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Abstract

This dissertation consists of three integral parts with each part focusing on numerical
approximations of several partial differential equations (PDEs). The goals of each
part are to design, to analyze and to implement continuous or discontinuous Galerkin
finite element methods for the underlying PDE problem.

Part One studies discontinuous Galerkin (DG) approximations of two phase field
models, namely, the Allen-Cahn and Cahn-Hilliard equations, and their related
curvature-driven geometric problems, namely, the mean curvature flow and the Hele-
Shaw flow. We derive two discrete spectrum estimates, which play an important role
in proving the sharper error estimates which only depend on a negative power of
the singular perturbation parameter € [epsilon] instead of an exponential power. It
is also proved that the zero level sets of the numerical solutions of the Allen-Cahn
equation and the Cahn-Hilliard equation approximate the mean curvature flow and
the Hele-Shaw flow respectively. Numerical experiments are carried out to verify the
theoretical results and to compare the zero level sets of the numerical solutions and
the geometric motions.

Part Two focuses on finite element approximations of stochastic geometric PDEs
including the phase field formulation of a stochastic mean curvature flow and the
level set formulation of the stochastic mean curvature flow. Both formulations give
PDEs with gradient-type multiplicative noises. We establish PDE energy laws and

the Holder [Holder| continuity in time for the exact solutions. Moreover, optimal error

vi



estimates are derived, and various numerical experiments are carried out to study the
interplay of the geometric evolution and gradient-type noises.

Part Three studies finite element methods for a quasi-static model of poroe-
lasticity, which is a fluid-solid interaction multiphysics system at pore scale. We
reformulate the original multiphysics system into a new system which explicitly
reveals the diffusion process and has a built-in mechanism to overcome the “locking
phenomenon”. Fully discrete finite element methods are proposed for approximating
the new system. We derive a discrete energy law and optimal error estimates for
our finite element methods. Numerical experiments are also provided to verify the
theoretical results and to confirm that the “locking phenomenon” has indeed been

overcome.
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Chapter 1

Introduction

1.1 Background

This section introduces some background materials related to mathematical models

(i.e. partial differential equations) to be studied in this dissertation.

1.1.1 The moving interface problem

An interface in this dissertation refers to a hypersurface in R?. A moving interface
means that the location and/or shape of the interface vary in time. How an interface
moves is often described by its (pointwise) velocity V' or the normal velocity V,, :=
V -n. Such a formula for V or V,, is called a geometric law. It may depend on intrinsic
features (such as curvatures) of the interface and on external factors (such as flow
velocity) of the environment where the interface exists. The moving interface problem
arises in many scientific and engineering fields such as fluid mechanics, materials
science and biology. The pioneer work on the moving interface was done by Jozef
Stefan around 1890 when he studied the problem about melting of the polar ice cap.
The simple version of the Stefan problem is the melting model of a sheet of ice in
the water at an initial temperature 0 °C. The interface between the water and the

ice is raised at a temperature above zero through the whole process, and then the



interface moves toward the ice sheet. Other applications of the moving interface
problem include two-phase flow problems in fluid mechanics, the shock waves in gas
dynamics, and the phase transition problems in materials science. There are some
direct methods for the moving interface problem, i.e., the parametrization method
[95], the front tracking method [91] and the immersed interface method [64], and
some indirectly methods, i.e., the level set method [72] and the phase field method
[81, 92]. The direct methods are visual, qualitative, and the computational cost is
smaller than using the indirect methods. However, direct methods have difficulties
in handling with the topological changes, such as pinches, splits and merging. On
the other hand, the topological changes can be easily handled by indirect methods,
although the computational cost is higher. In this dissertation, we only consider

numerical methods based on the indirect approach for the moving interface problem.

