of the lemma

in [48], and the proof of a similar lemma can be found in [73]. This lemma will be

utilized crucially in the next section and in Chapter 3.

Lemma 2.2.4. Let {S`}`≥1 be a positive nondecreasing sequence and {b`}`≥1 and

{k`}`≥1 be nonnegative sequences, and p > 1 be a constant. If

S`+1 − S` ≤ b`S` + k`S
p
` for ` ≥ 1, (2.37)

S1−p
1 + (1− p)

`−1∑
s=1

ksa
1−p
s+1 > 0 for ` ≥ 2, (2.38)

then

S` ≤
1

a`

{
S1−p

1 + (1− p)
`−1∑
s=1

ksa
1−p
s+1

} 1
1−p

for ` ≥ 2, (2.39)

where

a` :=
`−1∏
s=1

1

1 + bs
for ` ≥ 2. (2.40)
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Proof.

a`+1 − a` =
∏̀
s=1

[1 + bs]
−1 −

`−1∏
s=1

[1 + bs]
−1 (2.41)

=
∏̀
s=1

[1 + bs]
−1(1− 1− b`)

=− a`+1b`.

Define

a1 = 1. (2.42)

Multiplying (2.37) by a`+1 and using (2.41), we have

a`+1S`+1 − [1 + b`]a`+1S` ≤ k`a`+1S
p
` . (2.43)

That is

a`+1S`+1 − a`S` ≤ k`a`+1S
p
` . (2.44)

By Mean Value Theorem,

(a`+1S`+1)1−p − (a`S`)
1−p = (1− p)x−p(a`+1S`+1 − a`S`), (2.45)

where x lies between a`+1S`+1 and a`S`. It is easy to see that a` is nonincreasing and

S` is nondecreasing, so we have

x > a`S` ≥ a`+1S` if a`S` < a`+1S`+1, (2.46)

x > a`+1S`+1 ≥ a`+1S` if a`S` > a`+1S`+1. (2.47)
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Using (2.44) and (2.45), we get in both cases,

(a`+1S`+1)1−p − (a`S`)
1−p ≥ (1− p)k`a1−p

`+1 . (2.48)

Now setting ` = s in (2.48) and taking the sum over s from 1 to `− 1, we obtain

(a`S`)
1−p ≥ (a1S1)1−p + (1− p)

`−1∑
s=1

ksa
1−p
s+1. (2.49)

Taking qth roots, we have

a`S` ≤

{
(S1)1−p + (1− p)

`−1∑
s=1

ksa
1−p
s+1

}1/(1−p)

. (2.50)

Moving a` into right-hand side, we get our conclusion.

2.3 Fully discrete interior penalty discontinuous

Galerkin approximations

2.3.1 Formulations

Let Th be a quasi-uniform “triangulation” of D such that D =
⋃
K∈Th K. Let hK

denote the diameter of K ∈ Th and h := max{hK ;K ∈ Th}. We recall that the

standard broken Sobolev space Hs(Th) and DG finite element space Vh are defined as

Hs(Th) :=
∏
K∈Th

Hs(K), Vh :=
∏
K∈Th

Pr(K),

where Pr(K) denotes the set of all polynomials whose degrees do not exceed a given

positive integer r. Let EIh denote the set of all interior faces/edges of Th, EBh denote

the set of all boundary faces/edges of Th, and Eh := EIh ∪ EBh . The L2-inner product
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for piecewise functions over the mesh Th is naturally defined by

(v, w)Th :=
∑
K∈Th

∫
K

vw dx,

and for any set Sh ⊂ Eh, the L2-inner product over Sh is defined by

〈
v, w

〉
Sh

:=
∑
e∈Sh

∫
e

vw ds.

Let K,K ′ ∈ Th and e = ∂K ∩ ∂K ′ and assume global labeling number of K is

smaller than that of K ′. We choose ne := nK |e = −nK′|e as the unit normal on e and

define the following standard jump and average notations across the face/edge e:

[v] := v|K − v|K′ on e ∈ EIh , [v] := v on e ∈ EBh ,

{v} :=
1

2

(
v|K + v|K′

)
on e ∈ EIh , {v} := v on e ∈ EBh

for v ∈ Vh.

Let M be a (large) positive integer. Define τ := T/M and tm := mτ for m =

0, 1, 2, · · · ,M be a uniform partition of [0, T ]. For a sequence of functions {vm}Mm=0,

we define the (backward) difference operator

dtv
m :=

vm − vm−1

k
, m = 1, 2, · · · ,M.

We are now ready to introduce our fully discrete DG finite element methods for

problem (1.24)–(1.27). They are defined by seeking umh ∈ Vh for m = 0, 1, 2, · · · ,M

such that

(
dtu

m+1
h , vh

)
Th

+ ah(u
m+1
h , vh) +

1

ε2
(
fm+1, vh

)
Th

= 0 ∀vh ∈ Vh, (2.51)
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where

ah(wh, vh) :=
(
∇wh,∇vh

)
Th
−
〈
{∂nwh}, [vh]

〉
EIh

(2.52)

+ λ
〈
[wh], {∂nvh}

〉
EIh

+ jh(wh, vh),

jh(wh, vh) :=
∑
e∈EIh

σe
he

〈
[wh], [vh]

〉
e
, (2.53)

fm+1 := (um+1
h )3 − umh or fm+1 := (um+1

h )3 − um+1
h , (2.54)

where λ = 0,±1 and σe is a positive piecewise constant function on EIh , which will

be chosen later (see Lemma 2.3.4). In addition, we need to supply u0
h to start the

time-stepping, whose choice will be clear (and will be specified) later when we derive

the error estimates in section 2.3.4.

We conclude this subsection with a few remarks to explain the above IP-DG

methods.

Remark 2.3.1. (a) The mesh-dependent bilinear form ah(·, ·) is a well-known IP-DG

discretization of the negative Laplace operator −∆, see [82].

(b) Different choices of λ give different schemes. In this chapter we only focus on

the symmetric case with λ = −1. Also, σe is called the penalty constant.

(c) The time discretization is the simple backward Euler method for the linear

terms. However, we shall prove in section 2.3.2 that the treatment of the nonlinear

term results in two implicit schemes which have different stability properties with

respect to ε. We also note that only fully implicit scheme (i.e., fm+1 = (um+1
h )3 −

um+1
h ) was considered in [45], and the resulted finite element method was proved only

conditionally stable there.

2.3.2 Discrete energy laws and well-posedness

As a gradient flow, problem (1.24)–(1.27) enjoys an energy law which leads to the

estimate (ii) and then the subsequent estimates given in Proposition 2.2.1. One
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simple criterion for building a numerical method for problem (1.24)–(1.27) is whether

the method satisfies a discrete energy law which mimics the continuous energy law

[39, 45]. The goal of this subsection is to show that the IP-DG methods proposed

in the previous subsection are either unconditionally energy stable when fm+1 =

(um+1
h )3 − umh or conditionally energy stable when fm+1 = (um+1

h )3 − um+1
h .

First, we introduce three mesh-dependent energy functionals which can be

regarded as DG counterparts of the continuous Cahn-Hilliard energy Jε defined in

(1.28).

Φh(v) :=
1

2
‖∇v‖2

L2(Th) −
〈
{∂nv}, [v]

〉
EIh

+
1

2
jh(v, v) ∀v ∈ H2(Th), (2.55)

Jhε (v) := Φh(v) +
1

ε2
(
F (v), 1

)
Th

∀v ∈ H2(Th), (2.56)

Ihε (v) := Φh(v) +
1

ε2
(
F+
c (v), 1

)
Th

∀v ∈ H2(Th), (2.57)

where F (v) = 1
4
(v2 − 1)2 and F+

c (v) := 1
4
(v4 + 1).

If we define F−c (v) := 1
2
v2, then there holds the convex decomposition F (v) =

F+
c (v) − F−c (v). It is easy to check that Φh and Ihε are convex functionals but Jhε is

not because F is not convex. Moreover, we have

Lemma 2.3.2. Let λ = −1 in (2.52), then there holds for all vh, wh ∈ Vh

(δΦh(vh)

δvh
, wh

)
Th

:= lim
s→0

Φh(vh + swh)− Φh(vh)

s
= ah(vh, wh), (2.58)(δJhε (vh)

δvh
, wh

)
Th

: = lim
s→0

Jhε (vh + swh)− Jhε (vh)

s
(2.59)

= ah(vh, wh) +
1

ε2
(
F ′(vh), wh

)
Th
,(δIhε (vh)

δvh
, wh

)
Th

: = lim
s→0

Ihε (vh + swh)− Ihε (vh)

s
(2.60)

= ah(vh, wh) +
1

ε2
(
(F+

c )′(vh), wh
)
Th
.

The proofs are straightforward. They can be proved by the definition of Φh(v),

Jhε (v) and Ihε (v).
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Remark 2.3.3. We remark that (2.58)–(2.60) provide respectively the representations

of the Fréchet derivatives of the energy functionals Φh, Jhε and Ihε in V h. This simple

observation is very helpful, it allows us to recast our DG formulations in (2.51)–(2.54)

as a minimization/variation problem at each time step. It is also a deeper reason why

the proposed DG methods satisfy some discrete energy laws to be proved below.

Lemma 2.3.4. There exist constants σ0, α > 0 such that for σe > σ0 for all e ∈ Eh
there holds

Φh(vh) ≥ α‖vh‖2
1,DG ∀vh ∈ Vh, (2.61)

where

‖vh‖2
1,DG := ‖∇vh‖2

L2(Th) + jh(vh, vh). (2.62)

Proof. Inequality (2.61) follows immediately from the following observation

2Φh(vh) = ah(vh, vh) ∀vh ∈ Vh, (2.63)

and the well-known coercivity property of the DG bilinear form ah(·, ·) (cf. [82]).

We now are ready to state our discrete energy/stability estimates.

Theorem 2.3.5. Let {umh } be a solution of scheme (2.51)–(2.54). Then there exists

σ′0 > 0 such that for σe > σ′0,∀e ∈ Eh

Jhε (u`h) + k
∑̀
m=0

Rm
ε,h ≤ Jhε (u0

h) for 0 ≤ ` ≤M, (2.64)

where

Rm
ε,h :=

(
1± k

2ε2

)
‖dtum+1

h ‖2
L2(Th) +

k

4
‖∇dtum+1

h ‖2
L2(Th) (2.65)

+
k

4
jh
(
dtu

m+1
h , dtu

m+1
h

)
+

k

4ε2
‖dt(|um+1

h |2 − 1)‖2
L2(Th),

and the “+” sign in the first term is taken when fm+1 = (um+1
h )3 − umh and “-” sign

is taken when fm+1 = (um+1
h )3 − um+1

h .

32



Proof. Setting v = dtu
m+1
h in (2.51) we get

‖dtum+1
h ‖2

L2(Th) + ah(u
m+1
h , dtu

m+1
h ) +

1

ε2
(
fm+1, dtu

m+1
h

)
Th

= 0. (2.66)

By the algebraic identity a(a− b) = 1
2
(a2 − b2) + 1

2
(a− b)2 we have

ah(u
m+1
h ,∇dtum+1

h ) =
1

2
dtah(u

m+1
h , um+1

h ) +
k

2

(
‖∇dtum+1

h ‖2
L2(Th) (2.67)

+ 2
〈
{dt∂num+1

h }, [dtum+1
h ]

〉
EIh

+ jh
(
dtu

m+1
h , dtu

m+1
h

))
.

It follows from the trace and Schwarz inequalities that

2
〈
{dt∂num+1

h }, [dtum+1
h ]

〉
EIh
≥ −2‖{dt∂num+1

h }‖L2(EIh)‖[dtum+1
h ]‖L2(EIh) (2.68)

≥ −Ch−
1
2‖dt∇um+1

h ‖L2(Th)‖[dtum+1
h ]‖L2(EIh)

≥ −1

2
‖dt∇um+1

h ‖2
L2(Th) − Ch−1‖[dtum+1

h ]‖2
L2(EIh).

Then there exists σ1 > 0 such that for σe > σ1

ah(u
m+1
h ,∇dtum+1

h ) ≥ 1

2
dtah(u

m+1
h , um+1

h ) (2.69)

+
k

4

(
‖∇dtum+1

h ‖2
L2(Th) + jh

(
dtu

m+1
h , dtu

m+1
h

))
.

We now bound the third term on the left-hand side of (2.66) from below. We first

consider the case fm+1 = (um+1
h )3 − umh . To the end, we write

fm+1 = um+1
h

(
|um+1
h |2 − 1

)
+ kdtu

m+1
h

=
1

2

(
(um+1

h + umh ) + kdtu
m+1
h

)(
|um+1
h |2 − 1

)
+ kdtu

m+1
h .
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A direct calculation then yields

1

ε2
(
fm+1, dtu

m+1
h

)
Th
≥ 1

4ε2
dt‖|um+1

h |2 − 1‖2
L2(Th) (2.70)

+
k

4ε2
‖dt(|um+1

h |2 − 1)‖2
L2(Th) +

k

2ε2
‖dtum+1

h ‖2
L2(Th).

On the other hand, when fm+1 = f(um+1
h ) = (um+1

h )3 − um+1
h , we have (cf. [45])

1

ε2
(
fm+1, dtu

m+1
h

)
Th
≥ 1

4ε2
dt‖|um+1

h |2 − 1‖2
L2(Th) (2.71)

+
k

4ε2
‖dt(|um+1

h |2 − 1)‖2
L2(Th) −

k

2ε2
‖dtum+1

h ‖2
L2(Th).

It follows from (2.66), (2.69), (2.63) and (2.70) (resp. (2.71)) that

(
1± k

2ε2

)
‖dtum+1

h ‖2
L2(Th) + dt

(
Φh(um+1

h ) +
1

4ε2
‖|um+1

h |2 − 1‖2
L2(Th)

)
+
k

4

(
‖∇dtum+1

h ‖2
L2(Th) + jh

(
dtu

m+1
h , dtu

m+1
h

)
+

1

ε2
‖dt(|um+1

h |2 − 1)‖2
L2(Th)

)
≤ 0.

Finally, applying the summation operator k
∑M−1

m=0 and using the definition of Jhε

we obtain the desired estimate (2.64). The proof is complete.

The above theorem immediately infers the following corollary.

Corollary 2.3.6. The scheme (2.51)–(2.54) is stable for all h, k > 0 when fm+1 =

(um+1
h )3 − umh and is stable for h > 0, 2ε2 > k > 0 when fm+1 = (um+1

h )3 − um+1
h ,

provided that σe > max{σ0, σ
′
0} for every e ∈ Eh.

Theorem 2.3.7. Suppose that σe > max{σ0, σ1} for every e ∈ Eh. Then there

exists a unique solution um+1
h to the scheme (2.51)–(2.54) at every time step tm+1 for

h, k > 0 in the case fm+1 = (um+1
h )3 − umh . The conclusion still holds provided that

h > 0, 2ε2 > k > 0 in the case fm+1 = (um+1
h )3 − um+1

h .
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Proof. Define the following functionals

G(v) := kΦh(v) +
k

ε2
(
F (v), 1

)
Th

+
1

2
‖v‖2

L2(Th) −
(
umh , v

)
Th
,

H(v) := kΦh(v) +
k

ε2
(
F+
c (v), 1

)
Th

+
1

2
‖v‖2

L2(Th) −
( k
ε2

+ 1
)(
umh , v

)
Th
.

Clearly, H is strictly convex for all h, k > 0. G is not always convex, however, it

becomes strictly convex when k < 2ε2. To see this, we write F (v) = F+
c (v)− F−c (v)

in the definition of G(v) and notice that

− k
ε2
(
F−c (v), 1

)
Th

+
1

2
‖v‖2

L2(Th) =
1

2

(
1− k

ε2

)
‖v‖2

L2(Th),

which is strictly convex when k < 2ε2.

Using (2.58)–(2.60), it is easy to check that problem (2.51)–(2.54) is equivalent to

the following minimization/variation problems:

um+1
h = argmin

vh∈Vh
G(vh), when fm+1 = (um+1

h )3 − um+1
h ,

um+1
h = argmin

vh∈Vh
H(vh), when fm+1 = (um+1

h )3 − umh .

Thus, the conclusions of the theorem follow from the standard theory of finite-

dimensional convex minimization problems. The proof is complete.

2.3.3 Discrete discontinuous Galerkin spectrum estimate

In this subsection, we shall establish a discrete counterpart of the spectrum estimate

(2.36) for the DG approximation. Such an estimate will play a vital role in our error

analysis to be given in the next subsection. We recall that the desired spectrum

estimate was obtained in [45] for the standard finite element approximation and it

plays a vital role in the error analysis of [45]. Compared with the standard finite

element approximation, the main additional difficulty for the DG approximation
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is caused by the nonconformity of the DG finite element space Vh and its mesh-

dependent bilinear form ah(·, ·).

First, we introduce the DG elliptic projection operator P h
r : Hs(Th)→ Vh by

ah(v − P h
r v, wh) +

(
v − P h

r v, wh
)
Th

= 0 ∀wh ∈ Vh (2.72)

for any v ∈ Hs(Th).

Next, we quote the following well known error estimate results from [22, 82].

Lemma 2.3.8. Let v ∈ W s,∞(Th), then there hold

‖v − P hr v‖L2(Th) + h‖∇(v − P hr v)‖L2(Th) ≤ Chmin{r+1,s}‖u‖Hs(Th), (2.73)

1

| lnh|r
‖v − P hr v‖L∞(Th) + h‖∇(u− P hr u)‖L∞(Th) ≤ Chmin{r+1,s}‖u‖W s,∞(Th). (2.74)

where r := min{1, r} −min{1, r − 1}.

Let

C1 = max
|ξ|≤2
|f ′′(ξ)|. (2.75)

and P̂ h
r , corresponding to P h

r , denote the elliptic projection operator on the finite

element space Sh := Vh ∩ C0(D), there holds the following estimate [45]:

‖u− P̂ h
r u‖L∞ ≤ Ch2− d

2 ||u||H2 . (2.76)

We now state our discrete spectrum estimate for the DG approximation.

Proposition 2.3.9. Suppose there exists a positive number γ > 0 such that the

solution u of problem (1.24)–(1.27) satisfies

ess sup
t∈[0,T ]

‖u(t)‖W r+1,∞(D) ≤ Cε−γ. (2.77)

36



Then there exists an ε-independent and h-independent constant c0 > 0 such that for

ε ∈ (0, 1) and a.e. t ∈ [0, T ]

λDG

h (t) := inf
ψh∈Vh
ψh 6≡0

ah(ψh, ψh) + 1
ε2

(
f ′
(
P h
r u(t)

)
ψh, ψh

)
Th

‖ψh‖2
L2(Th)

≥ −c0, (2.78)

provided that h satisfies the constraint

h2− d
2 ≤ C0(C1C2)−1εmax{σ1+3,σ2+2}, (2.79)

hmin{r+1,s}| lnh|r ≤ C0(C1C2)−1εγ+2, (2.80)

where C2 arises from the following inequality:

‖u− P h
r u‖L∞((0,T );L∞(D) ≤ C2h

min{r+1,s}| lnh|rε−γ, (2.81)

‖u− P̂ h
r u‖L∞((0,T );L∞(D) ≤ C2h

2− d
2 ε−max{σ1+1,σ2}. (2.82)

Proof. Let Sh := Vh ∩ C0(D). For any ψh ∈ Vh, we define its finite element (elliptic)

projection ψFE
h ∈ Sh by

ãh(ψ
FE

h , ϕh) = ãh(ψh, ϕh) ∀ϕh ∈ Sh, (2.83)

where

ãh(ψ, ϕ) = ah(ψ, ϕ) + β(ψ, ϕ)Th ∀ψ, ϕ ∈ H2(Th),

and β is a positive constant to be specified later.

By Proposition 8 of [45] we have under the mesh constraint (2.79) that

‖f ′(P̂ h
r u)− f ′(u)‖L∞((0,T );L∞(D)) ≤ C0ε

2. (2.84)
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Similarly, under the mesh constraint (2.80) we can show that

‖f ′(P h
r u)− f ′(u)‖L∞((0,t);L∞(D)) ≤ C0ε

2. (2.85)

Then

‖f ′(P h
r u)− f ′(P̂ h

r u)‖L∞((0,T );L∞(D)) ≤ 2C0ε
2. (2.86)

Therefore,

f ′(P h
r u) ≥ f ′(P̂ h

r u)− 2C0ε
2. (2.87)

By the definition of ψFE
h we have

ah(ψh, ψh) = ah(ψ
FE

h , ψ
FE

h ) + ah(ψh − ψFE

h , ψh − ψFE

h )− 2β(ψh − ψFE

h , ψ
FE

h )Th .

Using the above inequality and equality we get

ah(ψh, ψh) +
1

ε2

(
f ′
(
P h
r u(t)

)
ψh, ψh

)
Th

(2.88)

≥ ah(ψ
FE

h , ψ
FE

h ) +
1

ε2

(
f ′
(
P̂ h
r u(t)

)
, (ψFE

h )2
)
Th

+ ah(ψh − ψFE

h , ψh − ψFE

h )− 2β
(
ψh − ψFE

h , ψ
FE

h

)
Th

+
1

ε2

(
f ′
(
P̂ h
r u(t)

)
, (ψh)

2 − (ψFE

h )2
)
Th
− 2C0‖ψh‖2

L2(Th).

We now bound the fourth and fifth terms on the right-hand side of (2.88) from

below. For the fourth term we have

−2β
(
ψh − ψFE

h , ψ
FE

h

)
Th
≥ 2β‖ψFE

h ‖2
L2(Th) − 2β‖ψFE

h ‖L2(Th)‖ψh‖L2(Th) (2.89)

≥ β‖ψFE

h ‖2
L2(Th) − β‖ψh‖2

L2(Th).
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To bound the fifth term, by (2.54) and the L∞-norm estimate for u(t) − P̂ h
r u(t)

we have that under the mesh constraint (2.79)

‖f ′(P̂ h
r u(t))‖L∞(D) ≤ ‖f ′(u(t))‖L∞(D) + ‖f ′(u(t))− f ′(P̂ h

r u(t))‖L∞(D)

≤ ‖f ′(u(t))‖L∞(D) + C‖u(t)− P̂ h
r u(t)‖L∞(D) ≤ C.

Thus, by the algebraic formula |a2 − b2| ≤ |a− b|2 + 2|ab|, we get for some C > 0

1

ε2

(
f ′
(
P̂ h
r u(t)

)
, (ψh)

2 − (ψFE

h )2
)
Th
≥ −C

ε2
‖(ψh)2 − (ψFE

h )2‖L1(Th) (2.90)

≥ −C
ε2

(
‖ψh − ψFE

h ‖2
L2(Th) + 2‖ψh − ψFE

h ‖L2(Th)‖ψFE

h ‖L2(Th)

)
≥ −C

ε2

((
1 + ε−2

)
‖ψh − ψFE

h ‖2
L2(Th) + ε2‖ψFE

h ‖2
L2(Th)

)
.

Now it comes to a key idea in bounding ‖ψh − ψFE
h ‖L2(Th), which is to use the

duality argument to bound it from above by the energy norm ah(ψh−ψFE
h , ψh−ψFE

h )
1
2

To the end, we consider the following auxiliary problem: find φ ∈ H1(D) ∩ H2
loc(D)

such that

ãh(φ, χ) =
(
ψh − ψFE

h , χ
)
Th

∀χ ∈ H1(D).

We assume the above variational problem is H1+θ-regular for some θ ∈ (0, 1], that is,

there exists a unique φ ∈ H1+θ(D) such that

‖φ‖H1+θ(D) ≤ C‖ψh − ψFE

h ‖L2(D).

It should be noted that C(> 0) can be made independent of β.

By the definition of ψFE
h in (2.83), we immediately get the Galerkin orthogonality

ãh
(
ψh − ψFE

h , χh
)

= 0 ∀χh ∈ Sh.
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The above orthogonality allows us easily to obtain by the duality argument (cf. [82]

for a general duality argument for DG methods)

‖ψh − ψFE

h ‖2
L2(Th) ≤ Ch2θ ah(ψh − ψFE

h , ψh − ψFE

h ) (2.91)

Again, the constant C can be made independent of β.

By Proposition 8 of [45] we also have the following spectrum estimate in the finite

element space Sh:

ah(ψ
FE

h , ψ
FE

h ) +
1

ε2

(
f ′
(
P̂ h
r u(t)

)
, (ψFE

h )2
)
Th
≥ −2C0‖ψFE

h ‖2
L2(Th). (2.92)

Finally, combining (2.88)–(2.92) we get

ah(ψh, ψh) +
1

ε2

(
f ′
(
P h
r u(t)

)
ψh, ψh

)
Th

(2.93)

≥
(
1− Ch2θε−4

)
ah(ψh − ψFE

h , ψh − ψFE

h )

+
(
β − C − 2C0

)
‖ψFE

h ‖2
L2(Th) −

(
β + 2C0

)
‖ψh‖2

L2(Th)

≥ −
(
β + 2C0

)
‖ψh‖2

L2(Th) ∀ψh ∈ Vh,

provided that β is chosen large enough such that β−C−2C0 > 0 and 1−Ch2θε−4 > 0,

under the mesh constraint (2.80). The proof is complete after setting c0 = β+2C0.

Remark 2.3.10. The proof actually is constructive in finding the ε- and h-

independent constant c0. As expected, c0 > 2C0. We also note that inequality (2.93)

is a Gärding-type inequality for the non-coercive elliptic operator LAC.

2.3.4 Polynomial order in ε−1 error estimates

The goal of this subsection is to derive optimal order error estimates for the global

error u(tm) − umh of the fully discrete scheme (2.51)–(2.54) under some reasonable

mesh constraints on h, k and regularity assumptions on u0. This will be achieved
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by adapting the nonstandard error estimate technique with a help of the generalized

Gronwall lemma (Lemma 2.2.4) and the discrete spectrum estimate (2.78).

The main result of this subsection is the following error estimate theorem.

Theorem 2.3.11. suppose σe > max{σ0, σ
′
0}. Let u and {umh }Mm=1 denote respectively

the solutions of problems (1.24)–(1.27) and (2.51)–(2.54). Assume u ∈ H2((0, T );

L2(D)) ∩ L2((0, T );W s,∞(D)) and suppose (GA) and (2.77) hold. Then, under the

following mesh and initial value constraints:

h2− d
2 ≤ C0(C1C2)−1εmax{σ1+3,σ2+2},

hmin{r+1,s}| lnh|r ≤ C0(C1C2)−1εγ+2,

k2 + h2 min{r+1,s} ≤ ε4+d+2(σ1+2),

k ≤ Cε
8+2d+4σ1

4−d ,

u0
h ∈ Sh such that ‖u0 − u0

h‖L2(Th) ≤ Chmin{r+1,s},

there hold

max
0≤m≤M

‖u(tm)− umh ‖L2(Th) +
(
k2

M∑
m=1

‖dt(u(tm)− umh )‖2
L2(Th)

) 1
2

(2.94)

≤ C(k + hmin{r+1,s})ε−(σ1+2),(
k

M∑
m=1

‖u(tm)− umh ‖2
H1(Th)

) 1
2 ≤ C(k + hmin{r+1,s}−1)ε−(σ1+3), (2.95)

max
0≤m≤M

‖u(tm)− umh ‖L∞(Th) ≤ Chmin{r+1,s}| lnh|rε−γ (2.96)

+ Ch−
d
2 (k + hmin{r+1,s})ε−(σ1+2).

Proof. We only give a proof for the case fm+1 = (um+1
h )3 − umh because its proof is

slightly more difficult than that for the case fm+1 = (um+1
h )3− um+1

h . Since the proof

is long, we divide it into four steps.
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Step 1: We begin with introducing the following error decompositions:

u(tm)− umh = ηm + ξm, ηm := u(tm)− P h
r u(tm), ξm := P h

r u(tm)− umh .

It is easy to check that the exact solution u satisfies

(
dtu(tm+1), vh

)
Th

+ ah(u(tm+1), vh) +
1

ε2
(
f(u(tm+1)), vh

)
Th

=
(
Rm+1, vh

)
Th

(2.97)

for all vh ∈ Vh, where

Rm+1 := −1

k

∫ tm+1

tm

(t− tm)utt(t) dt.

Hence

k
∑̀
m=0

‖Rm+1‖2
L2(D) ≤

1

k

∑̀
m=0

(∫ tm+1

tm

(s− tm)2ds
)(∫ tm+1

tm

‖utt‖2
L2(D) ds

)
(2.98)

≤ Ck2ε−2 max{σ1+2,σ3}.

Subtracting (2.51) from (2.97) and using the definitions of ηm and ξm we get the

following error equation:

(
dtξ

m+1, vh
)
Th

+ ah(ξ
m+1, vh) +

1

ε2
(
f(u(tm+1))− fm+1, vh

)
Th

(2.99)

=
(
Rm+1, vh

)
Th
−
(
dtη

m+1, vh
)
Th
− ah(ηm+1, vh)

=
(
Rm+1, vh

)
Th
−
(
dtη

m+1, vh
)
Th

+ (ηm+1, vh)Th .

Setting vh = ξm+1 and using Schwarz inequality yield

1

2

(
dt‖ξm+1‖2

L2(Th) + k‖dtξm+1‖2
L2(Th)

)
+ ah(ξ

m+1, ξm+1)

+
1

ε2
(
f(u(tm+1))− fm+1, ξm+1

)
Th

≤
(
‖Rm+1‖L2(Th) + ‖dtηm+1‖L2(Th) + ‖ηm+1‖L2(Th)

)
‖ξm+1‖L2(Th).
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Summing in m (after having lowered the index by 1) from 1 to ` (≤ M) and using

(2.73) and (2.98) we get

‖ξ`‖2
L2(Th) + 2k

∑̀
m=1

k‖dtξm‖2
L2(Th) + 2k

∑̀
m=1

ah(ξ
m, ξm) (2.100)

+ 2k
∑̀
m=1

1

ε2
(
f(u(tm))− fm, ξm

)
Th

≤ k
∑̀
m=1

‖ξm‖2
L2(Th) + 2‖ξ0‖2

L2(Th) + C
(
k2ε−2 max{σ1+2,σ3}

+ h2 min{r+1,s} ‖u‖2
H1((0,T );Hs(D))

)
.

Step 2: We now bound the fourth term on the left-hand side of (2.100). By the

definition of fm we have

f(u(tm))− fm = f(u(tm))− f
(
P h
r u(tm)

)
+ f
(
P h
r u(tm)

)
− fm

= −
[
f(u(tm))− f

(
P h
r u(tm)

)]
+
(
P h
r u(tm)

)3 − P h
r u(tm)− (umh )3 + um−1

h

= −
[
f(u(tm))− f

(
P h
r u(tm)

)]
+
((
P h
r u(tm)

)2
+ P h

r u(tm)umh + (umh )2
)
ξm

− ξm − kdtumh

= −
[
f(u(tm))− f

(
P h
r u(tm)

)]
+
(

3
(
P h
r u(tm)

)2 − 1
)
ξm − 3P h

r u(tm) (ξm)2

+ (ξm)3 − kdtumh

= −
[
f(u(tm))− f

(
P h
r u(tm)

)]
+ f ′

(
P h
r u(tm)

)
ξm − 3P h

r u(tm) (ξm)2

+ (ξm)3 − kdtumh .
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Hence, on noting that −
[
f(u(tm))− f

(
P h
r u(tm)

)]
≥ −C|ηm|, we have

2k
∑̀
m=1

1

ε2
(
f(u(tm))− fm, ξm

)
Th

≥ −Ck
ε2

∑̀
m=1

‖|ηm‖L2(Th)‖ξm‖L2(Th) + 2k
∑̀
m=1

1

ε2

(
f ′
(
P h
r u(tm)

)
, (ξm)2

)
Th

− Ck

ε2

∑̀
m=1

‖ξm‖3
L3(Th) +

2k

ε2

∑̀
m=1

‖ξm‖4
L4(Th) −

2k

ε2

∑̀
m=1

k‖dtumh ‖L2(Th) ‖ξm‖L2(Th)

≥ 2k
∑̀
m=1

1

ε2

(
f ′
(
P h
r u(tm)

)
, (ξm)2

)
Th

+
2k

ε2

∑̀
m=1

‖ξm‖4
L4(Th) −

Ck

ε2

∑̀
m=1

‖ξm‖3
L3(Th)

− k
∑̀
m=1

‖ξm‖2
L2(Th) − C

(
h2 min{r+1,s}ε−4‖u‖2

L2((0,T );Hs(D) + k2ε−4Jhε (u0
h)
)
.

Here we have used the fact that |P h
r u(tm)| ≤ C and (2.64).

Substituting the above estimate into (2.100) yields

‖ξ`‖2
L2(Th) + 2k

∑̀
m=1

k‖dtξm‖2
L2(Th) +

2

ε2
k
∑̀
m=1

‖ξm‖4
L4(Th) (2.101)

+ 2k
∑̀
m=1

(
ah(ξ

m, ξm) +
1

ε2

(
f ′
(
P h
r u(tm)

)
, (ξm)2

)
Th

)

≤ 2k
∑̀
m=1

‖ξm‖2
L2(Th) +

Ck

ε2

∑̀
m=1

‖ξm‖3
L3(Th)

+ 2‖ξ0‖2
L2(Th) + Ck2

(
ε−2 max{σ1+2,σ3} + ε−4Jhε (u0

h)
)

+ Ch2 min{r+1,s}
(
‖u‖2

H1((0,T );Hs(D)) + ε−4‖u‖2
L2((0,T );Hs(D)

)
.

Step 3: To control the second term on the right-hand side of (2.101) we use the

following Gagliardo-Nirenberg inequality [2]:

‖v‖3
L3(K) ≤ C‖∇v‖

d
2

L2(K)

∥∥v∥∥ 6−d
2

L2(K)
∀K ∈ Th
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to get

Ck

ε2

∑̀
m=1

‖ξm‖3
L3(Th) ≤ ε2αk

∑̀
m=1

‖∇ξm‖2
L2(Th) (2.102)

+ Cε−
2(4+d)

4−d k
∑̀
m=1

∑
K∈Th

∥∥ξm∥∥ 2(6−d)
4−d

L2(K)

≤ ε2αk
∑̀
m=1

‖∇ξm‖2
L2(Th) (2.103)

+ Cε−
2(4+d)

4−d k
∑̀
m=1

∥∥ξm∥∥ 2(6−d)
4−d

L2(Th).

Finally, for the fourth term on the left-hand side of (2.101) we utilize the discrete

spectrum estimate (2.78) to bound it from below as follows:

2k
∑̀
m=1

(
ah(ξ

m, ξm) +
1

ε2

(
f ′
(
P h
r u(tm)

)
, (ξm)2

)
Th

)
(2.104)

= 2(1− ε2)k
∑̀
m=1

(
ah(ξ

m, ξm) +
1

ε2

(
f ′
(
P h
r u(tm)

)
, (ξm)2

)
Th

)

+ 2ε2k
∑̀
m=1

(
ah(ξ

m, ξm) +
1

ε2

(
f ′
(
P h
r u(tm)

)
, (ξm)2

)
Th

)

≥ −2(1− ε2)c0k
∑̀
m=1

‖ξm‖2
L2(Th) + 4ε2αk

∑̀
m=1

‖ξm‖2
1,DG − Ck

∑̀
m=1

‖ξm‖2
L2(Th),

where we have used (2.63) and (2.61) to get the second term on the right-hand side.
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Step 4: Substituting (2.102) and (2.104) into (2.101) we get

‖ξ`‖2
L2(Th) + k

∑̀
m=1

(
2k‖dtξm‖2

L2(Th) + 3ε2α‖ξm‖2
1,DG

)
(2.105)

≤ C(1 + c0)k
∑̀
m=1

‖ξm‖2
L2(Th) + Cε−

2(4+d)
4−d k

∑̀
m=1

∥∥ξm∥∥ 2(6−d)
4−d

L2(Th)

+ 2‖ξ0‖2
L2(Th) + Ck2

(
ε−2 max{σ1+2,σ3} + ε−4Jhε (u0

h)
)

+ Ch2 min{r+1,s}
(
‖u‖2

H1((0,T );Hs(D)) + ε−4‖u‖2
L2((0,T );Hs(D)

)
.

At this point, notice that there are two terms on the right-hand side of (2.105)

that involve the approximated initial datum u0
h. On one hand, we need to choose u0

h

such that ‖ξ0‖L2(Th) = O(hmin{r+1,s}) to maintain the optimal rate of convergence in

h. Clearly, both the L2 and the elliptic projection of u0 will work. In fact, in the

latter case, ξ0 = 0. On the other hand, we want Jhε (u0
h) to be uniformly bounded in

h. but the jump term in Jhε (u0
h) always depend on h unless it vanishes. To satisfy

this requirement, we ask u0
h ∈ Sh. Therefore, we are led to choose u0

h to be the L2 or

the elliptic projection of u0 into the finite element space Sh.

It then follows from (2.105) and (ii), (iv), (vii) in Proposition 2.2.1 that

‖ξ`‖2
L2(Th) + k

∑̀
m=1

(
2k‖dtξm‖2

L2(Th) + 3ε2α‖ξm‖2
1,DG

)
(2.106)

≤ C(1 + c0)k
∑̀
m=1

‖ξm‖2
L2(Th) + Cε−

2(4+d)
4−d k

∑̀
m=1

∥∥ξm∥∥ 2(6−d)
4−d

L2(Th)

+ Ck2ε−2(σ1+2) + Ch2 min{r+1,s}ε−2(σ1+2).

On noting that u`h can be written as

u`h = k
∑̀
m=1

dtu
m
h + u0

h, (2.107)
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then by (2.1) and (2.64), we get

‖u`h‖L2(Th) ≤ k
∑̀
m=1

‖dtumh ‖L2(Th) + ‖u0
h‖L2(Th) ≤ Cε−2σ1 . (2.108)

By the boundedness of the projection, we have

‖ξ`‖2
L2(Th) ≤ Cε−2σ1 . (2.109)

Then (2.106) can be reduced to

‖ξ`‖2
L2(Th) + k

∑̀
m=1

(
2k‖dtξm‖2

L2(Th) + 3ε2α‖ξm‖2
1,DG

)
≤M1 +M2, (2.110)

where

M1 : = C(1 + c0)k
`−1∑
m=1

‖ξm‖2
L2(Th) + Cε−

2(4+d)
4−d k

`−1∑
m=1

∥∥ξm∥∥ 2(6−d)
4−d

L2(Th) (2.111)

+ Ck2ε−2(σ1+2) + Ch2 min{r+1,s}ε−2(σ1+2),

M2 : = C(1 + c0)k‖ξ`‖2
L2(Th) + Cε−

2(4+d)
4−d k

∥∥ξ`∥∥ 2(6−d)
4−d

L2(Th). (2.112)

It is easy to check that

M2 <
1

2
‖ξ`‖2

L2(Th) provided that k < Cε
8+2d+4σ1

4−d . (2.113)
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By (2.110) we have

‖ξ`‖2
L2(Th) + k

∑̀
m=1

(
2k‖dtξm‖2

L2(Th) + 3ε2α‖ξm‖2
1,DG

)
≤ 2M1 (2.114)

= 2C(1 + c0)k
`−1∑
m=1

‖ξm‖2
L2(Th) + 2Cε−

2(4+d)
4−d k

`−1∑
m=1

∥∥ξm∥∥ 2(6−d)
4−d

L2(Th)

+ 2Ck2ε−2(σ1+2) + Ch2 min{r+1,s}ε−2(σ1+2)

≤ C(1 + c0)k
`−1∑
m=1

‖ξm‖2
L2(Th) + Cε−

2(4+d)
4−d k

`−1∑
m=1

∥∥ξm∥∥ 2(6−d)
4−d

L2(Th)

+ Ck2ε−2(σ1+2) + Ch2 min{r+1,s}ε−2(σ1+2).