1.1.2 The level set method and the phase field method

The level set method was introduced by Stanley Osher and James A. Sethian [72] to
compute and analyze the moving interface problem. For example, consider a closed
hypersurface I'; in R?. Let Q% denote the outside of the hypersurface I'y and Q-
denote the inside of the hypersurface I';. The idea of the level set method is to

implicitly represent T'; as the zero level set of a function u(-,t) in RY, that is,
Ty = {z(t) € R : u(z(t),t) = 0}. (1.1)

Taking the time derivative on both sides of the equation u(z(t),t) = 0, we get

dx

u + Vu - pri 0 on I (1.2)

Since V := % is the velocity of the surface, then

u+Vu-V =0 on I (1.3)



Equation (1.3) is often called the level set equation, and it is determined by the
velocity field V' and the initial condition ug such that Ty = {z € R% ug(z) = 0}. To

illustrate, we consider the following mean curvature flow as an example:
Vo(t,) = —H(t,), (1.4)

here H denotes the mean curvature of I';. By the facts from differential geometry

Vu

ST

and H =div(n), (1.5)
the level set equation (1.3) becomes

\Y%
0=wu+Vu-V =u +|VulV,, = uy — |Vu|H = uy — |Vul|div <ﬁ), (1.6)

or

) Vu
up — |Vu|div <W) = 0. (1.7)

Equation (1.7) is the famous level set formulation of the mean curvature flow [34, 52,
71].

The phase field method is another important method for the moving interface
problem proposed by Lord Rayleigh [81] and Van der Waals [92]. This method was
originally developed as a model of solidification, and it is also useful in many other
applications, such as crack propagation, electromigration, crystal and tumor growth.
The main idea of phase field method is to seek a phase field function u such that the
interface lies in the narrow region (called the diffuse interface)

Iy C Q= {z(t) e RY: [u(z(t), )] <1 —O(e) }. (1.8)



Here € is a small positive constant, which controls the width of Q5. The phase
field function takes two distinct value +1 and —1, which represent two distinct
phases, with a smooth change between —1 and +1 in Q. The zero level set
re = {z(t) € RGu(z(t),t) = 0} of uf, which is contained in the diffuse interface
(05, is often chosen to represent I'; approximately. The diffuse interface approach
provides a convenient mathematical formalism for numerically approximating the
moving interface problems because explicitly tracking the interface is not needed in
the diffuse interface formulation. The main advantage of the diffuse interface method
is its ability to handle with ease singularities of the interfaces. Like many singular
perturbation problems, the main computational issue is to resolve the (small) scale
introduced by the parameter € in the equation. Computationally, the problem could
become intractable, especially in three-dimensional cases if uniform meshes are used.
This difficulty is often overcome by exploiting the predictable (at least for small
¢) PDE solution profile and by using adaptive mesh techniques (cf. [49] and the
references therein), so fine meshes are only used in the diffuse interface region to
reduce the computational cost.

There is no general phase field equation for all moving interface problem and the
formulation is problem-dependent. Notice that the difficulty is due to the fact that
the interface lies inside @)f, but the specified location of the interface is unknown, so
the curvature at the interface can not be calculated exactly as in the level set method.
Again, we consider the phase field formulation of the mean curvature flow (1.4) as an
example. To the end, let d(x) denote the signed distance function between point x
and the interface I';, and consider the fact that the solution approximates the tanh(-)

function, we heuristically assume

(o) o=t (420, (19)



Then we have

tanh’(s) = 1 — tanh®(s), (1.10)
tanh”(s) = —2tanh(s)(1 — tanh?(s)), (1.11)

and

tanh(&;))
Vu(z) = T;Vd(x), (1.12)
Ad() = —— E{EZ];))Q <Au€< )+ 1 _2?;Efi>>2Vue(x) ® vw(:c)). (1.13)
Notice

|Vd(z)| =1, (1.14)
P = o (1 @)?), (1.15)

then
H =tr(Ad(z)) = % (Aue(x) + é(ue(x) — (uﬁ(x))?’)) (1.16)

Hence, by (1.6) and (1.16), we obtain the phase field equation

1
u; — Au + 6—2((u6)3 —u) =0. (1.17)

It was proved in [33] that I'{ converges to I'; defined in (1.1) as € — 0.

1.1.3 The mean curvature flow and the Hele-Shaw flow

The mean curvature flow (MCF) refers to a one-parameter family of hypersurfaces
{T;}i>0 € R? which starts from a given initial surface I’y and evolves according to

the geometric law in (1.4). The MCF is the best known curvature-driven geometric



flow which finds many applications in differential geometry, geometric measure
theory, image processing and materials science and has been extensively studied both
analytically and numerically (cf. [27, 52, 71, 87, 96] and the references therein).

As a geometric problem, the MCF can be described using different formulations.
Among them, we mention the classical parametric formulation [56], Brakke’s varifold
formulation [11], De Giorgi’s barrier function formulation [53, 8, 9], the variational
formulation [5], the level set formulation [72, 34, 21], and the phase field formulation
[33, 57]. We remark that different formulations often lead to different solution
concepts and also lead to developing different analytical (and numerical) concepts and
techniques to analyze and approximate the MCF. However, all these formulations of
the MCF give rise to difficult but interesting nonlinear geometric partial differential
equations (PDEs), and the resolution of the MCF then depends on the solutions
of these nonlinear geometric PDEs. One interesting feature of the MCEF is the
development of singularities, in particular singularities which may occur in finite
time, even when the initial hypersurface is smooth. The singularities may appear
in different forms such as self-intersection, pinch-off, merging, and fattening. To
understand and characterize these singularities have been the focus of the analytical
and numerical research on the MCF (cf. [21, 27, 34, 45, 71, 87, 96], and the references
therein).

The Hele-Shaw flow was originally defined as the Stokes flow between two parallel
flat plates separated by an infinitesimally small gap. It describes the intricate
patterns that appear in the gas-liquid interface problems when the upper plate is
lifted slowly. It has significant applications since many problems in fluid mechanics
can be considered as the approximations of the Hele-Shaw flow, and it has connections

with the asymptotic behavior of phase field models. The mathematical model of the



Hele-Shaw problem is given as follows

Aw =0 in D\ Ty, t€][0,T], (1.18)
0
% ~0 on dD, t € [0,T], (1.19)
w=ocH on Ty, t€]0,7T], (1.20)
110w
Vo=3 [%]n on Ty, t e 0,7], (1.21)
FO = Foo, when ¢t = 0. (122)

Here [g—ﬂ represents the jump of the outward normal derivatives across the interface
Tt

I, and
a:/_l1 @ds. (1.23)

It was proven by Xinfu Chen [18] that the solution of the Hele-Shaw problem exists

locally if the initial interface I'y is smooth, and the solution exists globally if I'y is
close to a circle. If (1.18) is replaced by a heat equation w; — Aw = 0, the Hele-Shaw
problem is called the Stefan problem with Gibbs-Thomson relation for the equilibrium
of the solid-liquid interface. It was proven by Fred Almgren and Lihe Wang [6] and
Stephan Luckhaus [65] that the global weak solution exists, and by E. Radkevitch

[80] that the local classical solution exists.

1.1.4 The Allen-Cahn equation and the Cahn-Hilliard equa-
tion
The first PDE to be considered in this dissertation is the following singularly

perturbed heat equation

1
ut—Au—i—E—Qf(u):O in Dy :=D x (0,7, (1.24)



where D C R (d = 2, 3) is a bounded domain, f = F” for some double well potential
density function F' and €, which is called the interaction length, is a small positive

number. Here we focus on the following widely used quartic density function:

Flu) = i(qﬂ _1e (1.25)

Equation (1.24), which is known as the Allen-Cahn equation in the literature, was
originally introduced by Samuel M. Allen and John W. Cahn in [4] as a model to
describe the phase separation process of a binary alloy at a fixed temperature. In the
equation u denotes the concentration of one of the two species of the alloy. We remark
that equation (1.24) differs from the original Allen-Cahn equation in the scaling of
the time, ¢ here represents 6% in the original formulation, hence, it is a fast time. The
Allen-Cahn equation is not mass-conserved because fD udx is not a constant in ¢. To
completely describe the physical (and mathematical) problem, equation (1.24) must
be complemented with appropriate initial and boundary conditions. The following

boundary and initial conditions will be considered in this dissertation:

ou ,
o 0 in 0Dr, (1.26)
u =1 in D x {t = 0}. (1.27)