Let d` ≥ 0 be the slack variable such that

‖ξ`‖2
L2(Th) + k

∑̀
m=1

(
2k‖dtξm‖2

L2(Th) + 3ε2α‖ξm‖2
1,DG

)
+ d` (2.115)

= C(1 + c0)k
`−1∑
m=1

‖ξm‖2
L2(Th) + Cε−

2(4+d)
4−d k

`−1∑
m=1

∥∥ξm∥∥ 2(6−d)
4−d

L2(Th)

+ Ck2ε−2(σ1+2) + Ch2 min{r+1,s}ε−2(σ1+2),

and define for ` ≥ 1

S`+1 : = ‖ξ`‖2
L2(Th) + k

∑̀
m=1

(
2k‖dtξm‖2

L2(Th) + 3ε2α‖ξm‖2
1,DG

)
+ d`, (2.116)

S1 : = Ck2ε−2(σ1+2) + Ch2 min{r+1,s}ε−2(σ1+2), (2.117)

then we have

S`+1 − S` ≤ C(1 + c0)kS` + Cε−
2(4+d)

4−d kS
6−d
4−d
` for ` ≥ 1. (2.118)
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Applying Lemma 2.2.4 to {S`}`≥1 defined above, we obtain for ` ≥ 1

S` ≤ a−1
`

{
S
− 2

4−d
1 − 2Ck

4− d

`−1∑
s=1

ε−
2(4+d)

4−d a
− 2

4−d
s+1

}− 4−d
2

(2.119)

provided that

1

2
S
− 2

4−d
1 − 2Ck

4− d

`−1∑
s=1

ε−
2(4+d)

4−d a
− 2

4−d
s+1 > 0. (2.120)

We note that as (1 ≤ s ≤ `) are all bounded as k → 0, therefore, (2.120) holds under

the mesh constraint stated in the theorem. It follows from (2.119) and (2.120) that

S` ≤ 2a−1
` S1 ≤ Ck2ε−2(σ1+2) + Ch2 min{r+1,s}ε−2(σ1+2). (2.121)

Finally, using the above estimate and the properties of the operator P h
r we obtain

(2.94) and (2.95). The estimate (2.96) follows from (2.95) and the inverse inequality

bounding the L∞-norm by the L2-norm and (2.81). The proof is complete.

2.4 Convergence of the numerical interface to the

mean curvature flow

In this section, we establish the convergence and rate of convergence of the numerical

interface Γε,h,kt , which is defined as the zero-level set of the numerical solution {unh} (see

the precise definition below), to the sharp interface limit (the mean curvature flow)

of the Allen-Cahn equation. The key ingredient of the proof is the L∞(J ;L∞) error

estimate obtained in the previous section, which depends on ε−1 in a low polynomial

order. It is proved that the numerical interface converges with the rate O(ε2| ln ε|2)

before the singularities appear. We note that the proof to be given below essentially

follows the same lines as in the proof of [45]. For the reader’s convenience, we provide

here a self-contained proof. Throughout this section, uε denotes the solution of the

Allen-Cahn problem (1.24)–(1.27).
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We notice that, unlike in the finite element case, the DG solution unh is

discontinuous in space (and in time). As a result, the zero-level set of unh may not

be well defined. To circumvent this technicality, we introduce the finite element

approximation ûmh of umh which is defined using the averaged degrees of freedom of unh

as the degrees of freedom for determining ûmh (cf. [58]). The following approximation

result was proved in Theorem 2.1 in [58].

Theorem 2.4.1. Let Th be a conforming mesh consisting of triangles when d = 2,

and tetrahedra when d = 3. For vh ∈ Vh, let v̂h be the finite element approximation

of vh as defined above. Then for any vh ∈ Vh and i = 0, 1 there holds

∑
K∈Th

‖vh − v̂h‖2
Hi(K) ≤ C

∑
e∈EIh

h1−2i
e ‖[vh]‖2

L2(e), (2.122)

where C > 0 is a constant independent of h and vh but may depend on r and the

minimal angle θ0 of the triangles in Th.

Using the above approximation result we can show that the error estimates of

Theorem 2.3.11 also hold for ûnh.

Theorem 2.4.2. Let umh denote the solution of the DG scheme (2.51)–(2.54) and ûmh

denote its finite element approximation as defined above. Then under the assumptions

of Theorem 2.3.11 the error estimates for umh given in Theorem 2.3.11 are still valid

for ûmh , in particular, there holds

max
0≤m≤M

‖u(tm)− ûmh ‖L∞(Th) ≤ Chmin{r+1,s}| lnh|rε−γ (2.123)

+ Ch−
d
2 (k + hmin{r+1,s})ε−(σ1+2).

Proof. We only give a proof for (2.123) because other estimates can be proved likewise.

By the triangle inequality we have

‖u(tm)− ûmh ‖L∞(Th) ≤ ‖u(tm)− umh ‖L∞(Th) + ‖umh − ûmh ‖L∞(Th). (2.124)
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Hence, it suffices to show that the second term on the right-hand side is an equal or

higher order term compared to the first one.

Let uI(t) denote the finite element interpolation of u(t) into Sh. It follows from

(2.122) and the trace inequality that

‖umh − ûmh ‖2
L2(Th) ≤ C

∑
e∈EIh

he‖[umh ]‖2
L2(e) (2.125)

= C
∑
e∈EIh

he‖[umh − uI(tm)]‖2
L2(e)

≤ C
∑
K∈Th

heh
−1
K ‖u

m
h − uI(tm)‖2

L2(K)

≤ C
(
‖umh − u(tm)‖2

L2(Th) + ‖u(tm)− uI(tm)‖2
L2(Th)

)
.

Substituting (2.125) into (2.124) after using the inverse inequality yields

‖u(tm)− ûmh ‖L∞(Th) ≤ ‖u(tm)− umh ‖L∞(Th) + Ch−
d
2‖umh − ûmh ‖L2(Th)

≤ ‖u(tm)− umh ‖L∞(Th)

+ Ch−
d
2

(
‖umh − u(tm)‖L2(Th) + ‖u(tm)− uI(tm)‖L2(Th)

)
,

which together with (2.94) implies the desired estimate (2.123). The proof is complete.

We are now ready to state the main theorem of this section.

Theorem 2.4.3. Let {Γt} denote the (generalized) mean curvature flow defined in

[33], that is, Γt is the zero-level set of the solution w of the following initial value

problem:

wt = ∆w − D2wDw ·Dw
|Dw|2

in Rd × (0,∞), (2.126)

w(·, 0) = w0(·) in Rd. (2.127)
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Let uε,h,k denote the piecewise linear interpolation in time of the numerical solution

{ûmh } defined by

uε,h,k(x, t) :=
t− tm
k

ûm+1
h (x) +

tm+1 − t
k

ûmh (x), tm ≤ t ≤ tm+1 (2.128)

for 0 ≤ m ≤M − 1. Let {Γε,h,kt } denote the zero-level set of uε,h,k, namely,

Γε,h,kt = {x ∈ D; uε,h,k(x, t) = 0}. (2.129)

Suppose Γ0 = {x ∈ D;u0(x) = 0} is a smooth hypersurface compactly contained in

D, and k = O(h2). Let t∗ be the first time at which the mean curvature flow develops

a singularity, then there exists a constant ε1 > 0 such that for all ε ∈ (0, ε1) and

0 < t < t∗ there holds

sup
x∈Γε,h,kt

{dist(x,Γt)} ≤ Cε2| ln ε|2.

Proof. We note that since uε,h,k(x, t) is continuous in both t and x, then Γε,h,kt is well

defined. Let It and Ot denote the inside and the outside of Γt defined by

It := {x ∈ Rd; w(x, t) > 0}, Ot := {x ∈ Rd; w(x, t) < 0}. (2.130)

Let d(x, t) denote the signed distance function to Γt which is positive in It and

negative in Ot. By Theorem 6.1 of [9], there exist ε̂1 > 0 and Ĉ1 > 0 such that for all

t ≥ 0 and ε ∈ (0, ε̂1) there hold

uε(x, t) ≥ 1− ε ∀x ∈ {x ∈ D; d(x, t) ≥ Ĉ1ε
2| ln ε|2}, (2.131)

uε(x, t) ≤ −1 + ε ∀x ∈ {x ∈ D; d(x, t) ≤ −Ĉ1ε
2| ln ε|2}. (2.132)
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Since for any fixed x ∈ Γε,h,kt , uε,h,k(x, t) = 0, by (2.123) with k = O(h2), we have

|uε(x, t)| = |uε(x, t)− uε,h,k(x, t)|

≤ C̃
(
hmin{r+1,s}| lnh|rε−γ + h−

d
2 (k + hmin{r+1,s})ε−(σ1+2)

)
.

Then there exists ε̃1 > 0 such that for ε ∈ (0, ε̃1) there holds

|uε(x, t)| < 1− ε. (2.133)

Therefore, the assertion follows from setting ε1 = min{ε̂1, ε̃1}. The proof is complete.

2.5 Numerical experiments

In this section, we present three two-dimensional numerical tests to gauge the

performance of the proposed fully discrete IP-DG method with r = 1. All tests

are done on the square domain D = [−1, 1]2 and u0(x) = tanh
(
d0(x)√

2ε

)
, where d0(x)

stands for the signed distance from x to the initial curve Γ0.

The first test uses a smooth initial curve Γ0, hence the requirements for u0 are

satisfied. Consequently, the results established in this chapter apply to this test

example. In the test we first verify the spatial rate of convergence given in (2.94)

and (2.95), and the decay of the energy Jhε (u`h) defined in (2.64) using ε = 0.1. As

expected, the energy decreases monotonically during the whole evolution. We then

compute the evolution of the zero-level set of the solution of the Allen-Cahn problem

with ε = 0.125, 0.025, 0.005, 0.001 and at various time instances.

On the other hand, the second and third tests use non-smooth initial curve Γ0, so

u0 defined above is not smooth anymore, hence the theoretical results of this chapter

may not apply to these two cases. Nevertheless, we still use our DG method to

compute the solutions, the energy decay as well as the evolution of the zero-level sets
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of the solutions of these two test problems. The numerical results suggest that the

proposed DG method still works well in these two cases where a convergence theory

is missing.

Test 1. Consider the Allen-Cahn problem with the following initial condition:

u0(x) =

tanh(d(x)√
2ε

), if
x2

1

0.36
+

x2
2

0.04
≥ 1,

tanh(−d(x)√
2ε

), if
x2

1

0.36
+

x2
2

0.04
< 1.

Here d(x) stands for the distance function to the ellipse
x2

1

(0.6)2 +
x2

2

(0.2)2 = 1.

Table 2.1: Spatial errors and convergence rates of Test 1.

L∞(L2) error L∞(L2) order L2(H1) error L2(H1) order

h = 0.4
√

2 0.28704 1.22726

h = 0.2
√

2 0.10847 1.4040 0.69576 0.8188

h = 0.1
√

2 0.02146 2.3376 0.32855 1.0825

h = 0.05
√

2 0.00511 2.0703 0.16448 0.9982

h = 0.025
√

2 0.00129 1.9860 0.08230 0.9989

Table 2.1 shows the spatial L2 and H1-norm errors and convergence rates, which

are consistent with what are proved for the linear element in the convergence theorem.

Figure 2.1 plots the change of the discrete energy Jhε (u`h) in time. This graph clearly

confirms the energy decay property.

Figure 2.1: Decay of the numerical energy Jhε (u`h) of Test 1.
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Figure 2.2: Test 1: Snapshots of the zero-level set of uε,h,k at time t = 0, 2 ×
10−2, 3.2× 10−2, 4× 10−2 and ε = 0.125, 0.025, 0.005, 0.001.

Figure 2.2 displays four snapshots at four fixed time points of the zero-level set

of the numerical solution uε,h,k with four different ε. Once again, we observe that at

each time point the zero-level set converges to the mean curvature flow Γt as ε tends

to zero, and the zero-level set evolves faster in time for larger ε.

Test 2. This test considers a case with nonsmooth initial curve Γ0 which encloses

a dumbbell-shaped domain. To explicitly define the desired initial function, we

introduce the following functions:

tanh(x) :=
ex − e−x

ex + e−x
, ψ1(y) :=

−1 +
√

0.8y + 0.04

2
,

ψ2(y) :=
1−
√

1.92y + 0.2304

2
, ψ3(y) :=

−1 +
√
−0.8y + 0.04

2
,

ψ4(y) :=
1−
√
−1.92y + 0.2304

2
, ψ5(y) := −

√
1− 0.2451y2

0.0049
.
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We then consider the Allen-Cahn problem (1.24)–(1.27) with the following initial

condition:

u0(x, y) =



tanh( 1√
2ε
(−
√

(x− 0.14)2 + (y − 0.15)2)), if x > 0.14, 0 ≤ y < − 5
12(x− 0.5),

tanh( 1√
2ε
(−
√

(x− 0.14)2 + (y + 0.15)2)), if x > 0.14, 5
12(x− 0.5) < y < 0,

tanh( 1√
2ε
(−
√

(x+ 0.3)2 + (y − 0.15)2)), if x < −0.3, 0 ≤ y < 3
4(x+ 0.5),

tanh( 1√
2ε
(−
√

(x+ 0.3)2 + (y + 0.15)2)), if x < −0.3,−3
4(x+ 0.5) < y < 0,

tanh( 1√
2ε
(
√

(x− 0.5)2 + y2 − 0.39)), if x > 0.14, y ≥ − 5
12(x− 0.5)

or y ≤ 5
12(x− 0.5),

tanh( 1√
2ε
(
√

(x+ 0.5)2 + y2 − 0.25)), if x < −0.3, y ≥ −3
4(x+ 0.5)

or y ≤ −3
4(x+ 0.5),

tanh( 1√
2ε
(|y| − 0.15)), if − 0.3 ≤ x ≤ 0.14,

ψ1(y) ≤ x ≤ ψ2(y)

and ψ3(y) ≤ x ≤ ψ4(y),

tanh( 1√
2ε
(
√

(x− 0.5)2 + y2 − 0.39)), if − 0.3 ≤ x ≤ 0.14, x ≥ ψ2(y)

and x ≥ ψ5(y),

tanh( 1√
2ε
(
√

(x− 0.5)2 + y2 − 0.39)), if − 0.3 ≤ x ≤ 0.14, x ≥ ψ4(y)

and x ≥ ψ5(y),

tanh( 1√
2ε
(
√

(x+ 0.5)2 + y2 − 0.25)), if − 0.3 ≤ x ≤ 0.14, x ≤ ψ1(y)

and x ≤ ψ5(y),

tanh( 1√
2ε
(
√

(x+ 0.5)2 + y2 − 0.25)), if − 0.3 ≤ x ≤ 0.14, x ≤ ψ3(y)

and x ≤ ψ5(y).

We note that u0 can be rewritten as

u0 = tanh
(d0(x)√

2ε

)
.
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Since Γ0 contains conner points, it is only Lipschitz. Then u0 is not smooth, hence,

it does not satisfy the assumptions of Proposition 2.2.2. As a result, the convergence

theorem of this chapter may not apply to this case. Nevertheless, the numerical results

given in Table 2.2 show that the spatial L2 and H1-norm errors and convergence rates

are still consistent with what are proved for the linear element in the convergence

theorem.

Table 2.2: Spatial errors and convergence rates of Test 2.

L∞(L2) error L∞(L2) order L2(H1) error L2(H1) order

h = 0.4
√

2 0.20604 0.95123

h = 0.2
√

2 0.04598 2.1638 0.49633 0.9385

h = 0.1
√

2 0.01330 1.7896 0.25199 0.9779

h = 0.05
√

2 0.00372 1.8381 0.12686 0.9901

h = 0.025
√

2 0.00098 1.9244 0.06350 0.9984

Figure 2.3 plots the change of the discrete energy Jhε (u`h) in time, which should

decrease according to (2.64). This graph clearly confirms this decay property.

Figure 2.3: Decay of the numerical energy Jhε (u`h) of Test 2.

Figure 2.4 displays four snapshots at four fixed time points of the zero-level set of

the numerical solution uε,h,k with four different ε. They clearly indicate that at each

time point the zero-level set converges to the mean curvature flow Γt as ε tends to

zero. It also shows that the zero-level set evolves faster in time for larger ε.
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Figure 2.4: Test 2: Snapshots of the zero-level set of uε,h,k at time t =
0, 0.06, 0.09, 0.2 and ε = 0.125, 0.025, 0.005, 0.001.

Test 3. Consider the Allen-Cahn problem (1.24)–(1.27) with the following initial

condition:

u0(x) =



tanh( 1√
2ε

(min{d1(x), d2(x)})), if
x2

1

0.04
+

x2
2

0.36
≥ 1,

x2
1

0.36
+

x2
2

0.04
≥ 1,

or
x2

1

0.04
+

x2
2

0.36
≤ 1,

x2
1

0.36
+

x2
2

0.04
≤ 1,

tanh( 1√
2ε

(−min{d1(x), d2(x)})), if
x2

1

0.04
+

x2
2

0.36
< 1,

x2
1

0.36
+

x2
2

0.04
> 1,

or
x2

1

0.04
+

x2
2

0.36
> 1,

x2
1

0.36
+

x2
2

0.04
< 1.

Here d1(x) and d2(x) stand for, respectively, the distance functions to the two ellipses.

Obviously, the above Γ0 is not smooth, moreover, it contains four self-intersection

points. A topological change (i.e., a singularity) is expected to occur instantaneously

in such a case. Figure 2.5 displays four snapshots at four fixed time points of the

zero-level set of the numerical solution uε,h,k with four different ε. It clearly shows

how the pinch-off occurs for this self-intersected curve under the mean curvature flow.
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Figure 2.5: Test 3: Snapshots of the zero-level set of uε,h,k at time t = 0, 6 ×
10−3, 1.2× 10−2, 2× 10−2 and ε = 0.125, 0.025, 0.005, 0.001.

We also compute the spatial L2 and H1-norm errors and convergence rates in

Table 2.3, they are consistent with what are proved for the linear element in the

convergence theorem although the theorem does not cover this case. Figure 2.6 plots

the change of the discrete energy Jhε (u`h) in time. The graph not only confirms the

energy decay property but also reveals the rapid decay of the energy at the beginning

of the evolution, which is caused by the singularity.
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Table 2.3: Spatial errors and convergence rates of Test 3.

L∞(L2) error L∞(L2) order L2(H1) error L2(H1) order

h = 0.4
√

2 0.09186 0.29686

h = 0.2
√

2 0.03670 1.3237 0.16331 0.8622

h = 0.1
√

2 0.00911 2.0103 0.07603 1.1030

h = 0.05
√

2 0.00276 1.7228 0.03740 1.0235

h = 0.025
√

2 0.00071 1.9588 0.01846 1.0186

Figure 2.6: Decay of the numerical energy Jhε (u`h) of Test 3.
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Chapter 3

Discontinuous Galerkin Methods

for the Cahn-Hilliard Equation

3.1 Introduction

The Cahn-Hilliard equation plays an important role in materials phase transition,

and it also has been extensively studied due to its close relation with the Hele-Shaw

problem. It was first formally proved by Pego [74] that the chemical potential w :=

−ε∆u + 1
ε
f(u) tends to a limit which satisfies the following free boundary problem

known as the Hele-Shaw problem (1.18)-(1.21). A rigorous justification that u→ ±1

in the interior or exterior of Γt for all t ∈ [0, T ] as ε ↘ 0 was given by Stoth [88]

for the radially symmetric case, and by Alikakos, Bates and Chen [3] for the general

case. In addition, Chen [20] established the convergence of the weak solution of the

Cahn-Hilliard problem to a weak (or varifold) solution of the Hele-Shaw problem.

Numerical approximations of the Cahn-Hilliard equation have been extensively

carried out in the past thirty years (cf. [28, 31, 46] and the references therein). On

the other hand, the majority of these works were done for a fixed parameter ε. The

error bounds, which are obtained using the standard Gronwall inequality technique,

show an exponential dependence on 1/ε. Such an estimate is clearly not useful
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for small ε, in particular, in addressing the issue whether the computed numerical

interfaces converge to the original sharp interface of the Hele-Shaw problem. Better

and practical error bounds should only depend on 1/ε in some (low) polynomial

orders because they can be used to provide an answer to the above convergence

question, which in fact is the best result (in terms of ε) one can expect. The first

such polynomial order in 1/ε a priori estimate was obtained in [47] for mixed finite

element approximations of the Cahn-Hilliard problem (1.30)–(1.33). In addition,

polynomial order in 1/ε a posteriori error estimates were obtained in [49] for the

same mixed finite element methods. One of the key ideas employed in all these

works is to use a nonstandard error estimate technique which is based on establishing

a discrete spectrum estimate (using its continuous counterpart) for the linearized

Cahn-Hilliard operator. An immediate corollary of the polynomial order in 1/ε a

priori and a posteriori error estimates is the convergence of the numerical interfaces

of the underlying mixed finite element approximations to the Hele-Shaw flow before

the onset of singularities of the Hele-Shaw flow as ε and mesh sizes h and k all tend

to zero.

The objectives of this chapter are twofold: Firstly, we develop some MIP-DG

methods and establish polynomial order in 1/ε a priori error bounds, as well as

prove convergence of numerical interfaces for the MIP-DG methods. This goal is

motivated by the advantages of DG methods in regard to designing adaptive mesh

methods and algorithms, which is an indispensable strategy with the diffuse interface

methodology. Secondly, we use the Cahn-Hilliard equation as another prototypical

model problem [40] to develop new analysis techniques for analyzing convergence of

numerical interfaces to the underlying sharp interface for DG (and nonconforming

finite element) discretizations of phase field models. To the best of our knowledge,

no such convergence result and analysis technique is available in the literature for

fourth order PDEs. The main obstacle for improving the finite element techniques of

[47] is that the DG (and nonconforming finite element) spaces are not subspaces of
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H1(D). As a result, whether the needed discrete spectrum estimate holds becomes a

key question to answer.

This chapter consists of four additional sections. In section 3.2 we first collect some

a priori error estimates for problem (1.30)-(1.33), which show the explicit dependence

on the parameter ε. We then cite an important technical lemma to be used in the later

sections. This states the spectral estimate for the linearized Cahn-Hilliard operator.

In section 3.3, we propose two fully discrete MIP-DG schemes for problem (1.30)–

(1.33), they differ only in their treatment of the nonlinear term. The first main

result of this section is to establish a discrete spectrum estimate in the DG space,

which mimics the spectral estimates for the differential operator and its finite element

counterpart. The second main result of this section is to derive optimal error bounds

which depends on 1/ε only in low polynomial orders for both fully discrete MIP-DG

methods. In section 3.4, using the refined error estimates of section 3.3, we prove the

convergence of the numerical interfaces of the fully discrete MIP-DG methods to the

interface of the Hele-Shaw flow before the onset of the singularities as ε, h and k all

tend to zero. Finally, in section 3.5 we provide some numerical experiments to gauge

the performance of the proposed fully discrete MIP-DG methods.

3.2 Preliminaries

In this section, we shall collect some known results about problem (1.30)–(1.33) from

[19, 46, 47], which will be used in sections 3.3 and 3.4. Some general assumptions on

the initial condition, as well as some energy estimates based on these assumptions,

will be cited. Standard function and space notations are adopted in this chapter

[2, 13]. We use (·, ·) and ‖ · ‖L2 to denote the standard inner product and norm on

L2(D). Throughout this chapter, C denotes a generic positive constant independent

of ε, space and time step sizes h and k, which may have different values at different

occasions.
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The following assumptions on the initial datum u0 were made in [46, 42], they

were used to derive a priori estimates for the solution of problem (1.30)–(1.33).

General Assumption (GA)

(1) Assume that m0 ∈ (−1, 1) where

m0 :=
1

|D|

∫
D
u0(x)dx. (3.1)

(2) There exists a nonnegative constant σ1 such that

Jε(u0) ≤ Cε−2σ1 . (3.2)

(3) There exists nonnegative constants σ2, σ3 and σ4 such that

∥∥− ε∆u0 + ε−1f(u0)
∥∥
H`(D)

≤ Cε−σ2+` , ` = 0, 1, 2. (3.3)

Under the above assumptions, we formally prove the following a priori solution

estimates, and the brief proofs could also be found in [46, 47].

Proposition 3.2.1. The solution u of problem (1.30)–(1.33) satisfies the following

energy estimates:

(i) ess sup
t∈[0,∞)

( ε
2
‖∇u‖2

L2 +
1

ε
‖F (u)‖L1

)
+


∫∞

0
‖ut(s)‖2

H−1 ds∫∞
0
‖∇w(s)‖2

L2 ds

≤ Jε(u0),

(ii) ess sup
t∈[0,∞)

‖u‖4
L4 ≤ C(1 + Jε(u0)),

(iii) ess sup
t∈[0,∞)

‖u2 − 1‖2
L2 ≤ CεJε(u0).
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Moreover, suppose that (3.1)–(3.3) hold, u0 ∈ H4(D) and ∂D ∈ C2,1, then u satisfies

the additional estimates:

(iv)
1

|D|

∫
D
u(x, t) dx = m0 ∀t ≥ 0,

(v)

∫ T

0

‖∆u‖2
L2ds ≤ Cε−(2σ1+3),

(vi)

∫ T

0

‖∇∆u‖2
L2ds ≤ Cε−(2σ1+5),

(vii)


ess sup
t∈[0,∞)

‖ut‖2
H−1

ess sup
t∈[0,∞)

‖∇w‖2
L2

+ ε

∫ ∞
0

‖∇ut‖2
L2ds ≤ Cε−max{2σ1+3,2σ3},

(viii) ess sup
t∈[0,∞)

‖∆u‖L2 ≤ Cε−max{σ1+ 5
2
,σ3+1},

(ix) ess sup
t∈[0,∞)

‖∇∆u‖L2 ≤ Cε−max{σ1+ 5
2
,σ3+1},

(x)


∫ T

0
‖ut‖2

L2ds∫ T
0
‖∆w‖2

L2ds

+ ess sup
t∈[0,T ]

ε‖∆u‖2
L2 ≤ Cε−max{2σ1+ 7

2
,2σ3+ 1

2
,2σ2+1},

(xi) ess sup
t∈[0,T ]

‖ut‖2
L2 + ε

∫ T

0

‖∆ut‖2
L2ds ≤ Cε−max{2σ1+ 13

2
,2σ3+ 7

2
,2σ2+4,2σ4}.

Furthermore, if there exists σ5 > 0 such that

lim
s→0+

‖∇ut(s)‖L2 ≤ Cε−σ5 , (3.4)

then there hold for d = 2, 3,

(xii) ess sup
t∈[0,T ]

‖∇ut‖2
L2 + ε

∫ T

0

‖∇∆ut‖2
L2ds ≤ Cρ0(ε, d),

(xiii)

∫ T

0

‖utt‖2
H−1ds ≤ Cρ1(ε, d),

(xiv) ess sup
t∈[0,T ]

‖∆2u‖L2 ≤ Cρ2(ε),
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where

ρ0(ε, d) := ε−
2

6−d max{2σ1+5,2σ3+2}−max{2σ1+ 13
2
,2σ3+ 7

2
,2σ2+4} + ε−2σ5

+ ε−max{2σ1+7,2σ3+4},

ρ1(ε, d) := ερ0(ε, d),

ρ2(ε) := ε−max{σ1+5,σ3+ 7
2
,σ2+ 5

2
,σ4+1}.

Proof. (i). Taking the time derivative of the Cahn-Hilliard energy functional, we get

d

dt
Jε(u(t)) =

−‖ut(t)‖
2
H−1 ,

−‖∇w(t)‖2
L2 .

(3.5)

Assume the maximum of Jε(u(t)) is obtained at t = t0, then integrating both sides of

(3.5) over (0, t0) and (0,∞) respectively, (i) is obtained.

(ii). Using Young’s inequality to 2u2, we get

∫
D
F (u) =

1

4

∫
D

(u4 − 2u2 + 1)dx, (3.6)

≥ 1

4

∫
D

(
1

2
u4 − 1)dx. (3.7)

By (i), we get (ii) immediately.

(iii). It is an immediate corollary of (i).

(iv). Integrating both sides of (1.30) over (0, t), and using (3.1), (iv) is obtained.

(v). Testing (1.30) with u, we get

(
ut, u

)
+
(
ε∆u− 1

ε
f(u),∆u

)
= 0. (3.8)

Integrating both sides over (0, T ), we get

ε

∫ T

0

‖∆u‖2
L2dt+

1

ε

∫ T

0

(
f ′(u)∇u,∇u

)
dt ≤ 1

2
‖u(0)‖2

L2 . (3.9)
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By Lemma 2.2 in [47], (i), and the following fact:

−
(
f ′(u)v, v

)
≤ ‖v‖2

L2 , (3.10)

we can get (v).

(vi). Rewrite (1.31) as

∆u =
1

ε2
f(u)− 1

ε
w. (3.11)

Then applying the operator ∇ to (3.11), taking the L2 norm and integrating both

sides of (3.11) over (0, T ), we get

∫ T

0

‖∇∆u‖2
L2ds ≤ 2

∫ T

0

‖ 1

ε2
f ′(u)∇u‖2

L2ds+ 2

∫ T

0

‖1

ε
∇w‖2

L2ds. (3.12)

By Lemma 2.2 in [47] and (i), we can get (vi).

(vii). Taking the derivative with respect to t on both sides of (1.30), we get

utt + ε∆2ut −
1

ε
∆
(
f ′(u)ut

)
= 0. (3.13)

Testing (3.13) with −∆−1ut, and integrating over (0,m), we get

∫ m

0

d

dt
‖∇w‖2

L2ds+ ε

∫ m

0

‖∇ut‖2
L2ds+

1

ε

∫ m

0

(f ′(u)ut, ut)ds = 0. (3.14)

Interpolating ‖ut‖L2 between ‖ut‖H1 and ‖ut‖H−1 , and using Young’s inequality, we

get

‖∇w(m)‖2
L2 +

ε

2

∫ m

0

‖∇ut‖2
L2ds ≤ ‖∇w(0)‖2

L2 +
C

ε3

∫ m

0

‖ut‖2
H−1ds. (3.15)
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By (GA) and (i), together with the fact ‖∇w‖L2 = ‖ut‖H−1 , we obtain (vii).

(viii). By (3.11),

ess sup
t∈[0,∞)

‖∆u‖L2 ≤ 1

ε2
ess sup
t∈[0,∞)

‖f(u)‖L2 +
1

ε
ess sup
t∈[0,∞)

‖w‖L2 . (3.16)

By Lemma 2.2, Lemma 2.3 in [47], we get

ess sup
t∈[0,∞)

‖∆u‖L2 ≤ C

ε2
+
C

ε
ess sup
t∈[0,∞)

Jε(u(t)) + ess sup
t∈[0,∞)

‖∇w‖L2 . (3.17)

Using (i) and (vii), (viii) is proved.

(ix). Apply the operator ∇ to both sides of (3.11), we get

ess sup
t∈[0,∞)

‖∇∆u‖L2 ≤ 1

ε2
ess sup
t∈[0,∞)

‖f ′(u)∇u‖L2 +
1

ε
ess sup
t∈[0,∞)

‖∇w‖L2 . (3.18)

By Lemma 2.2 in [47], (i) and (vii),

ess sup
t∈[0,∞)

‖∇∆u‖L2 ≤ ε−σ1− 5
2 +

1

ε
ε−max{σ1+ 3

2
,σ3}. (3.19)

Then (ix) is proved.

(x). Testing (1.30) with ut, we get

‖ut‖2
L2 +

1

2

d

dt
ε‖∆u‖2

L2 +
1

ε

(
f ′(u)∇u,∇ut

)
= 0. (3.20)

Integrating (3.20) over (0, T ), and using Schwarz’s inequality, we get

2

∫ T

0

‖ut‖2
L2ds+ ess sup

t∈[0,T ]

ε‖∆u(t)‖2
L2 (3.21)

≤ ess sup
t∈[0,T ]

ε‖∆u(0)‖2
L2 + ε−

5
2

∫ T

0

‖f ′(u)∇u‖2
L2ds+ ε

1
2

∫ T

0

‖∇ut‖2
L2ds.
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Using Lemma 2.2 in [47], (i) and (vii), we can get (x).

(xi). Testing (3.13) with ut, we get

d

dt
‖ut‖2

L2 + ε‖∆ut‖2
L2 −

1

ε

(
∆(f ′(u)ut), ut

)
= 0. (3.22)

Integrating both sides of (3.22), and using integration by part, we get

ess sup
t∈[0,T ]

‖ut(t)‖2
L2 + ε

∫ T

0

‖∆ut‖2
L2ds (3.23)

≤ 1

ε

∫ T

0

(
f ′(u)ut,∆ut

)
+ ess sup

t∈[0,T ]

‖ut(0)‖2
L2

≤ 1

2ε3

∫ T

0

‖f ′(u)ut‖2
L2ds+

ε

2

∫ T

0

‖∆ut‖2
L2ds+ ess sup

t∈[0,T ]

‖ut(0)‖2
L2 .

By Lemma 2.2 in [47] and (x), we get (xi).

(xii). Multiplying (3.13) by −∆ut, we get

1

2

d

dt
‖∇ut‖2

L2 + ε‖∇∆ut‖2
L2 =

1

ε

(
∇(f ′(u)ut),∇∆ut

)
(3.24)

=
1

ε

(
f ′′(u)∇uut + f ′(u)∇ut,∇∆ut

)
≤ ε

2
‖∇∆ut‖2

L2 +
C

ε3
(
‖∇u‖2

L∞‖ut‖2
L2 + ‖∇ut‖2

L2

)
.

Using the following Gagliardo-Nirenberg inequality [2],

‖∇u‖L∞ ≤ C

(
‖∇∆u‖

2
6−d
L2 ‖u‖

4−d
6−d
L∞ + ‖u‖L∞

)
, (3.25)

we have

1

2

d

dt
‖∇ut‖2

L2 +
ε

2
‖∇∆ut‖2

L2 (3.26)

≤ C

ε3

[
‖∇ut‖2

L2 +

(
‖∇∆u‖

4
6−d
L2 + 1

)
‖ut‖2

L2

]
.

69



Using (3.26), (vii), (ix) and (x), we get (xii).

(xiii). From (3.13), we have

‖utt‖H−1 = sup
06≡φ∈H1

< utt, φ >

‖φ‖H1

(3.27)

≤ ε‖∇∆ut‖L2 +
1

ε
‖∇(f ′(u)ut)‖L2 .

Then

‖utt‖2
H−1 ≤ 2ε2‖∇∆ut‖2

L2 +
2

ε2

(
‖∇u‖2

L∞‖ut‖2
L2 + ‖∇ut‖2

L2

)
. (3.28)

Integrating (3.28) over (0, T ), and using (3.25) and (xii), we get (xiii).

(xiv). Rewrite (1.30) as

∆2u =
1

ε2
∆f(u)− 1

ε
ut (3.29)

=
1

ε2

[
f ′′(u)∆u+ f ′(u)|∇u|2

]
− 1

ε
ut.

By triangle inequality, Lemma 2.2 in [47], (viii) and (xi), we can obtain (xiv).

The next lemma concerns with a lower bound estimate for the principal eigenvalue

of the linearized Cahn-Hilliard operator, a proof of this lemma can be found in [19].

Lemma 3.2.2. Suppose that (3.1)–(3.3) hold. Given a smooth initial curve/surface

Γ0, let u0 be a smooth function satisfying Γ0 = {x ∈ D;u0(x) = 0} and some profile

described in [19]. Let u be the solution to problem (1.30)–(1.33). Define LCH as

LCH := ∆

(
ε∆− 1

ε
f ′(u)I

)
. (3.30)
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Then there exists 0 < ε0 << 1 and a positive constant C0 such that the principle

eigenvalue of the linearized Cahn-Hilliard operator LCH satisfies

λCH := inf
06=ψ∈H1(D)

∆w=ψ

ε‖∇ψ‖2
L2 + 1

ε
(f ′(u)ψ, ψ)

‖∇w‖2
L2

≥ −C0 (3.31)

for t ∈ [0, T ] and ε ∈ (0, ε0).

Remark 3.2.3. (a) A discrete generalization of (3.31) on C0 finite element spaces

was proved in [46, 47]. It plays a pivotal role in the nonstandard convergence analysis

of [46, 47]. In the next section, we shall prove another discrete generalization of

(3.31) on the DG finite element space.

(b) The restriction on the initial function u0 is needed to guarantee that the

solution u(t) satisfies certain profile at later time t > 0 which is required in the

proof of [19]. One example of admissible initial functions is u0 = tanh(d0(x)
ε

), where

d0(x) stands for the signed distance function to the initial interface Γ0. Such a u0 is

smooth when Γ0 is smooth.

3.3 Fully discrete mixed interior penalty discon-

tinuous Galerkin approximations

In this section we present and analyze two fully discrete MIP-DG methods for the

Cahn-Hilliard problem (1.30)–(1.33). The primary goal of this section is to derive

error estimates for the DG solutions that depend on ε−1 only in low polynomial

orders, instead of exponential orders. As in the finite element case (cf. [47]), the crux

is to establish a discrete spectrum estimate for the linearized Cahn-Hilliard operator

on the DG space.
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3.3.1 Formulations of the mixed interior penalty discontinu-

ous Galerkin method

Let Th = {K}K∈D be a quasi-uniform triangulation of D parameterized by h > 0.

For any triangle/tetrahedron K ∈ Th, we define hK to be the diameter of K, and

h := maxK∈Th hK . The standard broken Sobolev space is defined as

Hs(Th) :=
{
v ∈ L2(D); ∀K ∈ Th, v|K ∈ Hs(K)

}
. (3.32)

For any K ∈ Th, Pr(K) denotes the set of all polynomials of degree at most r(≥ 1)

on the element K, and the DG finite element space Vh is defined as

Vh :=
{
v ∈ L2(D); ∀K ∈ Th, v|K ∈ Pr(K)

}
. (3.33)

Let L2
0 denote the set of functions in L2(D) with zero mean, and let V̊h := Vh∩L2

0.

We also define EIh to be the set of all interior edges/faces of Th, EBh to be the set of

all boundary edges/faces of Th on Γ = ∂D, and Eh := EIh ∪ EBh . Let e be an interior

edge shared by two elements K1 and K2. For a scalar function v, define

{v} =
1

2
(v|K + v|K′), [v] = v|K − v|K′ , on e ∈ EIh ,

where K is K1 or K2, whichever has the bigger global labeling and K ′ is the other.

The L2-inner product for piecewise functions over the mesh Th is naturally defined by

(v, w)Th :=
∑
K∈Th

∫
K

vwdx.

Let 0 ≤ t0 < t1 < · · · < tM = T be a partition of the interval [0, T ] with time

step k = tn+1 − tn. Our fully discrete MIP-DG methods are defined as follows: for
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any 1 ≤ m ≤M , (Um,Wm) ∈ Vh × Vh are given by

(dtU
m, η) + ah(W

m, η) = 0 ∀ η ∈ Vh, (3.34)

εah(U
m, v) +

1

ε
(fm, v)− (Wm, v) = 0 ∀ v ∈ Vh, (3.35)

where

ah(u, v) =
∑
K∈Th

∫
K

∇u · ∇v dx−
∑
e∈EIh

∫
e

{∇u · ne}[v] ds (3.36)

−
∑
e∈EIh

∫
e

{∇v · ne}[u] ds+
∑
e∈EIh

∫
e

σ0
e

he
[u][v] ds,

and σ0
e > 0 is the penalty parameter. There are two choices of fm considered in this

chapter, namely

fm = (Um)3 − Um−1 and fm = (Um)3 − Um,

which lead to the energy-splitting scheme and fully implicit scheme respectively. dt

is the (backward) difference operator defined by dtU
m := (Um − Um−1)/k and U0 :=

P̂hu0 (or Q̂hu0) is the starting value, with the continuous finite element projection

P̂h (or Q̂h) to be defined below. We refer to [40] for the details why the continuous

projection is needed for the initial condition. We remark that only the fully implicit

case was considered in [46, 47] for the mixed finite element method.

In order to analyze the stability of (3.34)–(3.35), we need some preparations.

First, we introduce three projection operators that will be needed to derive the error

estimates in section 3.4. Ph : Hs(Th) → Vh denotes the elliptic projection operator

defined by

ah(u− Phu, vh) + (u− Phu, vh) = 0 ∀ vh ∈ Vh, (3.37)
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which has the following approximation properties (see [22]):

‖v − Phv‖L2(Th) + h‖∇(v − Phv)‖L2(Th) ≤ Chmin{r+1,s}‖u‖Hs(Th), (3.38)

1

| lnh|r
‖v − Phv‖L∞(Th) + h‖∇(u− Phu)‖L∞(Th) ≤ Chmin{r+1,s}‖u‖W s,∞(Th). (3.39)

Here r := min{1, r} −min{1, r − 1}.

Let P̂h : Hs(Th) → Sh := Vh ∩ C0(D) denote the standard continuous finite

element elliptic projection, which is the counterpart of projection Ph. It has the

following well-known property [46, 47]:

‖u− P̂hu‖L∞ ≤ Ch2− d
2‖u‖H2 . (3.40)

Next, for any DG function Ψh ∈ Vh, we define its continuous finite element

projection ΨFE
h ∈ Sh by

ãh(Ψ
FE
h , vh) = ãh(Ψh, vh) ∀ vh ∈ Sh, (3.41)

where

ãh(u, v) = ah(u, v) + α(u, v),

and α is a parameter that will be specified later in section 3.3.