The Allen-Cahn equation is a phase field formulation of the mean curvature flow
(33, 57], and it is well known [33, 57] that the Allen-Cahn equation (1.24) can be

interpreted as the L2-gradient flow for the following Cahn-Hilliard energy functional

J.(v) ::/D(%WUME%F(U)) da. (1.28)



The second PDE to be considered in this dissertation is the following singularly
perturbed fourth order PDE

up + A(eAu — %f(u)) =0 in Dr. (1.29)

Equation (1.29) is known as the Cahn-Hilliard equation. It was originally introduced
by John W. Cahn and John E. Hilliard in [16] to describe the process of phase
separation, by which the two components of a binary fluid spontaneously separate
and form domains. Here u and 1 — u denote respectively the concentrations of the
two fluids, with {u = £1} indicating domains of the two components. It is often
written as the following system of two second order PDEs along with two boundary

conditions and one initial condition [42]

u—Aw =0 in Dy, (1.30)
w + eAu — 1f(u) =0 in Dy, (1.31)
€
ou  Ow
a—n = 8_71 =0 on 8DT, (132)
u=1up inD x{t=0}. (1.33)

Here w is called the chemical potential in the literature. Notice that equation (1.29)

differs from the original Cahn-Hilliard equation in the scaling of the time, and ¢ here

corresponds to E in the original formulation.
The Cahn-Hilliard equation is the phase field formulation of the Hele-Shaw flow,
and it is well known [3, 74, 20] that the Cahn-Hilliard equation (1.29) can be

interpreted as the H!-gradient flow for the Cahn-Hilliard energy functional

J.(v) ::/2)(§|VU|2+%F(U)> dz. (1.34)

In addition to their important roles in materials phase transition, the Allen-

Cahn equation [40] and the Cahn-Hilliard equation [42] have emerged as fundamental



equations as well as a building block in the phase field methodology (or the diffuse
interface methodology) for moving boundary and free boundary problems arising from
various applications such as fluid dynamics, materials science, image processing and

biology (cf. [36, 67] and the references therein).

1.1.5 Stochastic mean curvature flow and stochastic Hele-

Shaw flow

For application problems of the mean curvature flow and the Hele-Shaw flow, there
may exist uncertainty which arises from various sources such as thermal fluctuation,
impurities of the materials and the intrinsic instabilities of the deterministic
evolutions. Therefore, it is interesting and necessary to consider the stochastic effects,
and to study the impact of the noises on regularities of the solutions and their long-
time behaviors. This motivates us to consider the following stochastically perturbed

mean curvature flow [41]:
Vi(t,-) = H(t,") + e Ws, (1.35)

where W denotes a R-valued white in time noise, € > 0 is a constant, and ‘o’ refers
to the Stratonovich derivative of the Wiener process W;.

We also consider a general space dependent noise [59, 83, 43]:
Va(t,) = H(t,-) + 6X (z) - n W, (1.36)

where 0 is a (small) positive constant, n is the outward normal vector to the interface

['; and X (x) is a R%valued smooth function with compact support.
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Similarly, to obtain our stochastic Hele-Shaw flow, instead of modifying the PDE,

a noise is added to the velocity of the underlying moving interface [44], that is

1 | ow 0
= | = X(z)-nW,. 1.
v, 2[8nLt+5 () -n Wy (1.37)

The reason and motivation for introducing the above form of noises were briefly

explained in [83].

1.2 Scope of the dissertation research

The focuses of this dissertation are design, analysis, and implementation of efficient
continuous and discontinuous Galerkin finite element methods for solving determin-
istic and stochastic nonlinear PDEs which arise from materials science, fluid and
solid mechanics, and differential geometry. The reason why we favor discontinuous
Galerkin methods is due to their advantages compared to the classical finite element
method in regard to designing adaptive mesh methods and algorithms, which is an
indispensable strategy with the diffuse interface methodology. Below we shall outline
the main specific issues to be addressed in this dissertation.

Let T := {x € D;u(x,t) = 0.} be the zero level set of the Allen-Cahn problem
(1.24)-(1.27). It was proved in [33] that I'{ converges to I'; (the solution of the MCF)
as € — 0 and v — £1 uniformly in D \ I';. The connection between the Allen-Cahn
equation and the MCF opens a door for approximating and computing the latter via
the former. Indeed, such a connection is the basis for the phase field methodology
for approximating curvature-driven moving interfaces. It has been widely used in
many practical simulations. Let uj, . denote the (post-processed if needed) numerical
solution and I, := {z € D;uj_(v,t) = 0} be the numerical interface. The
first rigorous proof of the convergence I'f) ~ to I'y as h,7,¢ — 0 (uj, happens to
be a continuous finite element solution) was given by Feng and Prohl in [45]. A

natural question is that whether the result of [45] still holds for nonconforming and
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discontinuous Galerkin method (DG). This question has been open in the past ten
years even some unsuccessful attempts were made. To settle down this open question
is one of the main goals of this dissertation.

Analogously, it was proved in [3] that the zero level set I'¢ of u, which is the solution
of the Cahn-Hilliard problem (1.30)-(1.33), converges to the sharp interface I'; (the
solution of the Hele-Shaw flow) and p€ := —eAu + £ f(u) converges to w as e — 0,
provided that w and I'; are smooth. Such a convergence result serves the theoretical
basis for using the former to approximate the latter. This approach has been used in
many practical applications. Let uj,  denote the (post-processed if needed) numerical
solution and T, . := {z € D; uj_(v,t) = 0} be the numerical interface. The first
rigorous proof of the convergence I'f;, ~ to I'; as h,7,e — 0 (uj, . happens to be a
mixed finite element solution) was given by Feng and Prohl in [47]. Again, a natural
question is that whether the result of [47] can be extended to nonconforming and
discontinuous Galerkin methods. This question has been open in the past ten years.
To resolve this open question is another main goal of this dissertation.

As is mentioned early, the physical environment is seldom a deterministic system,
and the noises could come from the thermal fluctuation, impurities of the materials
and the intrinsic instabilities of the deterministic evolutions, so there is a need
to consider the stochastic effects. The white-in-time noise is the most basic and
fundamental noise, which can be the start point of the research. Moreover, in the
dissertation, the noise is added to the velocity of the interface, instead of being
added to the equation directly. This leads to considering the stochastic Allen-Cahn
and Cahn-Hilliard equations with gradient-type multiplicative noises. There is no
numerical analysis result in the literature for such nonlinear stochastic PDEs partly
because most numerical analysis techniques for deterministic PDEs do not work for
stochastic PDEs. In addition to the goal of developing efficient numerical methods
for these stochastic PDEs, another overreaching goal of this dissertation is to use
these nonlinear stochastic PDEs as a testbed for developing new numerical analysis

techniques which hopefully are applicable to many other stochastic PDEs.
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A poroelastic material is a fluid-solid system, and the displacement-pressure
formulation for linear poroelasticity can be found in [75]. Its dynamic can be
described by a multiphysics fluid-solid interaction process at pore scale. Unlike
standard (macroscopic) fluid-solid interaction systems, some physical phenomena of
the multiphysics process of a poroelastic material may not be explicitly revealed
in its mathematical model. Instead, they are hidden in the model. Numerical
methods based on the displacement-pressure formulation have been proposed earlier
[75].  However, those methods require to solve large linear systems which have
no “good” structure, especially, they are not symmetric positive definite (SPD).
Moreover, those numerical methods often suffer a “locking phenomenon” so that the
computed pressure exhibits some oscillations, especially, for small time ¢. To develop
multiphysics finite element methods which can avoid these limitations and drawbacks
and better capture the multiphysics (deformation and diffusion) of the poroelastic

system is the final goal of this dissertation.