A mesh-dependent H−1 norm will also be needed. To the end, we introduce

the inverse discrete Laplace operator ∆−1
h : Vh → V̊h as follows: given ζ ∈ Vh, let

∆−1
h ζ ∈ V̊h such that

ah(−∆−1
h ζ, wh) = (ζ, wh) ∀wh ∈ V̊h. (3.42)

We note that ∆−1
h is well defined provided that σ0

e > σ0
∗ for some positive number σ0

∗

and for all e ∈ Eh because this condition ensures the coercivity of the DG bilinear

form ah(·, ·).
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We then define “-1” inner product by

(ζ, ξ)−1,h := ah(−∆−1
h ζ,−∆−1

h ξ) = (ζ,−∆−1
h ξ) = (−∆−1

h ζ, ξ), (3.43)

and the induced mesh-dependent H−1 norm is given by

‖ζ‖−1,h :=
√

(ζ, ζ)−1,h = sup
06=ξ∈V̊h

(ζ, ξ)

|||ξ|||a
, (3.44)

where |||ξ|||a :=
√
ah(ξ, ξ). The following properties can be easily verified (cf. [1]):

|(ζ, ξ)| ≤ ‖ζ‖−1,h|||ξ|||a ∀ ξ ∈ Vh, ζ ∈ V̊h, (3.45)

‖ζ‖−1,h ≤ C‖ζ‖L2 ∀ ζ ∈ V̊h, (3.46)

and, if Th is quasi-uniform, then

‖ζ‖L2 ≤ Ch−1‖ζ‖−1,h ∀ ζ ∈ V̊h. (3.47)

3.3.2 Discrete energy law and well-posedness

In this subsection we first establish a discrete energy law, which mimics the differential

energy law, for both fully discrete MIP-DG methods defined in (3.34)–(3.35). Based

on this discrete energy law, we prove the existence and uniqueness of solutions to the

MIP-DG methods by recasting the schemes as convex minimization problems at each

time step. It turns out that the energy-splitting scheme is unconditionally stable but

the fully implicit scheme is only conditionally stable.
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Theorem 3.3.1. Let (Um,Wm) ∈ Vh × Vh be a solution to scheme (3.34)–(3.35).

The following energy law holds for any h, k > 0 :

Eh(U
`) + k

∑̀
m=1

‖dtUm‖2
−1,h + k2

∑̀
m=1

{
ε

2
|||dtUm|||2a +

1

4ε
‖dt(Um)2‖2

L2 (3.48)

+
1

2ε
‖UmdtU

m‖2
L2 ±

1

2ε
‖dtUm‖2

L2

}
= Eh(U

0)

for all 1 ≤ ` ≤M, where

Eh(U) :=
1

4ε
‖U2 − 1‖2

L2 +
ε

2
|||U |||2a. (3.49)

The sign “±” in (3.48) takes “+” when fm = (Um)3 − Um−1 and “−” when fm =

(Um)3 − Um.

Proof. Taking η = −∆−1
h dtU

m in (3.34) and v = dtU
m in (3.35) to get

‖dtUm‖2
−1,h + (Wm, dtU

m) = 0, (3.50)

εah(U
m, dtU

m) +
1

ε
(fm, dtU

m)− (Wm, dtU
m) = 0. (3.51)

Besides, noticing the following inequalities:

ah(U
m, dtU

m) =
1

2

[
dt|||Um|||2a + k|||dtUm|||2a

]
, (3.52)

((Um)3 − Um−1, dtU
m) =

1

4
dt‖(Um)2 − 1‖2

L2 +
k

4
‖dt(Um)2‖2

L2 (3.53)

+
k

2
‖UmdtU

m‖2
L2 +

k

2
‖dtUm‖2

L2 .

Adding (3.50) and (3.51), using (3.52) and (3.53), and applying the operator k
∑`

m=1,

we get the conclusion for the case when fm = (Um)3 − Um−1.
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Using the equality below, we get the conclusion for the case when fm = (Um)3−Um.

(Um)3 − Um =

[
(Um)3 − Um−1

]
−
[
Um − Um−1

]
. (3.54)

Corollary 3.3.2. Let σ0
∗ > 0 be a sufficiently large constant. Suppose that σ0

e > σ0
∗

for all e ∈ Eh. Then scheme (3.34)–(3.35) is stable for all h, k > 0 when fm =

(Um)3 − Um−1 and is stable for h > 0 and k = O(ε3) when fm = (Um)3 − Um.

Proof. The first case holds trivially from (3.48). In the second case, the “bad term”

‖dtUm‖L2 can be controlled by the “good terms” ‖Um‖2
−1,h and |||Um|||2a by using the

norm interpolation inequality (3.81) provided that k = O(ε3).

Theorem 3.3.3. Suppose that σ0
e > σ0

∗ for all e ∈ Eh. Then scheme (3.34)–(3.35)

has a unique solution (Um,Wm) at each time step for for all h, k > 0 in the case

fm = (Um)3 − Um−1 and for h > 0 and k = O(ε3) in the case fm = (Um)3 − Um.

Proof. Setting η = −∆−1
h v in (3.34) we get

(
dtU

m, v
)
−1,h

+
(
Wm, v

)
= 0.

Adding the above equation to (3.35) yields

(
dtU

m, v
)
−1,h

+ εah
(
Um, v

)
+

1

ε

(
fm, v

)
= 0.

Hence, Um satisfies

(
Um, v

)
−1,h

+ kεah
(
Um, v

)
+
k

ε

(
fm, v

)
=
(
Um−1, v

)
−1,h

. (3.55)

In the case fm = (Um)3 − Um−1 it is easy to check that (3.55) can be recast

as a convex minimization problem (cf. [1, 40]) whose well-posedness holds for all

h, k > 0. Hence, in this case there is a unique solution Um to (3.34)–(3.35). On the

77



other hand, when fm = (Um)3 − Um, there is an extra term −kε−1(Um, v) comes

out from the nonlinear term in (3.55). This extra term contributes a “bad term”

−kε−1‖Um‖2
L2 to the functional of the minimization problem. Again, this term can

be controlled by the “good terms” ‖Um‖2
−1,h and |||Um|||2a in the functional by using

the norm interpolation inequality (3.81), provided that k = O(ε3). Hence, in the case

fm = (Um)3 − Um, there is a unique solution Um to (3.34)–(3.35) for all h > 0 and

k = O(ε3). The proof is complete.

3.3.3 Discrete spectrum estimate on the discontinuous Galerkin

space

In this subsection, we shall establish a discrete spectrum estimate for the linearized

Cahn-Hilliard operator on the DG space, which plays a vital role in our error

estimates.

To the end, we first state a slightly modified version of a discrete spectrum estimate

for the linearized Cahn-Hilliard operator on the continuous finite element space first

proved in [46, 47].

Lemma 3.3.4. Suppose the assumptions of Lemma 3.2.2 hold, and C0 is the same

as in (3.31). C1 and C2 are defined by

C1 := max
|ξ|≤2C0

|f ′′(ξ)|, (3.56)

‖u− P̂hu‖L∞((0,T );L∞) ≤ C2h
2− d

2 εmin{−σ1− 5
2
,−σ3−1}. (3.57)

Then there exists 0 < ε1 << 1 such that, for any ε ∈ (0, ε1), there holds

λFECH ≡ inf
0 6=ψh∈L2

0(D)∩Sh

ε‖∇ψh‖2
L2 + 2−ε3

2ε

(
f ′(P̂hu)ψh, ψh

)
‖∇∆−1ψh‖2

L2

≥ −(C0 + 1), (3.58)
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provided that h satisfies

h2− d
2 ≤ (C1C2)−1εmax{σ1+ 11

2
,σ3+4}. (3.59)

Here ∆−1 : L2
0(D)→ H1(D) ∩ L2

0(D) denotes the inverse Laplace operator.

Proof. Following Theorem 2.3 in [3], we can know that

‖u‖L∞(DT ) ≤
3

2
C0. (3.60)

By using (3.57), (3.59) and (3.60), when ε is small enough, we have

‖P̂ h
r u‖L∞(J ;L∞) ≤ ‖u‖L∞(J ;L∞) + ‖P̂ h

r u− u‖L∞(J ;L∞) ≤ 2C0. (3.61)

It then follows from the Mean Value Theorem that

‖f ′(P̂ h
r u)− f ′(u)‖L∞(J ;L∞) ≤ max

|ξ|≤2C0

|f ′′(ξ)|‖P̂ h
r u− u‖L∞(J ;L∞) (3.62)

≤C1C2h
2− d

2 εmin{−σ1− 5
2
,−σ3−1}

≤ε3,

where the last inequality comes from the assumption (3.59). Therefore,

f ′(P̂ h
r u) ≥ f ′(u)− ε3, (3.63)
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and we have

λhCH ≥ inf
0 6=ψ∈L2

0(D)∩H1(D)

{
(1− ε3

2
)
ε‖∇ψ‖2

L2 + 1
ε
(f ′(u)ψ, ψ)

‖∇∆−1ψ‖2
L2

(3.64)

+
ε4

2
‖∇ψ‖2

L2 − ε2(1− ε3

2
)‖ψ‖2

L2

‖∇∆−1ψ‖2
L2

}

≥ −(1− ε3

2
)C0 −

(1− ε3

2
)2

2

≥ −(C0 + 1).

We are now ready to state the discrete spectrum estimate on the DG space.

Proposition 3.3.5. Suppose the assumptions of Lemma 3.2.2 hold. Let u be the

solution of (1.30)–(1.33) and Phu denote its DG elliptic projection. Assume

ess sup
t∈[0,∞)

‖u‖W 1+r,∞ ≤ Cε−γ, (3.65)

for a constant γ, then there exists 0 < ε2 << 1 and an ε-independent and h-

independent constant c0 > 0, such that for any ε ∈ (0, ε2), there holds

λDGCH = inf
0 6=Φh∈L2

0(D)
⋂
Vh

εah(Φh,Φh) + 1−ε3
ε

(f ′(Phu)Φh,Φh)

‖∇∆−1Φh‖2
L2

≥ −c0, (3.66)

provided that h satisfies the constraints

h2− d
2 ≤ (C1C2)−1εmax{σ1+ 11

2
,σ3+4}, (3.67)

h1+r| ln h|r̄ ≤ (C1C3)−1εγ+3, (3.68)
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where C1 and C2 are same as in Lemma 3.3.4, r̄ and C3 are defined by

r̄ = min{1, r} −min{1, r − 1},

‖u− Phu‖L∞((0,T );L∞) ≤ C3h
1+r| ln h|r̄ε−γ.

Proof. By Proposition 2 in [46], under the mesh constraint (3.67), we have

‖f ′(P̂hu)− f ′(u)‖L∞((0,T );L∞) ≤ ε3. (3.69)

Similarly, under the mesh condition (3.68), we can show that for any ε > 0, there

holds

‖f ′(Phu)− f ′(u)‖L∞((0,T );L∞) ≤ ε3. (3.70)

It follows from (3.69) and (3.70) that

‖f ′(Phu)− f ′(P̂hu)‖L∞((0,T );L∞) ≤ 2ε3 and f ′(Phu) ≥ f ′(P̂hu)− 2ε3. (3.71)

Therefore,

εah(Φh,Φh) +
1− ε3

ε

(
f ′(Phu)Φh,Φh

)
(3.72)

≥ εah(Φh,Φh) +
1− ε3

ε

(
f ′(P̂hu)Φh,Φh

)
− 2ε2(1− ε3)‖Φh‖2

L2

= ε
1− ε3

1− ε3

2

ah(Φh,Φh) +
1− ε3

ε

(
f ′(P̂hu)Φh,Φh

)
− 2ε2(1− ε3)‖Φh‖2

L2 +
ε4

2− ε3
ah(Φh,Φh)

= ε
1− ε3

1− ε3

2

ah(Φh,Φh) +
1− ε3

ε

∫
D
f ′(P̂hu)

(
(Φh)

2 − (ΦFE
h )2

)
dx

+
1− ε3

ε

∫
D
f ′(P̂hu)(ΦFE

h )2dx− 2ε2(1− ε3)‖Φh‖2
L2 +

ε4

2− ε3
ah(Φh,Φh).
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Next, we derive a lower bound for each of the first two terms on the right-hand

side of (3.72). Notice that the first term can be rewritten as

ah(Φh,Φh) = ah(Φh − ΦFE
h ,Φh − ΦFE

h ) + 2ah(Φh,Φ
FE
h )− ah(ΦFE

h ,ΦFE
h ) (3.73)

= ah(Φh − ΦFE
h ,Φh − ΦFE

h ) + ‖∇ΦFE
h ‖2

L2 + 2α‖ΦFE
h − Φh‖2

L2

+ 2α
(
ΦFE
h − Φh,Φh

)
.

To bound ‖Φh−ΦFE
h ‖L2 from above, we consider the following auxiliary problem:

ãh(φ, χ) =
(
Φh − ΦFE

h , χ
)

∀χ ∈ H1(D).

For σ0
e > σ0

∗ for all e ∈ Eh, the above problem has a unique solution φ ∈ H1+θ(D) for

0 < θ ≤ 1 such that

‖φ‖H1+θ(D) ≤ C‖Φh − ΦFE
h ‖L2 for θ ∈ (0, 1]. (3.74)

By the definition of ΦFE
h , we immediately get the following Galerkin orthogonality:

ãh
(
Φh − ΦFE

h , χh
)

= 0 ∀χh ∈ Sh.

It follows from the duality argument (cf. [82, Theorem 2.14]) that

‖Φh − ΦFE
h ‖2

L2 ≤ Ch2θãh(Φh − ΦFE
h ,Φh − ΦFE

h ) (3.75)

≤ Ch2θah(Φh − ΦFE
h ,Φh − ΦFE

h ) + Ch2θα‖Φh − ΦFE
h ‖2

L2 .

For all h satisfying Ch2θα < 1, we get

‖Φh − ΦFE
h ‖2

L2 ≤
Ch2θ

1− Ch2θα
ah(Φh − ΦFE

h ,Φh − ΦFE
h ). (3.76)
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Now the last term on the right-hand side of (3.73) can be bounded as follows:

2α
(
ΦFE
h − Φh,Φh

)
≥ −2α‖ΦFE

h − Φh‖L2‖Φh‖L2 (3.77)

≥ −2α

√
Ch2θah(Φh − ΦFE

h ,Φh − ΦFE
h )

1− Ch2θα
‖Φh‖L2

≥ −1

2
ah(Φh − ΦFE

h ,Φh − ΦFE
h )− 2Cα2h2θ

1− Ch2θα
‖Φh‖2

L2 .

The second term on the right-hand side of (3.72) can be bounded by

∫
D
f ′(P̂hu)

(
(Φh)

2 − (ΦFE
h )2

)
dx ≥ −C

∫
D

∣∣(Φh)
2 − (ΦFE

h )2
∣∣ dx (3.78)

= −C
∫
D

∣∣∣−(Φh − ΦFE
h

)2
+ 2Φh

(
Φh − ΦFE

h

)∣∣∣ dx
≥ −C‖Φh − ΦFE

h ‖2
L2 −

ε3(1− ε3)

1− ε3

2

‖Φh‖2
L2 − C

1− ε3

2

ε3(1− ε3)
‖Φh − ΦFE

h ‖2
L2 .

Here we have used the facts that

‖u‖L∞((0,T );L∞) ≤ C, |f ′(P̂hu)| ≤ |f ′(u)|+ ε3 ≤ C. (3.79)

Substituting (3.76) into (3.78) yields

1− ε3

ε

∫
D
f ′(P̂hu)

(
(Φh)

2 − (ΦFE
h )2

)
dx (3.80)

≥ −γ3
ε(1− ε3)

1− ε3

2

ah(Φh − ΦFE
h ,Φh − ΦFE

h )− ε2(1− ε3)

1− ε3

2

‖Φh‖2
L2 ,

where

γ3 ≥
Ch2θ

1− Ch2θα
· 2C

1− ε3

2

ε(1− ε3)

(
1 +

1− ε3

2

ε3(1− ε3)

)
,

and h is chosen small enough such that γ3 < 1/4.

83



The term ‖Φh‖2
L2 can be bounded by

‖Φh‖2
L2 = (Φh,Φh) = ah(∆

−1
h Φh,Φh) ≤ ah(∆

−1
h Φh,∆

−1
h Φh)

1
2ah(Φh,Φh)

1
2 (3.81)

≤ ρ

2
ah(∆

−1
h Φh,∆

−1
h Φh) +

1

2ρ
ah(Φh,Φh)

for any constant ρ > 0.

Adding the fifth term on the right-hand side of (3.72), the last term on the right-

hand side of (3.77) and that of (3.80), we get for all h satisfying 2Cα2h2θ/(1 −

Ch2θα) ≤ ε

−
(
ε(1− ε3)

1− ε3

2

2Cα2h2θ

1− Ch2θα
+

3ε2(1− ε3)

1− ε3

2

)
‖Φh‖2

L2 ≥ −
4ε2(1− ε3)

1− ε3

2

‖Φh‖2
L2 (3.82)

≥ − ε4

2(2− ε3)
ah(Φh,Φh)− Cah(∆−1

h Φh,∆
−1
h Φh).

Combining (3.73), (3.77), (3.80) and (3.82) with (3.72), we have

εah(Φh,Φh) +
1− ε3

ε

∫
D
f ′(Phu)(Φh)

2 dx (3.83)

≥ ε(1− ε3)

4− 2ε3
ah(Φh − ΦFE

h ,Φh − ΦFE
h ) +

2αε(1− ε3)

1− ε3

2

‖ΦFE
h − Φh‖2

L2

+
ε(1− ε3)

1− ε3

2

‖∇ΦFE
h ‖2

L2 − Cah(∆−1
h Φh,∆

−1
h Φh)

+
1− ε3

ε

∫
D
f ′(P̂hu)(ΦFE

h )2 dx+
ε4

2(2− ε3)
ah(Φh,Φh).

Applying the spectrum estimate (3.58), we get

ε
1− ε3

1− ε3

2

‖∇ΦFE
h ‖2

L2 +
1− ε3

ε

∫
D
f ′(P̂hu)(ΦFE

h )2 dx

=
1− ε3

1− ε3

2

(
ε‖∇ΦFE

h ‖2
L2 +

1− ε3

2

ε

∫
D
f ′(P̂hu)(ΦFE

h )2dx

)

≥ −1− ε3

1− ε3

2

(C0 + 1)‖∇∆−1ΦFE
h ‖2

L2 ,
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which together with (3.83) implies that

εah(Φh,Φh) +
1− ε3

ε

∫
D
f ′(Phu)(Φh)

2 dx (3.84)

≥ −Cah(∆−1
h Φh,∆

−1
h Φh)− C‖∇∆−1ΦFE

h ‖2
L2 +

2αε(1− ε3)

1− ε3

2

‖ΦFE
h − Φh‖2

L2 .

By the stability of ∆−1, we have

‖∇∆−1(Φh − ΦFE
h )‖2

L2 ≤ Ĉ‖Φh − ΦFE
h ‖2

L2 ,

which together with the triangle inequality yields

‖∇∆−1ΦFE
h ‖2

L2 ≤ 2‖∇∆−1Φh‖2
L2 + 2Ĉ‖Φh − ΦFE

h ‖2
L2 .

Similarly, since ∆−1
h Φh is the elliptic projection of ∆−1Φh, there holds

ah(∆
−1
h Φh,∆

−1
h Φh) ≤ C‖∇∆−1Φh‖2

L2 .

Therefore, choosing α = O(Ĉε−1), (3.84) can be further reduced into

εah(Φh,Φh) +
1− ε3

ε

∫
D
f ′(Phu)(Φh)

2 dx ≥ −c0‖∇∆−1Φh‖2
L2

for some c0 > 0. This proves (3.66), and the proof is complete.

3.3.4 Error analysis

In this subsection, we shall derive some optimal error estimates for the proposed MIP-

DG schemes (3.34)–(3.35), in which the constants in the error bounds depend on ε−1

only in low polynomial orders, instead of exponential orders. The key to obtaining

such refined error bounds is to use the discrete spectrum estimate (3.66). In addition,

the nonlinear Gronwall inequality presented in Lemma 2.2.4 also plays an important
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role in the proof. To ease the presentation, we set r = 1 in this subsection and section

3.4, and generalization to r > 1 can be proven similarly.

The main results of this subsection are stated in the following theorem.

Theorem 3.3.6. Let {(Um,Wm)}Mm=0 be the solution of scheme (3.34)–(3.35) with

r = 1. Suppose that (GA) holds and σ0
e > σ0

∗ for all e ∈ Eh, and define

ρ3(ε) := ε−max{2σ1+ 13
2
,2σ3+ 7

2
,2σ2+4,2σ4}−4, (3.85)

r(h, k; ε, d, σi) := k2ρ1(ε; d) + h6ρ3(ε). (3.86)

Then, under the following mesh and starting value conditions:

h2− d
2 ≤ (C1C2)−1εmax{σ1+ 11

2
,σ3+4}, (3.87)

h1+r| ln h|r̄ ≤ (C1C3)−1εγ+3, (3.88)

k ≤ ε3 when fm = (Um)3 − Um, (3.89)

h2θ ≤ C
ε(1− ε3)

8− 4ε3
, (3.90)

k ≤ Cε
4(6+d)

4−d +(4d−2)σ1 , (3.91)

(U0, 1) = (u0, 1), (3.92)

‖u0 − U0‖H−1 ≤ Ch3‖u0‖H2 , (3.93)
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there hold the error estimates

max
0≤m≤M

‖u(tm)− Um‖−1,h +
( M∑
m=1

k2‖dt(u(tm)− Um)‖2
−1,h

) 1
2

(3.94)

≤ Cr(h, k; ε, d, σi)
1
2 ,(

k

M∑
m=1

‖u(tm)− Um‖2
L2

) 1
2

(3.95)

≤ C
(
h2ε−max{σ1+ 5

2
,σ3+1} + ε−2r(h, k; ε, d, σi)

1
2

)
,(

k
M∑
m=1

‖∇
(
u(tm)− Um

)
‖2
L2

) 1
2

(3.96)

≤ C
(
hε−max{σ1+ 5

2
,σ3+1} + ε−2r(h, k; ε, d, σi)

1
2

)
.

Moreover, if the starting value U0 satisfies

‖u0 − U0‖L2 ≤ Ch2‖u0‖H2 , (3.97)

then there hold

max
0≤m≤M

‖u(tm)− Um‖L2 +
(
k

M∑
m=1

k‖dt(u(tm)− Um)‖2
L2

) 1
2

(3.98)

+
(k
ε

M∑
m=1

‖w(tm)−Wm‖2
L2

) 1
2

≤ C
(
h2ρ3(ε)

1
2 + ε−

7
2 r(h, k; ε, d, σi)

1
2

)
,

max
0≤m≤M

‖u(tm)− Um‖L∞ (3.99)

≤ C
(
h2| lnh|ε−γ + h−

d
2 ε−

7
2 r(h, k; ε, d, σi)

1
2

)
.

Furthermore, suppose that the starting value W 0 satisfies

‖Phw0 −W 0‖L2 ≤ Chβ (3.100)
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for some β > 1, and there exists a constant γ′ such that

ess sup
t∈[0,∞)

‖w‖W 2,∞ ≤ Cε−γ
′
, (3.101)

then we have

max
0≤m≤M

‖w(tm)−Wm‖L2 ≤ C
(
h2ρ3(ε) + hβ (3.102)

+ k−
1
2 ε−3r(h, k; ε, d, σi)

1
2

)
,

max
0≤m≤M

‖w(tm)−Wm‖L∞ ≤ C
(
h−

d
2

(
k−

1
2 ε−3r(h, k; ε, d, σi)

1
2 + hβ

)
(3.103)

+ h2| lnh|ε−γ′
)
.

Proof. In the following, we only give a proof for the convex splitting scheme

corresponding to fm = (um)3−um−1 in (3.44) because the proof for the fully implicit

scheme with fm = (um)3 − um is almost same. Since the proof is long, we divide it

into four steps.

Step 1: It is obvious that equations (1.30)–(1.33) imply that

(
ut(tm), ηh

)
+ ah(w(tm), ηh) = 0 ∀ηh ∈ Vh, (3.104)

εah(u(tm), vh) +
1

ε

(
f(u(tm)), vh

)
=
(
w(tm), vh

)
∀vh ∈ Vh. (3.105)

Define error functions Em := u(tm)−Um and Gm := w(tm)−Wm. Subtracting (3.34)

from (3.104) and (3.35) from (3.105) yield the following error equations:

(
dtE

m, ηh
)

+ ah(G
m, ηh) =

(
R(utt,m), ηh

)
∀ηh ∈ Vh, (3.106)

εah(E
m, vh) +

1

ε

(
f(u(tm))− f(Um), vh

)
=
(
Gm, vh

)
∀vh ∈ Vh, (3.107)

where

R(utt;m) :=
1

k

∫ tm

tm−1

(s− tm−1)utt(s) ds.
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It follows from (xiv) in Proposition 3.2.1 that

k

M∑
m=1

‖R(utt;m)‖2
H−1 ≤

1

k

M∑
m=1

(∫ tm

tm−1

(s− tm−1)2 ds
)(∫ tm

tm−1

‖utt(s)‖2
H−1 ds

)
≤ Ck2ρ1(ε, d).

Introduce the error decompositions

Em = Θm + Φm, Gm = Λm + Ψm, (3.108)

where

Θm := u(tm)− Phu(tm), Φm := Phu(tm)− Um,

Λm := w(tm)− Phw(tm), Ψm := Phw(tm)−Wm.

Using the definition of the operator Ph in (3.37), (3.106)–(3.107) can be rewritten as

(
dtΦ

m, ηh
)

+ ah(Ψ
m, ηh) = −

(
dtΘ

m, ηh
)

+
(
R(utt,m), ηh

)
∀ηh ∈ Vh, (3.109)

εah(Φ
m, vh) +

1

ε

(
f(u(tm))− fm, vh

)
=
(
Ψm, vh

)
+
(
Λm, vh

)
∀vh ∈ Vh. (3.110)

Setting ηh = −∆−1
h Φm in (3.109) and vh = Φm in (3.110), adding the resulting

equations and summing over m from 1 to `, we get

ah(∆
−1
h Φ`,∆−1

h Φ`) +
∑̀
m=1

ah(∆
−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1) (3.111)

+ 2k
∑̀
m=1

εah(Φ
m,Φm) + 2k

∑̀
m=1

1

ε

(
f(u(tm))− fm,Φm

)
= 2k

∑̀
m=1

((
R(utt,m),−∆−1

h Φm
)
−
(
dtΘ

m,−∆−1
h Φm

)
+
(
Λm,Φm

))
+ ah(∆

−1
h Φ0,∆−1

h Φ0).
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Step 2: For σ0
e > σe∗ for all e ∈ Eh, the first long term on the right-hand side of

(3.111) can be bounded as follows

2k
∑̀
m=1

((
R(utt,m),−∆−1

h Φm
)

+
(
dtΘ

m,−∆−1
h Φm

)
+
(
Λm,Φm

))
(3.112)

≤ Ck
∑̀
m=1

(
‖R(utt;m)‖2

H−1 + ‖dtΘm‖2
H−1 + (1− ε3)ε−4‖Λm‖2

H−1

)
+ k

∑̀
m=1

(
ah(∆

−1
h Φm,∆−1

h Φm) +
ε4

1− ε3
ah(Φ

m,Φm)
)

≤ k
∑̀
m=1

(
ah(∆

−1
h Φm,∆−1

h Φm) +
ε4

1− ε3
ah(Φ

m,Φm)
)

+ C
(
k2ρ1(ε, d) + h6ρ3(ε)

)
,

where we have used (xi) in Proposition 3.2.1 and the following facts [29]:

‖u− Phu‖H−1 ≤ Ch3‖u‖H2 , ‖w − Phw‖H−1 ≤ Ch3‖w‖H2 .

We now bound the last term on the left-hand side of (3.111). By the definition of

fm, we have

f(u(tm))− fm = f(u(tm))− f
(
Phu(tm)

)
+ f
(
Phu(tm)

)
− fm

≥ −
∣∣f(u(tm))− f

(
Phu(tm)

)∣∣+
(
Phu(tm)

)3 − Phu(tm)− (Um)3 + Um−1

≥ −C|Θm|+
((
Phu(tm)

)2
+ Phu(tm)Um + (Um)2

)
Φm − Φm − kdtUm

≥ −C|Θm|+ f ′
(
Phu(tm)

)
Φm − 3Phu(tm) (Φm)2 + (Φm)3 − kdtUm.
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By the discrete energy law (3.48), (3.44) and (3.81), we obtain for any 1 ≤ ` ≤M

2k
∑̀
m=1

1

ε

(
f(u(tm))− fm,Φm

)
(3.113)

≥ −Ck
ε

∑̀
m=1

‖Θm‖H−1(Th)‖Φm‖H1(Th) + 2k
∑̀
m=1

1

ε

(
f ′
(
Phu(tm)

)
, (Φm)2

)
− Ck

ε

∑̀
m=1

‖Φm‖3
L3 +

2k

ε

∑̀
m=1

‖Φm‖4
L4 −

2k

ε

∑̀
m=1

k‖dtUm‖−1,h ‖Φm‖α

≥ 2k
∑̀
m=1

1

ε

(
f ′
(
Phu(tm)

)
, (Φm)2

)
+

2k

ε

∑̀
m=1

‖Φm‖4
L4 −

Ck

ε

∑̀
m=1

‖Φm‖3
L3

− kε4
∑̀
m=1

‖Φm‖2
a − C

(
h6ε−6‖u‖2

L2((0,T );Hs(D)) + k2ε−6Eh(u
0
h)
)

≥ 2k
∑̀
m=1

1

ε

(
f ′
(
Phu(tm)

)
, (Φm)2

)
+

2k

ε

∑̀
m=1

‖Φm‖4
L4 −

Ck

ε

∑̀
m=1

‖Φm‖3
L3

− k ε4

1− ε3
∑̀
m=1

ah(Φ
m,Φm)− C

(
h6ε−6‖u‖2

L2((0,T );Hs(D)) + k2ε−6Eh(U
0)
)
.

Substituting (3.112) and (3.113) into (3.111) we get

ah(∆
−1
h Φ`,∆−1

h Φ`) +
∑̀
m=1

ah(∆
−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1) (3.114)

+
2k(1− 5ε3)

1− ε3
∑̀
m=1

(
εah(Φ

m,Φm) +
1− ε3

ε

(
f ′(Phu(tm))Φm,Φm

))
+

6ε4

1− ε3
k
∑̀
m=1

ah(Φ
m,Φm) +

2k

ε

∑̀
m=1

‖Φm‖4
L4

≤ Ck
∑̀
m=1

ah(∆
−1
h Φm,∆−1

h Φm) +
Ck

ε

∑̀
m=1

‖Φm‖3
L3

− 10kε2
∑̀
m=1

(
f ′(Phu(tm))Φm,Φm

)
+ C

(
k2ρ1(ε; d) + h6ρ3(ε)

)
+ C

(
h6ε−6‖u‖2

L2((0,T );Hs(D) + k2ε−6Eh(U
0)
)
.
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Step 3: To control the second term on the right-hand side of (3.114), we appeal

to the following Gagliardo-Nirenberg inequality [2]:

‖v‖3
L3(K) ≤ C

(
‖∇v‖

d
2

L2(K)

∥∥v∥∥ 6−d
2

L2(K)
+ ‖v‖3

L2(K)

)
∀K ∈ Th.

Thus we get

Ck

ε

∑̀
m=1

‖Φm‖3
L3 ≤ε4k

∑̀
m=1

‖∇Φm‖2
L2(Th) +

Ck

ε

∑̀
m=1

‖Φm‖3
L2 (3.115)

+ Cε−
4(1+d)

4−d k
∑̀
m=1

∥∥Φm
∥∥ 2(6−d)

4−d
L2

≤ ε4

1− ε3
k
∑̀
m=1

ah(Φ
m,Φm) +

Ck

ε

∑̀
m=1

‖Φm‖3
L2

+ Cε−
4(1+d)

4−d k
∑̀
m=1

∥∥Φm
∥∥ 2(6−d)

4−d
L2 .

The third item on the right-hand side of (3.114) can be bounded by

− 10kε2(f ′(Phu(tm))Φm,Φm) (3.116)

≤ k
ε4

1− ε3
ah(Φ

m,Φm) + kCah(∆
−1
h Φm,∆−1

h Φm).

Again, here we have used (3.81).

Finally, for the third term on the left-hand side of (3.114), we utilize the discrete

spectrum estimate (3.66) to bound it from below as follows:

εah(Φ
m,Φm) +

1− ε3

ε

(
f ′(Phu(tm))Φm,Φm

)
≥ −c0‖∇∆−1Φm‖2

L2 . (3.117)

By the stability of ∆−1 and (3.81), we also have

c0‖∇∆−1Φm‖2
L2 ≤ C‖Φm‖2

L2 ≤
ε4

1− ε3
ah(Φ

m,Φm) + Cah(∆
−1
h Φm,∆−1

h Φm). (3.118)
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Step 4: Substituting (3.115), (3.116), (3.117), (3.118) into (3.114), we get

ah(∆
−1
h Φ`,∆−1

h Φ`) +
∑̀
m=1

ah(∆
−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1) (3.119)

+
2ε4k

1− ε3
∑̀
m=1

ah(Φ
m,Φm) +

2k

ε

∑̀
m=1

‖Φm‖4
L4

≤ Ck
∑̀
m=1

ah(∆
−1
h Φm,∆−1

h Φm) +
Ck

ε

∑̀
m=1

‖Φm‖3
L2

+ Cε−
4(1+d)

4−d k
∑̀
m=1

∥∥Φm
∥∥ 2(6−d)

4−d
L2 + C

(
k2ρ1(ε; d) + h6ρ3(ε)

)
+ C

(
h6ε−6‖u‖2

L2((0,T );Hs(D) + k2ε−6Eh(U
0)
)
.

By discrete energy law (3.48), General Assumption (3.2), H1 stability of elliptic

projection, L∞ stability(or L∞ error estimate and triangle inequality) of elliptic

projection, we can get for any 0 ≤ ` ≤M

‖U `‖L2 ≤ k
∑̀
m=1

‖dtUm‖L2 + ‖U0‖L2 ≤ Cε−σ1 .

Since the projection of u is bounded, then for any 0 ≤ ` ≤M

‖Φ`‖L2 ≤ Cε−σ1 . (3.120)

We point out that the exponent for
∥∥Φm

∥∥
L2 is 2(6−d)

4−d , which is bigger than 3 for

d = 2, 3. By (3.120) we have

∥∥Φm
∥∥4

L2 ≤ Cε−σ1
∥∥Φm

∥∥3

L2 ,
∥∥Φm

∥∥6

L2 ≤ Cε−3σ1
∥∥Φm

∥∥3

L2 .
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Using the Schwarz and Young’s inequalities, we have

∥∥Φm
∥∥3

L2 =
(∥∥Φm

∥∥2

L2

) 3
2

= ah(−∆−1
h Φm,Φm)

3
2 (3.121)

≤ ah(∆
−1
h Φm,∆−1

h Φm)
3
4 ah(Φ

m,Φm)
3
4

≤ ε
4(1+d)

4−d +σ1+2(d−2)σ1
ε4

1− ε3
ah(Φ

m,Φm)

+ Cε−4ε−
4(1+d)

4−d −σ1−2(d−2)σ1ah(∆
−1
h Φm,∆−1

h Φm)3.

Therefore, (3.119) becomes

ah(∆
−1
h Φ`,∆−1

h Φ`) +
∑̀
m=1

ah(∆
−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1) (3.122)

+
ε4k

1− ε3
∑̀
m=1

ah(Φ
m,Φm) +

2k

ε

∑̀
m=1

‖Φm‖4
L4

≤ Ck
∑̀
m=1

ah(∆
−1
h Φm,∆−1

h Φm)

+ Ckε−
4(6+d)

4−d −2σ1−4(d−2)σ1
∑̀
m=1

ah(∆
−1
h Φm,∆−1

h Φm)3

+ C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
+ C

(
h6ε−6‖u‖2

L2((0,T );Hs(D) + k2ε−6Eh(U
0)
)

≤ Ck
∑̀
m=1

ah(∆
−1
h Φm,∆−1

h Φm)

+ Ckε−
4(6+d)

4−d −2σ1−4(d−2)σ1
∑̀
m=1

ah(∆
−1
h Φm,∆−1

h Φm)3

+ C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
.

On noting that Um can be written as

U ` = k
∑̀
m=1

dtU
m + U0, (3.123)
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then by (3.2) and (3.48), we get

‖U `‖−1,h ≤ k
∑̀
m=1

‖dtUm‖−1,h + ‖U0‖−1,h ≤ Cε−σ1 . (3.124)

Using the boundedness of the projection, we have

‖Φ`‖2
−1,h ≤ Cε−2σ1 . (3.125)

Also, (3.122) can be written in the following equivalent form

ah(∆
−1
h Φ`,∆−1

h Φ`) +
∑̀
m=1

ah(∆
−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1) (3.126)

+
ε4k

1− ε3
∑̀
m=1

ah(Φ
m,Φm) +

2k

ε

∑̀
m=1

‖Φm‖4
L4 ≤M1 +M2,

where

M1 := Ck
`−1∑
m=1

ah(∆
−1
h Φm,∆−1

h Φm) (3.127)

+ Ckε−
4(6+d)

4−d −2σ1−4(d−2)σ1

`−1∑
m=1

ah(∆
−1
h Φm,∆−1

h Φm)3

+ C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
,

M2 := Ckah(∆
−1
h Φ`,∆−1

h Φ`) (3.128)

+ Ckε−
4(6+d)

4−d −2σ1−4(d−2)σ1ah(∆
−1
h Φ`,∆−1

h Φ`)3.

It is easy to check that

M2 ≤
1

2
‖Φ`‖2

−1,h provided that k ≤ Cε
4(6+d)

4−d +(4d−2)σ1 . (3.129)
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Under this restriction, we have

ah(∆
−1
h Φ`,∆−1

h Φ`) + 2
∑̀
m=1

ah(∆
−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1) (3.130)

+
2ε4k

1− ε3
∑̀
m=1

ah(Φ
m,Φm) +

4k

ε

∑̀
m=1

‖Φm‖4
L4

≤ 2Ck
`−1∑
m=1

ah(∆
−1
h Φm,∆−1

h Φm) + 2C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
+ 2Ckε−

4(6+d)
4−d −2σ1−4(d−2)σ1

`−1∑
m=1

ah(∆
−1
h Φm,∆−1

h Φm)3

≤ Ck
`−1∑
m=1

ah(∆
−1
h Φm,∆−1

h Φm) + C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
+ Ckε−

4(6+d)
4−d −2σ1−4(d−2)σ1

`−1∑
m=1

ah(∆
−1
h Φm,∆−1

h Φm)3.

Define the slack variable d` ≥ 0 such that

ah(∆
−1
h Φ`,∆−1

h Φ`) + 2
∑̀
m=1

ah(∆
−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1) (3.131)

+
2ε4k

1− ε3
∑̀
m=1

ah(Φ
m,Φm) +

4k

ε

∑̀
m=1

‖Φm‖4
L4) + d`

= Ck
`−1∑
m=1

ah(∆
−1
h Φm,∆−1

h Φm) + C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
+ Ckε−

4(6+d)
4−d −2σ1−4(d−2)σ1

`−1∑
m=1

ah(∆
−1
h Φm,∆−1

h Φm)3.

We also define {S`}`≥1 by

S` = d` + 2
∑̀
m=1

ah(∆
−1
h Φm −∆−1

h Φm−1,∆−1
h Φm −∆−1

h Φm−1) (3.132)

+ ah(∆
−1
h Φ`,∆−1

h Φ`) +
2ε4k

1− ε3
∑̀
m=1

ah(Φ
m,Φm) +

4k

ε

∑̀
m=1

‖Φm‖4
L4 ,
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and equation (3.131) shows that

S1 = C
(
k2ρ1(ε; d) + h6ρ3(ε)

)
.

Then

S`+1 − S` ≤ CkS` + Ckε−
4(6+d)

4−d −2σ1−4(d−2)σ1S3
` ∀` ≥ 1. (3.133)

Applying Lemma 2.2.4 ([40, 42, 73])to {S`}`≥1 defined above, we obtain ∀` ≥ 1,

S` ≤ a−1
`

{
S−2

1 − 2Cε−
4(6+d)

4−d −2σ1−4(d−2)σ1k

`−1∑
s=1

a−2
s+1

}− 1
2

(3.134)

provided that

S−2
1 − 2Cε−

4(6+d)
4−d −2σ1−4(d−2)σ1k

`−1∑
s=1

a−2
s+1 > 0. (3.135)

We note that as (1 ≤ s ≤ `) are all bounded as k → 0, therefore, (3.135) holds under

the mesh constraint stated in the theorem. It follows from (3.92) and (3.93) that

S` ≤ 2a−1
` S1 ≤ C

(
k2ρ1(ε; d) + h6ρ3(ε)

)
. (3.136)

Then (3.94) follows from the triangle inequality on Em = Θm + Φm. (3.96) is

obtained by taking the test function ηh = Φm in (3.109) and vh = Φm in (3.110), and

(3.95) is a consequence of the Poincarè inequality.

Now setting ηh = Φm in (3.109) and vh = −1
ε
Ψm in (3.110), and adding the

resulting equations yield

1

2
dt‖Φm‖2

L2 +
k

2
‖dtΦm‖2

L2 +
1

ε
‖Ψm‖2

L2 =
1

ε2
(
f(u(tm))− f(Um),Ψm

)
(3.137)

+
(
R(utt;m),Φm

)
−
(
dtΘ

m,Φm
)
− 1

ε

(
Λm,Ψm

)
.
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The last three terms on the right-hand side of (3.137) can be bounded in the same

way as in (3.112), and the first term can be controlled as

1

ε2
(
f(u(tm))− f(Um),Ψm

)
=

1

ε2
(
f ′(ξ)Em,Ψm

)
(3.138)

≤ 1

2ε
‖Ψm‖2

L2 +
C

ε3
‖Em‖2

L2 .

Multiplying both sides of (3.137) by k and summing over m from 1 to M yield the

desired estimate (3.98). Estimate (3.99) follows from an applications of the following

inverse inequality:

‖Φm‖L∞ ≤ h−
d
2‖Φm‖L2 , (3.139)

and the following L∞ estimate for the elliptic projection:

‖u− Phu‖L∞ ≤ Ch2| lnh|‖u‖W s,∞ ∀u ∈ H2(D). (3.140)

Finally, it is well known that there holds the following estimate for the elliptic

projection operator:

max
0≤m≤M

‖Λm‖L2 +

(
k

M∑
m=0

k‖dtΛm‖2
L2

) 1
2

≤ Ch2ρ2(ε). (3.141)

Using the identity

(
dtΦ

m,Φm
)

=
1

2
dt‖Φm‖2

L2 +
k

2
‖dtΦm‖2

L2 , (3.142)

we get

1

2
‖ΨM‖2

L2 + k
M∑
m=1

k

2
‖dtΨm‖2

L2 = k
M∑
m=1

(
dtΨ

m,Ψm
)

+
1

2
‖Ψ0‖2

L2 (3.143)

≤ k

M∑
m=1

(
k

4
‖dtΨm‖2

L2 +
1

k
‖Ψm‖2

L2

)
+

1

2
‖Ψ0‖2

L2 .
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The first term on the right hand side of (3.143) can be absorbed by the second term

on the left hand side of (3.143). The second tern on the right hand side of (3.143)

has been obtained in (3.98). Estimate (3.102) for Wm then follows from (3.141) and

(3.143). (3.103) follows from an application of the triangle inequality, the inverse

inequality, and (3.140). This completes the proof.

3.4 Convergence of numerical interfaces

In this section, we prove that the numerical interface defined as the zero level set of

the finite element interpolation of the solution Um converges to the moving interface

of the Hele-Shaw problem under the assumption that the Hele-Shaw problem has a

unique global (in time) classical solution. To the end, we first cite the following PDE

convergence result proved in [3].

Theorem 3.4.1. Let D be a given smooth domain and Γ00 be a smooth closed

hypersurface in D. Suppose that the Hele-Shaw problem starting from Γ00 has a

unique smooth solution
(
w,Γ :=

⋃
0≤t≤T (Γt × {t})

)
in the time interval [0, T ] such

that Γt ⊆ D for all t ∈ [0, T ]. Then there exists a family of smooth functions {uε0}0<ε≤1

which are uniformly bounded in ε ∈ (0, 1] and (x, t) ∈ DT , such that if uε solves the

Cahn-Hilliard problem (1.30)–(1.33), then

(i) lim
ε→0

uε(x, t) =

1 if (x, t) ∈ O

−1 if (x, t) ∈ I
uniformly on compact subsets, where I

and O stand for the “inside” and “outside” of Γ;

(ii) lim
ε→0

(
ε−1f(uε)− ε∆uε

)
(x, t) = −w(x, t) uniformly on DT .

We note that since Um is multi-valued on the edges of the mesh Th, its zero-level

set is not well defined. To avoid this technicality, we use a continuous finite element

interpolation of Um to define the numerical interface. Let Ûm ∈ Sh denote the finite

element approximation of Um which is defined using the averaged degrees of freedom

99



of Um as the degrees of freedom for determining Ûm (cf. [58]). By the construction,

Ûm is expected to be very close to Um, hence, Ûm should also be very close to u(tm).

This is indeed the case as stated in the following theorem, which says that Theorem

3.3.6 also hold for Ûm.

Theorem 3.4.2. Let Um denote the solution of scheme (3.32)–(3.45) and Ûm denote

its finite element approximation as defined above. Then under the assumptions of

Theorem 3.3.6 the error estimates for Um given in Theorem 3.3.6 are still valid for

Ûm, in particular, there holds

max
0≤m≤M

‖u(tm)− Ûm‖L∞(Th) ≤ C
(
h2| lnh|ε−γ + h−

d
2 ε−

7
2 r(h, k; ε, d, σi)

1
2

)
. (3.144)

We omit the proof because it is essentially the same as the proof of Theorem 2.4.1.

We are now ready to state the first main theorem of this section.

Theorem 3.4.3. Let {Γt}t≥0 denote the zero level set of the Hele-Shaw problem and(
Uε,h,k(x, t),Wε,h,k(x, t)

)
denote the piecewise linear interpolation in time of the finite

element interpolation {(Ûm, Ŵm)} of the DG solution {(Um,Wm)}, namely,

Uε,h,k(x, t) :=
t− tm−1

k
Ûm(x) +

tm − t
k

Ûm−1(x), (3.145)

Wε,h,k(x, t) :=
t− tm−1

k
Wm(x) +

tm − t
k

Wm−1(x), (3.146)

for tm−1 ≤ t ≤ tm and 1 ≤ m ≤ M . Then, under the mesh and starting value

constraints of Theorem 3.3.6 and k = O(h2−γ) with γ > 0, we have

(i) Uε,h,k(x, t)
ε↘0−→ 1 uniformly on compact subset of O,

(ii) Uε,h,k(x, t)
ε↘0−→ −1 uniformly on compact subset of I.

(iii) Moreover, in the case that dimension d = 2, when k = O(h3), suppose that W 0

satisfies ‖wε0 −W 0‖L2 ≤ Chβ for some β > 3
2
, then we have Wε,h,k(x, t)

ε↘0−→

−w(x, t) uniformly on DT .
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Proof. For any compact set A ⊂ O and for any (x, t) ∈ A, we have

|Uε,h,k − 1| ≤ |Uε,h,k − uε(x, t)|+ |uε(x, t)− 1| (3.147)

≤ |Uε,h,k − uε(x, t)|L∞(DT ) + |uε(x, t)− 1|.

Equation (3.99) of Theorem 3.3.6 infers that there exists a constant 0 < α < 4−d
2

such

that

|Uε,h,k − uε(x, t)|L∞(DT ) ≤ Chα. (3.148)

The first term on the right-hand side of (3.147) tends to 0 when ε ↘ 0 (note that

h, k ↘ 0, too). The second term converges uniformly to 0 on the compact set A,

which is ensured by (i) of Theorem 3.4.1. Hence, the assertion (i) holds.

To show (ii), we only need to replace O by I and 1 by −1 in the above proof. To

prove (iii), under the assumptions k = O(h3), (3.103) in Theorem 3.3.6 implies that

there exists a positive constant 0 < ζ < 4−d
2

such that

‖Wε,h,k − wε‖L∞(DT ) ≤ Chζ . (3.149)

Then by the triangle inequality we obtain for any (x, t) ∈ DT ,

|Wε,h,k(x, t)− (−w)| ≤ |Wε,h,k(x, t)− wε(x, t)|+ |wε(x, t)− (−w)|, (3.150)

≤ ‖Wε,h,k(x, t)− wε(x, t)‖L∞(DT ) + |wε(x, t)− (−w)|.

The first term on the right-hand side of (3.150) tends to 0 when ε ↘ 0 (note that

h, k ↘ 0, too). The second term converges uniformly to 0 in DT , which is ensured by

(ii) of Theorem 3.4.1. Thus the assertion (iii) is proved. The proof is complete.

The second main theorem of this section which is given below addresses the

convergence of numerical interfaces.

101



Theorem 3.4.4. Let Γε,h,kt := {x ∈ D; Uε,h,k(x, t) = 0} be the zero level set of

Uε,h,k(x, t), then under the assumptions of Theorem 3.4.3, we have

sup
x∈Γε,h,kt

dist(x,Γt)
ε↘0−→ 0 uniformly on [0, T ].

Proof. For any η ∈ (0, 1), define the open tabular neighborhood Nη of width 2η of Γt

as

Nη := {(x, t) ∈ DT ; dist(x,Γt) < η}. (3.151)

Let A andB denote the complements of the neighborhoodNη inO and I, respectively,

i.e.

A = O \ Nη and B = I \ Nη.

Note that A is a compact subset outside Γt and B is a compact subset inside Γt, then

there exists ε3 > 0, which only depends on η, such that for any ε ∈ (0, ε3)

|Uε,h,k(x, t)− 1| ≤ η ∀(x, t) ∈ A, (3.152)

|Uε,h,k(x, t) + 1| ≤ η ∀(x, t) ∈ B. (3.153)

Now for any t ∈ [0, T ] and x ∈ Γε,h,kt , from Uε,h,k(x, t) = 0 we have

|Uε,h,k(x, t)− 1| = 1 ∀(x, t) ∈ A, (3.154)

|Uε,h,k(x, t) + 1| = 1 ∀(x, t) ∈ B. (3.155)

(3.152) and (3.154) imply that (x, t) is not in A, and (3.153) and (3.155) imply that

(x, t) is not in B, then (x, t) must lie in the tubular neighborhood Nη. Therefore, for

any ε ∈ (0, ε3),

sup
x∈Γε,h,kt

dist(x,Γt) ≤ η uniformly on [0, T ]. (3.156)

The proof is complete.
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3.5 Numerical experiments

In this section, we present three two-dimensional numerical tests to gauge the

performance of the proposed fully discrete MIP-DG methods using the linear element

(i.e., r = 1). The square domain D = [−1, 1]2 is used in all three tests and the initial

condition is chosen to have the form u0 = tanh
(d0(x)√

2ε

)
, where d0(x) denotes the signed

distance from x to the initial interface Γ0.

Our first test uses a smooth initial condition to satisfy the requirement for u0,

consequently, the theoretical results established in this chapter apply to this test

problem. On the other hand, non-smooth initial conditions are used in the second

and third tests, hence, the theoretical results of this chapter may not apply. But

we still use our MIP-DG methods to compute the error order, energy decay and the

evolution of the numerical interfaces. Our numerical results suggest that the proposed

DG schemes work well, even a convergence theory is missing for them.

Test 1. Consider the Cahn-Hilliard problem (1.30)-(1.33) with the following initial

condition:

u0(x) = tanh
(d0(x)√

2ε

)
,

where tanh(t) = (et−e−t)/(et+e−t), and d0(x) represents the signed distance function

to the ellipse:
x2

1

0.36
+

x2
2

0.04
= 1.

Hence, u0 has the desired form as stated in Proposition 3.3.5.

Table 3.1 shows the spatial L2 and H1-norm errors and convergence rates, which

are consistent with what are proved for the linear element in the convergence theorem.

ε = 0.1 is used to generate the table.

Figure 3.1 plots the change of the discrete energy Eh(U
`) in time, which should

decrease according to (3.48). This graph clearly confirms this decay property. Figure

3.2 displays four snapshots at four fixed time points of the numerical interface with

four different ε. They clearly indicate that at each time point the numerical interface
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Table 3.1: Spatial errors and convergence rates of Test 1 with ε = 0.1.

L∞(L2) error L∞(L2) order L2(H1) error L2(H1) order

h = 0.4
√

2 0.53325 0.84260

h = 0.2
√

2 0.21280 1.3253 0.64843 0.3779

h = 0.1
√

2 0.07164 1.5707 0.43273 0.5835

h = 0.05
√

2 0.01779 2.0097 0.21411 1.0151

h = 0.025
√

2 0.00454 1.9703 0.10890 0.9753

Figure 3.1: Decay of the numerical energy Eh(U
`) of Test 1.

converges to the sharp interface Γt of the Hele-Shaw flow as ε tends to zero. It also

shows that the numerical interface evolves faster in time for larger ε and confirms the

mass conservation property of the Cahn-Hilliard problem as the total mass does not

change in time, which approximates a constant 3.064.

Test 2. Consider the Cahn-Hilliard problem (1.30)-(1.33) with the following initial

condition:

u0(x) = tanh
( 1√

2ε

(
min

{√
(x1 + 0.3)2 + x2

2 − 0.3,
√

(x1 − 0.3)2 + x2
2 − 0.25

}))
.

We note that u0 can be written as

u0(x) = tanh
(d0(x)√

2ε

)
.
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Figure 3.2: Test 1: Snapshots of the zero-level set of uε,h,k at time t =
0, 0.005, 0.015, 0.03 and ε = 0.125, 0.025, 0.005, 0.001.

Here d0(x) represents the signed distance function. We note that u0 does not have

the desired form as stated in Proposition 3.3.5.

Table 3.2 shows the spatial L2 and H1-norm errors and convergence rates, which

are consistent with what are proved for the linear element in the convergence theorem.

ε = 0.1 is used to generate the table. Figure 3.3 plots the change of the discrete energy

Table 3.2: Spatial errors and convergence rates of Test 2 with ε = 0.1.

L∞(L2) error L∞(L2) order L2(H1) error L2(H1) order

h = 0.4
√

2 0.26713 0.35714

h = 0.2
√

2 0.07161 1.8993 0.18411 0.9559

h = 0.1
√

2 0.01833 1.9660 0.09620 0.9365

h = 0.05
√

2 0.00476 1.9452 0.04928 0.9650

h = 0.025
√

2 0.00121 1.9760 0.02497 0.9808

Eh(U
`) in time, which should decrease according to (3.48). This graph clearly confirms

this decay property. Figure 3.4 displays four snapshots at four fixed time points of
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Figure 3.3: Decay of the numerical energy Eh(U
`) of Test 2.

the numerical interface with four different ε. They clearly indicate that at each time

point the numerical interface converges to the sharp interface Γt of the Hele-Shaw

flow as ε tends to zero. It again shows that the numerical interface evolves faster in

time for larger ε and confirms the mass conservation property of the Cahn-Hilliard

problem as the total mass does not change in time, which approximates a constant

3.032.

Test 3. Consider the Cahn-Hilliard problem (1.30)–(1.33) with the following initial

condition:

u0(x) = tanh
( 1√

2ε

(
min

{√
(x1 + 0.3)2 + x2

2 − 0.2,
√

(x1 − 0.3)2 + x2
2 − 0.2,√

x2
1 + (x2 + 0.3)2 − 0.2,

√
x2

1 + (x2 − 0.3)2 − 0.2
}))

.

Notice that the above u0 does not have the desired form as stated in Proposition

3.3.5.

Table 3.3 shows the spatial L2 and H1-norm errors and convergence rates with

ε = 0.1, which are consistent with what are proved for the linear element in the

convergence theorem. Figure 3.5 plots the change of the discrete energy Eh(U
`) in

time, which again decreases as predicted by (3.48). Figure 3.6 displays four snapshots

at four fixed time points of the numerical interface with four different ε. Once again,

we observe that at each time point the numerical interface converges to the sharp
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Figure 3.4: Test 2: Snapshots of the zero-level set of uε,h,k at time t =
0, 0.001, 0.04, 0.09 and ε = 0.125, 0.025, 0.005, 0.001.

interface Γt of the Hele-Shaw flow as ε tends to zero, the interface evolves faster in

time for larger ε and the mass conservation property is preserved. The total mass

approximates a constant 2.989.
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Table 3.3: Spatial errors and convergence rates of Test 3 with ε = 0.1.

L∞(L2) error L∞(L2) order L2(H1) error L2(H1) order

h = 0.4
√

2 0.38576 0.84157

h = 0.2
√

2 0.12347 1.6435 0.55082 0.6115

h = 0.1
√

2 0.03599 1.7785 0.31149 0.8224

h = 0.05
√

2 0.00965 1.8990 0.16199 0.9433

h = 0.025
√

2 0.00247 1.9660 0.08218 0.9790

Figure 3.5: Decay of the numerical energy Eh(U
`) of Test 3.

Figure 3.6: Test 3: Snapshots of the zero-level set of uε,h,k at time t =
0, 0.006, 0.012, 0.02 and ε = 0.125, 0.025, 0.005, 0.001.
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Chapter 4

Finite Element Methods for the

Stochastic Mean Curvature Flow

of Planer Curves of Graphs

4.1 Introduction

It is easy to check that (cf. [94, 32]) the level set formulation of (1.35) is given by the

following nonlinear parabolic stochastic partial differential equation (SPDE):

df = |∇x′f | divx′
( ∇x′f

|∇x′f |

)
dt+ ε|∇x′f | ◦ dWt, (4.1)

where f = f(x′, t) with x′ = (x, xd+1) denotes the level set function so that Γt is

represented by the zero level set of f , and ‘◦’ refers to the Stratonovich interpretation

of the stochastic integral. Again, stochastic effects are modeled by a standard

R-valued Wiener process W ≡ {Wt; t ≥ 0} which is defined on a given filtered

probability space (Ω,F , {Ft; t ≥ 0},P).
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In the case that f is a d-dimensional graph, that is, f(x′, t) = xd+1 − u(x, t),

equation (4.1) reduces to

du =
√

1 + |∇xu|2 divx

( ∇xu√
1 + |∇xu|2

)
dt+ ε

√
1 + |∇xu|2 ◦ dWt. (4.2)

To the best of our knowledge, a comprehensive PDE theory for the SPDE (4.2) is

still missing in the literature. For the case d = 1, (4.2) reduces to the following

one-dimensional nonlinear parabolic SPDE:

du =
∂2
xu

1 + |∂xu|2
dt+ ε

√
1 + |∂xu|2 ◦ dWt (4.3)

= ∂x
(
arctan(∂xu)

)
dt+ ε

√
1 + |∂xu|2 ◦ dWt.

Here ∂xu stands for the derivative of u with respect to x. This Stratonovich SPDE

can be equivalently converted into the following Itô SPDE:

du =
[ε2

2
∂2
xu+

(
1− ε2

2

) ∂2
xu

1 + |∂xu|2
]
dt+ ε

√
1 + |∂xu|2 dWt (4.4)

= ∂x

(ε2

2
∂xu+ (1− ε2

2
)arctan(∂xu)

)
dt+ ε

√
1 + |∂xu|2 dWt.

As is evident from (4.3), (4.4), the stochastic mean curvature flow (4.2) for d =

1 may be interpreted as a gradient flow with multiplicative noise. Recently, Es-

Sarhir and von Renesse [32] proved existence and uniqueness of (stochastically) strong

solutions for (4.3) by a variational method, based on the Lyapunov structure of the

problem (cf. [32, property (H3)]) which replaces the standard coercivity assumption

(cf. [32, property (A)]). As is pointed out in [32], mild solutions for (4.3) may not be

expected due to its quasilinear character.

The primary goal of this chapter is to develop and analyze by a variational method

some semi-discrete and fully discrete finite element methods for approximating (with

rates) the strong solution of the Itô form (4.4) of the stochastic MCF. The error

analysis presented in this chapter differs from most existing works on the numerical
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analysis of SPDEs, where mild solutions are mostly approximated with the help of

corresponding discrete semi-groups (see [61] and the references therein). We also note

that the error estimates derived in [55] which hold for general quasilinear SPDEs

do not apply to (4.4) because the structural assumptions, such as the coercivity

assumption [55, cf. Assumption 2.1, (ii)] and the strong monotonicity assumption [55,

cf. Assumption 2.2, (i)] fail to hold for (4.4), and also the regularity assumptions [55,

cf. Assumption 2.3] are not known to hold in the present case. In this chapter, we use

a variational approach similar to [55, 15, 17] to analyze the convergence of our finite

element methods. One main difficulty for approximating the strong solution of (4.4)

with certain rates is caused by the low regularity of the solution. To circumvent this

difficulty, we first regularize the SPDE (4.4) by adding an additional linear diffusion

term δ∂2
xu to the drift coefficient of (4.4); as a consequence the related drift operator

in (4.7) becomes strongly monotone, and the corresponding solution process uδ is then

H2-valued in space. However, it is due to the ‘gradient-type’ noise that a relevant

Hölder estimate in the H1-norm for the solution uδ seems not available, which is

necessary to properly control time-discretization errors. In order to circumvent this

problematic issue, we proceed first with the spatial discretization (4.12); we may then

use an inverse finite element estimate, and the weaker Hölder estimate (4.27) for the

process uδh to control time-discretization errors. We remark that addressing space

discretization errors first requires to efficiently cope with the limited regularity of

Lagrange finite element functions in the context of required higher norm estimates,

which is overcome by a perturbation argument (cf. Proposition 4.3.4).

The remainder of this chapter consists of three additional sections. In section 4.2

we first recall some relevant facts about the solution of (4.4) from [32]; we then present

an analysis for the regularized problem. The main result of this section is to prove an

error bound for uδ − u in powers of δ. In section 4.3 we propose a semi-discrete (in

space) and a fully discrete finite element method for the regularized equation (4.7) of

the SPDE (4.4). The main result of this section is the strong L2-error estimate for

the finite element solution. Finally, in section 4.4 we present several computational
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results to validate the theoretical error estimate, and to study relative effects due to

geometric evolution and gradient-type noises.

4.2 Preliminaries and error estimates for a partial

differential equation regularization

The standard function and space notation will be adapted in this chapter. For

example, H2(I) denotes the Sobolev space W 2,2(I) on the interval I = (0, 1), and

H0(I) = L2(I). We also use Hm
p (I) to denote the subspace of Hm(I) which consists

of all periodic functions in Hm(I). Let (·, ·)I denote the L2-inner product on I. The

quadruple (Ω,F , {Ft; t ≥ 0},P) stands for a given probability space, on which an

R-valued Wiener process W is given. For a random variable X, we denote by E[X]

the expected value of X.

We first quote the following existence and uniqueness result from [32] for the

SPDE (4.4) with periodic boundary conditions. In this context, we refer to the {Ft}-

adapted process u : I × [0, T ] × Ω → R as a (stochastically) strong solution in case

it satisfies P-a.s. (4.4) in an analytically weak sense, i.e., tested with deterministic

functions.

Theorem 4.2.1. Suppose that u0 ∈ H1
p (I) and fix T > 0. Let ε ≤

√
2. There

exists a unique strong solution to SPDE (4.3) with periodic boundary conditions and

attaining the initial condition u(0) = u0, that is, there exists a unique H1
p -valued

{Ft}t∈[0,T ]-adapted process u ≡ {u(t); t ∈ [0, T ]} such that P-almost surely

(
u(t), ϕ

)
I

=
(
u0, ϕ

)
I
− ε2

2

∫ t

0

(
∂xu, ∂xϕ

)
I
ds (4.5)

−
(
1− ε2

2

) ∫ t

0

(
arctan(∂xu), ∂xϕ

)
I

]
ds

+ε

∫ t

0

(√
1 + |∂xu|2, ϕ

)
I
dWs ∀ϕ ∈ H1(I) ∀t ∈ [0, T ].
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Moreover, u satisfies for some C > 0 independent of T > 0,

sup
t∈[0,T ]

E
[
‖u(t)‖2

H1(I)

]
≤ C. (4.6)

It is not clear if such a regularity can be improved from the analysis of [32] because

of the difficulty caused by the gradient-type noise. In particular, H2-regularity in

space, which would be desirable in order to derive some rates of convergence for

finite element methods, seems not clear. To overcome this difficulty, we introduce the

following simple regularization of (4.4):

duδ =
[(
δ +

ε2

2

)
∂2
xu

δ +
(
1− ε2

2

) ∂2
xu

δ

1 + |∂xuδ|2
]
dt+ ε

√
1 + |∂xuδ|2 dWt. (4.7)

To make this indirect approach successful, we need to address the well-posedness and

regularity issues for (4.7) and to estimate the difference between the strong solutions

uδ of (4.7) and u of (4.4).

Theorem 4.2.2. Suppose that uδ0 ∈ H1
p (I) and ‖uδ0‖H1(I) ≤ C0, where C0 > 0 is

independent of δ. Let ε ≤
√

2(1 + δ). Then there exists a unique strong solution to

SPDE (4.7) with periodic boundary conditions and initial condition uδ(0) = uδ0, that

is, there exists a unique H1
p -valued {Ft}t∈[0,T ]-adapted process uδ ≡ {uδ(t); t ∈ [0, T ]}

such that there holds P-almost surely

(
uδ(t), ϕ

)
I

=
(
uδ0, ϕ

)
I
−
(
δ +

ε2

2

) ∫ t

0

(
∂xu

δ, ∂xϕ
)
I
ds (4.8)

−
(
1− ε2

2

) ∫ t

0

(
arctan(∂xu

δ), ∂xϕ
)
I
ds

+ ε

∫ t

0

(√
1 + |∂xuδ|2, ϕ

)
I
dWs ∀ϕ ∈ H1(I) ∀ t ∈ [0, T ].

Moreover, uδ satisfies

sup
t∈[0,T ]

E
[1

2
‖∂xuδ(t)‖2

L2(I)

]
+ δ E

[∫ T

0

‖∂2
xu

δ(s)‖2
L2(I) ds

]
≤ E

[1

2
‖∂xuδ0‖2

L2(I)

]
. (4.9)
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Proof. Existence of uδ can be shown in the same way as done in Theorem 4.2.1 (cf.

[32]). To verify (4.9), we proceed formally and apply Ito’s formula (cf. e.g. [62], or

[78]) with f(·) = 1
2
‖∂x · ‖2

L2(I) to (a Galerkin approximation of) the solution uδ to get

1

2
‖∂xuδ(t)‖2

L2(I) +

∫ t

0

[(ε2

2
+ δ
)
‖∂2

xu
δ‖2
L2(I) +

(
1− ε2

2

)∥∥∥ ∂2
xu

δ√
1 + |∂xuδ|2

∥∥∥2

L2

]
ds

=
1

2
‖∂xuδ0‖2

L2(I) +
ε2

2

∫ t

0

∥∥∥∂x√1 + |∂xuδ|2
∥∥∥2

L2
ds+Mt

=
1

2
‖∂xuδ0‖2

L2(I) +
ε2

2

∫ t

0

∥∥∥ ∂xu
δ · ∂2

xu
δ√

1 + |∂xuδ|2
∥∥∥2

L2(I)
ds+Mt ∀ t ∈ [0, T ],

where

Mt := ε

∫ t

0

(
∂x
√

1 + |∂xuδ(s)|2, ∂xuδ
)
I
dWs

is a martingale. Taking expectation yields

E
[1

2
‖∂xuδ(t)‖2

L2(I) +

∫ t

0

[
δ‖∂2

xu
δ‖2
L2 +

(
1− ε2

2

)∥∥∥ ∂2
xu

δ√
1 + |∂xuδ|2

∥∥∥2

L2

]
ds
]

≤ E
[1
2
‖∂xuδ0‖2

L2

]
.

Hence, (4.9) hold. The proof is complete.

Next, we shall derive an upper bound for the error uδ − u as a low order power

function of δ.

Theorem 4.2.3. Suppose that uδ0 ≡ u0. Let u and uδ denote respectively the strong

solutions of the initial-boundary value problems (4.4) and (4.7) as stated in Theorems

4.2.1 and 4.2.2. Then there holds the following error estimate:

sup
t∈[0,T ]

E
[
‖uδ(t)− u(t)‖2

L2(I)

]
+ δ E

[∫ T

0

‖∂x
(
uδ(s)− u(s)

)
‖2
L2(I) ds

]
≤ CTδ. (4.10)
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Proof. Let eδ := uδ − u. Subtracting (4.5) from (4.8) we get that P-a.s.

(
eδ(t), ϕ

)
I

= −
∫ t

0

[
δ
(
∂xu, ∂xϕ

)
I

+
(
δ +

ε2

2

)(
∂xe

δ, ∂xϕ
)
I

+
(
1− ε2

2

)(
arctan(∂xu

δ)− arctan(∂xu), ∂xϕ
)
I

]
ds+Mt

for all ϕ ∈ H1(I) and t ∈ [0, T ], with the martingale

Mt := ε

∫ t

0

(√
1 + |∂xuδ|2 −

√
1 + |∂xu|2, ϕ

)
I
dWs.

By Itô’s formula (cf. [62]) we get

‖eδ(t)‖2
L2(I) = −2

∫ t

0

[
δ
(
∂xu, ∂xe

δ
)
I

+
(
δ +

ε2

2

)
‖∂xeδ

∥∥2

L2(I)
(4.11)

+
(
1− ε2

2

)(
arctan(∂xu

δ)− arctan(∂xu), ∂xe
δ
)
I

]
ds

+ ε2
∫ t

0

∥∥∥√1 + |∂xuδ|2 −
√

1 + |∂xu|2
∥∥∥2

L2(I)
ds

+ 2ε

∫ t

0

(√
1 + |∂xuδ|2 −

√
1 + |∂xu|2, eδ

)
I
dWs.

Taking expectations on both sides, and using the monotonicity property of the arctan

function and the inequality
(√

1 + x2 −
√

1 + y2
)2 ≤ |x− y|2 yield

E
[
‖eδ(t)‖2

L2(I)

]
+ 2δ E

[∫ t

0

‖∂xeδ‖2
L2(I) ds

]
≤ −2δ E

[∫ t

0

(
∂xu, ∂xe

δ
)
I
ds
]

≤ δ E
[∫ T

0

[
‖∂xu‖2

L2(I) + ‖∂xeδ‖2
L2(I)

]
ds
]
,

which and (4.6) imply that

E
[
‖eδ(t)‖2

L2(I)

]
+ δ E

[∫ t

0

‖∂xeδ‖2
L2(I) ds

]
≤ δ E

[∫ T

0

‖∂xu‖2
L2(I) ds

]
≤ (CT )δ.
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The desired estimate (4.10) follows immediately. The proof is complete.

4.3 Finite element methods

In this section we propose a fully discrete finite element method to solve the

regularized SPDE (4.7) and to derive an error estimate for the finite element solution.

This goal will be achieved in two steps. We first present and study a semi-discrete in

space finite element method and then discretize it in time to obtain our fully discrete

finite element method.

4.3.1 Semi-discretization in space

Let 0 = x0 < x1 < · · · < xJ+1 = 1 be a quasiuniform partition of I = (0, 1). Define

hj := xj+1 − xj and h := max0≤j≤J hj. Introduce the finite element spaces

V h
r :=

{
vh ∈ C0(I); vh|[xj ,xj+1] ∈ Pr([xj, xj+1]), j = 0, 1, · · · , J

}
∩H1

p (I),

where Pr([xj, xj+1] denotes the space of all polynomials of degree not exceeding r(≥

0) on [xj, xj+1]. We note that functions in V h
r are piecewise continuous periodic

functions. Our semi-discrete finite element method for SPDE (4.7) is defined by

seeking uh(·, t, ω) : [0, T ]× Ω→ V h
r such that P-almost surely

(
uδh(t), vh

)
I

=
(
uδh(0), vh

)
I
−
(
δ +

ε2

2

) ∫ t

0

(
∂xu

δ
h, ∂xvh

)
I
ds (4.12)

−
(
1− ε2

2

) ∫ t

0

(
arctan(∂xu

δ
h), ∂xvh

)
I
ds

+ ε

∫ t

0

(√
1 + |∂xuδh|2, vh

)
I
dWs ∀vh ∈ V h

r ∀t ∈ [0, T ],

where uδh(0) = P r
hu

δ
0, and P r

h denotes the L2-projection operator from L2(I) to V h
r

which is defined by (
P r
hw, vh

)
I

=
(
w, vh

)
I

∀vh ∈ V h
r .
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To derive an SDE for uδh from the above weak formulation, we introduce the

discrete (nonlinear) operator Aδh : V h
r → V h

r by

(
Aδhwh, vh

)
I

:=
(
δ +

ε2

2

)(
∂xwh, ∂xvh

)
I

(4.13)

+
(
1− ε2

2

)(
arctan(∂xwh), ∂xvh

)
I
∀wh, vh ∈ V h

r .

Then (4.12) can be equivalently written as

duδh(t) = −Aδhuh(t) dt+ εPh

(√
1 + |∂xuδh(t)|2

)
dWt. (4.14)

Proposition 4.3.1. For ε ≤
√

2(1 + δ), there is a unique solution uδh ∈ C
(
[0, T ];L2(Ω;V h

r )
)

to scheme (4.12). Moreover, there holds

sup
0≤t≤T

E
[1

2

∥∥uδh(t)∥∥2

L2(I)

]
+ δ E

[∫ T

0

∥∥∂xuδh(s)∥∥2

L2(I)
ds
]

(4.15)

≤ E
[1

2

∥∥uδh(0)
∥∥2

L2(I)

]
+ ε2T.

Proof. Well-posedness of (4.14) follows from the standard theory for stochastic ODEs

with Lipschitz drift and diffusion. To verify (4.15), applying Itô’s formula (cf. [62])

to f(uδh) = ‖uδh‖2
L2(I) and using (4.14) we get

‖uδh(t)‖2
L2(I) = ‖uδh(0)‖2

L2(I) − 2

∫ t

0

(
Aδhu

δ
h(s), u

δ
h(s)

)
I
ds (4.16)

+ ε2
∫ t

0

∥∥∥P r
h

√
1 + |∂xuδh(s)|2

∥∥∥2

L2(I)
ds

+ 2ε

∫ t

0

(
P r
h

√
1 + |∂xuδh(s)|2, u

δ
h

)
I
dWs.
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It follows from the definitions of Aδh and P r
h that

‖uδh(t)‖2
L2(I) ≤ ‖uδh(0)‖2

L2(I) − (2δ + ε2)

∫ t

0

∥∥∂xuδh(s)∥∥2

L2(I)
ds (4.17)

− (2− ε2)

∫ t

0

(
arctan(∂xu

δ
h(s)), ∂xu

δ
h(s)

)
I
ds

+ ε2
∫ t

0

[
1 +

∥∥∂xuδh(s)∥∥2

L2(I)

]
ds

+ 2ε

∫ t

0

(√
1 + |∂xuδh(s)|2, u

δ
h

)
I
dWs.

Then (4.15) follows from applying expectation to (4.17), and using the coercivity of

arctan. The proof is complete.

An a priori estimate for uδh in stronger norms is more difficult to obtain, which is

due to low global smoothness and local nature of finite element functions. We shall

derive some of these estimates in Proposition 4.3.4 using a perturbation argument

after establishing error estimates for uδh.

To derive error estimates for uδh, we introduce the elliptic H1-projection Rr
h :

H1(I)→ V h
r , i.e., for any w ∈ H1(I), Rr

hw ∈ V h
r is defined by

(
∂x[R

r
hw − w], ∂xvh

)
I

+
(
Rr
hw − w, vh

)
I

= 0 ∀vh ∈ V h
r . (4.18)

The following error bounds are well-known (cf. [13]),

∥∥w −Rr
hw
∥∥
L2(I)

+ h
∥∥w −Rr

hw
∥∥
H1(I)

≤ Ch2‖w‖H2(I) ∀w ∈ H2
p (I). (4.19)

Theorem 4.3.2. Let ε ≤
√

2(1 + δ). Then there holds

sup
t∈[0,T ]

E
[∥∥uδ(t)− uδh(t)∥∥2

L2(I)

]
+ δ E

[∫ T

0

∥∥∂x[uδ(s)− uδh(s)]∥∥2

L2(I)
ds
]

(4.20)

≤ Ch2
(
1 + δ−2

)
.
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Proof. Let

eδ(t) := uδ(t)− uδh(t), ηδ := uδ(t)−Rr
hu

δ(t), ξδ := Rr
hu

δ(t)− uδh(t).

Then eδ = ηδ+ξδ. Subtracting (4.12) from (4.8) we obtain the following error equation

which holds P-almost surely:

(
eδ(t), vh

)
I

+
(
δ +

ε2

2

) ∫ t

0

(
∂xe

δ(s), ∂xvh
)
I
ds (4.21)

= −
(
1− ε2

2

) ∫ t

0

(
arctan(∂xu

δ(s))− arctan(∂xu
δ
h(s)), ∂xvh

)
I
ds

+ ε

∫ t

0

(√
1 + |∂xuδ(s)|2 −

√
1 + |∂xuδh(s)|2, vh

)
I
dWs +

(
eδ(0), vh

)
I

for all vh ∈ V h
r . Substituting eδ = ηδ + ξδ and rearranging terms leads to

(
ξδ(t), vh

)
I

+
(
δ +

ε2

2

) ∫ t

0

(
∂xξ

δ(s), ∂xvh
)
I
ds (4.22)

+
(
1− ε2

2

) ∫ t

0

(
arctan

(
∂xu

δ(s)
)
− arctan

(
∂xu

δ
h(s)

)
, ∂xvh

)
I
ds

= ε

∫ t

0

(√
1 + |∂xuδ(s)|2 −

√
1 + |∂xuδh(s)|2, vh

)
I
dWs

−
(
δ +

ε2

2

) ∫ t

0

(
ηδ(s), vh

)
I
ds−

(
ηδ(t), vh

)
I

+
(
eδ(0), vh

)
I
.
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Applying Itô’s formula (cf. [62]) with f(ξδ) = ‖ξδ‖2
L2(I), and using (4.22) and

(4.13) we obtain

∥∥ξδ(t)∥∥2

L2(I)
+
(
2δ + ε2

) ∫ t

0

∥∥∂xξδ(s)∥∥2

L2(I)
ds (4.23)

+ (2− ε2)

∫ t

0

(
arctan

(
∂xR

r
hu

δ(s)
)
− arctan

(
∂xu

δ
h(s)

)
, ∂xξ

δ(s)
)
I
ds

= −
(
2− ε2

) ∫ t

0

(
arctan

(
∂xu

δ(s)
)
− arctan

(
∂xR

r
hu

δ(s)
)
, ∂xξ

δ(s)
)
I
ds

+ ε2
∫ t

0

∥∥∥√1 + |∂xuδ(s)|2 −
√

1 + |∂xuδh(s)|2
∥∥∥2

L2(I)
ds

+ 2ε

∫ t

0

(√
1 + |∂xuδ(s)|2 −

√
1 + |∂xuδh(s)|2, ξ

δ(s)
)
I
dWs

−
(
2δ + ε2

) ∫ t

0

(
∂xη

δ(s), ∂xξh(s)
)
I
ds− 2

(
ηδ(t), ξδ(t)

)
I

+ 2
(
ηδ(0), ξδ(t)

)
I

+
(
ξδ(0), ξδ(0)

)
I
.

By the monotonicity of arctan, (4.19), (4.9), and the inequality
(√

1 + x2 −√
1 + y2

)2 ≤ |x− y|2 we have

E
[∫ t

0

(
arctan(∂xR

r
hu

δ(s))− arctan(∂xu
δ
h(s)), ∂xξ

δ(s)
)
I
ds
]
≥ 0,

(2− ε2)E
[∫ t

0

(
arctan

(
∂xu

δ(s)
)
− arctan

(
∂xR

r
hu

δ(s)
)
, ∂xξ

δ(s)
)
I
ds
]

≤ E
[∫ t

0

(δ
4
‖∂xξδ(s)‖2

L2(I) + 4δ−1
∥∥∂xuδ(s)− ∂xRr

hu
δ(s)

∥∥2

L2(I)

)
ds
]

≤ δ

4
E
[∫ t

0

‖∂xξδ(s)‖2
L2(I) ds

]
+ Ch2δ−2,
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E
[
ε2
∫ t

0

∥∥∥√1 + |∂xuδ(s)|2 −
√

1 + |∂xuδh(s)|2
∥∥∥2

L2(I)
ds
]

≤ E
[(
ε2 +

δ

4

) ∫ t

0

‖∂xξδ(s)‖2
L2(I) ds

]
+ Cδ−1E

[∫ t

0

‖∂xηδ‖2
L2(I) ds

]
≤
(
ε2 +

δ

4

)
E
[∫ t

0

‖∂xξδ(s)‖2
L2(I) ds

]
+ Ch2δ−2,

E
[(
ηδ(t), ξδ(t)

)
I

]
≤ E

[1

4
‖ξδ(t)‖2

L2(I) + ‖ηδ(t)‖2
L2(I)

]
≤ 1

4
E
[
‖ξδ(t)‖2

L2(I)

]
+ Ch2,

E
[(
eδ(0), ξδ(t)

)
I

]
≤ 1

4
E
[
‖ξδ(t)‖2

L2(I)

]
+ E

[
‖eδ(0)‖2

L2(I)

]
≤ 1

4
‖ξδ(t)‖2

L2(I) + Ch2.