1.3 Summary of main contributions

This dissertation is comprised of several research projects in the area of numerical
PDEs. Based on the research topics, it can be divided into three parts.

Part one (Chapter 2 and Chapter 3) of the dissertation studies interior penalty
discontinuous Galerkin (IPDG) approximation of the Allen-Cahn equation [40] (reps.
mixed interior penalty discontinuous Galerkin (MIPDG) approximation of the Cahn-
Hilliard equation [42]), and its related curvature-driven geometric problem the mean
curvature flow (resp. the Hele-Shaw flow). Two fully discrete (interior penalty)
discontinuous Galerkin (DG) methods for the Allen-Cahn problem (1.24)-(1.27) based
on two different time-stepping schemes are proposed. One is fully implicit with
frrli= (u™t1)3 — ™t and the other is convex-splitting with f™* .= (u™t1)% — ™.
It is shown that the fully implicit method is conditionally stable but the convex-

splitting method is unconditionally stable. The discrete spectrum estimates for these
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two equations are proven separately based on a perturbation argument. With the
help of the discrete spectrum estimates, the sharper error which only depend on the
negative power of € instead of the exponential power, are derived. Furthermore, it
is proven that the zero-level set of the IPDG solution for the Allen-Cahn equation
(resp. the Cahn-Hilliard equation) converges to the mean curvature flow (resp. the
Hele-Shaw flow). It should be pointed out that the analysis for the Cahn-Hilliard

equation is much more involved than that for the Allen-Cahn equation.

Part two (Chapter 4 and Chapter 5) of the dissertation concerns with numerical
methods for nonlinear stochastic partial differential equations (SPDEs). The focuses
of the study are on the stochastic Allen-Cahn equation [43], the stochastic Cahn-
Hilliard equation [44], and the level set equation of the stochastic mean curvature
flow [41]. These SPDEs all contain gradient type multiplicative (white-in-time) noises,
which belong to the strongest forms of noises for second order quasilinear PDEs. In
this dissertation, several fully discrete finite element methods for approximating these
three nonlinear stochastic PDEs are proposed and analyzed. In each case, a discrete
energy law which mimics the corresponding PDE energy law is derived, and strong
convergence is proven by establishing optimal order error estimates for the proposed
finite element methods. Those are first strong convergence results for SPDEs with
gradient type multiplicative (white-in-time) noises, the analysis techniques developed
in the dissertation are quite involved and new (in particular, in comparison with
deterministic techniques), they will certainly be useful and adaptable for studying

other SPDEs.

Part three (Chapter 6) of the dissertation studies numerical methods for a quite
different PDE problem from poroelasticity [37]. It is well known that deformation and
diffusion are two common physical processes involved for an isothermal system. The
subtlety and difficulty for numerical approximations of poroelasticity are caused by
the fact that the diffusion process is not explicitly described in popular poroelasticity

PDE models, instead, it is hidden in the models. Moreover, the peculiar structure of
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poroelasticity PDE models often leads to so-called “locking phenomenon” for all direct
numerical approximations of these PDE models. In the dissertation, a prototypical
quasi-static poroelasticity model is considered and a novel reformulation of the model
is introduced. The reformulated model consists of a generalized Stokes problem for
the displacement vector and a “pseudo elastic pressure” coupled with a diffusion
problem for another “pseudo elastic pressure”, hence, the diffusion process is explicitly
revealed in the reformulated model. Based on this reformulation, some fully discrete
multiphysics finite element methods are constructed and the convergence with optimal
rates in the energy norm is shown. Moreover, the troublesome “locking phenomenon”
is completed avoided because the reformulated model has a built-in mechanism to
automatically enforce nearly divergence-free constraint for the displacement vector
near ¢t = 0, which is verified by the extensive numerical tests.