Taking the expectation in (4.23) and using the above estimates then yields

sup
t∈[0,T ]

E
[∥∥ξδ(t)∥∥2

L2(I)

]
+ 3δ E

[∫ T

0

∥∥∂xξδ(s)∥∥2

L2(I)
ds
]
≤ Ch2

(
1 + δ−2

)
. (4.24)

Finally, (4.20) follows from the triangle inequality, (4.19), and (4.24). The proof is

complete.

Remark 4.3.3. (a) Estimate (4.20) is optimal in the H1-norm, but suboptimal in

the L2-norm. The suboptimal rate for the L2-error is caused by the stochastic effect,

i.e., the second term on the right-hand side of (4.23), and it is also caused by the lack

of the space-time regularity in L∞((0, T );H2(I)) for uδ.

(b) The proof still holds if the elliptic projection Rr
h is replaced by the L2-projection

P r
h .

We now use estimate (4.24) to derive some stronger norm estimates for uδh. To

this end, we define the discrete Laplacian ∂2
h : V h

r → V h
r by

(∂2
hwh, vh)I = −(∂xwh, ∂xvh)I ∀wh, vh ∈ V h

r . (4.25)
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Proposition 4.3.4. For ε ≤
√

2(1 + δ) there hold the following estimates for the

solution uδh of scheme (4.12):

sup
0≤t≤T

E
[
‖∂xuδh(t)‖2

L2(I)

]
+ δ E

[∫ T

0

‖∂2
hu

δ
h(s)‖2

L2(I) ds
]
≤ C

(
1 + δ−2

)
, (4.26)

E
[
‖uδh(t)− uδh(s)‖2

L2(I) +
δ

2

∫ t

s

‖∂x[uδh(ζ)− uδh(s)]‖2
L2(I) dζ

]
(4.27)

≤ C
(
1 + δ−3

)
|t− s| ∀ 0 ≤ s ≤ t ≤ T.

Proof. Notice that uδh = ξδ +Rr
hu

δ with ξδ = uδh−Rr
hu

δ ∈ V h
r . By the H1-stability of

Rr
h, the following inverse inequality for piecewise polynomial function ξδ (cf. [13]),

‖∂xξδ(t)‖L2(I) ≤ Ch−1‖ξδ(t)‖L2(I),

(4.9), and (4.24) we get

sup
t∈[0,T ]

E
[
‖∂xuδh(t)‖2

L2(I)

]
≤ 2 sup

t∈[0,T ]

E
[
‖∂xRr

hu
δ(t)‖2

L2(I)

]
+ 2 sup

t∈[0,T ]

E
[
‖∂xξδ(t)‖2

L2(I)

]
≤ C sup

t∈[0,T ]

E
[
‖∂xuδ(t)‖2

L2(I)

]
+
C

h2
sup
t∈[0,T ]

E
[
‖ξδ(t)‖2

L2(I)

]
≤ C(1 + δ−2).

It follows from (4.25) and (4.18) that

‖∂2
hR

r
hw‖2

L2(I) = −
(
∂x∂

2
hR

r
hw, ∂xR

r
hw
)
I

=
(
∂2
hR

r
hw, ∂

2
xw
)
I

+
(
w −Rr

hw, ∂
2
hR

r
hw
)
I

∀w ∈ H2(I),

and hence

‖∂2
hR

r
hw‖L2(I) ≤ ‖∂2

xw‖L2(I) + ‖w −Rr
hw‖L2(I) ≤ (1 + Ch2)‖w‖H2(I). (4.28)
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By an inverse estimate, (4.28), and (4.24) we have

E
[∫ T

0

‖∂2
hu

δ
h(s)‖2

L2(I) ds
]
≤ 2E

[∫ T

0

(
‖∂2

hξ
δ(s)‖2

L2(I) + ‖∂2
hR

r
hu

δ(s)‖2
L2(I)

)
ds
]

≤ 2E
[∫ T

0

(
Ch−2‖∂xξδ(s)‖2

L2(I) + C‖∂2
xu

δ(s)‖2
L2(I)

)
ds
]

≤ Cδ−1(1 + δ−2) + CE
[∫ T

0

‖∂2
xu

δ(s)‖2
L2(I) ds

]
,

which and (4.9) give the desired bound in (4.26).

To show (4.27), we fix s ≥ 0 and apply Ito’s formula (cf. [62]) to f(uδh) = ‖uδh(t)−

uδh(s)‖2
L2(I) to get that

‖uδh(t)− uδh(s)‖2
L2(I) (4.29)

= −(ε2 + 2δ)

∫ t

s

(
∂x[u

δ
h(ζ)± uδh(s)], ∂x[uδh(ζ)− uδh(s)]

)
I
dζ

− (2− ε2)

∫ t

s

(
arctan

(
∂xu

δ
h(ζ)

)
± arctan

(
∂xu

δ
h(s)

)
, ∂x[u

δ
h(ζ)− uδh(s)]

)
I
dζ

+ ε2
∫ t

s

∥∥P r
h

√
1 + |∂x

[
uδh(ζ)± uδh(s)

]
|2
∥∥2

L2(I)
dζ +Mt,

where

Mt := ε

∫ t

s

(√
1 + |∂xuδh(ζ)|2, uδh(ζ)− uδh(s)

)
I
dWζ ,

which is an {Ft; t ∈ [s, T ]}-martingale.

By the L2-stability of P r
h , the triangle and Young’s inequality, and the properties

of the square root function, we can bound the third term on the right-hand side as
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follows:

ε2
∫ t

s

∥∥P r
h

√
1 + |∂x

[
uδh(ζ)± uδh(s)

]
|2
∥∥2

L2(I)
dζ

≤ ε2
∫ t

s

(∥∥∂x[uδh(ζ)− uδh(s)]
∥∥
L2(I)

+
∥∥1 + |∂xuδh(s)|

∥∥
L2(I)

)2

dζ

≤ ε2(1 + δ)

∫ t

s

‖∂x[uδh(ζ)− uδh(s)]
∥∥2

L2(I)
dζ

+ ε2(4 + δ−1)
(

1 + ‖∂xuδh(s)‖2
L2(I)

)
|t− s|.

Also

(ε2 + 2δ)

∫ t

s

(
∂xu

δ
h(s), ∂x[u

δ
h(ζ)− u∂h(s)]

)
I
dζ

≤ δ

4

∫ t

s

‖∂x[uδh(ζ)− uδh(s)]‖2
L2(I) dζ + (ε2 + 2δ)2δ−1 |t− s|‖∂xuδh(s)‖2

L2(I),

(2− ε2)

∫ t

s

(
arctan

(
∂xu

δ
h(s)

)
, ∂x[u

δ
h(ζ)− u∂h(s)]

)
I
dζ

≤ δ

4

∫ t

s

‖∂x[uδh(ζ)− uδh(s)]‖2
L2(I) dζ + 4(2− ε2)2δ−1 |t− s|.

Substituting the above estimates into (4.29) yields

‖uδh(t)− uδh(s)‖2
L2(I) +

δ

2

∫ t

s

‖∂x[uδh(ζ)− uδh(s)]‖2 dζ

≤ Cδ−1
(

(2− ε2)2 + ε4 + δ2
)(

1 + ‖∂xuδh(s)‖2
L2(I)

)
|t− s|+Mt.

Finally, (4.27) follows from applying the expectation to the above inequality and using

(4.26) as well as the fact that E[Mt] = 0.

4.3.2 Full discretization in space and in time

Let tn = nτ for n = 0, 1, · · · , N be a uniform partition of [0, T ] with τ = T/N .

Our fully discrete finite element method for SPDE (4.7) is defined by seeking an

{Ftn ;n = 0, 1, · · · , N}-adapted V h
r -valued process {unh; n = 0, 1, · · · , N} such that
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P-almost surely

(
uδ,n+1
h , vh

)
I

+ τ
(
δ +

ε2

2

)(
∂xu

δ,n+1
h , ∂xvh

)
I

(4.30)

+ τ
(
1− ε2

2

)(
arctan(∂xu

δ,n+1
h ), ∂xvh

)
I

=
(
uδ,nh , vh

)
I

+ ε
(√

1 + |∂xuδ,nh |2, vh
)
I

∆Wn+1 ∀vh ∈ V h
r ,

where ∆Wn+1 := W (tn+1)−W (tn) ∼ N (0, τ).

We first establish the following stability estimate for uδ,nh .

Proposition 4.3.5. Let ε ≤
√

2(1 + δ). For each n = 0, 1, · · · , N , there is a V h
r -

valued discrete process {uδ,n+1
h ; 0 ≤ n ≤ N−1} which solves scheme (4.30). Moreover,

there holds

max
0≤n≤N

E
[∥∥uδ,nh ∥∥2

L2(I)

]
+ 2δ

N∑
n=0

τE
[∥∥∂xuδ,nh ∥∥2

L2(I)

]
≤ E

[∥∥uδ,0h ∥∥2

L2(I)

]
+ ε2T. (4.31)

Proof. The existence of solutions to scheme (4.30) for τ, h > 0 can be proved by

Brouwer’s fixed-point theorem, which uses the coercivity of the operator I+ τAδh (see

(4.13)).

To show (4.31), we choose vh = uδ,n+1
h (ω) in (4.30) to find P-almost surely

1

2

[∥∥uδ,n+1
h

∥∥2

L2(I)
−
∥∥uδ,nh ∥∥2

L2(I)

]
+

1

2

∥∥uδ,n+1
h − uδ,nh

∥∥2

L2(I)
(4.32)

+ τ
(
δ +

ε2

2

)∥∥∂xuδ,n+1
h

∥∥2

L2(I)
+ τ
(
1− ε2

2

)(
arctan(∂xu

δ,n+1
h ), ∂xu

δ,n+1
h

)
I

= ε
(√

1 + |∂xuδ,nh |2, u
δ,n
h + uδ,n+1

h − uδ,nh
)
I

∆Wn+1.
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We compute

(
arctan(∂xu

δ,n+1
h ), ∂xu

δ,n+1
h

)
I
≥ 0,

ε
(√

1 + |∂xuδ,nh |2, u
δ,n+1
h − uδ,nh

)
I

∆Wn+1

≤ 1

2

∥∥uδ,n+1
h − uδ,nh

∥∥2

L2(I)
+
ε2

2

∥∥∥√1 + |∂xuδ,nh |2
∥∥∥2

L2(I)
|∆Wn+1|2.

The last estimate controls one part of the stochastic term in (4.32), while the

expectation of the remaining part vanishes. By the tower property for expectations,

there holds

ε2

2
E
[∥∥∥√1 + |∂xuδ,nh |2

∥∥∥2

L2(I)
E
[
|∆Wn+1|2|Ftn

]]
=
ε2

2
τ E
[
1 + ‖∂xuδ,n‖2

L2(I)

]
,

such that we get

1

2
E
[∥∥uδ,n+1

h

∥∥2

L2(I)
−
∥∥uδ,nh ∥∥2

L2(I)

]
+ τδ E

[∥∥∂xuδ,n+1
h

∥∥2

L2(I)

]
(4.33)

+
ε2

2
τ E
[∥∥∂xuδ,n+1

h

∥∥2

L2(I)
−
∥∥∂xuδ,nh ∥∥2

L2(I)

]
≤ ε2τ.

After summation, we arrive at

max
0≤n≤N

E
[∥∥uδ,nh ∥∥2

L2(I)

]
+ 2δτ

N∑
n=0

E
[∥∥∂xuδ,nh ∥∥2

L2(I)

]
≤ E

[∥∥uδ,0h ∥∥2

L2(I)

]
+ ε2T.

So (4.31) holds. The proof is complete.

Next, we derive an error bound for uδh(tn)− uδ,nh .

Theorem 4.3.6. Let r = 1. There holds the following error estimate:

sup
0≤n≤N

E
[∥∥uδh(tn)− uδ,nh

∥∥2

L2(I)

]
+ δ E

[ N∑
n=0

τ
∥∥∂xuδh(tn)− ∂xuδ,nh

∥∥2

L2(I)

]
(4.34)

≤ CT
(
1 + δ−2

)
h−2τ.
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Proof. Let eδ,n := uδh(tn) − uδ,nh . It follows from (4.12) that for all {tn;n ≥ 0} there

holds P-almost surely

(
uδh(tn+1), vh

)
I
−
(
uδh(tn), vh

)
I

(4.35)

= −
(
δ +

ε2

2

) ∫ tn+1

tn

(
∂xu

δ
h(s), ∂xvh

)
I
ds

−
(
1− ε2

2

) ∫ tn+1

tn

(
arctan(∂xu

δ
h(s)), ∂xvh

)
I
ds

+ ε

∫ tn+1

tn

(√
1 + |∂xuδh(s)|2, vh

)
I
dWs ∀vh ∈ V h

r .

Subtracting (4.30) from (4.35) yields the following error equation:

(
eδ,n+1, vh

)
I
−
(
eδ,n, vh

)
I

(4.36)

= −
(
δ +

ε2

2

) ∫ tn+1

tn

(
∂xu

δ
h(s)− ∂xu

δ,n+1
h , ∂xvh

)
I
ds

−
(
1− ε2

2

) ∫ tn+1

tn

(
arctan

(
∂xu

δ
h(s)

)
− arctan(∂xu

δ,n+1
h ), ∂xvh

)
I
ds

+ ε

∫ tn+1

tn

(√
1 + |∂xuδh(s)|2 −

√
1 + |∂xuδ,nh |2, vh

)
I
dWs.

Choosing vh = eδ,n+1(ω) in (4.36) leads to P-almost surely

1

2

[
‖eδ,n+1‖2

L2(I) − ‖eδ,n‖2
L2(I)

]
+

1

2

∥∥eδ,n+1 − eδ,n
∥∥2

L2(I)
(4.37)

+
(ε2

2
+ δ
)
τ ‖∂xeδ,n+1‖2

L2(I)

= −
(ε2

2
+ δ
) ∫ tn+1

tn

(
∂xu

δ
h(s)− ∂xuδh(tn+1), ∂xe

δ,n+1
)
I
ds

−
(
1− ε2

2

) ∫ tn+1

tn

(
arctan

(
∂xu

δ
h(s)

)
− arctan

(
∂xu

δ
h(tn+1)

)
+ arctan

(
∂xu

δ
h(tn+1)

)
− arctan(∂xu

δ,n+1
h ), ∂xe

δ,n+1
)
I
ds

+ ε

∫ tn+1

tn

(√
1 + |∂xuδh(s)|2 −

√
1 + |∂xuδ,nh |2, e

δ,n+1
)
I
dWs.
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We now bound each term on the right-hand side. First, since E[∆Wn+1] = 0,

by Ito’s isometry, the inequality
(√

1 + x2 −
√

1 + y2
)2 ≤ (x − y)2, and the inverse

inequality we get

E
[
ε

∫ tn+1

tn

(√
1 + |∂xuδh(s)|2 −

√
1 + |∂xuδ,nh |2, e

δ,n+1 ± eδ,n
)
I
dWs

]
≤ E

[1

2
‖eδ,n+1 − eδ,n‖2

L2(I)

]
+
ε2

2

∫ tn+1

tn

‖∂x[uδh(s)− u
δ,n
h ± u

δ
h(tn)]‖2

L2(I) ds
]

≤ 1

2
E
[
‖eδ,n+1 − eδ,n‖2

L2(I)

]
+ E

[(ε2
2

+
δ

2

)
τ ‖∂xeδ,n‖2

L2(I)

+
(ε2

2
+

2

δ

) ∫ tn+1

tn

‖∂x[uδh(s)− uδh(tn)]‖2
L2(I) ds

]
≤ 1

2
E
[
‖eδ,n+1 − eδ,n‖2

L2(I)

]
+
(ε2

2
+
δ

2

)
τ E
[
‖∂xeδ,n‖2

L2(I)

]
+ C

(
1 + δ−1

)
h−2 E

[∫ tn+1

tn

‖uδh(s)− uδh(tn)‖2
L2(I) ds

]
. (4.38)

An elementary calculation and an application of an inverse inequality yield

(ε2
2

+ δ
) ∫ tn+1

tn

(
∂xu

δ
h(s)− ∂xuδh(tn+1), ∂xe

δ,n+1
)
I
ds

≤ δ

8
τ ‖∂xeδ,n+1‖2

L2(I) +
2( ε

2

2
+ δ)2

δ

∫ tn+1

tn

‖∂x[uδh(s)− uδh(tn+1)]‖2
L2(I) ds

≤ δ

8
τ ‖∂xeδ,n+1‖2

L2(I) + (ε2 + 2δ)2δ−1h−2

∫ tn+1

tn

‖uδh(s)− uδh(tn)‖2
L2(I) ds. (4.39)
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By the monotonicity of arctan we get

−
(
1− ε2

2

) ∫ tn+1

tn

(
arctan

(
∂xu

δ
h(s)

)
− arctan

(
∂xu

δ
h(tn+1)

)
+ arctan

(
∂xu

δ
h(tn+1)

)
− arctan(∂xu

δ,n+1
h ), ∂xe

δ,n+1
)
I
ds

≤ −
(
1− ε2

2

) ∫ tn+1

tn

(
arctan

(
∂xu

δ
h(s)

)
− arctan

(
∂xu

δ
h(tn+1)

)
, ∂xe

δ,n+1
)
ds

≤ δ

8
τ ‖∂xeδ,n+1‖2

L2(I) +
2

δ
(1− ε2

2
)2

∫ tn+1

tn

‖∂x[uδh(s)− uδh(tn+1)]‖2
L2(I) ds

≤ δ

8
τ ‖∂xeδ,n+1‖2

L2(I) + (2− ε2)2δ−1h−2

∫ tn+1

tn

‖uδh(s)− uδh(tn)‖2
L2(I) ds. (4.40)

Finally, substituting the above estimates into (4.37), summing over n =

0, 1, 2, · · · , N − 1, and using (4.27) and the fact that eδ,0 = 0 we get

sup
0≤n≤N

E
[
‖eδ,n‖2

L2(I)

]
+
δ

2
E
[
τ

N∑
n=0

‖∂xeδ,n+1‖2
L2(I)

]
≤ C

(
1 + δ−1

)
h−2

N∑
n=0

∫ tn+1

tn

E
[

sup
s∈[tn,tn+1]

‖uδh(s)− uδh(tn)‖2
L2(I)

]
ds

≤ CT (1 + δ−1)2h−2τ,

which infers (4.34). The proof is complete.

Remark 4.3.7. Due to the lack of a Hölder continuity (in time) estimate for ∂xu
δ
h in

L2-norm, we have used the inverse inequality to get inequalities (4.38)–(4.40), which

leads to a restrictive coupling of the spatial and time mesh parameters h and τ in the

error bound.

We conclude this section by stating the following error estimates for the fully

discrete finite element solution uδ,nh as an approximation to the solution of the original

mean curvature flow equation (4.4).

Theorem 4.3.8. Let u and uδ,nh denote respectively the solutions of SPDE (4.4) and

scheme (4.30). Under assumptions of Theorems 4.2.1, 4.3.2, and 4.3.6, there holds
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the following error estimate:

sup
0≤n≤N

E
[∥∥u(tn)− uδ,nh

∥∥2

L2(I)

]
+ δ E

[ N∑
n=0

τ
∥∥∂xu(tn)− ∂xuδ,nh

∥∥2

L2(I)

]
(4.41)

≤ CTδ + C
(
1 + δ−2

)
h2 + CT

(
1 + δ−2

)
h−2τ.

Inequality (4.41) follows immediately from Theorems 4.2.3, 4.3.2 and 4.3.6, and

an application of the triangle inequality.

Remark 4.3.9. Again, we note that the main reason to have a restrictive coupling

between numerical parameters in (4.41) is due to the lack of Hölder continuity (in

time) estimate for ∂xu
δ
h in L2-norm. On the other hand, it can be shown that, under

a stronger regularity assumption, the estimate (4.41) can be improved to

sup
0≤n≤N

E
[∥∥u(tn)− uδ,nh

∥∥2

L2(I)

]
(4.42)

+ δ E
[ N∑
n=0

τ
∥∥∂xu(tn)− ∂xuδ,nh

∥∥2

L2(I)

]
≤ C

(
h2 + τ + δ

)
.

This is because we no longer need to use the inverse inequality to get (4.38)–(4.40),

and (4.42) can be obtained by starting with a control of the time discretization first.

4.4 Numerical experiments

In this section we shall first present some numerical experiments to gauge the

performance of the proposed fully discrete finite element method and to examine the

effect of the noise for long-time dynamics of the stochastic MCF of planar graphs, and

we then present a numerical study of the stochastic MCF driven by both colored and

space-time white noises where no theoretical result is known so far in the literature.

We like to note that all our numerical experiments are done in Matlab. At each time

step, a nonlinear algebraic system must be solved, which is done by using Matlab’s
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built-in Newton solver in all our numerical tests. In addition, all space norms are

computed approximately using sufficiently high order numerical quadrature formulas.

4.4.1 Verifying the rate of convergence of time discretization

To verify the rate of convergence of the time discretization obtained in Theorem

4.3.8, in this first test we use the following parameters ε = 1, δ = 10−5, and

T = 0.1. In order to computationally generate a driving reference R-valued Wiener

process, we use the smaller time step τ = 10−5. The initial condition is set to be

u0(x) = sin(πx). To calculate the rate, we compute the solution uδ,nh for varying

τ = 0.0005, 0.001, 0.002, 0.004. We take 500 stochastic samples at each time step

tn in order to compute the expected values of the L∞(L2)-norm of the error. The

computed errors along with the computed convergence rates are exhibited in Table

4.1 and Fig. 4.1. The numerical results confirm the theoretical result of Theorem

4.3.6. In Fig. 4.2, we plot the errors of the computed solution with regularization (i.e.,

δ > 0) and without regularization (i.e., δ = 0). The comparison shows that without

the regularization term our numerical methods still compute correct solutions for

some problems although our convergence theory requires that δ > 0.

Table 4.1: Computed time discretization errors and convergence rates.

Expected values of error order of convergence
dt=0.004 0.41965657 −
dt=0.002 0.27206448 0.62526
dt=0.001 0.18136210 0.58508
dt=0.0005 0.12373884 0.55157

4.4.2 Dynamics of the stochastic mean curvature flow

We shall perform several numerical tests to demonstrate the dynamics of the

stochastic MCF with different magnitudes of noise (i.e., different sizes of the

parameter ε).
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Figure 4.1: Plot of the errors in Table 4.1.

Figure 4.3 shows the surface plots of the computed solution uδ,nh at one stochastic

sample over the space-time domains (0, 1)× (0, 0.1) (left) and (0, 1)× (0, 28 × 10−5)

(right) with the initial value u0(x) = sin(πx) and the noise intensity parameter ε =

0.1. The test shows that the solution converges to a steady state solution at the end.

Figures 4.4–4.6 are the counterparts of Figure 4.3 with noise intensity parameter

ε = 1,
√

2, 5, respectively. We note that the error estimate of Theorem 4.3.8 does not

apply to the latter case because the condition ε ≤
√

2(1 + δ) is violated. However,

the computation result suggests that the stochastic MCF also converges to the steady

state solution at the end although the paths to reach the steady state are different

for different noise intensity parameter ε.

We then repeat the above four tests after replacing the smooth initial function u0

by the following non-smooth initial function:

u0(x) =



10x, if x ≤ 0.25,

5− 10x, if 0.25 < x ≤ 0.5,

10x− 5, if 0.5 < x ≤ 0.75,

10− 10x, if 0.75 < x ≤ 1.

(4.43)
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Figure 4.2: Comparison of the computed solution with (blue line) and without (red
line) the regularization term (Color figure online).

Figure 4.3: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0, 1)× (0, 0.1) (left) and (0, 1)× (0, 28 × 10−5) (right). u0(x) =
sin(πx) and ε = 0.1.

The surface plots of the computed solutions are shown in Figures 4.7–4.10, respec-

tively. Again, the numerical results suggest that the solution of the stochastic MCF

converges to the steady state solution at the end although the paths to reach the

steady state are different for different noise intensity parameter ε. As expected, the

geometric evolution dominates for small ε, but the noise dominates the geometric

evolution for large ε.

133



Figure 4.4: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0, 1)× (0, 0.1) (left) and (0, 1)× (0, 28 × 10−5) (right). u0(x) =
sin(πx) and ε = 1.

Figure 4.5: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0, 1)× (0, 0.1) (left) and (0, 1)× (0, 28 × 10−5) (right). u0(x) =
sin(πx) and ε =

√
2.

4.4.3 Verifying energy dissipation

It follows from (4.9) that the “energy” J(t) := 1
2
E
[
‖∂xuδ(t)‖2

L2(I)

]
decreases

monotonically in time. In the following we verify this fact numerically. Again, we

consider the case with the initial function u0(x) = sin(πx) and the noise intensity

parameter ε = 1. It is not hard to prove that J(t) converges to zero as t → ∞.

Figure 4.11 plots the computed J(t) as a function of t. The numerical result suggests

that J(t) does not change anymore for t ≥ 0.1.
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Figure 4.6: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0, 1)× (0, 0.1) (left) and (0, 1)× (0, 28 × 10−5) (right). u0(x) =
sin(πx) and ε = 5.

Figure 4.7: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0, 1)× (0, 0.1) (left) and (0, 1)× (0, 28×10−5) (right). u0 is given
in (4.43) and ε = 0.1.

4.4.4 Thresholding for colored noise

In this subsection we present a computational study of the interplay of noise and

geometric evolution in (4.4), which is beyond our theoretical results in section 4.3.1

and 4.3.2. For this purpose, we use driving colored noise represented by the Q-Wiener

process (J ∈ N)

Wt =
J∑
j=1

q
1
2
j βj(t)ej , (4.44)

where {βj(t); t ≥ 0}j≥1 denotes a family of real-valued independent Wiener processes

on
(
Ω,F ,F,P

)
, and {(qj, ej)}Jj=1 is an eigen-system of the symmetric, non-negative

trace-class operator Q : L2(I)→ L2(I), with ej =
√

2 sin(jπx). In particular, we like

to numerically address the following questions:
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Figure 4.8: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0, 1)× (0, 0.1) (left) and (0, 1)× (0, 28×10−5) (right). u0 is given
in (4.43) and ε = 1.

Figure 4.9: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0, 1)× (0, 0.1) (left) and (0, 1)× (0, 28×10−5) (right). u0 is given
in (4.43) and ε =

√
2.

(A) Thresholding: By Theorem 4.2.1, strong solutions of (4.4) exist for ε ≤
√

2, and

a similar result can be shown for the PDE problem with the noise (4.44). What

are admissible intensities of the noise suggested by computations? Moreover,

what do the computations suggest about the stochastic MCF in the case of

spatially white noise (i.e., qj ≡ 1, J =∞) where no theoretical result is available

so far?

(B) General initial profiles: The deterministic evolution of Lipschitz initial graphs is

well-understood. For example, the (upper) graph of two touching spheres may

trigger non-uniqueness. What are the regularization and the noise excitation

effects in the case of the initial data with infinite energy and using different

noises?
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Figure 4.10: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0, 1)× (0, 0.1) (left) and (0, 1)× (0, 28×10−5) (right). u0 is given
in (4.43) and ε = 5.

Figure 4.11: Decay of the energy J(t) on the interval (0, 0.1).

Recall that the estimate in Proposition 4.3.5 for V h
r -valued solution uδ,nh suggests

that ε > 0 ought be sufficiently small to ensure the existence. In our test, we employ

the colored noise (4.44) with q
1
2
j = j−0.6, J = 20, and the following non-Lipschitz

initial data:

u0(x) = |0.5− x|κ ∀x ∈ (0, 1) , (4.45)

where κ = 0.1. In addition, we set (τ, h) = (0.01, 0.02) and T = 1
2
. Figure 4.12

shows the single trajectory of the stochastic MCF plotted as graphs over the space-

time domain with, respectively, ε = 0.1, 0.5,
√

2. The results indicate thresholding,

namely, the trajectories grow rapidly in time for sufficiently large values ε, and the

noise effect dominates the geometric evolution. The excitation effect of the noise on

the geometric evolution is illustrated by corresponding plots for the evolution of the
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Figure 4.12: Thresholding for colored noise: Trajectories for ε = 0.1 (top left),
ε = 0.5 (top right), ε =

√
2 (bottom).

functional n 7→ ‖∂xuδ,nh (ω)‖2
L2 vs its expectation n 7→ E

[
‖∂xuδ,nh ‖2

L2

]
in Figure 4.13

and 4.14. We observe that the geometric evolution dominates for small values of ε,

while the noise evolution takes over for large values of ε.

4.4.5 Thresholding for white noise

We now consider the case of white noise in (4.30), that is, qj ≡ 1 in (4.44) and J =∞,

for which the solvability of (4.2) is not known. Figure 4.15 shows the single trajectory

of the stochastic MCF (with the same data as in section 4.4.4) plotted as graphs over

the space-time domain with, respectively, ε = 0.1, 0.5,
√

2. We observe a very rapid

growth of trajectories (numerical values range between 1014 and 1021) even for small

values of ε > 0. These numerical results suggest either a rapid growth or a finite time

explosion for the stochastic MCF in the case of white noise.
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Figure 4.13: Geometric evolution vs colored noise evolution (q
1
2
j = j−0.6, J = 20):

1st row: single trajectory for n 7→ ‖∂xuδ,nh (ω)‖2
L2 and ε = 0.1 (left), ε = 0.5 (right);

2nd row: n 7→ E
[
‖∂xuδ,nh ‖2

L2

]
for ε = 0.1 (left), ε = 0.5 (right).
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Figure 4.14: Geometric evolution vs colored noise evolution (q
1
2
j = j−1, J = 50):

1st row: single trajectory for n 7→ ‖∂xuδ,nh (ω)‖2
L2 and ε = 0.1 (left), ε = 0.5 (right);

2nd row: n 7→ E
[
‖∂xuδ,nh ‖2

L2

]
for ε = 0.1 (left), ε = 0.5 (right).
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Figure 4.15: Thresholding and white noise: ε = 0.1 (top left), ε = 0.5 (top right)
ε =
√

2 (bottom).
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Chapter 5

Finite Element Methods for the

Stochastic Allen-Cahn Equation

with Gradient Multiplicative

Noises

5.1 Introduction

In this chapter, we consider a stochastic version of mean curvature flow which

incorporates the influence of noises for (1.4). The uncertainty may arise from

thermal fluctuation, impurities of the materials, and the intrinsic instabilities of the

deterministic evolutions. A simple model is given by [59, 83]:

Vn(x, t) = −H(x, t) + δ
◦
X (x, t) · n x ∈ Γt, (5.1)

where
◦
X: Rd × [0, T ] −→ Rd indicates the Stratonovich derivative of X and δ > 0

is the noise intensity that controls the strength of the noise. Formally, the phase

field formulation of (5.1) is given by the following Stratonovich stochastic partial
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differential equation (SPDE):

du

dt
= ∆u− 1

ε2
f(u) + δ∇u·

◦
X . (5.2)

More specifically, we assume X is a vector-field Brownian motion that is white in time

and smooth in space, i.e.,

X(x, t) = X(x)W (t), (5.3)

where X : Rd −→ Rd is a time independent deterministic smooth vector field with

compact support in D and W (t) is a standard R-valued Brownian motion (Wiener

process) on a given filtered probability space (Ω,F , {Ft : t ≥ 0},P). Thus the

Stratonovich SPDE (5.2) becomes

du =

[
∆u− 1

ε2
f(u)

]
dt+ δ∇u ·X ◦ dW (t), (5.4)

and the corresponding Itô SPDE is given by

du =

[
∆u− 1

ε2
f(u) +

δ2

2
∇(∇u ·X) ·X

]
dt+ δ∇u ·X dW (t) (5.5)

=

[
∆u− 1

ε2
f(u) +

δ2

2
(B : D2u+ b · ∇u)

]
dt+ δ∇u ·X dW (t)

=

[
∆u− 1

ε2
f(u) +

δ2

2

(
div(B∇u) + (b− divB) · ∇u

)]
dt

+ δ∇u ·X dW (t),

where B = X ⊗X ∈ Rd×d with Bij = XiXj, b = (∇X)X ∈ Rd with bj = (∂iXj)Xi

and divB−b = (divX)X. For convenience, here we suppress the summation notation

for repeated indices. Note that the Itô SPDE (5.5) has two correction terms which is

hidden in the Stratonovich SPDE (5.4).
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Remark 5.1.1. In general, we can also consider the following vector field [83]

X(x, t) =
K∑
k=1

Xk(x)Wk(t),

where K < ∞ and Wk(t) are independent R-valued standard Brownian motions. In

this case, the corresponding B and b in the SPDE (5.5) are given by

B =
K∑
k=1

Xk ⊗Xk and b =
K∑
k=1

(∇Xk)Xk.

It is relatively straightforward to generalize the results in this chapter for this X.

We consider the SPDE (5.5) with certain boundary and initial conditions (1.26)–

(1.27) under the following assumptions:

u0 ∈ C∞(D̄), (5.6)

X ∈ C4,β0

0 (D), (5.7)

for some β0 ∈ (0, 1]. According to the existence and regularity results in [83, Theorem

4.1], if the domain D is smooth and the assumptions (5.6)–(5.7) hold, there exists a

unique strong solution u(·, t) such that

u(x, t) = u0(x) +

∫ t

0

[
∆u(x, s)− 1

ε2
f(u(x, s)) +

δ2

2

(
B : D2u(x, s) (5.8)

+ b · ∇u(x, s)
)]
ds+

∫ t

0

δ∇u(x, s) ·X(x) dW (s),

∂u

∂n
= 0 on ∂DT , (5.9)

hold P-almost surely, and u(·, t) is a continuous C3,β(D̄)-semimartingale for any 0 <

β < β0. Furthermore, for any multi-index |σ| ≤ 3 and p ≥ 1, there exists a positive

constant C0 = C(p, δ, ε) such that the following bound for the p-th moment of the
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spatial derivatives holds

sup
t∈[0,T ]

E
[
sup
x∈D
|∂σu(x, t)|p

]
< C0. (5.10)

Note that there are also other solution concepts for the SPDE (5.5) such as

mild solution (semigroup approach) [78] and variational solution [63] (variational

approach). For the analysis, we assume the strong solution of the SPDE (5.5) exists

and satisfies (5.8)–(5.10). Then it is straightforward to see that the solution u(·, t)

is an adapted H1(D)-valued process such that for any t ∈ (0, T ], the following holds

P-almost surely:

(u(t), φ) = (u0, φ)−
∫ t

0

((
I +

δ2

2
B
)
∇u(s),∇φ

)
ds (5.11)

− 1

ε2

∫ t

0

(f(u(s)), φ) ds− δ2

2

∫ t

0

(
(divB − b) · ∇u(s), φ

)
ds

+ δ

∫ t

0

(∇u(s) ·X,φ) dW (s) ∀φ ∈ H1(D),

where (·, ·) is the inner product on L2(D).

The primary goal of this chapter is to develop and analyze some fully discrete

finite element methods for approximating the solution of the SPDE (5.5) with initial

and boundary conditions (1.26)–(1.27). In order to derive the strong convergence

with rates for finite element methods, we will assume u(·, t) ∈ W s,∞(D) (s ≥ 3) for

any t ∈ [0, T ] and has the following regularity estimate:

sup
t∈[0,T ]

E
[
‖u‖pW s,∞(D)

]
≤ C0 = C(p, δ, ε) ∀p ≥ 1. (5.12)

Note that the assumption (5.12) is reasonable in view of (5.10).

The SPDE (5.5) was proposed in [83] (cf. also [94]) in which the tightness of

solutions in the sharp interface limit was shown. However, the rigorous justification
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of the convergence of (5.5) to (5.1) is still missing. In [84, 51], the stochastic Allen-

Cahn equation in one dimension with additive space-time white noise was studied

and the sharp interface limit was obtained. Also finite element methods of this model

was proposed in [66]. But in higher dimensions, it requires spatial correlations for the

noise otherwise the space-time white noise is too rough which prevents the existence

of solution in reasonable function spaces. In [41], finite element methods for the

stochastic mean curvature flow of planar curves of graphs were investigated, where

the SPDE is quasilinear and arises from the level set formulation of the mean curvature

flow. However, the results in [41] only holds for d = 1. In [79], finite element methods

for a stochastic Allen-Cahn equation with multiplicative noise were proposed, where

the strong convergence with rates are obtained. Due to the limited regularity in space,

the spatial error estimate in [79] is not optimal.

In this chapter, we consider fully discrete finite element approximations of the

SPDE (5.5). Since we are interested in the case where ε is small, it is important

to see how estimates depend on ε. It is well-known that the nonlinear term in the

deterministic Allen-Cahn equation needs to be controlled properly in order to obtain

a reasonable estimate [45, 40, 69]. However, it is unclear whether the techniques

used in [45, 40, 69] can be extended to the stochastic case. Therefore we apply the

standard div’s inequality to bound the nonlinear term and thus the estimate has

an exponential dependence on 1
ε
. Moreover, the gradient-type noises in the SPDE

(5.5) brings new challenges as it introduces additional diffusion and convection terms.

The additional diffusion contribution in the SPDE (5.5) automatically controls the

gradient-depended noise term so that the stochastic parabolicity condition always

holds [50, 66]. In addition, we assume δ is not too large to prevent the convection-

dominance in the SPDE (5.5).

The rest of the chapter is organized as follows. We present in Section 5.2 some

technical lemmas which are crucial for the convergence analysis of finite element

methods. In Section 5.3, two fully discrete finite element schemes are proposed. The

main result of this section is the error estimate for the finite element approximations.
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Finally, in Section 5.4 we present several computational results to illustrate the

performances of the methods and to verify the theoretical error estimates obtained in

Section 5.3.

5.2 Preliminary results

In this section, we present some lemmas that will be used in Section 5.3. Throughout

the chapter we will use C to denote a generic positive constant independent of ε,

δ, space and time step sizes h and τ , which can take different values at different

occurrences.

We begin with the following uniform estimate for the expectation of the p-th

moment of Cahn-Hilliard energy functional

J(v) :=

∫
D

(
1

2
|∇v|2 +

1

ε2
F (v)

)
dx.

A similar result can be found in [83] without tracking parameters in the estimate.

For convenience of the reader, we include a proof here.

Lemma 5.2.1. Let u(t) be the strong solution to (5.5). For any p ≥ 1 we have

sup
t∈[0,T ]

E [J(u(t))p] + E
[∫ t

0

pJ(u(s))p−1 ‖w(s)‖2
L2(D) ds

]
≤ C1, (5.13)

where w(·) := −∆u(·) + 1
ε2
F ′(u(·)) and C1 = eCδ

2p2‖X‖C2(D̄)T [J(u0)]p.

Proof. We have

D(J(u)p) = pJ(u)p−1

(
−∆u+

1

ε2
F ′(u)

)
,

D2(J(u)p) = p(p− 1)J(u)p−2

(
−∆u+

1

ε2
F ′(u)

)
⊗
(
−∆u+

1

ε2
F ′(u)

)
+ pJ(u)p−1

(
−∆ +

1

ε2
F ′′(u)

)
,
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and apply Itô’s formula to the functional Φ(u(·)) := J(u(·))p and integration by parts

to obtain

J(u(t))p = J(u0)p −
∫ t

0

pJ(u(s))p−1 ‖w(s)‖2
L2(D) ds (5.14)

+

∫ t

0

pJ(u(s))p−1

(
w(s),

δ2

2

(
B : D2u(s) + b · ∇u(s)

))
ds+Mt

+
δ2

2

∫ t

0

p(p− 1)J(u(s))p−2 (w(s),∇u(s) ·X)2 ds

+
δ2

2

∫ t

0

pJ(u(s))p−1

∫
D

[
|∇(∇u(s) ·X)|2 +

1

ε2
F ′′(u(s))(∇u(s) ·X)2

]
dx ds,

where Mt is the martingale given by

Mt = δ

∫ t

0

pJ(u(s))p−1 (w(s),∇u(s) ·X) dW (s). (5.15)

By integration by parts and a direct calculation, we have

δ2

2

∫
D

[
|∇(∇u(s) ·X)|2 +

1

ε2
F ′′(u(s))(∇ ·X)2

]
dx (5.16)

+

(
w(s),

δ2

2

(
B : D2u(s) + b · ∇u(s)

))
=
δ2

2

∫ t

0

∫
D

(
G(x) : (∇u(s)⊗∇u(s)) +

1

ε2
g(x)F (u(s))

)
dx ds,

where G(·) : D −→ Rd×d and g(·) : D −→ R are defined by

Gij = [∂k(Xk∂lXl)]δij + ∂i[Xk∂kXj]− 2∂k[Xk∂iXj] + (∂kXi)(∂kXj), (5.17)

g = ∂k[Xk∂lXl]. (5.18)
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Taking expectation on both sides of (5.14), by (5.15) and the fact that E[Mt] = 0,

we have the energy equation

E [J(u(t))p] = J(u0)p − E
[∫ t

0

pJ(u(s))p−1 ‖w(s)‖2
L2(D) ds

]
(5.19)

+
δ2

2
E

[∫ t

0

pJ(u(s))p−1

∫
D

(
G(x) : (∇u(s)⊗∇u(s))

+
1

ε2
g(x)F (u(s))

)
dx ds

]

+
δ2

2
E
[∫ t

0

p(p− 1)J(u(s))p−2 (w(s),∇u(s) ·X)2 ds

]
.