The dissertation is completed with a list of future research projects presented in

Chapter 7.
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Chapter 2

Discontinuous Galerkin Methods

for the Allen-Cahn Equation

2.1 Introduction

The Allen-Cahn equation (1.24) not only plays an important role in materials phase
transition, it has also been well-known and intensively studied in the past thirty years
due to its connection to the celebrated curvature driven geometric flow known as the
mean curvature flow or the motion by mean curvature (cf. [33, 57] and the references
therein). It was proved that [33] the zero-level set I := {z € D;u(z,t) = 0} of the
solution u to the problem (1.24)—(1.27) converges to the mean curvature flow which
refers to the evolution of a curve/surface governed by the geometric law V,, = —H,
where V,, and H respectively stand for the outward normal velocity and the mean
curvature of the curve/surface.

Numerical approximations of the Allen-Cahn equation have been extensively
investigated in the past thirty years (cf. [7, 30, 45] and the references therein).
However, most of these works were carried out for a fixed parameter ¢. The error
estimates, which are obtained using the standard Gronwall inequality technique, show

an exponential dependence on % Such an estimate is clearly not useful for small e,

16



in particular, in addressing the issue whether the flow of the computed numerical
interfaces converge to the original sharp interface model: the mean curvature flow.
Better error estimates should only depend on % in some (low) polynomial orders
because they can be used to provide an answer to the above convergence issue. In
fact, such an estimate is the best result (in terms of €) one can expect. The first
such polynomial order in % a priori estimate was obtained by Feng and Prohl in
[45] for standard finite element approximations of the Allen-Cahn problem (1.24)-
(1.27). Extensions of the results of [45], in particular, the sensitivity of the eigenvalue
to the topology was later considered, and some numerical tests were also given by
Bartels et al. in [7]. In addition, polynomial order in £ a posteriori error estimates
were obtained in [7, 48, 60]. One of the key ideas employed in all these works is to
use a nonstandard error estimate technique which is based on establishing a discrete
spectrum estimate (using its continuous counterpart) for the linearized Allen-Cahn
operator. An immediate application of the polynomial order in % a priori and a
posteriori error estimates is to prove the convergence of the numerical interfaces of
the underlying finite element approximations to the mean curvature flow as ¢ and
mesh sizes h and 7 all tend to zero, and to establish rates of convergence (in powers
of €) for the numerical interfaces before the onset of singularities of the mean curvature
flow.

The primary objectives of this chapter are twofold: First, we want to develop
some interior penalty discontinuous Galerkin (IP-DG) methods and to establish
polynomial order in % a priori error estimates as well as to prove convergence and
rates of convergence for the IP-DG numerical interfaces. This goal is motivated by
the advantages of DG methods in regard to designing adaptive mesh methods and
algorithms, which is an indispensable strategy with the diffuse interface methodology.
Second, we use the Allen-Cahn equation as a prototype to develop new analysis
techniques for analyzing convergence of numerical interfaces to the sharp interface for

DG (and nonconforming finite element) discretizations of phase field models. To the

best of our knowledge, no such convergence result and analysis technique is available
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in the literature. The main obstacle for adapting the techniques of [45] is that the
DG (and nonconforming finite element) spaces are not subspaces of H'(D). As a
result, whether the desired discrete spectrum estimate holds becomes a key question
to answer.

The remainder of this chapter is organized as follows. In section 2.2 we first
recall some facts about the Allen-Cahn equation. In particular, we cite the spectrum
estimate for the linearized Allen-Cahn operator from [19] and a nonlinear discrete
Gronwall inequality from [73]. In section 2.3 we present two fully nonlinear IP-DG
methods for problem (1.24)—(1.27) with the implicit Euler time stepping for the linear
terms. The two methods differ in how the nonlinear term is discretized in time. The
first is fully implicit and the second uses a well-known energy splitting idea due to
Eyre [35]. The rest of section 2.3 devotes to the convergence analysis of the proposed
IP-DG methods. The highlights of analysis include establishing a discrete spectrum
estimate for the linearized Allen-Cahn operator in DG spaces and deriving optimal
order (in h and 7) and polynomial order in % a priori error estimates for the proposed
IP-DG methods. In section 2.4, using the error estimates of section 2.3 we prove
the convergence and rates of convergence for the numerical interfaces of the IP-DG
solutions to the sharp interface of the mean curvature flow. Finally, we present some

numerical experiment results in section 2.5 to gauge the performance of the proposed

fully discrete IP-DG methods.