Now it remains to estimate the third and fourth terms on the right-hand side of

(5.19). Observe that

‖G‖C(D̄) + ‖g‖C(D̄) ≤ C‖X‖2
C2(D̄),

the third term can be estimated by

δ2

2
E
[∫ t

0

pJ(u(s))p−1

∫
D

(
G(x) : (∇u(s)⊗∇u(s)) +

1

ε2
g(x)F (u(s))

)
dx ds

]
(5.20)

≤ Cpδ2‖X‖2
C2(D̄)

∫ t

0

E [J(u(s))p] ds.

For the fourth term, by integration by parts and the fact that

(
−∆u+

1

ε2
F ′(u)

)
∇u = −∇ · (∇u⊗∇u) +∇

(
1

2
|∇u|2 +

1

ε2
F (u)

)
,

we have

δ2

2
E
[∫ t

0

p(p− 1)J(u(s))p−2 (w(s),∇u(s) ·X)2 ds

]
(5.21)

≤ Cp(p− 1)δ2‖X‖2
C1(D̄)

∫ t

0

E [J(u(s))p] ds.
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Finally, combine (5.19)–(5.21) and apply the Gronwall’s inequality, we obtain the

estimate (5.13).

Remark 5.2.2. In the case of p > 1 in Theorem 5.2.1, the fourth term on the right-

hand side of (5.19) can also be bounded by

δ2

2
E
[∫ t

0

p(p− 1)J(u(s))p−2 (w(s),∇u(s) ·X)2 ds

]
(5.22)

≤ (p− 1)δ2‖X‖2
C(D̄)E

[∫ t

0

pJ(u(s))p−1 ‖w(s)‖2
L2(D) ds

]
.

Therefore the estimate (5.13) is replaced by

sup
t∈[0,T ]

E [J(u(t))p] + CpE
[∫ t

0

pJ(u(s))p−1 ‖w(s)‖2
L2(D) ds

]
≤ C̃1, (5.23)

where

Cp = 1− (p− 1)δ2‖X‖2
C(D̄) and C̃1 = eCδ

2p‖X‖C2(D̄)T [J(u0)]p .

However, (5.23) implicitly requires the noise intensity to be sufficiently small, i.e.,

δ ≤ 1/(
√
p− 1‖X‖C(D̄)).

Remark 5.2.3. Note that in case of p = 1 and δ = 0, we recover the deterministic

energy law:

sup
t∈[0,T ]

J(u(t)) +

∫ t

0

‖w(s)‖L2(D) ds ≤ J(u0).

Next we derive estimates of Hölder continuity (in time) for the solution u(t)

in L2-norm and H1-seminorm that will be key ingredients for the error analysis

in Section 5.3. Clearly, the constants in these estimates depend on ε−1 in some

polynomial orders.
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Lemma 5.2.4. Let u(t) be the strong solution to (5.5). For any s, t ∈ [0, T ] with

s < t and p ≥ 2, we have

E
[
‖u(t)− u(s)‖pL2(D)

]
(5.24)

+
p

2
E
[∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇(u(ζ)− u(s))‖2

L2(D) dζ

]
+
δ2p

4
E
[∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇(u(ζ)− u(s)) ·X‖2

L2(D) dζ

]
≤ C2(t− s),

where C2 = C(p, δ, ‖X||C2(D̄), T )ε−p/2
(
[J(u0)]p/2 + C

)
.

Proof. We apply Itô’s formula to the functional Φ(u(·)) := ‖u(·) − u(s)‖pL2(D) with

fixed s ∈ [0, T ) and integration by parts to obtain

‖u(t)− u(s)‖pL2(D) (5.25)

= p

∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)

(
u(ζ)− u(s),∆u(ζ)− 1

ε2
f(u(ζ))

)
dζ

+
δ2p

2

∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)

(
u(ζ)− u(s), B : D2u(ζ) + b · ∇u(ζ)

)
dζ

+ p

∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D) (u(ζ)− u(s), δ∇u(ζ) ·X) dW (ζ)

+
δ2p

2

∫ t

s

(p− 2)‖u(ζ)− u(s)‖p−4
L2(D)(u(ζ)− u(s),∇u(ζ) ·X)2 dζ

+
δ2p

2

∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇u(ζ) ·X‖2

L2(D) dζ

= I + II + III + IV + V.

151



For simplicity, we assume p > 2 in the following proof since p = 2 case is easier

to prove. By Young’s inequality, we have

E
[
p

∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D) (u(ζ)− u(s),∆u(ζ)) dζ

]
(5.26)

= −E
[
p

∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇u(ζ)−∇u(s)‖2

L2(D) dζ

]
− E

[
p

∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D) (∇u(ζ)−∇u(s),∇u(s)) dζ

]
≤ −p

2
E
[∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇u(ζ)−∇u(s)‖2

L2(D) dζ

]
+
p

2
E
[∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇u(s)‖2

L2(D) dζ

]
≤ −p

2
E
[∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇u(ζ)−∇u(s)‖2

L2(D) dζ

]
+
p− 2

2

∫ t

s

E
[
‖u(ζ)− u(s)‖pL2(D)

]
dζ + E

[
‖∇u(s)‖pL2(D)

]
(t− s).

Similarly, we have

E
[
p

∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)

(
u(ζ)− u(s),− 1

ε2
f(u(ζ))

)
dζ

]
(5.27)

≤ E
[
p

∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)

×

(
1

2ε
‖u(ζ)(u(ζ)− u(s))‖2

L2(D) +
2

ε

∥∥∥∥ 1

ε2
F (u(ζ))

∥∥∥∥
L1(D)

)
dζ

]
≤ 2(p− 2)

∫ t

s

E
[
‖u(ζ)− u(s)‖pL2(D)

]
dζ

+ Cpε
−p/2

(
sup
s≤ζ≤t

E
[
‖u(ζ)‖2p

L4(D)

]
+ sup

s≤ζ≤t
E

[∥∥∥∥ 1

ε2
F (u(ζ))

∥∥∥∥p/2
L1(D)

])
(t− s).
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From (5.26)–(5.27), we can estimate the first term on the right-hand side of (5.25):

E[I] ≤ −p
2
E
[∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇u(ζ)−∇u(s)‖2

L2(D) dζ

]
(5.28)

+
5(p− 2)

2

∫ t

s

E
[
‖u(ζ)− u(s)‖pL2(D)

]
dζ + E

[
‖∇u(s)‖pL2(D)

]
(t− s)

+ Cpε
−p/2

(
sup
s≤ζ≤t

E
[
‖u(ζ)‖2p

L4(D)

]
+ sup

s≤ζ≤t
E

[∥∥∥∥ 1

ε2
F (u(ζ))

∥∥∥∥p/2
L1(D)

])
(t− s).

The second term on the right-hand side of (5.25) can also be estimated by Young’s

inequality and integration by parts in the following

E[II] ≤ −δ
2p

4
E
[∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇u(ζ) ·X −∇u(s) ·X‖2

L2(D) dζ

]
(5.29)

+
δ2

2
(p− 2)

∫ t

s

E
[
‖u(ζ)− u(s)‖pL2(D)

]
dζ

+
δ2

2
(‖X‖p

C(D̄)
+ ‖X‖2p

C1(D̄)
) sup
s≤ζ≤t

E
[
‖∇u(ζ)‖pL2(D)

]
(t− s).

Next, we bound the fourth and fifth terms on the right-hand side of (5.25) by

Young’s inequality

E [IV + V ] ≤ E
[
δ2

2
p(p− 1)

∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇u(ζ) ·X‖2

L2(D) dζ

]
(5.30)

≤ δ2

2
(p− 1)(p− 2)

∫ t

s

E
[
‖u(ζ)− u(s)‖pL2(D)

]
dζ

+ (p− 1)δ2‖X‖p
C(D̄)

sup
s≤ζ≤t

E
[
‖∇u(ζ)‖pL2(D)

]
(t− s).
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Combining (5.25), (5.28)–(5.30) and using the facts ‖u‖4
L4(D) ≤ 8ε2J(u) + C and

E[III] = 0, we have

E
[
‖u(t)− u(s)‖pL2(D)

]
(5.31)

+
p

2
E
[∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇(u(ζ)− u(s))‖2

L2(D) dζ

]
+
δ2p

4
E
[∫ t

s

‖u(ζ)− u(s)‖p−2
L2(D)‖∇(u(ζ)− u(s)) ·X‖2

L2(D) dζ

]
≤ p− 2

2
(pδ2 + 5)

∫ t

s

E
[
‖u(ζ)− u(s)‖pL2(D)

]
dζ

+ C(p, δ2, ‖X‖C1(D̄))ε
−p/2

(
sup
s≤ζ≤t

E
[
J(u(ζ)p/2)

]
+ C

)
(t− s).

Finally, the estimate (5.24) follows from (5.31), Gronwall’s inequality and

Lemma 5.2.1.

Lemma 5.2.5. Let u(t) be the strong solution to (5.5). For any s, t ∈ [0, T ] with

s < t, we have

E
[
‖∇(u(t)− u(s))‖2

L2(D)

]
+

1

2
E
[∫ t

s

‖∆(u(ζ)− u(s))‖2
L2(D) dζ

]
≤ C3(t− s), (5.32)

where

C3 = C

((
δ2‖X‖2

C1(D̄) + δ4‖X‖4
C1(D̄) +

1

ε2
+ 1

)(
C1 + sup

s≤ζ≤t
E
[
‖∆u(ζ)‖2

L2(D)

])
.

154



Proof. Applying Itô’s formula to the functional Φ(u(·)) := ‖∇u(·)−∇u(s)‖2
L2(D) with

fixed s ∈ [0, T ) and integration by parts, we have

‖∇u(t)−∇u(s)‖2
L2(D) = −2

∫ t

s

(∆u(ζ)−∆u(s),∆u(ζ)) dζ (5.33)

+ 2

∫ t

s

(
∆u(ζ)−∆u(s),

1

ε2
f(u(ζ))

)
dζ

− δ2

∫ t

s

(
∆u(ζ)−∆u(s), B : D2u(ζ) + b · ∇u(ζ)

)
dζ

− 2δ

∫ t

s

(∆u(ζ)−∆u(s),∇u(ζ) ·X) dW (ζ)

+ δ2

∫ t

s

∫
D
|∇(∇u(ζ) ·X)|2 dx dζ.

The first term on the right-hand side of (5.33) can be estimated by Cauchy-

Schwarz inequality as follows

− 2E
[∫ t

s

(∆u(ζ)−∆u(s),∆u(ζ)) dζ

]
(5.34)

= −2E
[∫ t

s

‖∆u(ζ)−∆u(s)‖2
L2(D) dζ

]
− 2E

[∫ t

s

(∆u(ζ)−∆u(s),∆u(s)) dζ

]
≤ −E

[∫ t

s

‖∆u(ζ)−∆u(s)‖2
L2(D) dζ

]
+ ‖∆u(s)‖2

L2(D)(t− s).

Using the Sobolev embedding H1(D) ⊂ L6(D) for d ≤ 3, the second term on the

right-hand side of (5.33) can be written as

2E
[∫ t

s

(
∆u(ζ)−∆u(s),

1

ε2
f(u(ζ))

)
dζ

]
(5.35)

≤ 2

ε2
E
[∫ t

s

(
‖∆u(ζ)−∆u(s)‖2

L2(D) + ‖f(u(ζ))‖2
L2(D)

)
dζ

]
≤ C

ε2

(
sup
s≤ζ≤t

E
[
‖∆u(ζ)‖2

L2(D)

]
+ sup

s≤ζ≤t
E
[
J(u(ζ))3

])
(t− s).
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Next we bound the third and fifth terms on the right-hand side of (5.33) in the

following:

E
[
−δ2

∫ t

s

(
∆u(ζ)−∆u(s), B : D2u(ζ) + b · ∇u(ζ)

)
dζ

]
(5.36)

≤ 1

2
E
[∫ t

s

‖∆u(ζ)−∆u(s)‖2
L2(D) dζ

]
+

1

2
δ4‖X‖4

C1(D̄)

×
(

sup
s≤ζ≤t

E
[
‖∆u(ζ)‖2

L2(D)

]
+ sup

s≤ζ≤t
E
[
‖∇u(ζ)‖2

L2(D)

])
(t− s),

and

E
[
δ2

∫ t

s

∫
D
|∇(∇u(ζ) ·X)|2 dx dζ

]
≤ Cδ2‖X‖2

C1(D̄) (5.37)

×
(

sup
s≤ζ≤t

E
[
‖∆u(ζ)‖2

L2(D)

]
+ sup

s≤ζ≤t
E
[
‖∇u(ζ)‖2

L2(D)

] )
(t− s).

The estimate (5.32) now follows from (5.33)–(5.37), Lemma 5.2.1 and the fact

that the expectation of the fourth term on the right-hand side of (5.34) is 0.

Finally, we include a Hölder continuity estimate for the nonlinear increment

f(u(t))− f(u(s) in the L2 norm which will be useful to control the nonlinear term in

the error analysis.

Lemma 5.2.6. Let u(t) be the strong solution to (5.5). For any s, t ∈ [0, T ] with

s < t, we have

E
[
‖f(u(t))− f(u(s))‖2

L2(D)

]
≤ C4(t− s), (5.38)

where

C4 = C(δ, ε, ‖X‖C1(D̄), C0, C1). (5.39)

Proof. Consider the functional Φ(u(t)) := ‖f(u(t)) − f(u(s))‖2
L2(D) with fixed s ∈

[0, T ), and it’s not hard to prove that its first order and second order Frechet
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derivatives are

Φ′(u(t))(v(t)) = 2

∫
D

(f(u(t))− f(u(s)))(3(u(t))2 − 1)v(t)dx, (5.40)

Φ′′(u(t))(v(t),m(t)) = 12

∫
D

(f(u(t))− f(u(s)))u(t)v(t)m(t)dx

+ 2

∫
D

(3(u(t))2 − 1)2v(t)m(t)dx. (5.41)

Apply Itô’s formula to the functional Φ(u(t)) := ‖f(u(t))− f(u(s))‖2
L2(D), we get

‖f(u(t))− f(u(s))‖2
L2(D) = 2

∫ t

s

∫
D

(f(u(η))− f(u(s)))(3(u(η))2 − 1) (5.42)

×
[
∆u(η)− 1

ε2
f(u(η)) +

δ2

2
div (B∇u(η)) +

δ2

2
(b− divB) · ∇u(η)

]
dxdη

+ 2

∫ t

s

∫
D

(f(u(η))− f(u(s)))(3u(η)2 − 1)δ∇u(η) ·XdxdWη

+ 6

∫ t

s

∫
D

(f(u(η))− f(u(s)))u(η)|δ∇u(η) ·X|2dxdη

+

∫ t

s

∫
D

(3u(η)2 − 1)2|δ∇u(η) ·X|2dxdη.

Using integration by part and Young’s inequality, we have

‖f(u(t))− f(u(s))‖2
L2(D) ≤ C

∫ t

s

(‖u(s)‖4
L∞(D) + ‖u(η)‖4

L∞(D))J(u(η)) (5.43)

+ C‖X‖2
C1(D)

∫ t

s

(‖u(s)‖4
L∞(D) + ‖u(η)‖4

L∞(D))(J(u(s)) + J(u(η)))

+ C(t− s) + 2

∫ t

s

∫
D

(f(u(η))− f(u(s)))(3u(η)2 − 1)δ∇u(η) ·XdxdWη.

Taking the expectation on both sides, using Lemma 5.2.1, and using Young’s

inequality again, we get

‖f(u(t))− f(u(s))‖2
L2(D) ≤ C4(t− s). (5.44)
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Here

C4 = C

(
δ, ε, sup

s≤η≤t
E
[
‖u(η)‖6

L∞(D)

]
, sup
s≤η≤t

E
[
J(u(η))3

]
, ‖X‖C1(D̄)

)
, (5.45)

which can be written as (5.39) by regularity result (5.10) and energy law (5.13).

5.3 Finite element methods

In this section we propose two fully discrete finite element schemes to solve (5.5) and

derive optimal order error estimates for both finite element methods.

Let tn = nτ (n = 0, 1, . . . , N) be a uniform partition of [0, T ] with τ = T/N and

Th be a quasi-uniform triangulation of D. We consider the finite element space

V r
h := {vh ∈ H1(D) : vh|K ∈ Pr(K) ∀K ∈ Th},

where Pr(K) denotes the space of all polynomials of degree not exceeding a given

positive integer r on K ∈ Th. The fully discrete finite element method for SPDE

(5.5) is defined by seeking an Ftn-adapted V r
h -valued process {unh} (n = 0, 1, . . . , N)

such that P-almost surely

(un+1
h , vh) + τ

((
I +

δ2

2
B
)
∇un+1

h ,∇vh
)

+ τ
1

ε2
(fn+1, vh) (5.46)

= (unh, vh)− τ
δ2

2
((divB − b) · ∇unh, vh)

+ δ(∇unh ·X, vh) ∆Wn+1 ∀ vh ∈ V r
h ,

where ∆Wn+1 := W (tn+1)−W (tn) ∼ N (0, τ) and

fn+1 := (un+1
h )3 − un+1

h or fn+1 := (un+1
h )3 − unh. (5.47)
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Note that in the deterministic case (δ = 0), (5.47) corresponds to a fully implicit

scheme or a convex-splitting scheme. We choose uh(0) = Phu0 to complement (5.46)

where Ph : L2(D) −→ V r
h is the L2-projection operator defined by

(Phw, vh) = (w, vh) vh ∈ V r
h .

The following error estimate results are well-known [13, 23]:

‖w − Phw‖L2(D) + h‖∇(w − Phw)‖L2(D) ≤ Chmin (r+1,s)‖w‖Hs(D), (5.48)

‖w − Phw‖L∞(D) ≤ Ch2− d
2‖w‖H2(D), . (5.49)

for any w ∈ Hs(D).

We consider a convex decomposition F (v) = F+(v)− F−(v) where

F+(v) =
1

4
(v4 + 1) and F−(v) =

1

2
v2. (5.50)

Now define

G(v) :=
1

2
(v, v) +

τ

2
(∇v,∇v) +

τδ2

2
(∇v ·X,∇v ·X) +

τ

ε2
(F (v), 1) (5.51)

− (unh, v) +
τδ2

2
((divB − b) · ∇unh, v)− δ((∇unh ·X)∆Wn+1, v),

H(v) :=
1

2
(v, v) +

τ

2
(∇v,∇v) +

τδ2

2
(∇v ·X,∇v ·X) +

τ

ε2
(F+(v), 1) (5.52)

−
(

1 +
τ

ε2

)
(unh, v) +

τδ2

2
((divB − b) · ∇unh, v)− δ((∇unh ·X)∆Wn+1, v).

It is clear that H(v) is strictly convex for all h, τ > 0 and G(v) is strictly convex when

τ ≤ ε2. Then a straightforward calculation implies that the discrete problem (5.46)
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is equivalent to the following finite-dimensional convex minimization problems:

un+1
h = argmin

vh∈V rh
G(vh), when fn+1 = (un+1

h )3 − un+1
h and τ ≤ ε2 (5.53)

un+1
h = argmin

vh∈V rh
H(vh), when fn+1 = (un+1

h )3 − unh. (5.54)

Therefore, the existence and uniqueness of the solution to (5.46) is guaranteed for all

h, τ > 0 when fn+1 = (un+1
h )3 − unh and for all τ ≤ ε2 when fn+1 = (un+1

h )3 − un+1
h .

Remark 5.3.1. We can also consider a modified scheme

(un+1
h , vh) + τ

((
I +

δ2

2
B
)
∇un+1

h ,∇vh
)

+ τ
1

ε2
(fn+1, vh) (5.55)

+ τ
δ2

2

(
(divB − b) · ∇un+1

h , vh
)

= (unh, vh) + δ(∇unh ·X, vh) ∆Wn+1 ∀ vh ∈ Vh,

where we replace the term τ δ
2

2
((divB − b) · ∇unh, vh) in (5.46) by τ δ

2

2

(
(divB − b)

·∇un+1
h , vh

)
in (5.55). Clearly, (5.46) has a simpler form and the stiffness matrix for

(5.46) is symmetric. On the other hand, (5.55) has one more advective contribution

making the stiffness to be non-symmetric.

Remark 5.3.2. Due to the time discretization, it is unclear whether the discrete

analog of energy bound in Lemma 5.2.1 is valid or not. However, the error estimate

below does not require any discrete estimate.

Let en := u(tn)− unh (n = 0, 1, 2, ..., N), we now derive an error estimate for en.

Theorem 5.3.3. Let u and {unh}Nn=1 denote respectively the solutions of problems

(5.5) and (5.46), and u(·) satisfies (5.12). In the case of fn+1 = (un+1
h )3 − un+1

h ,

under the following mesh constraint:

τ ≤ C
(
ε−2 + δ4

)−1
, (5.56)

160



we have

sup
0≤n≤N

E
[
‖en‖2

L2(D)

]
+ E

[
N∑
n=1

τ‖∇en‖2
L2(D)

]
(5.57)

≤ T

[(
C3(1 + δ2 + δ4) +

C4

ε2

)
τ

+ C0(1 + δ2 + δ4)h2 min (r,s−1) +
(
C0 +

C2
0

ε2

)
h2 min (r+1,s)

]
eC(δ4+ 1

ε2
)T

≤ C(δ, ε, T, ‖X‖, C0, C2, C3, C4)
[
Cτ + h2 min (r,s−1)

]
.

In the case of fn+1 = (un+1
h )3 − unh, under the following mesh constraint:

τ ≤ C(1 + δ4)−1, (5.58)

we have

sup
0≤n≤N

E
[
‖en‖2

L2(D)

]
+ E

[
N∑
n=1

τ‖∇en‖2
L2(D)

]
(5.59)

≤ TeC(1+δ4+ 1
ε4

)T

[(
C3(1 + δ2 + δ4) +

C2 + C4

ε4

)
τ

+ C0(1 + δ2 + δ4)h2 min (r,s−1) +
(
C0 +

C2
0 + C0

ε4

)
h2 min (r+1,s)

]
≤ C(δ, ε, T, ‖X‖, C0, C2, C3, C4)

[
Cτ + h2 min (r,s−1)

]
.

Proof. We write en = ηn + ξn where

ηn := u(tn)− Phu(tn) and ξn := Phu(tn)− unh, n = 0, 1, 2, ..., N.
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It follows from (5.11) that for all tn (n ≥ 0) there holds P-almost surely

(u(tn+1), vh)− (u(tn), vh) +

∫ tn+1

tn

(∇u(s),∇vh) ds (5.60)

+
1

ε2

∫ tn+1

tn

(f(u(s)), vh) ds+
δ2

2

∫ tn+1

tn

(B∇u(s),∇vh) ds

+
δ2

2

∫ tn+1

tn

((divB − b) · ∇u(s), vh) ds

= δ

∫ tn+1

tn

(∇u(s) ·X, vh) dW (s) ∀ vh ∈ Vh.

Subtracting (5.46) from (5.60) and using the decomposition of en+1, we obtain the

following error equation:

(ξn+1 − ξn, vh) = −(ηn+1 − ηn, vh)−
∫ tn+1

tn

(∇u(s)−∇un+1
h ,∇vh) ds (5.61)

− 1

ε2

∫ tn+1

tn

(f(u(s))− fn+1, vh) ds

− δ2

2

∫ tn+1

tn

(
B(∇u(s)−∇un+1

h ),∇vh
)
ds

− δ2

2

∫ tn+1

tn

((divB − b) · (∇u(s)−∇unh), vh) ds

+ δ

∫ tn+1

tn

((∇u(s)−∇unh) ·X, vh)) dW (s) ∀ vh ∈ V r
h .
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Testing (5.61) with vh = ξn+1(ω), we have P-almost surely

(ξn+1 − ξn, ξn+1) = −(ηn+1 − ηn, ξn+1)−
∫ tn+1

tn

(∇u(s)−∇un+1
h ,∇ξn+1) ds (5.62)

− 1

ε2

∫ tn+1

tn

(f(u(s))− fn+1, ξn+1) ds

− δ2

2

∫ tn+1

tn

(
B(∇u(s)−∇un+1

h ),∇ξn+1
)
ds

− δ2

2

∫ tn+1

tn

(
(divB − b) · (∇u(s)−∇unh), ξn+1

)
ds

+ δ

∫ tn+1

tn

(
(∇u(s)−∇unh) ·X, ξn+1

)
dW (s),

:= T1 + T2 + T3 + T4 + T5 + T6.

It is easy to obtain from an elementary identity (a− b)a = 1
2
(a2 − b2) + 1

2
(a− b)2

that

E
[
(ξn+1 − ξn, ξn+1)

]
=

1

2
E
[
‖ξn+1‖2

L2(D) − ‖ξn‖2
L2(D)

]
(5.63)

+
1

2
E
[
‖ξn+1 − ξn‖2

L2(D)

]
.

Next, we estimate the right-hand side of (5.62). First, since Ph is the L2-projection

operator, we have E [T1] = 0. For the second term on the right-hand side of (5.62),
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we have by Lemma 5.2.5 and Young’s inequality that

E [T2] = −E
[∫ tn+1

tn

(∇u(s)−∇u(tn+1),∇ξn+1) ds

]
(5.64)

− E
[∫ tn+1

tn

(∇ηn+1 +∇ξn+1,∇ξn+1) ds

]
≤ CE

[∫ tn+1

tn

‖∇u(s)−∇u(tn+1)‖2
L2(D) ds

]
+

3

16
E
[
‖∇ξn+1‖2

L2(D)

]
τ

+ E
[
‖∇ηn+1‖2

L2(D)

]
τ +

1

4
E
[
‖∇ξn+1‖2

L2(D)

]
τ

− E
[
‖∇ξn+1‖2

L2(D)

]
τ

≤ C3τ
2 + E

[
‖∇ηn+1‖2

L2(D)

]
τ − 9

16
E
[
‖∇ξn+1‖2

L2(D)

]
τ.

In order to estimate the third term on the right-hand side of (5.62), we write

−
(
f(u(s))− fn+1, ξn+1

)
= −

(
f(u(s))− f(u(tn+1)), ξn+1

)
(5.65)

−
(
f(u(tn+1)− f(Phu(tn+1)), ξn+1

)
−
(
f(Phu(tn+1))− fn+1, ξn+1

)
,

By Lemma 5.2.6, we obtain

− E
[(
f(u(s))− f(u(tn+1)), ξn+1

)]
(5.66)

≤ 1

2C†
E
[
‖f(u(s))− f(u(tn+1))‖2

L2(D)

]
+
C†
2
E
[
‖ξn+1‖2

L2(D)

]
≤ C4

2C†
τ +

C†
2
E
[
‖ξn+1‖2

L2(D)

]
.
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Next, by (5.10) and (5.48)–(5.49), we have

−E
[(
f(u(tn+1)− f(Phu(tn+1)), ξn+1

)]
(5.67)

= −E
[(
ηn+1(u(tn+1)2 + u(tn+1)Phu(tn+1) + Phu(tn+1)2 − 1), ξn+1

)]
≤ 1

4C†
E
[
‖u(tn+1)2 + u(tn+1)Phu(tn+1) + Phu(tn+1)2 − 1‖2

L∞(D)

× ‖ηn+1‖2
L2(D)

]
+ C†E

[
‖ξn+1‖2

L2(D)

]
≤ 1

4C†

(
E
[
‖u(tn+1)2 + u(tn+1)Phu(tn+1) + Phu(tn+1)2 − 1‖3

L∞(D)

]) 2
3

×
(
E
[
‖ηn+1‖6

L2(D)

]) 1
3

+ C†E
[
‖ξn+1‖2

L2(D)

]
≤ C

4C†

(
E
[
‖Phu(tn+1)‖6

L∞(D) + ‖u(tn+1)‖6
L∞(D) + |D|3

]) 2
3

×
(
E
[
‖ηn+1‖6

L2(D)

]) 1
3

+ C†E
[
‖ξn+1‖2

L2(D)

]
≤ C0

4C†

(
E
[
‖ηn+1‖6

L2(D)

]) 1
3

+ C†E
[
‖ξn+1‖2

L2(D)

]
.

When fn+1 = (un+1
h )3 − un+1

h , the last term on the right-hand side of (5.65) can

be bounded by the monotonicity property

−E
[(
f(Phu(tn+1))− fn+1, ξn+1

)]
≤ E

[
‖ξn+1‖2

L2(D)

]
. (5.68)

When fn+1 = (un+1
h )3−unh, we have an extra term

(
un+1
h − unh, ξn+1

)
adding to (5.67)

and we can control it by Lemma 5.2.4 as follows

E
[(
un+1
h − unh, ξn+1

)]
= −E

[(
(ηn+1 − ηn) + (ξn+1 − ξn), ξn+1

)]
(5.69)

+ E
[(
u(tn+1)− u(tn), ξn+1

)]
≤ 1

2C†
E
[
‖ηn+1 − ηn‖2

L2(D)

]
+ C†E

[
‖ξn+1‖2

L2(D)

]
+
C2

C†
τ

− E
[
‖ξn+1‖2

L2(D)

]
+

1

4C†
E
[
‖ξn‖2

L2(D)

]
+ C†E

[
‖ξn+1‖2

L2(D)

]
.
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Combining (5.65)–(5.69), we choose C† = 1
2

whenever fn+1 = (un+1
h )3−un+1

h to obtain

E [T3] ≤ C4

ε2
τ 2 +

1

ε2
E
[
‖ξn+1‖2

L2(D)

]
τ +

C0

ε2

(
E
[
‖ηn+1‖6

L2(D)

]) 1
3
τ, (5.70)

and choose C† = ε2 whenever fn+1 = (un+1
h )3 − unh to obtain

E [T3] ≤ C2 + C4

ε4
τ 2 + E

[
‖ξn+1‖2

L2(D)

]
τ +

1

ε4
E
[
‖ξn‖2

L2(D)

]
τ (5.71)

+
C0

ε4

(
E
[
‖ηn+1‖6

L2(D)

]) 1
3
τ +

1

ε4
E
[
‖ηn+1‖2

L2(D) + ‖ηn‖2
L2(D)

]
τ.

Similar to the estimate of T2, the fourth and fifth terms on the right-hand side of

(5.62) can also be estimated by Lemma 5.2.5 and Young’s inequality:

E [T4] = −δ
2

2
E
[∫ tn+1

tn

(
(∇u(s)−∇u(tn+1) ·X,∇ξn+1 ·X

)
ds

]
(5.72)

− δ2

2
E
[∫ tn+1

tn

(
(∇ηn+1 +∇ξn+1) ·X,∇ξn+1 ·X

)
ds

]
≤ δ4‖X‖4

C(D̄)C3τ
2 +

2

16
E
[
‖∇ξn+1‖2

L2(D)

]
τ

+ δ4‖X‖4
C(D̄)E

[
‖∇ηn+1‖2

L2(D)

]
τ − δ2

2
E
[
‖∇ξn+1 ·X‖2

L2(D)

]
τ,

and

E [T5] = −δ
2

2
E
[∫ tn+1

tn

(
(divB − b) · (∇u(s)−∇u(tn)), ξn+1

)
ds

]
(5.73)

− δ2

2
E
[∫ tn+1

tn

(
(divB − b) · (∇ηn +∇ξn), ξn+1

)
ds

]
≤ ‖X‖4

C1(D̄)C3τ
2 + (1 + ‖X‖4

C1(D̄))δ
4E
[
‖ξn+1‖2

L2(D)

]
τ

+ ‖X‖4
C1(D̄)E

[
‖∇ηn‖2

L2(D)

]
τ +

1

16
E
[
‖∇ξn‖2

L2(D)

]
τ.
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By the martingale property and Itô’s isometry and Lemma 5.2.5, we have

E[T6] ≤ 1

2
E
[
‖ξn+1 − ξn‖2

L2(D)

]
(5.74)

+
δ2

2
E
[∫ tn+1

tn

‖(∇u(s)−∇unh) ·X‖2
L2(D) ds

]
≤ 1

2
E
[
‖ξn+1 − ξn‖2

L2(D)

]
+
δ2

2
(1 + C ′)E

[∫ tn+1

tn

‖(∇u(s)−∇u(tn)) ·X‖2
L2(D) ds

]
+
δ2

2
E
[
‖(∇ηn +∇ξn) ·X‖2

L2(D)

]
τ +

δ2

2C ′
E
[
‖(∇ηn +∇ξn) ·X‖2

L2(D)

]
τ

≤ 1

2
E
[
‖ξn+1 − ξn‖2

L2(D)

]
+
δ2

2
(1 + C ′)‖X‖2

C(D̄)C3τ
2

+ δ2

(
1 + C ′′

2
+

1

C ′

)
‖X‖2

C(D̄)E
[
‖∇ηn‖2

L2(D)

]
τ

+
δ2

2
E
[
‖∇ξn ·X‖2

L2(D)

]
τ + δ2

(
1

2C ′′
+

1

C ′

)
‖X‖2

C(D̄)E
[
‖∇ξn‖2

L2(D)

]
τ.

Now taking C ′ = 16δ2‖X‖2
C(D̄)

and C ′′ = 8δ2‖X‖2
C(D̄)

in (5.74), we obtain an estimate

for the last term on the right-hand side of (5.62):

E[T6] ≤ 1

2
E
[
‖ξn+1 − ξn‖2

L2(D)

]
+
δ2

2
(1 + 16δ2‖X‖2

C(D̄))‖X‖
2
C(D̄)C3τ

2 (5.75)

+ δ2

(
1 + 8δ2‖X‖2

C(D̄)

2
+

1

16δ2‖X‖2
C(D̄)

)
‖X‖2

C(D̄)E
[
‖∇ηn‖2

L2(D)

]
τ

+
δ2

2
E
[
‖∇ξn ·X‖2

L2(D)

]
τ +

2

16
E
[
‖∇ξn‖2

L2(D)

]
τ.

Taking expectation on (5.62) and combining estimates (5.63)–(5.64), (5.70)/(5.71)–

(5.73) and (5.75), summing over n = 0, 1, 2, ..., l − 1 with 1 ≤ l ≤ N , and using the
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properties of L2-projection and the regularity assumption (5.12), we obtain

[
1

2
−
(

1

ε2
+ δ4

)
τ

]
E
[
‖ξl‖2

L2(D)

]
+

1

4
E

[
τ

l∑
n=1

‖∇ξn‖2
L2(D)

]
(5.76)

≤ 1

2
E
[
‖ξ0‖2

L2(D)

]
+
δ

2
τE
[
‖∇ξ0 ·X‖2

L2(D)

]
+

3

16
τE
[
‖∇ξ0‖2

L2(D)

]
+

[
C3(1 + δ2 + δ4) +

C4

ε2

]
Tτ

+ C0(1 + δ2 + δ4)Th2 min (r,s−1) +
C2

0

ε2
Th2 min (r+1,s)

+

(
1

ε2
+ δ4

)
E

[
τ
l−1∑
n=0

‖ξn‖2
L2(D)

]
,

whenever fn+1 = (un+1
h )3 − un+1

h , and

[
1

2
−
(
1 + δ4

)
τ

]
E
[
‖ξl‖2

L2(D)

]
+

1

4
E

[
τ

l∑
n=1

‖∇ξn‖2
L2(D)

]
(5.77)

≤ 1

2
E
[
‖ξ0‖2

L2(D)

]
+
δ

2
τE
[
‖∇ξ0 ·X‖2

L2(D)

]
+

3

16
τE
[
‖∇ξ0‖2

L2(D)

]
+

(
C3(1 + δ2 + δ4) +

C2 + C4

ε4

)
Tτ

+ C0(1 + δ2 + δ4)Th2 min (r,s−1) +
C2

0 + C0

ε4
Th2 min (r+1,s)

+

(
1 +

1

ε4
+ δ4

)
E

[
τ
l−1∑
n=0

‖ξn‖2
L2(D)

]
,

whenever fn+1 = (un+1
h )3 − unh. Here we have not explicitly tracked the constant

‖X‖C1(D̄) or ‖X‖C(D̄) and some other constants in (5.76) and (5.77).

Finally, estimates (5.57) and (5.59) follow from (5.76)–(5.77), the discrete

Gronwall’s inequality, the L2-projection properties and the fact ξ0 = 0 and the triangle

inequality.

Remark 5.3.4. Error estimates in Theorem 5.3.3 remain unchanged if we consider

the modified schemes (5.55). In fact, we only need to check the fifth term on the
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right-hand side of (5.62):

E [T5] = −δ
2

2
E
[∫ tn+1

tn

(
(divB − b) · (∇u(s)−∇u(tn+1)), ξn+1

)
ds

]
(5.78)

− δ2

2
E
[∫ tn+1

tn

(
(divB − b) · (∇ηn+1 +∇ξn+1), ξn+1

)
ds

]
≤ ‖X‖4

C1(D̄)C3τ
2 + (1 + ‖X‖4

C1(D̄))δ
4E
[
‖ξn+1‖2

L2(D)

]
τ

+ ‖X‖4
C1(D̄)E

[
‖∇ηn+1‖2

L2(D)

]
τ +

1

16
E
[
‖∇ξn+1‖2

L2(D)

]
τ.

Hence the third term 3
16
τE
[
‖∇ξ0‖2

L2(D)

]
on the right-hand side of (5.76)/ (5.77) is

replaced by 1
8
τE
[
‖∇ξ0‖2

L2(D)

]
.

Remark 5.3.5. Spatial estimates (5.57) and (5.59) are optimal in the H1-norm,

but suboptimal in the L2-norm. From the proof of Theorem 5.3.3, the suboptimal

estimate in the L2-norm is caused by gradient type of noise, i.e., the existence of

T4, T5 and T6 on the right-hand side of (5.62). The proof in Theorem 5.3.3 relies

on the strong p-th moment estimate (5.12) for the solution to (5.5). Otherwise, we

may lose some order of h if a weaker regularity result is used (cf. the derivation

of (5.67)). Note also the estimate depends exponentially on 1/ε2 (or 1/ε4), which

seems to be pessimistic. However, this is the case even in the deterministic case (i.e.,

δ = 0) unless the standard error estimate technique is replaced by a much involved

nonstandard technique as used in [45]. We intend to address this issue in a future

work.

5.4 Numerical results

In this section we present some two-dimensional numerical experiments to gauge the

performance of the proposed fully discrete finite element methods with r = 1, i.e., Vh

is the linear finite element space. We also numerically examine the influence of noises

on the dynamics of the numerical interfaces.
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We consider the SPDE (5.5) on the square domain D = [−0.5, 0.5]2 with two

different initial conditions, and in both tests we define X(x) = ϕ(x)[x1+x2, x1−x2]T ,

where

ϕ(x) :=

e
− 0.001

0.092−|x|2 , if |x| < 0.3,

0, if |x| ≥ 0.3.

For both tests, we take the Brownian motion step to be 1 × 10−4 and examine the

interplay of the geometric evolution and gradient type-noises for M = 500 Monte

Carlo realizations. In this section, we denote the numerical solution by uδ,ε,h,τ (ω)

where δ > 0 denotes the noise intensity, ε > 0 is the interface width, h is the spatial

mesh size, τ is the time step size and ω is a particular sample.

Next, we give a brief description of the algorithm that we use to solve the discrete

problem (5.46). Let Nh = dimVh and {ψi}Nhi=1 be the nodal basis of Vh. Denote by

un+1 the coefficient vector corresponding to the discrete solution un+1
h =

∑Nh
i=0 u

n+1
i ψi

at time tn+1 = (n + 1)τ . Suppose fn+1 = (un+1
h )3 − unh (the other case is similar),

(5.46) is then equivalent to

[
M + τ

(
A +

δ2

2
AX

)]
un+1 +

τ

ε2
N(un+1)

=
(

1 +
τ

ε2

)
Mun − τδ2

2
C1u

n + δ∆Wn+1C2u
n,

where M,A are the standard mass and stiffness matrices, respectively, AX is the

weighted stiffness matrix whose (i, j) component is (∇ψj · X,∇ψi · X), N(un+1) is

the nonlinear term, (C1)ij = ((divB− b) · ∇ψj, ψi), (C2)ij = (∇ψj, ψi) and W is the

discrete Brownian motion with ∆Wn+1 = Wn+1 −Wn. Since we want to generate

as many samples as possible in order to recover the statistical properties, it will be

expensive to use the Newton method to solve this nonlinear system. In fact, we can

solve it by a cheaper fixed-point iteration so that in each iteration. Although in

one simulation it converges slower than Newton’s method, we can store the Cholesky
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factorization

M + τ

(
A +

δ2

2
AX

)
= LL′,

and use it for every Monte Carlo realization and at every time step for fixed τ . From

this point of view, the fixed-point iteration outperforms Newton’s method, especially

for large sample size M . In fact, we observed in our experiment that the fixed-point

iteration is more efficient than Newton’s method.

Test1. The initial condition u0 is set to be

u0(x) = tanh

(
d(x)√

2ε

)
,

where tanh(x) = (ex−e−x)/(ex+e−x) and d(x) represents the signed distance between

the point x and the ellipse
x2

1

0.04
+

x2
2

0.01
= 1.

In Table 5.1, we record the expected values of the L∞([0, T ], || · ||L2) -norm of

the errors and rates of convergence of the time discretization for varying τ with the

fixed parameters δ = 1, ε = 0.1, and T = 0.016. The numerical results confirm the

theoretical result of Theorem 5.3.3.

Table 5.1: Computed time discretization errors and convergence rates.

Expected values of error Order of convergence
τ=0.008 0.09895
τ=0.004 0.06557 0.5937
τ=0.002 0.04472 0.5521
τ=0.001 0.03136 0.5120

In Figure 5.1–5.3, we display some snapshots of the zero-level set of the averaged

numerical solution

ūδ,ε,h,τ =
1

M

M∑
i=1

uδ,ε,h,τ (ωi)
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at several time points with ε = 0.01, and three different noise intensity parameters

δ = 0.1, 1, 10. We observe that the shape of the zero-level set of the expected value

of the numerical solution undergoes more changes as δ increases.

Figure 5.1: Snapshots of the zero-level set of ūδ,ε,h,τ at time t = 0, 0.020, 0.040, 0.043
with δ = 0.1 and ε = 0.01.

Next, we study the effect of ε on the evolution process. For this aim, we fix δ = 0.1.

In Figure 5.4, we depict four snapshots at four fixed time points of the zero-level set

of the averaged numerical solution ūδ,ε,h,τ with three different ε = 0.01, 0.011, 0.02.

We observe that at each time step the zero-level set converges to the stochastic mean

curvature flow as ε→ 0, and furthermore it evolves faster in time for larger ε.
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Figure 5.2: Snapshots of the zero-level set of ūδ,ε,h,τ at time t =
0.005, 0.020, 0.040, 0.043 with δ = 1 and ε = 0.01.

Test2. First, we define

tanh(y) :=
ey − e−y

ey + e−y
, ψ1(x2) :=

−1 +
√

0.8x2 + 0.04

2
,

ψ2(x2) :=
1−
√

1.92x2 + 0.2304

2
, ψ3(x2) :=

−1 +
√
−0.8x2 + 0.04

2
,

ψ4(x2) :=
1−
√
−1.92x2 + 0.2304

2
, ψ5(x2) := −

√
1− 0.2451x2

2

0.0049
.
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Figure 5.3: Snapshots of the zero-level set of ūδ,ε,h,τ at time t =
0.0025, 0.0050, 0.0100, 0.0200, 0.0250, 0.0280 with δ = 10 and ε = 0.01.

174



Figure 5.4: Snapshots of the zero-level set of ūδ,ε,h,τ at time t =
0.0010, 0.0050, 0.0125, 0.0175 with δ = 0.1 and ε = 0.01, 0.011, 0.02.
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and consider the initial condition u0(x1, x2) = u1(3x1, 3x2), where u1(x1, x2) is defined

by (cf. Test 2 in [40]):

u1(x1, x2)

=



tanh( 1√
2ε
(−
√

(x1 − 0.14)2 + (x2 − 0.15)2)), if x1 > 0.14, 0 ≤ x2 < − 5
12(x1 − 0.5),

tanh( 1√
2ε
(−
√

(x1 − 0.14)2 + (x2 + 0.15)2)), if x1 > 0.14, 5
12(x1 − 0.5) < x2 < 0,

tanh( 1√
2ε
(−
√

(x1 + 0.3)2 + (x2 − 0.15)2)), if x1 < −0.3, 0 ≤ x2 <
3
4(x1 + 0.5),

tanh( 1√
2ε
(−
√

(x1 + 0.3)2 + (x2 + 0.15)2)), if x1 < −0.3,−3
4(x1 + 0.5) < x2 < 0,

tanh( 1√
2ε
(
√

(x1 − 0.5)2 + x2
2 − 0.39)), if x1 > 0.14, x2 ≥ − 5

12(x1 − 0.5)

or x2 ≤ 5
12(x1 − 0.5),

tanh( 1√
2ε
(
√

(x1 + 0.5)2 + x2
2 − 0.25)), if x1 < −0.3, x2 ≥ −3

4(x1 + 0.5)

or x2 ≤ −3
4(x1 + 0.5),

tanh( 1√
2ε
(|x2| − 0.15)), if − 0.3 ≤ x1 ≤ 0.14,

ψ1(x2) ≤ x1 ≤ ψ2(x2)

and ψ3(x2) ≤ x1 ≤ ψ4(x2),

tanh( 1√
2ε
(
√

(x1 − 0.5)2 + x2
2 − 0.39)), if − 0.3 ≤ x1 ≤ 0.14, x1 ≥ ψ2(x2)

and x1 ≥ ψ5(x2),

tanh( 1√
2ε
(
√

(x1 − 0.5)2 + x2
2 − 0.39)), if − 0.3 ≤ x1 ≤ 0.14, x1 ≥ ψ4(x2)

and x1 ≥ ψ5(x2),

tanh( 1√
2ε
(
√

(x1 + 0.5)2 + x2
2 − 0.25)), if − 0.3 ≤ x1 ≤ 0.14, x1 ≤ ψ1(x2)

and x1 ≤ ψ5(x2),

tanh( 1√
2ε
(
√

(x1 + 0.5)2 + x2
2 − 0.25)), if − 0.3 ≤ x1 ≤ 0.14, x1 ≤ ψ3(x2)

and x1 ≤ ψ5(x2).

Note that the initial condition is not smooth due to the dumbbell shape of the

zero-level set. Nevertheless, we study the effects of δ and ε on the evolution process.

Figure 5.5–5.7 display a a few snapshots of the zero-level set of the averaged numerical
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solution ūδ,ε,h,τ at several time steps with ε = 0.01 and three different noise intensity

δ = 0.1, 1, 10. Similar to Test 1, the zero-level set evolves faster for larger δ and the

shape is more irregular. Figure 5.8 plots snapshots at four fixed time steps of the

zero-level set of ūδ,ε,h,τ with δ = 0.1 and ε = 0.01, 0.011, 0.02. Again, it suggests the

convergence of the zero-level set at each time step to the stochastic mean curvature

flow as ε→ 0.

Figure 5.5: Snapshots of the zero-level set of ūδ,ε,h,τ at time t = 0, 0.040, 0.200, 0.456
with δ = 0.1 and ε = 0.01.
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Figure 5.6: Snapshots of the zero-level set of ūδ,ε,h,τ at time t =
0.004, 0.040, 0.200, 0.456 with δ = 1 and ε = 0.01.
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Figure 5.7: Snapshots of the zero-level set of ūδ,ε,h,τ at time t =
0.004, 0.040, 0.080, 0.140, 0.180, 0.216 with δ = 10 and ε = 0.01.
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Figure 5.8: Snapshots of the zero-level set of ūδ,ε,h,τ at time t = 0.008, 0.040, 0.080,
0.120.
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Chapter 6

Multiphysics Finite Element

Methods for a Quasi-static

Poroelasticity Model

6.1 Introduction

This chapter considers a general quasi-static model of linear poroelasticity which

is broad enough to contain the well-known Biot’s consolidation model from soil

mechanics (cf. [68, 86]) and the Doi’s model for polymer gels (cf. [38, 93]). The quasi-

static feature is due to the assumption that the acceleration of the solid (described

by the second order time derivative of the displacement vector field) is assumed to be

negligible. We refer the reader to [24, 75, 90] for a derivation of the model and to [85]

for its mathematical analysis. When the parameter c0, called the constrained specific

storage coefficient, vanishes in the model, it reduces into the above mentioned Boit’s

model and Doi’s model arising from two distinct applications. Their mathematical

analysis can be found in [38] and their finite element numerical approximations based

on two very different approaches were carried out in [68, 38], respectively. In [75, 76]

the authors proposed and analyzed a semi-discrete and a fully discrete mixed finite
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element method which simultaneously approximate the pressure and its gradient

along with the displacement vector field. Since the implicit Euler scheme is used

for the time discretization, a combined linear system must be solved at each time

step. It is observed in the numerical tests that the proposed fully discrete mixed

finite method may exhibit a “locking phenomenon” in the sense that the computed

pressure oscillates and its accuracy deteriorate when a rapidly changed initial pressure

is given, as explained in the [77] that such a “locking phenomenon” is caused by the

difficulty of satisfying the nearly divergence-free condition of u for very small time

t > 0.

The goal of this chapter is to present a multiphysics approach for approximating

the poroelasticity model. A key idea [37] of this approach is to derive a multiphysics

reformulation for the original model which clearly reveals the underlying multiple

physics process (i.e., the deformation and diffusion) of the pore-scale fluid-solid

interaction system. To the end, two pseudo-pressures are introduced, one of them is

shown to satisfy a diffusion equation, while the displacement vector field along with

the other pseudo-pressure variable is shown to satisfy a generalized Stokes system. It

should be noted that the original pressure is eliminated in the reformulation, thus, it is

not approximated as a primary (unknown) variable, instead, it is computed as a linear

combination of the two pseudo-pressures. Based on this multiphysics reformulation we

then propose a time-stepping algorithm which decouples (or couples) the reformulated

PDE problem at each time step into two sub-problems, a generalized Stokes problem

for the displacement vector field along with a pseudo-pressures and a diffusion problem

for another pseudo-pressure field. To make this multiphysics approach feasible

numerically, two critical issue must be resolved: the first one is the uniqueness of the

generalized Stokes problem and the other is to find a good boundary condition for

the diffusion equation so that it also becomes uniquely solvable.We also demonstrate

that, regardless the choice of discretization methods, the proposed formulation has a

built-in mechanism to overcome the “locking phenomenon” associated with numerical

approximations of the poroelasticity model.
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The remainder of this chapter is organized as follows. In Section 6.2 we present

a complete PDE analysis of the poroelasticity model which emphasizes the energy

law of the underlying model. Several conserved quantities are derived for the PDE

solution. Moreover, it is proved that the poroelasticity model converges to the Biot’s

consolidation model as the constrained specific storage coefficient c0 → 0. In Section

6.3 we propose and analyze some fully discrete finite element methods based on

the above mentioned multiphysics reformulation. Both coupled and decoupled time-

stepping are considered and compared. The Taylor-Hood mixed finite element method

combined with the P1-conforming finite element method is chosen as an example

for spatial discretization. It is proved that the solutions of the fully discrete finite

element methods fulfill a discrete energy law which mimics the differential energy law

satisfied by the PDE solution. Optimal order error estimates in the energy norm are

also established. Finally, in Section 6.4, several benchmark numerical experiments

are provided to show the performance of the proposed approach and methods, and

to demonstrate the absence of “locking phenomenon” in our numerical experiments.

6.2 Partial differential equation model and its

analysis

6.2.1 Preliminaries

D ⊂ Rd (d = 1, 2, 3) denotes a bounded polygonal domain with the boundary ∂D. The

standard function space notation is adopted in this chapter, their precise definitions

can be found in [13, 23, 89]. In particular, (·, ·) and 〈·, ·〉 denote respectively the

standard L2(D) and L2(∂D) inner products. For any Banach space B, we let B =

[B]d, and use B′ to denote its dual space. In particular, we use (·, ·)dual to denote

the dual product on (H1(D))′ × H1(D), and ‖ · ‖Lp(B) is a shorthand notation for

‖ · ‖Lp((0,T );B).
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We also introduce the function spaces

L2
0(D) := {q ∈ L2(D); (q, 1) = 0}, X := H1(D).

It is well known [89] that the following so-called inf-sup condition holds in the space

X× L2
0(D):

sup
v∈X

(div v, ϕ)

‖∇v ‖L2(D)

≥ α0‖ϕ ‖L2(D) ∀ϕ ∈ L2
0(D), α0 > 0. (6.1)

Let

RM := {r := a + b× x; a,b, x ∈ Rd}

denote the space of infinitesimal rigid motions. It is well known [13, 23, 89] that RM

is the kernel of the strain operator ε, that is, r ∈ RM if and only if ε(r) = 0. Hence,

we have

ε(r) = 0, div r = 0 ∀r ∈ RM. (6.2)

Let L2
⊥(∂D) and H1

⊥(D) denote respectively the subspaces of L2(∂D) and H1(D)

which are orthogonal to RM, that is,

H1
⊥(D) := {v ∈ H1(D); (v, r) = 0 ∀r ∈ RM},

L2
⊥(∂D) := {g ∈ L2(∂D); 〈g, r〉 = 0 ∀r ∈ RM}.

It is well known [26] that there exists a constant c1 > 0 such that

inf
r∈RM

‖v + r‖L2(D) ≤ c1‖ε(v)‖L2(D) ∀v ∈ H1(D).

184



Hence, for each v ∈ H1
⊥(D) there holds

‖v‖L2(D) = inf
r∈RM

‖v + r‖L2(D) ≤ c1‖ε(v)‖L2(D), (6.3)

which and the well-known Korn’s inequality [26] yield that for some c2 > 0

‖v‖H1(D) ≤ c2[‖v‖L2(D) + ‖ε(v)‖L2(D)] (6.4)

≤ c2(1 + c1)‖ε(v)‖L2(D) ∀v ∈ H1
⊥(D).

By Lemma 2.1 of [12] we know that for any q ∈ L2(D), there exists v ∈ H1
⊥(D)

such that div v = q and ‖v‖H1(D) ≤ C‖q‖L2(D). An immediate consequence of this

lemma is that there holds the following alternative version of the inf-sup condition:

sup
v∈H1

⊥(D)

(div v, ϕ)

‖∇v ‖L2(D)

≥ α1‖ϕ ‖L2(D) ∀ϕ ∈ L2
0(D), α1 > 0. (6.5)

Throughout the chapter, we assume D ⊂ Rd is a bounded polygonal domain such

that ∆ : H1
0 (D) ∩H2(D)→ L2(D) is an isomorphism (cf. [25, 54]). In addition, C is

used to denote a generic positive (pure) constant which may be different in different

places.

6.2.2 Partial differential equation model and its multiphysics

reformulation

The quasi-static poroelasticity model to be studied in this chapter is given by (cf.

[75])

−divσ(u) + α∇p = f in DT := D × (0, T ) ⊂ Rd × (0, T ), (6.6)

(c0p+ αdiv u)t + div vf = φ in DT , (6.7)
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where

σ(u) := µε(u) + λdiv uI, ε(u) :=
1

2

(
∇u +∇uT

)
, (6.8)

vf := −K
µf

(
∇p− ρfg

)
. (6.9)

Where u denotes the displacement vector of the solid and p denotes the pressure

of the solvent. f is the body force. I denotes the d × d identity matrix and ε(u)

is known as the strain tensor. The parameters in the model are Lamé constants λ

and µ, the (symmetric) permeability tensor K, the solvent viscosity µf , Biot-Willis

constant α, and the constrained specific storage coefficient c0. In addition, σ(u) is

called the (effective) stress tensor. σ̂(u, p) := σ(u) − αpI is the total stress tensor.

vf is the volumetric solvent flux and (6.9) is the well-known Darcy’s law. We assume

that ρf 6≡ 0, which is a realistic assumption.

To close the above system, suitable boundary and initial conditions must also be

prescribed. The following set of boundary and initial conditions will be considered in

this chapter:

σ̂(u, p)n = σ(u)n− αpn = f1 on ∂DT := ∂D × (0, T ), (6.10)

vf · n = −K
µf

(
∇p− ρfg

)
· n = φ1 on ∂DT , (6.11)

u = u0, p = p0 in D × {t = 0}. (6.12)

We note that in some engineering literature the second Lamé constant µ is also

called the shear modulus and denoted by G, and B := λ + 2
3
G is called the bulk

modulus. λ, µ and B are computed from the Young’s modulus E and the Poisson

ratio ν by the following formulas:

λ =
Eν

(1 + ν)(1− 2ν)
, µ = G =

E

2(1 + ν)
, B =

E

3(1− 2ν)
.
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Unlike the existing approaches in the literature [75, 68], in this chapter we will not

approximate the above original model directly, instead, we first derive a (multiphysics)

reformulation for the model, we then approximate the reformulated model. This is a

key idea of this chapter and it will be seen in the later sections that this new approach

is advantageous. To the end, we introduce new variables

q := div u, η := c0p+ αq, ξ := αp− λq.

It is easy to check that

p = κ1ξ + κ2η, q = κ1η − κ3ξ, (6.13)

where

κ1 :=
α

α2 + λc0

, κ2 :=
λ

α2 + λc0

, κ3 :=
c0

α2 + λc0

. (6.14)

Then (6.6)–(6.9) can be written as

−µdiv ε(u) +∇ξ = f in DT , (6.15)

κ3ξ + div u = κ1η in DT , (6.16)

ηt −
1

µf
div [K(∇(κ1ξ + κ2η)− ρfg)] = φ in DT , (6.17)

where p and q are related to ξ and η through the algebraic equations in (6.13).

It is now clear that (u, ξ) satisfies a generalized Stokes problem and η satisfies

a diffusion problem. This new formulation reveals the underlying deformation and

diffusion multiphysics process which occurs in the poroelastic material. In particular,

the diffusion part of the process is hidden in the original formulation but is apparent

in the new formulation. To make use the above reformulation for computation, we

need to address a crucial issue of the uniqueness for the generalized Stokes problem

and the diffusion problem after they are decoupled.
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6.2.3 Analysis of the partial differential equation model

We start this section with a definition of weak solutions to problem (6.6)–(6.12). For

convenience, we assume that f , f1, φ and φ1 all are independent of t in the remaining

of the chapter. We note that all the results of this chapter can be easily extended to

the time-dependent cases.

Definition 6.2.1. Let u0 ∈ H1(D), f ∈ L2(D), f1 ∈ L2(∂D), p0 ∈ L2(D), φ ∈ L2(D),

and φ1 ∈ L2(∂D). Assume (f ,v) + 〈f1,v〉 = 0 for any v ∈ RM. Given T > 0, a

tuple (u, p) with

u ∈ L∞
(
0, T ; H1

⊥(D)), p ∈ L2
(
0, T ;H1(D)

)
,

(c0p+ αdiv u)t ∈ L2(0, T ;H−1(D)), c
1
2
0 p ∈ L∞

(
0, T ;L2(D)),

is called a weak solution to (6.6)–(6.12), if there hold for almost every t ∈ [0, T ]

µ
(
ε(u), ε(v)

)
+ λ
(
div u, div v

)
− α

(
p, div v

)
(6.18)

= (f ,v) + 〈f1,v〉 ∀v ∈ H1(D),(
(c0p+ αdiv u)t, ϕ

)
dual

+
1

µf

(
K(∇p− ρfg),∇ϕ

)
(6.19)

=
(
φ, ϕ

)
+ 〈φ1, ϕ〉 ∀ϕ ∈ H1(D),

u(0) = u0, p(0) = p0. (6.20)

Similarly, we can define weak solutions to problem (6.15)–(6.17), (6.10)–(6.12).

Definition 6.2.2. Let u0 ∈ H1(D), f ∈ L2(D), f1 ∈ L2(∂D), p0 ∈ L2(D), φ ∈ L2(D),

and φ1 ∈ L2(∂D). Assume (f ,v) + 〈f1,v〉 = 0 for any v ∈ RM. Given T > 0, a
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5-tuple (u, ξ, η, p, q) with

u ∈ L∞
(
0, T ; H1

⊥(D)), ξ ∈ L2
(
0, T ;L2(D)

)
,

η ∈ L∞
(
0, T ;L2(D)

)
∩H1

(
0, T ;H−1(D)

)
, q ∈ L∞(0, T ;L2(D)),

p ∈ L2
(
0, T ;H1(D)

)
,

is called a weak solution to (6.15)–(6.17), (6.10)–(6.12) if there hold for almost every

t ∈ [0, T ]

µ
(
ε(u), ε(v)

)
−
(
ξ, div v

)
= (f ,v) + 〈f1,v〉 ∀v ∈ H1(D), (6.21)

κ3

(
ξ, ϕ
)

+
(
div u, ϕ

)
= κ1

(
η, ϕ

)
∀ϕ ∈ L2(D), (6.22)(

ηt, ψ
)

dual
+

1

µf

(
K(∇(κ1ξ + κ2η)− ρfg),∇ψ

)
(6.23)

= (φ, ψ) + 〈φ1, ψ〉 ∀ψ ∈ H1(D),

p := κ1ξ + κ2η, q := κ1η − κ3ξ, (6.24)

u(0) = u0, p(0) = p0, (6.25)

q(0) = q0 := div u0, η(0) = η0 : = c0p0 + αq0. (6.26)

Remark 6.2.3. (a) After ξ and η are computed, p and q are simply updated by their

algebraic expressions in (6.24).

(b) Equation (6.23) implicitly imposes the following boundary condition for η:

κ2K
∂η

∂n
= Kρfg · n− κ1K

∂ξ

∂n
. (6.27)

(c) It should be pointed out that the only reason for introducing the space H1
⊥(D) in

the above two definitions is that the boundary condition (6.10) is a pure “Neumann

condition”. If it is replaced by a pure Dirichlet condition or by a mixed Dirichlet-

Neumann condition, there is no need to introduce this space. This fact will be used in
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our numerical experiments in Section 6.4. We also note that from the analysis point

of view, the pure Neumann condition case is the most difficult case.

Lemma 6.2.4. Every weak solution (u, p) of problem (6.18)–(6.20) satisfies the

following energy law:

E(t) +
1

µf

∫ t

0

(
K(∇p− ρfg),∇p

)
ds−

∫ t

0

(
φ, p
)
ds−

∫ t

0

〈φ1, p〉 ds = E(0) (6.28)

for all t ∈ [0, T ], where

E(t) : =
1

2

[
µ‖ ε(u(t)) ‖2

L2(D) + λ‖ div u(t) ‖2
L2(D) + c0‖ p(t) ‖2

L2(D) (6.29)

− 2
(
f ,u(t)

)
− 2〈f1,u(t)〉

]
.

Moreover,

‖ (c0p+ αdiv u)t ‖L2(0.T ;H−1(D)) ≤
K

µf
‖∇p− ρfg ‖L2(DT ) (6.30)

+ ‖φ‖L2(DT ) + ‖φ1‖L2(∂DT ) <∞.

Proof. We only consider the case ut ∈ L2((0, T ); L2(D)), the general case can be

converted into this case using the Steklov average technique (cf. [70, Chapter 2]).

Setting ϕ = p in (6.19) and v = ut in (6.18) yields for a.e. t ∈ [0, T ]

(
(c0p+ αdiv u)t, p(t)

)
dual

+
1

µf

(
K(∇p− ρfg),∇p

)
=
(
φ, p
)

+ 〈φ1, p〉, (6.31)

µ
(
ε(u), ε(ut)

)
+ λ
(
div u, div ut

)
− α

(
p, div ut

)
= (f ,ut) + 〈f1,ut〉. (6.32)

Adding the above two equations and integrating the sum in t over the interval

(0, s) for any s ∈ (0, T ] yield

E(s) +
1

µf

∫ s

0

(
K(∇p− ρfg),∇p

)
dt−

∫ s

0

(
φ, p
)
dt−

∫ s

0

〈φ1, p〉 dt = E(0), (6.33)
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where E(·) is given by (6.29). Here we have used the fact that f and f1 are independent

of t. Hence, (6.28) holds.

(6.30) follows immediately from (6.19). The proof is complete.

Likewise, weak solutions of (6.21)–(6.26) satisfy a similar energy law which is a

rewritten version of (6.28) in the new variables.

Lemma 6.2.5. Every weak solution (u, ξ, η, p, q) of problem (6.21)–(6.26) satisfies

the following energy law:

J(t) +
1

µf

∫ t

0

(
K(∇p− ρfg),∇p

)
ds−

∫ t

0

(
φ, p
)
ds−

∫ t

0

〈φ1, p〉 ds = J(0) (6.34)

for all t ∈ [0, T ], where

J(t) : =
1

2

[
µ‖ ε(u(t)) ‖2

L2(D) + κ2‖ η(t) ‖2
L2(D) + κ3‖ ξ(t) ‖2

L2(D) (6.35)

− 2
(
f ,u(t)

)
− 2〈f1,u(t)〉

]
.

Moreover,

‖ ηt ‖L2(0.T ;H−1(D)) ≤
K

µf
‖∇p− ρfg ‖L2(DT ) (6.36)

+ ‖φ‖L2(DT ) + ‖φ1‖L2(∂DT ) <∞.

Proof. Again, we only consider the case that ut ∈ L2(0, T ;L2(D)). Setting v = ut in

(6.21), differentiating (6.22) with respect to t followed by taking ϕ = ξ, and setting

ψ = p = κ1ξ+κ2η in (6.23); adding the resulting equations and integrating in t yield

the desired equality (6.34). The inequality (6.36) follows immediately from (6.23).

The above energy law immediately implies the following solution estimates.
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Lemma 6.2.6. There exists a positive constant C1 = C1

(
‖u0‖H1(D), ‖p0‖L2(D),

‖f‖L2(D), ‖f1‖L2(∂D), ‖φ‖L2(D), ‖φ1‖L2(∂D)

)
such that

√
µ‖ε(u)‖L∞(0,T ;L2(D)) +

√
κ2‖η‖L∞(0,T ;L2(D)) (6.37)

+
√
κ3‖ξ‖L∞(0,T ;L2(D)) +

√
K

µf
‖∇p‖L2(0,T ;L2(D)) ≤ C1.

‖u‖L∞(0,T ;L2(D)) ≤ C1, ‖p‖L∞(0,T ;L2(D)) ≤ C1

(
1 +

√
κ3

κ1

)
. (6.38)

We note that (6.38) follows from (6.37), (6.3) and the relation p = κ1ξ + κ2η.

Furthermore, by exploiting the linearity of the PDE system, we have the following

a priori estimates for the weak solution.

Theorem 6.2.7. Suppose that u0 and p0 are sufficiently smooth, then there exists a

positive constant C2 = C2

(
C1, ‖∇p0‖L2(D)

)
and C3 = C3

(
C1, C2, ‖u0‖H2(D), ‖p0‖H2(D)

)
such that there hold the following estimates for the solution to problem (6.15)–

(6.17),(6.10)–(6.12):

√
µ‖ε(ut)‖L2(0,T ;L2(D)) +

√
κ2‖ηt‖L2(0,T ;L2(D)) (6.39)

+
√
κ3‖ξt‖L2(0,T ;L2(D)) +

√
K

µf
‖∇p‖L∞(0,T ;L2(D)) ≤ C2.

√
µ‖ε(ut)‖L∞(0,T ;L2(D)) +

√
κ2‖ηt‖L∞(0,T ;L2(D)) (6.40)

+
√
κ3‖ξt‖L∞(0,T ;L2(D)) +

√
K

µf
‖∇pt‖L2(0,T ;L2(D)) ≤ C3.

‖ηtt‖L2(H−1(D)) ≤

√
K

µf
C3. (6.41)

Proof. On noting that f , f1, φ and φ1 all are assumed to be independent of t,

differentiating (6.21) and (6.22) with respect to t, taking v = ut and ϕ = ξt in
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(6.21) and (6.22) respectively, and adding the resulting equations yield

µ‖ε(ut)‖2
L2(D) =

(
qt, ξt

)
= κ1

(
ηt, ξt

)
− κ3‖ξt‖2

L2(D). (6.42)

Setting ψ = pt = κ1ξt + κ2ηt in (6.23) gives

κ1

(
ηt, ξt

)
+ κ2‖ηt‖2

L2(D) +
K

2µf

d

dt
‖∇p− ρfg‖2

L2(D) =
d

dt

[
(φ, p) + 〈φ1, p〉

]
. (6.43)

Adding (6.42) and (6.43) and integrating in t we get for t ∈ [0, T ]

K

2µf
‖∇p(t)− ρfg‖2

L2(D) +

∫ t

0

[
µ‖ε(ut)‖2

L2(D) + κ2‖ηt‖2
L2(D) + κ3‖ξt‖2

L2(D)

]
ds

=
K

2µf
‖∇p0 − ρfg‖2

L2(D) + (φ, p(t)− p0) + 〈φ1, p(t)− p0〉,

which readily infers (6.39).

To show (6.40), first differentiating (6.21) one time with respect to t and setting

v = utt, differentiating (6.22) twice with respect to t and setting ϕ = ξt, and adding

the resulting equations we get

µ

2

d

dt
‖ε(ut)‖2

L2(D) =
(
qtt, ξt

)
= κ1

(
ηtt, ξt

)
− κ3

2

d

dt
‖ξt‖2

L2(D). (6.44)

Second, differentiating (6.23) with respect t one time and taking ψ = pt = κ1ξt +

κ2ηt yield

κ1

(
ηtt, ξt

)
+
κ2

2

d

dt
‖ηt‖2

L2(D) +
K

µf
‖∇pt‖2

L2(D) = 0. (6.45)

Finally, adding the above two inequalities and integrating in t give for t ∈ [0, T ]

µ‖ε(ut(t))‖2
L2(D) + κ2‖ηt(t)‖2

L2(D) + κ3‖ξt(t)‖2
L2(D) +

2K

µf

∫ t

0

‖∇pt‖2
L2(D) ds (6.46)

= µ‖ε(ut(0))‖2
L2(D) + κ2‖ηt(0)‖2

L2(D) + κ3‖ξt(0)‖2
L2(D).
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Hence, (6.40) holds. (6.41) follows immediately from the following inequality

(
ηtt, ψ

)
= − 1

µf

(
K∇pt,∇ψ

)
≤ K

µf
‖∇pt‖L2(D)‖∇ψ‖L2(D) ∀ψ ∈ H1

0 (D),

(6.40) and the definition of the H−1-norm. The proof is complete.

Remark 6.2.8. As expected, the above high order norm solution estimates require

p0 ∈ H1(D),ut(0) ∈ L2(D), ηt(0) ∈ L2(D) and ξt(0) ∈ L2(D). The values of

ut(0), ηt(0) and ξt(0) can be computed using the PDEs as follows. It follows from

(6.17) that ηt(0) satisfies

ηt(0) = φ+
1

µf
div [K(∇p0 − ρfg)].

Hence ηt(0) ∈ L2(D) provided that p0 ∈ H2(D).

To find ut(0) and ξt(0), differentiating (6.15) and (6.16) with respect to t and

setting t = 0 we get

−µdiv ε(ut(0)) +∇ξt(0) = 0 in D,

κ3ξt(0) + div ut(0) = κ1ηt(0) in D.

Hence, ut(0) and ξt(0) can be determined by solving the above generalized Stokes

problem.

The next lemma shows that weak solutions of problem (6.21)–(6.26) preserve some

“invariant” quantities, it turns out that these “invariant” quantities play a vital role

in the construction of our time-splitting scheme to be introduced in the next section.
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Lemma 6.2.9. Every weak solution (u, ξ, η, p, q) to problem (6.21)–(6.26) satisfies

the following relations:

Cη(t) :=
(
η(·, t), 1

)
=
(
η0, 1

)
+
[
(φ, 1) + 〈φ1, 1〉

]
t, t ≥ 0. (6.47)

Cξ(t) :=
(
ξ(·, t), 1

)
=

1

d+ µκ3

[
µκ1Cη(t)−

(
f , x
)
− 〈f1, x〉

]
. (6.48)

Cq(t) :=
(
q(·, t), 1

)
= κ1Cη(t)− κ3Cξ(t). (6.49)

Cp(t) :=
(
p(·, t), 1

)
= κ1Cξ(t) + κ2Cη(t). (6.50)

Cu(t) :=
〈
u(·, t) · n, 1

〉
= Cq(t). (6.51)

Proof. We first notice that equation (6.47) follows immediately from taking ϕ ≡ 1 in

(6.23), which is a valid test function.

To prove (6.48), taking v = x in (6.21) and ϕ = 1 in (6.22), which are valid test

functions, and using the identities ∇x = I, divx = d, and ε(x) = I, we get

µ
(
div u, 1

)
− d
(
ξ, 1
)

=
(
f , x
)

+ 〈f1, x〉, (6.52)(
div u, 1

)
= κ1(η, 1)− κ3(ξ, 1). (6.53)

Substituting (6.53) into (6.52) and using (6.47) yield

Cξ(t) :=
(
ξ(·, t), 1

)
=

1

d+ µκ3

[
µκ1Cη(t)−

(
f , x
)
− 〈f1, x〉

]
. (6.54)

Hence (6.48) holds. (6.49) follows immediately from (6.53), (6.47) and (6.48).

Finally, since p = κ1ξ + κ2η, (6.50) then follows from (6.47) and (6.48). (6.51)

is an immediate consequence of q = div u and the divergence theorem. The proof is

complete.

Remark 6.2.10. We note that Cη, Cξ, Cq and Cp all are (known) linear functions of

t, and they become (known) constants when φ ≡ 0 and φ1 ≡ 0.
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With the help of the above lemmas, we can show the solvability of problem (6.6)–

(6.12).

Theorem 6.2.11. Let u0 ∈ H1(D), f ∈ L2(D), f1 ∈ L2(∂D), p0 ∈ L2(D), φ ∈ L2(D),

and φ1 ∈ L2(∂D). Suppose (f ,v) + 〈f1,v〉 = 0 for any v ∈ RM. Then there exists

a unique solution to problem (6.6)–(6.12) in the sense of Definition 6.2.1, likewise,

there exists a unique solution to problem (6.15)–(6.17),(6.10)–(6.12) in the sense of

Definition 6.2.2.

Proof. We only outline the main steps of the proof and leave the details to the

interested reader.

First, since the PDE system is linear, the existence of weak solution can be proved

by the standard Galerkin method and compactness argument (cf. [89]). We note that

the energy laws established in Lemmas 6.2.4 and 6.2.5 guarantee the required uniform

estimates for the Galerkin approximate solutions.

Second, to show the uniqueness, suppose there are two sets of weak solutions,

again by the linearity of the PDE system it is trivial to show that the difference

of the solutions satisfy the same PDE system with zero initial and boundary data.

The energy law immediately implies that the difference must be zero, hence, the

uniqueness is verified.

We conclude this section by establishing a convergence result for the solution of

problem (6.15)–(6.17),(6.10)–(6.12) when the constrained specific storage coefficient

c0 tends to 0. Such a convergence result is useful and significant for the following

two reasons. First, as mentioned earlier, the poroelasticity model studied in this

chapter reduces into the well-known Biot’s consolidation model from soil mechanics

(cf. [75, 68]) and Doi’s model for polymer gels (cf. [38, 93]). Second, it proves that

the proposed approach and methods of this chapter are robust under such a limit

process.

Theorem 6.2.12. Let u0 ∈ H1(D), f ∈ L2(D), f1 ∈ L2(∂D), p0 ∈ L2(D), φ ∈

L2(D), and φ1 ∈ L2(∂D). Suppose (f ,v) + 〈f1,v〉 = 0 for any v ∈ RM. Let
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(uc0 , ηc0 , ξc0 , pc0 , qc0) denote the unique weak solution to problem (6.15)–(6.17),(6.10)–

(6.12). Then there exists (u∗, η∗, ξ∗, p∗, q∗) ∈ L∞(0, T ; H1
⊥(D)) × L∞(0, T ;L2(D)) ×

L∞(0, T ;L2(D))) × L∞(0, T ;L2(D)) ∩ L2(0, T ;H1(D) × L∞(0, T ;L2(D)) such that

(uc0 , ηc0 , ξc0 , pc0 , qc0) converges weakly to (u∗, η∗, ξ∗, p∗, q∗) in the above product space

as c0 → 0.

Proof. It follows immediately from (6.36)–(6.38) and Korn’s inequality that

• uc0 is uniformly bounded (in c0) in L∞(0, T ; H1
⊥(D)).

• √κ2ηc0 is uniformly bounded (in c0) in L∞(0, T ;L2(D)) ∩ L2(0, T ;H−1(D)).

• √κ3ξc0 is uniformly bounded (in c0) in L∞(0, T ;L2(D)).

• pc0 is uniformly bounded (in c0) in L∞(0, T ;L2(D)) ∩ L2(0, T ;H1(D)).

• qc0 is uniformly bounded (in c0) in L∞(0, T ;L2(D)).

On noting that limc0→0 κ1 = 1
α

, limc0→0 κ2 = λ
α2 and limc0→0 κ3 = 0, by

the weak compactness of reflexive Banach spaces and Aubin-Lions Lemma [26]

we have that there exist (u∗, η∗, ξ∗, p∗, q∗) ∈ L∞(0, T ; H1
⊥(D)) × L∞(0, T ;L2(D)) ×

L∞(0, T ;L2(D))) × L∞(0, T ; L2(D)) ∩ L2(0, T ;H1(D) × L∞(0, T ;L2(D)) and a

subsequence of (uc0 , ηc0 , ξc0 , pc0 , qc0) (still denoted by the same notation) such that as

c0 → 0 (a subsequence of c0, to be exact)

• uc0 converges to u∗ weak ∗ in L∞(0, T ; H1
⊥(D)) and weakly in L2(0, T ; H1

⊥(D)).

• √κ2ηc0 converges to
√
λ
α
η∗ weak ∗ in L∞(0, T ;L2(D)) and weakly in L2(DT ).

• κ3ξc0 converges to 0 weakly in L2(DT ).

• pc0 converges to p∗ weak ∗ in L∞(0, T ;L2(D)) and weakly in L2(0, T ;H1(D)).

• qc0 converges to p∗ weak ∗ in L∞(0, T ;L2(D)) and weakly in L2(DT ).
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Then setting c0 → 0 in (6.21)–(6.26) yields (note that the dependence of the solution

on c0 is suppressed there)

µ
(
ε(u∗), ε(v)

)
−
(
ξ∗, div v

)
= (f ,v) + 〈f1,v〉 ∀v ∈ H1(D),(

div u∗, ϕ
)

=
1

α

(
η∗, ϕ

)
∀ϕ ∈ L2(D),(

(η∗)t, ψ
)

dual
+

1

µf

(
K(∇p∗ − ρfg),∇ψ

)
= (φ, ψ) + 〈φ1, ψ〉 ∀ψ ∈ H1(D),

p∗ :=
1

α
ξ∗ +

λ

α2
η∗, q∗ :=

1

α
η∗,

u∗(0) = u0,

q∗(0) = q0 := div u0, η∗(0) = η0 : = αq0.

Equivalently,

µ
(
ε(u∗), ε(v)

)
−
(
ξ∗, div v

)
= (f ,v) + 〈f1,v〉 ∀v ∈ H1(D),(

div u∗, ϕ
)

=
(
q∗, ϕ

)
∀ϕ ∈ L2(D),

α
(
(q∗)t, ψ

)
dual

+
1

µf

(
K(∇p∗ − ρfg),∇ψ

)
= (φ, ψ) + 〈φ1, ψ〉 ∀ψ ∈ H1(D),

p∗ :=
1

α

(
ξ∗ + λq∗

)
or ξ∗ = αp∗ − λq∗,

u∗(0) = u0,

q∗(0) = q0 := div u0.

Hence, (u∗, η∗, ξ∗, p∗, q∗) is a weak solution of Biot’s consolidation model (cf. [38, 93]).

By the uniqueness of its solutions, we conclude that the whole sequence (uc0 , ηc0 , ξc0 ,

pc0 , qc0) converges to (u∗, η∗, ξ∗, p∗, q∗) as c0 → 0 in the above sense. The proof is

complete.
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6.3 Fully discrete finite element methods

The goal of this section is to design and analyze some fully discrete finite element

methods for the poroelasticity model based on the above new formulation. As the

time stepping is vital for the overall methods, we first introduce our time-stepping

schemes at the PDE level.

6.3.1 Basic time-stepping algorithm

Based on this new formulation, our multiphysics time-stepping algorithm reads as

follows:

Splitting Algorithm (SA):

(i) Set

u0 = u0, p0 = p0, q0 = q0 := div u0,

η0 = c0p
0 + αq0, ξ0 = αp0 − λq0.

(ii) For n = 0, 1, 2, · · · , complete the following three steps:

Step 1: Solve for (un+1, ξn+1) such that

−µdiv ε(un+1) +∇ξn+1 = f , in DT , (6.55)

κ3ξ
n+1 + div un+1 = κ1η

n+θ in DT , (6.56)

σ̃(un+1, ξn+1)n = f1 on ∂DT . (6.57)

Here θ = 0 or 1.
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Step 2: Solve for ηn+1 such that

dtη
n+1 − 1

µf
div [K(∇(κ2η

n+1 + κ1ξ
n+1)− ρfg)] = φ, in DT , (6.58)

1

µf
K[∇(κ2η

n+1 + κ1ξ
n+1)− ρfg] · n = φ1 on ∂DT . (6.59)

Step 3: Update pn+1 and qn+1 by

pn+1 = κ1ξ
n+1 + κ2η

n+θ, qn+1 = κ1η
n+1 − κ3ξ

n+1. (6.60)

Where dtη
n+1 := (ηn+1 − ηn)/∆t, ∆t denotes the time step size of a uniform

partition of the time interval [0, T ], and

σ̃(un+1, ξn+1) := µε(un+1)− ξn+1I. (6.61)

We note that (6.58) is the implicit Euler scheme, which is chosen just for the ease

of presentation, it can be replaced by other time-stepping schemes. (6.59) provides a

flux boundary condition for ηn+1.

Remark 6.3.1. When θ = 0, Step 1 and Step 2 are decoupled, hence these two

sub-problems can be solved independently. On the other hand, when θ = 1, two sub-

problems are coupled, hence, they must be solved together.

6.3.2 Fully discrete finite element methods

In this section, we consider the space-time discretization which combines the above

splitting algorithm with appropriately chosen spatial discretization methods. To the

end, we introduce some notation.

Assume D ∈ Rd(d = 2, 3) is a polygonal domain. Let Th be a quasi-uniform

triangulation or rectangular partition of D with mesh size h, and D̄ =
⋃
K∈Th K̄.

Also, let (Xh,Mh) be a stable mixed finite element pair, that is, Xh ⊂ H1(D) and
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Mh ⊂ L2(D) satisfy the inf-sup condition

sup
vh∈Xh

(divvh, ϕh)

‖∇vh‖L2(D)

≥ β0‖ϕh‖L2(D) ∀ϕh ∈M0h := Mh ∩ L2
0(D), β0 > 0. (6.62)

A number of stable mixed finite element spaces (Xh,Mh) have been known in the

literature [14]. A well-known example is the following so-called Taylor-Hood element

(cf. [10, 14]):

Xh =
{
vh ∈ C0(D); vh|K ∈ P2(K) ∀K ∈ Th

}
,

Mh =
{
ϕh ∈ C0(D); ϕh|K ∈ P1(K) ∀K ∈ Th

}
.

In the next subsection, we shall only present the analysis for the Taylor-Hood

element, but remark that the analysis can be extended to other stable mixed elements.

However, piecewise constant space Mh is not recommended because that would result

in no rate of convergence for the approximation of the pressure p (see Section 6.3.4).

Finite element approximation spaceWh for η variable can be chosen independently,

any piecewise polynomial space is acceptable provided that Wh ⊃ Mh. Especially,

Wh ⊂ L2(D) can be chosen as a fully discontinuous piecewise polynomial space,

although it is more convenient to choose Wh to be a continuous (resp. discontinuous)

space if Mh is a continuous (resp. discontinuous) space. The most convenient choice

is Wh = Mh, which will be adopted in the remainder of this chapter.

Recall that RM denotes the space of the infinitesimal rigid motions (see Section

6.2), evidently, RM ⊂ Xh. We now introduce the L2-projection PR from L2(D) to

RM. For each v ∈ L2(D), PRvh ∈ RM is defined by

(PRvh, r) = (vh, r) ∀r ∈ RM.

Moreover, we define

Vh := (I − PR)Xh =
{
vh ∈ Xh; (vh, r) = 0 ∀r ∈ RM

}
. (6.63)
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It is easy to check that Xh = Vh

⊕
RM. It was proved in [38] that there holds the

following alternative version of the above inf-sup condition:

sup
vh∈Vh

(div vh, ϕh)

‖∇vh ‖L2(D)

≥ β1‖ϕh ‖L2(D) ∀ϕh ∈M0h, β1 > 0. (6.64)

Finite Element Algorithm (FEA):

(i) Compute u0
h ∈ Vh and q0

h ∈ Wh by

u0
h = Rhu0, p0

h = Qhp0, q0
h= Qhq0 (q0 = div u0),

η0
h = c0p

0
h + αq0

h, ξ0
h = αp0

h − λq0
h.

(ii) For n = 0, 1, 2, · · · , do the following three steps.

Step 1: Solve for (un+1
h , ξn+1

h ) ∈ Vh ×Wh such that

µ
(
ε(un+1

h ), ε(vh)
)
−
(
ξn+1
h , div vh

)
= (f ,vh) + 〈f1,vh〉 ∀vh ∈ Vh, (6.65)

κ3

(
ξn+1
h , ϕh

)
+
(
div un+1

h , ϕh
)

= κ1

(
ηn+θ
h , ϕh

)
∀ϕh ∈Mh. (6.66)

Step 2: Solve for ηn+1
h ∈ Wh such that

(
dtη

n+1
h , ψh

)
+

1

µf

(
K(∇(κ1ξ

n+1
h + κ2η

n+1
h )− ρfg,∇ψh

)
(6.67)

= (φ, ψh) + 〈φ1, ψh〉.

Step 3: Update pn+1
h and qn+1

h by

pn+1
h = κ1ξ

n+1
h + κ2η

n+θ
h , qn+1

h = κ1η
n+1
h − κ3ξ

n+1
h . (6.68)
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Remark 6.3.2. At each time step, problem (6.65)-(6.66) is a generalized Stokes

problem with a mixed boundary condition for (u, p). The well-posedness of the

generalized Stokes problem follows easily with the help of the inf-sup condition.

6.3.3 Stability analysis of fully discrete finite element meth-

ods

The primary goal of this subsection is to derive a discrete energy law which mimics

the PDE energy law (6.28). It turns out that such a discrete energy law only holds

if h and ∆t satisfy the mesh constraint ∆t = O(h2) when θ = 0 but for all h,∆t > 0

when θ = 1.

Before discussing the stability of (FEA), We first show that the numerical solution

satisfies all side constraints which are fulfilled by the PDE solution.

Lemma 6.3.3. Let {(unh, ξnh , ηnh)}n≥0 be defined by the (FEA), then there hold

(ηnh , 1) = Cη(tn) for n = 0, 1, 2, · · · , (6.69)

(ξnh , 1) = Cξ(tn−1+θ) for n = 1− θ, 1, 2, · · · , (6.70)

〈unh · n, 1〉 = Cu(tn−1+θ) for n = 1− θ, 1, 2, · · · . (6.71)

Proof. Taking ψh = 1 in (6.67) yields

(
dtη

n+1
h , 1

)
= (φ, 1) + 〈φ1, 1〉.

Then summing over n from 0 to ` (≥ 0) we get

(η`+1
h , 1) = (η0

h, 1) +
[
(φ, 1) + 〈φ1, 1〉

]
t`+1 = (η0, 1) +

[
(φ, 1) + 〈φ1, 1〉

]
t`+1 = Cη(t`+1)

for ` = 0, 1, 2, · · · . So (6.69) holds.
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To prove (6.70), taking vh = x in (6.65) and ϕh = 1 in (6.66), we get

µ
(
div un+1

h , 1
)
− d
(
ξn+1
h , 1

)
=
(
f , x
)

+ 〈f1, x〉, (6.72)

κ3

(
ξn+1
h , 1

)
+
(
div un+1

h , 1
)

= κ1Cη(tn+θ). (6.73)

Substituting (6.73) into (6.72) yields

(d+ µκ3)
(
ξn+1
h , 1

)
= µκ1Cη(tn+θ)−

(
f , x
)
− 〈f1, x〉.

Hence, by the definition of Cξ(t) we conclude that (6.70) holds for all n ≥ 1− θ.

(6.71) follows from (6.69), (6.70), (6.73), and an application of the Divergence

Theorem. The proof is complete.

The next lemma establishes an identity which mimics the continuous energy law

for the solution of (FEA).

Lemma 6.3.4. Let {(unh, ξnh , ηnh)}n≥0 be defined by (FEA), then there holds the

following identity:

J `h,θ + S`h,θ = J0
h,θ for ` ≥ 1, θ = 0, 1, (6.74)

where

J `h,θ :=
1

2

[
µ‖ε(u`+1

h )‖2
L2(D) + κ2‖η`+θh ‖

2
L2(D) + κ3‖ξ`+1

h ‖
2
L2(D) − 2

(
f ,u`+1

h

)
− 2
〈
f1,u

`+1
h

〉]
,

S`h,θ := ∆t
∑̀
n=0

[
µ∆t

2
‖dtε(un+1

h )‖2
L2(D) +

K

µf

(
∇pn+1

h − ρfg,∇pn+1
h

)
+
κ2∆t

2
‖dtηn+θ

h ‖2
L2(D) +

κ3∆t

2
‖dtξn+1

h ‖2
L2(D) − (φ, pn+1

h )− 〈φ1, p
n+1
h 〉

− (1− θ)κ1K∆t

µf

(
dt∇ξn+1

h ,∇pn+1
h

)]
.

pn+1
h := κ1ξ

n+1
h + κ2η

n+θ
h .
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Proof. Since the proof for the case θ = 1 is exactly same as that of the PDE energy

law, so we omit it and leave it to the interested reader to explore. Here we only

consider the case θ = 0. Based on (6.66), we can define η−1
h by

κ1

(
η−1
h , ϕh

)
= κ3

(
ξ0
h, ϕh

)
+
(
div u0

h, ϕh
)

(6.75)

Setting vh = dtu
n+1
h in (6.65), ϕh = ξn+1

h in (6.66), and ψh = pn+1
h in (6.67) after

lowing the degree from n+ 1 to n, we get

µ

2
dt‖ε(un+1

h )‖2
L2(D) +

µ

2
∆t‖dtε(un+1

h )‖2
L2(D) (6.76)

= dt(f ,u
n+1
h ) + dt〈f1,u

n+1
h 〉+ (ξn+1

h , div dtu
n+1
h ),

κ3

(
dtξ

n+1
h , ξn+1

h

)
+
(
div dtu

n+1
h , ξn+1

h

)
= κ1

(
dtη

n
h , ξ

n+1
h

)
, (6.77)(

dtη
n
h , p

n+1
h

)
+

1

µf

(
K(∇(κ1ξ

n
h + κ2η

n
h)− ρfg),∇pn+1

h

)
(6.78)

= (φ, pn+1
h ) + 〈φ1, p

n+1
h 〉.

The first term on the left-hand side of (6.78) can be rewritten as

(
dtη

n
h , p

n+1
h

)
=
(
dtη

n
h , κ1ξ

n+1
h + κ2η

n
h

)
(6.79)

= κ1

(
dtη

n
h , ξ

n+1
h

)
+
κ2∆t

2
‖dtηnh‖2

L2(D) +
κ2

2
dt‖ηnh‖2

L2(D).

Moreover,

K

µf

(
∇(κ1ξ

n
h + κ2η

n
h)− ρfg,∇pn+1

h ) (6.80)

=
K

µf
(∇pn+1

h − ρfg,∇pn+1
h )− κ1K∆t

µf

(
dt∇ξn+1

h ,∇pn+1
h

)
.

κ3

(
dtξ

n+1
h , ξn+1

h

)
=
κ3

2
dt‖ξn+1

h ‖2
L2(D) +

κ3∆t

2
‖dtξn+1

h ‖2
L2(D). (6.81)
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Adding (6.76)–(6.78), using (6.79)–(6.81) and applying the summation operator

∆t
∑`

n=0 to the both sides of the resulting equation yield the desired equality (6.74).

The proof is complete.

In the case θ = 1, (6.74) gives the desired solution estimates without any mesh

constraint. On the other hand, when θ = 0, since the last term in the expression of

S`h,θ does not have a fixed sign, hence, it needs to be controlled in order to ensure the

positivity of S`h,θ.

Corollary 6.3.5. Let {(unh, ξnh , ηnh)}n≥0 be defined by (FEA) with θ = 0, then there

holds the following inequality:

J `h,0 + Ŝ`h,0 ≤ J0
h,0 for ` ≥ 1, (6.82)

provided that ∆t = O(h2). Where

Ŝ`h,0 := ∆t
∑̀
n=0

[
µ∆t

4
‖dtε(un+1

h )‖2
L2(D) +

K

2µf
‖∇pn+1

h ‖2
L2(D) −

K

µf

(
ρfg,∇pn+1

h

)
+
κ2∆t

2
‖dtηnh‖2

L2(D) +
κ3∆t

2
‖dtξn+1

h ‖2
L2(D) − (φ, pn+1

h )− 〈φ1, p
n+1
h 〉

]
.

Proof. By Schwarz inequality and inverse inequality (6.85), we get

κ1K∆t

µf

(
dt∇ξn+1

h ,∇pn+1
h

)
≤ κ2

1K

2µf
‖∇ξn+1

h −∇ξnh‖2
L2(D) +

K

2µf
‖∇pn+1

h ‖2
L2(D) (6.83)

≤ c2
1κ

2
1K

2µfh2
‖ξn+1

h − ξnh‖2
L(D)2 +

K

2µf
‖∇pn+1

h ‖2
L2(D).
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To bound the first term on the right-hand side of (6.83), we appeal to the inf-sup

condition and get

‖ξn+1
h − ξnh‖L2 ≤ 1

β1

sup
vh∈Vh

(
div vh, ξ

n+1
h − ξnh

)
‖∇vh‖L2(D)

(6.84)

≤ µ

β1

sup
vh∈Vh

(
ε(un+1 − un), ε(vh)

)
‖∇vh‖L2(D)

≤ µ

β1

∆t‖dtε(un+1
h )‖L2 .

Substituting (6.84) into (6.83) and combining it with (6.74) imply (6.82) provided

that ∆t ≤ (µfβ
2
1)(2µKc2

1κ
2
1)−1h2. The proof is complete.

6.3.4 Convergence analysis

The goal of this section is to analyze the fully discrete finite element algorithm (FEA)

proposed in the previous subsection. Precisely, we shall derive optimal order error

estimates for (FEA) in both L∞(0, T ;L2(D) and L2(0, T ;H1(D))-norm. To the end,

we first list some facts, which are well known in the literature [13, 14], about finite

element functions.

We first recall the following inverse inequality for polynomial functions [23]:

‖∇ϕh‖L2(K) ≤ c1h
−1‖ϕh‖L2(K) ∀ϕh ∈ Pr(K), K ∈ Th. (6.85)

For any ϕ ∈ L2(D), we define its L2-projection Qh : L2 → Wh as

(
Qhϕ, ψh

)
=
(
ϕ, ψh

)
ψh ∈ Wh. (6.86)

It is well known that the projection operator Qh : L2 → Wh satisfies (cf [13]), for

any ϕ ∈ Hs(D)(s > 1),

‖Qhϕ− ϕ‖L2(D) + h‖∇(Qhϕ− ϕ)‖L2(D) ≤ Ch`‖ϕ‖H`(D), ` = min{2, s}. (6.87)
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We like to point out that when Wh /∈ H1(D), the second term on the left-hand

side of (6.87) has to be replaced by the broken H1-norm.

Next, for any ϕ ∈ H1(D), we define its elliptic projection Shϕ by

(
K∇Shϕ,∇ϕh

)
=
(
K∇ϕ,∇ϕh

)
ϕh ∈ Wh, (6.88)(

Shϕ, 1
)

=
(
ϕ, 1
)
. (6.89)

It is well known that the projection operator Sh : H1(D)→ Wh satisfies (cf [13]),

for any ϕ ∈ Hs(D)(s > 1),

‖Shϕ− ϕ‖L2(D) + h‖∇(Shϕ− ϕ)‖L2(D) ≤ Ch`‖ϕ‖H`(D), ` = min{2, s}. (6.90)

Finally, for any v ∈ H1
⊥(D), we define its elliptic projection Rhv by

(
ε(Rhv), ε(wh)

)
=
(
ε(v), ε(wh)

)
wh ∈ Vh. (6.91)

It is easy to show that the projection Rhv satisfies (cf [13]), for any v ∈ H1
⊥(D)∩

Hs(D)(s > 1),

‖Rhv − v‖L2(D) + h‖∇(Rhv − v)‖L2(D) ≤ Chm‖v‖Hm(D), m = min{3, s}. (6.92)

To derive error estimates, we introduce the following error notation

En
u := u(tn)− unh, En

ξ := ξ(tn)− ξnh , En
η := η(tn)− ηnh ,

En
p := p(tn)− pnh, En

q := q(tn)− qnh .

It is easy to check that

En
p = κ1E

n
ξ + κ2E

n
η , En

q = κ3E
n
ξ + κ1E

n
η . (6.93)
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Also, we denote

En
u = u(tn)−Rh(u(tn)) +Rh(u(tn))− unh := Λn

u + Θn
u,

En
ξ = ξ(tn)−Qh(ξ(tn)) +Qh(ξ(tn))− ξnh := Λn

ξ + Θn
ξ ,

En
η = η(tn)−Qh(η(tn)) +Qh(η(tn))− ηnh := Λn

η + Θn
η ,

En
p = p(tn)−Qh(p(tn)) +Qh(p(tn))− pnh := Λn

p + Θn
p .

Lemma 6.3.6. Let {(unh, ξnh , ηnh)}n≥0 be generated by the (FEA) and Λn
u,Θ

n
u,Λ

n
ξ ,Θ

n
ξ ,Λ

n
η

and Θn
η be defined as above. Then there holds the following identity:

E `h + ∆t
∑̀
n=0

[K
µf

(
∇Θ̂n+1

p − ρfg, Θ̂n+1
p

)
(6.94)

+
∆t

2

(
µ‖dtε(Θn+1

u )‖2
L2(D) + κ2‖dtΘn+θ

η ‖2
L2(D) + κ3‖dtΘn+1

ξ ‖2
L2(D)

)]
= E0

h + ∆t
∑̀
n=0

[(
Λn+1
ξ , div dtΘ

n+1
u

)
−
(
div dtΛ

n+1
u ,Θn+1

ξ

)]
+ (∆t)2

∑̀
n=0

(
d2
tηh(tn+1),Θn+1

ξ

)
+ ∆t

∑̀
n=0

(
Rn+1
h , Θ̂n+1

p

)
+ (1− θ)(∆t)2

∑̀
n=0

Kκ1

µf

(
dt∇Θn+1

ξ ,∇Θ̂n+1
p

)
,

where

Θ̂n+1
p := κ1∇Θn+1

ξ + κ2∇Θn+θ
η (6.95)

E `h :=
1

2

[
µ‖ε(Θ`+1

u )‖2
L2(D) + κ2‖Θ`+θ

η ‖2
L2(D) + κ3‖Θ`+1

ξ ‖
2
L2(D)

]
, (6.96)

Rn+1
h := − 1

∆t

∫ tn+1

tn

(s− tn)ηtt(s) ds. (6.97)
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Proof. Subtracting (6.65) from (6.21), (6.66) from (6.22), (6.67) from (6.23),

respectively, we get the following error equations:

µ
(
ε(En+1

u ), ε(vh)
)
−
(
En+1
ξ , div vh

)
= 0 ∀vh ∈ Vh, (6.98)

κ3

(
En+1
ξ , ϕh

)
+
(
div En+1

u , ϕh
)

(6.99)

= κ1

(
En+θ
η , ϕh

)
+ ∆t

(
dtη(tn+1), ϕh

)
∀ϕh ∈Mh,(

dtE
n+1
η , ψh

)
+
K

µf

(
∇(κ1E

n+1
ξ + κ2E

n+1
η )− ρfg,∇ψh

)
(6.100)

= (Rn+1
h , ψh) ∀ψh ∈ Wh.

Using the definition of the projection operators Qh,Sh,Rh, we have

µ
(
ε(Θn+1

u ), ε(vh)
)
−
(
Θn+1
ξ , div vh

)
= (Λn+1

ξ , div vh), ∀vh ∈ Vh, (6.101)

κ3

(
Θn+1
ξ , ϕh

)
+
(
div Θn+1

u , ϕh
)

= κ1

(
Θn+θ
η , ϕh

)
(6.102)

−
(
div Λn+1

u , ϕh
)

+ ∆t
(
dtη(tn+1), ϕh

)
∀ϕh ∈Mh,(

dtΘ
n+1
η , ψh

)
+
K

µf

(
∇(κ1Θn+1

ξ + κ2Θn+1
η )− ρfg,∇ψh

)
(6.103)

=
(
Rn+1
h , ψh

)
∀ψh ∈ Wh.

(6.94) follows from setting vh = dtΘ
n+1
u in (6.101), ϕh = Θn+1

ξ (after applying

the difference operator dt to the equation (6.102)), ψh = Θ̂n+1
p = κ1Θn+1

ξ + κ2Θn+θ
η

in (6.103), adding the resulting equations, and applying the summation operator

∆t
∑`

n=0 to both sides.

Theorem 6.3.7. Let {(unh, ξnh , ηnh)}n≥0 be defined by (FEA), then there holds the error

estimate for ` ≤ N

max
0≤n≤`

[
√
µ‖ε(Θn+1

u )‖L2(D) +
√
κ2‖Θn+θ

η ‖L2(D) +
√
κ3‖Θn+1

ξ ‖L2(D)

]
(6.104)

+

[
∆t
∑̀
n=0

K

µf
‖Θ̂n+1

p ‖2
L2

] 1
2

≤ C1(T )∆t+ C2(T )h2,
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provided that ∆t = O(h2) when θ = 0. Where

C1(T ) = C‖qt‖2
L2((0,T );L2(D)) + C‖(q)tt‖L2((0,T );H−1(D)), (6.105)

C2(T ) = C‖ξ‖L∞((0,T );H2(D)) + C‖ξt‖L2((0,T );H2(D)) (6.106)

+ C‖div (u)t‖L2((0,T );H2(D)).

Proof. To derive the above inequality, we need to bound each term on the right-hand

side of (6.94). Using the fact Θ0
u = 0, Θ0

ξ = 0 and Θ−1
η = 0, we have

E `h + ∆t
∑̀
n=0

[
K

µf

(
∇Θ̂n+1

p − ρfg,∇Θ̂n+1
p

)
(6.107)

+
∆t

2

(
µ‖dtε(Θn+1

u )‖2
L2(D) + κ2‖dtΘn+θ

η ‖2
L2(D) + κ3‖dtΘn+1

ξ ‖2
L2(D)

)]
= (∆t)2

∑̀
n=0

(
d2
tη(tn+1),Θn+1

ξ

)
+ ∆t

∑̀
n=0

(
Rn+1
h , Θ̂n+1

p

)
+
µ

2
‖ε(Θ1

u)‖2
L2(D)

+ ∆t
∑̀
n=0

[(
Λn+1
ξ , div dtΘ

n+1
u

)
−
(
div dtΛ

n+1
u ,Θn+1

ξ

)]
+
κ2

2
‖Θθ

η‖2
L2(D)

+ (1− θ)(∆t)2
∑̀
n=0

Kκ1

µf

(
dt∇Θn+1

ξ ,∇Θ̂n+1
p

)
+
κ3

2
‖Θ1

ξ‖2
L2(D).

We now estimate each term on the right-hand side of (6.107). To bound the first

term on the right-hand side of (6.107), we first use the summation by parts formula

and dtηh(t0) = 0 to get

∑̀
n=0

(
d2
tη(tn+1),Θn+1

ξ

)
=

1

∆t

(
dtη(tl+1),Θl+1

ξ

)
−
∑̀
n=1

(
dtη(tn), dtΘ

n+1
ξ

)
. (6.108)
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Now, we bound each term on the right-hand side of (6.108) as follows:

1

∆t

(
dtη(t`+1),Θ`+1

ξ

)
≤ 1

∆t
‖dtη(t`+1)‖L2(D)‖Θ`+1

ξ ‖L2(D) (6.109)

≤ 1

∆t
‖ηt‖L2((t`,t`+1);L2(D)) ·

1

β1

sup
vh∈Vh

µ
(
ε(Θ`+1

u ), ε(vh)
)
− (Λ`+1

ξ , div vh)

‖∇vh‖L2(D)

≤ Cµ

β1∆t
‖ηt‖L2((t`,t`+1);L2(D))

[
‖ε(Θ`+1

u )‖L2(D) +
1

µ
‖Λ`+1

ξ ‖L2(D)

]
≤ µ

4(∆t)2
‖ε(Θ`+1

u )‖2
L2(D) +

Cµ

β2
1

‖ηt‖2
L2((t`,t`+1);L2(D)) +

C

β2
1

‖Λ`+1
ξ ‖

2
L2(D),

∑̀
n=0

(
dtη(tn), dtΘ

n+1
ξ

)
≤
∑̀
n=0

‖dtη(tn)‖L2(D)‖dtΘn+1
ξ ‖L2(D) (6.110)

≤
∑̀
n=0

||dtη(tn)‖L2(D) ·
1

β1

sup
vh∈Vh

µ
(
dtε(Θ

n+1
u ), ε(vh)

)
− (dtΛ

n+1
ξ , div vh)

‖∇vh‖L2(D)

≤ Cµ

β1

∑̀
n=0

‖dtη(tn)‖L2(D)

[
‖dtε(Θn+1

u )‖L2(D) +
1

µ
‖dtΛn+1

ξ ‖L2(D)

]
≤ µ

4

∑̀
n=0

‖dtε(Θn+1
u )‖2

L2(D) +
Cµ

β2
1

‖ηt‖2
L2((0,T );L2(D)) +

C

β2
1

‖dtΛn+1
ξ ‖L2(D).

The second term on the right-hand side of (6.107) can be bounded as

∣∣(Rn+1
h , Θ̂n+1

p

)∣∣ ≤ ‖Rn+1
h ‖H−1(D)‖∇Θ̂n+1

p ‖L2(D) (6.111)

≤ K

4µf
‖∇Θ̂n+1

p ‖2
L2(D) +

µf
K
‖Rn+1

h ‖2
H−1(D)

≤ K

4µf
‖∇Θ̂n+1

p ‖2
L2(D) +

µf∆t

3K
‖ηtt‖2

L2((tn,tn+1);H−1(D)),

where we have used the fact that

‖Rn+1
h ‖2

H−1(D) ≤
∆t

3

∫ tn+1

tn

‖ηtt‖2
H−1(D) dt.
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The fourth term on the right-hand side of (6.107) can be bounded by

∆t
∑̀
n=0

[(
Λn+1
ξ , div dtΘ

n+1
u

)
−
(
div dtΛ

n+1
u ,Θn+1

ξ

)]
(6.112)

= (Λ`+1
ξ , div Θ`+1

u )−∆t
∑̀
n=0

[(
dtΛ

n+1
ξ , div Θn

u

)
+
(
div dtΛ

n+1
u ,Θn+1

ξ

)]
≤ 1

2
‖Λ`+1

ξ ‖
2
L2(D) +

1

2
‖div Θ`+1

u ‖2
L2(D) +

1

2
∆t
∑̀
n=0

[
‖dtΛn+1

ξ ‖2
L2(D)

+ ‖ε(Θn+1
u )‖2

L2(D) + ‖div dtΛ
n+1
u ‖2

L2(D) + ‖Θn+1
ξ ‖2

L2(D)

]
.

When θ = 0 we also need to bound the last term on the right-hand side of (6.107),

which is carried out below.

∑̀
n=0

(
dt∇Θn+1

ξ ,∇Θ̂n+1
p

)
≤
∑̀
n=0

‖dtΘn+1
ξ ‖L2(D)‖∇Θ̂n+1

p ‖L2(D) (6.113)

≤
∑̀
n=0

sup
vh∈Vh

µ
(
dtε(Θ

n+1
u ), ε(vh)

)
−
(
dtΛ

n+1
ξ , div vh

)
‖∇vh‖L2(D)

‖∇Θ̂n+1
p ‖L2(D)

≤
∑̀
n=0

[µ2κ1∆t

h2β2
1

‖dtε(Θn+1
u )‖2

L2 +
κ1∆t

h2β2
1

‖dtΛn+1
ξ ‖L2 +

κ−1
1

4∆t
‖∇Θ̂n+1

p ‖2
L2(D)

]
.

Substituting (6.108)–(6.113) into (6.107) and rearranging terms we get

µ‖ε(Θ`+1
u )‖2

L2(D) + κ2‖Θ`+θ
η ‖2

L2(D) + κ3‖Θ`+1
ξ ‖

2
L2(D) (6.114)

+ ∆t
∑̀
n=0

K

µf
‖∇Θ̂n+1

p ‖2
L2(D)

≤ 4µf (∆t)
2

κ
‖ηtt‖2

L2((0,T );H−1) +
4µ(∆t)2

β2
1

‖ηt‖2
L2((0,T );L2(D)),

+ ‖Λ`+1
ξ ‖

2
L2(D) + ∆t

∑̀
n=0

‖dtΛn+1
ξ ‖2

L2(D) + ∆t
∑̀
n=0

‖div dtΛ
n+1
u ‖2

L2(D),
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provide that ∆t ≤ µfβ
2
1(4µκ2

1K)−1h2 when θ = 0, but it holds for all ∆t > 0 when θ =

1. Hence, (6.104) follows from using the approximation properties of the projection

operators Qh,Rh and Sh. The proof is complete.

We conclude this section by stating the main theorem of the section.

Theorem 6.3.8. The solution of the (FEA) satisfies the following error estimates:

max
0≤n≤N

[√
µ‖∇(u(tn)− unh)‖L2(D) +

√
κ2‖η(tn)− ηnh‖L2(D) (6.115)

+
√
κ3‖ξ(tn)− ξnh‖L2(D)

]
≤ Ĉ1(T )∆t+ Ĉ2(T )h2.[

∆t
∑̀
n=0

K

µf
‖∇Θ̂n+1

p ‖2
L2(D)

] 1
2

≤ Ĉ1(T )∆t+ Ĉ2(T )h, (6.116)

provided that ∆t = O(h2) when θ = 0 and ∆t > 0 when θ = 1. Where

Ĉ1(T ) := C1(T ),

Ĉ2(T ) := C2(T ) + ‖ξ‖L∞((0,T );H2(D)) + ‖η‖L∞((0,T );H2(D))

+ ‖∇u‖L∞((0,T );H2(D)).

Proof. The above estimates follow immediately from an application of the triangle

inequality on

u(tn)− unh = Λn
u + Θn

u, ξ(tn)− ξnh = Λn
ξ + Θn

ξ , η(tn)− ηnh = Λn
η + Θn

η ,

and appealing to (6.87), (6.92) and Theorem 6.3.7.

6.4 Numerical experiments

In this section we shall present three 2-dimensional numerical experiments to validate

theoretical results for the proposed numerical methods, to numerically examine

the performances of the approach and methods as well as to compare them with
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existing methods in the literature on two benchmark problems. One of these two

problems was used to demonstrate the “locking phenomenon” in [77]. Our numerical

result shows that such a “locking phenomenon” phenomenon does not occur in our

numerical methods, it confirms the fact that our approach and methods have a built-in

mechanism to prevent the “locking phenomenon”.

Test 1. Let D = [0, 1] × [0, 1], Γ1 = {(1, x2); 0 ≤ x2 ≤ 1}, Γ2 = {(x1, 0); 0 ≤

x1 ≤ 1}, Γ3 = {(0, x2); 0 ≤ x2 ≤ 1}, Γ4 = {(x1, 1); 0 ≤ x1 ≤ 1}, and T = 0.001. We

consider problem (6.23)–(6.26) with following source functions:

f = −(λ+ µ)t(1, 1)T + α cos(x1 + x2)et(1, 1)T ,

φ =
(
c0 +

2κ

µf

)
sin(x1 + x2)et + α(x1 + x2),

and the following boundary and initial conditions:

p = sin(x1 + x2)et on ∂DT ,

u1 =
1

2
x2

1t on Γj × (0, T ), j = 1, 3,

u2 =
1

2
x2

2t on Γj × (0, T ), j =, 2, 4,

σn− αpn = f1 on ∂DT ,

u(x, 0) = 0, p(x, 0) = sin(x1 + x2) in D,

where

f1(x, t) = µ(x1n1, x2n2)T t+ λ(x1 + x2)(n1, n2)T t− α sin(x1 + x2)(n1, n2)T et.

It is easy to check that the exact solution for this problem is

u(x, t) =
t

2

(
x2

1, x
2
2

)T
, p(x, t) = sin(x1 + x2)et.
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We note that the boundary conditions used above are not pure Neumann conditions,

instead, they are mixed Dirichlet-Neumann conditions. As pointed out in Remark

6.2.3 (c), the approach and methods of this chapter also apply to this case, the only

change is to replace the test and trial space H1
⊥(D) by H1(D) with some appropriately

built-in Dirichlet boundary condition in Definition 6.2.2.

The goal of doing this test problem is to compute the order of the exact errors and

to show that the theoretical error bounds proved in the previous section are sharp.

Table 6.1 displays the computed L∞(0, T ;L2(D)) and L2(0, T ;H1(D))-norm errors

and the convergence rates with respect to h at the terminal time T . In the test,

∆t = 10−5 is used so that the time error is negligible. Evidently, the spatial rates of

convergence are consistent with that proved in the convergence theorem.

Table 6.1: Spatial errors and convergence rates of Test 1.

L∞(L2) error L∞(L2) order L2(H1) error L2(H1) order
h = 0.16 2.0789e-3 5.5045e-2
h = 0.08 5.9674e-4 1.8006 2.9431e-2 0.9032
h = 0.04 1.6227e-4 1.8787 1.5332e-2 0.9408
h = 0.02 4.0971e-5 1.9857 7.6968e-3 0.9942

Figures 6.1 and 6.2 show respectively the surface plot of the computed pressure

p at the terminal time T and the color plot of both the computed pressure p and

displacement u with mesh parameters h = 0.02 and ∆t = 10−5. They coincide with

the exact solution on the same space-time resolution.

Test 2. In this test we consider so-called Barry-Mercer’s problem, which is a

Benchmark test problem for the poroelasticity model (6.23)–(6.26) (cf. [77, 76] and

the references therein). Again, D = [0, 1]× [0, 1] but T = 1. Barry-Mercer’s problem

assumes no source, that is, f ≡ 0 and φ ≡ 0, and takes the following boundary
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Figure 6.1: Test 1: Surface plot of the Computed pressure p at the terminal time
T .

conditions:

p = 0 on Γj × (0, T ), j = 1, 3, 4,

p = p2 on Γj × (0, T ), j = 2,

u1 = 0 on Γj × (0, T ), j = 1, 3,

u2 = 0 on Γj × (0, T ), j = 2, 4,

σn− αpn = f1 := (0, αp)T on ∂DT ,

where

p2(x1, t) =

sin t when x ∈ [0.2, 0.8)× (0, T ),

0 others.

The boundary segments Γj, j = 1, 2, 3, 4, which are defined in Test 1, and the

above boundary conditions are depicted in Figure 6.3. Also, the initial conditions

for Barry-Mercer’s problem are u(x, 0) ≡ 0 and p(x, 0) ≡ 0. We remark that Barry-

Mercer’s problem has a unique solution which is given by an infinite series (cf. [77]).

217



Figure 6.2: Test 1: Computed pressure p (color plot) and displacement u (arrow
plot) at T .

Figures 6.4 and 6.5 display respectively the computed pressure p (surface plot)

and the computed displacement u (arrow plot). We note that the arrows near the

boundary match very well with those on the boundary. Our numerical solution

approximates the exact solution of Barry-Mercer’s problem very well and does not

produce any oscillation in computed pressure.

Test 3. This test problem is taken from [77]. Again, we consider problem (6.23)–

(6.26) with D = [0, 1]× [0, 1]. Let Γj be same as in Test 1 and c0 = 0, E = 105, ν =

0.4, µ = 35714 and T = 0.001. There is no source, that is, f ≡ 0 and φ ≡ 0. The

boundary conditions are taken as

− κ

µf
(∇p− ρfg) · n = 0 on ∂DT ,

u = 0 on Γ3 × (0, T ),

σn− αpn = f1 on Γj × (0, T ), j = 1, 2, 4,
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Figure 6.3: Test 2: boundary conditions.

Figure 6.4: Test 2: Surface plot of the computed pressure p at the terminal time T .

where f1 = (f 1
1 , f

2
1 ) and

f 1
1 ≡ 0 on ∂DT , f 2

1 =

0 on Γj × (0, T ), j = 1, 2, 3,

−1 on Γ4 × (0, T ).

The computational domain D and the above boundary conditions are depicted in

Figure 6.6. Also, the zero initial conditions are assigned for both u and p in this test.
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Figure 6.5: Test 2: Computed pressure p (color plot) and displacement (arrow plot)
at T .

Figures 6.7–6.8 display respectively the surface and color plot of the computed

pressure, the arrow plot of the displacement vector, and the deformation of the whole

D. There is no oscillation in the computed pressure and the arrows near the boundary

match very well with arrows on the boundary.

We remark that the “locking phenomenon” was observed in the simulation of

[77] at T = 0.001 for this problem, namely, the computed pressure exhibits some

oscillation at T = 0.001. The reason for the locking phenomenon was explained as

follows: when time step ∆t is small, the displacement vector u is almost divergence

free in the short time while the numerical solution does not observe this nearly

divergence free property, which results in the locking. However, at later times the

displacement vector is no longer divergence free, so no locking exists at later times.

It is clear that our numerical solution does not exhibits the locking phenomenon

at T = 0.001. This is because our multiphysics reformulation weakly imposes the

condition div u = q, hence, u automatically becomes nearly divergence free when

q ≈ 0 for 0 < t << 1. Moreover, the pressure p is not a primary variable anymore in

our reformulation, instead, p becomes a derivative variable and it is computed using

the new primary variables ξ and η. Therefore, our numerical methods are insensitive

to the regularity of p.
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Figure 6.6: Test 3: boundary conditions.

Figure 6.7: Test 3: Computed pressure p: surface plot (left) and color plot (right).
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Figure 6.8: Test 3: Arrow plot of the computed displacement (left) and deformation
of D (right).
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Chapter 7

Future Works

The work done in this dissertation can be expanded and extended in a number of

directions. The following are a few projects which will be pursued in the near future.

• Mixed finite element methods for the stochastic Cahn-Hilliard equation with

gradient-type multiplicative noises. I plan to carry out the PDE energy law,

Hölder continuity in time of the exact solution, the finite element analysis and

corresponding error estimates, which are parallel to the analysis in Chapter 5.

• Adaptive DG methods for phase field models. Since the mesh size must be very

small for small ε in order to resolve the diffuse interface, if uniform meshes

are used, it is computationally infeasible to compute the solutions of phase

field models. As a result, using adaptive meshes is not only efficient but also

imperative to solve phase field models, in particular, in high dimensions. One

of advantages of DG methods is its ease for adaptivity because unstructured

meshes can be easily handled. Hence, I plan to consider adaptive DG methods

for the Allen-Cahn and Cahn-Hilliard equations. It is expected that when the

interface undergoes a topological change, it will change very fast, so I plan

to investigate spectrum-related error indicators which should be sensitive to

topological changes. Moreover, I plan to figure out the approximation orders
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for the eigenvalues of the linearized Allen-Cahn and Cahn-Hilliard operators on

adaptive meshes.

• Extending the results of my dissertation to other phase field models. Two-phase

flows and crystal growth are two possible applications to be considered.

• Discontinuous Galerkin methods and adaptivity for stochastic Allen-Cahn and

Cahn-Hilliard equations. I expect that these extension will be very interesting

and doable.

• Analyzing spectrum estimate for linearized stochastic Allen-Cahn and stochastic

Cahn-Hilliard operators. This project is expected to be considerably hard, but

it is the only hope at this time for possibly proving convergence of the numerical

interfaces to the corresponding sharp interfaces.
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