2.2 Preliminaries

In this section, we first recall a few facts about the solution of the problem (1.24)—
(1.27) which can be found in [19, 45]. These facts will be used in the analysis of
section 2.3 and 2.4. We then cite a lemma which provides an upper bound for discrete
sequences that satisfy a Bernoulli-type inequality, and this lemma is crucially used in
our error analysis in section 2.3. Standard function and space notations are adopted

in this chapter. (-,-)p denotes the standard inner product on L?(D), C' and ¢ denote
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generic positive constants which is independent of €, space and time step sizes h and
T.

In order to derive a priori solution estimates, as in [45] we assume the initial
condition ug € H'(D) N H*(D) with |Jug|| < 1 satisfies the following assumptions:

General Assumption (GA)

(1) There exists a nonnegative constant o7 such that

J(ug) < Ce 1. (2.1)

(2) There exists a nonnegative constant oy such that

HAUO — 672f(u0)“L2(D) S Ce 2. (22)

(3) There exists nonnegative constant o3 such that

sl_i>r(§l+ Hvut(S)HL2(D) < Ce 7. (23)

The following solution estimates and their proofs can be found in [45].

Proposition 2.2.1. Suppose that (2.1) and (2.2) hold. Then the solution u of
problem (1.24)—(1.27) satisfies the following estimates:

(i) esssup ||u(t)| e(p) < 1,
t€(0,00)

(i) esssup J(u) —i—/ ”ut(S)H%Q(D) ds < Ce 21,
0

te[0,00)

T
(iii) / | Au(s)||*ds < Ce 21t
0
oo
i) essowp (Il + ol + IV p ds < Ot

te[0,00) 0

(v) / (Il ()10 + 1 A(s) 1) ) ds < Ce2mtonsron,
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In addition to (2.1) and (2.2), suppose that (2.3) holds, then u also satisfies

(e}
(vi) ess sup ||Vut||%g(p) —|—/ e (5)22 ds < Ce2ma{or+2.os},
te[0,00) 0

I A P e
0

Proof. (i). Define a function v as
vi=(u—17" = B (2.4)

Then we have

Vv = (2.5)

and
(= 1) = %%Ku _ ) (2.6)
Then
Vu-Vo = (V(u—1)")? (2.7)
and
fu)v = u(u+ 1)|(u—1)T|2 (2.8)

Testing (1.24) with v, we get

(ue,v), + (Vu, Vo), + (lf(u),v)p =0 Yve HYD). (2.9)

€2

Then we have

q
< /D (= 1)*Pdz < 0. (2.10)
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Based on the assumption |ug| < 1 and (2.10), we can easily prove u < 1.

Similarly, when the function v is defined by

0, u+12>0,

—u—1, u+1<0,

we can prove u > —1. (i) is proved.

(ii). Taking the derivative in t on both sides of (1.28), we get

dJ(u) 1
yr :/D (Vu -V + G—Qf(u)ut) dx, (2.12)
1
:/ ( — Auuy + —2f(u)ut> dx,
D €
= H“tH%?(Dy

Suppose the maximum of J.(u(t)) is obtained at ¢ = ¢;, then integrating (2.12)

over [0,¢;] and [0, o] respectively, we get

ess sup J(u) < Ce 7, (2.13)
te[0,00)
and
/ ug(s)|2ads < Ce27. (2.14)
0

Plus (2.13) and (2.14), we get (ii).
(iii). Testing (1.24) with —Au, we get

1
||Au||%2(p) = (ue, Au) , — = (f'(u), [Vul?) . (2.15)

€2
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Using Schwarz inequality to the first term on the right of the above formula, we get
2 2 2 2
18Ul [z2(p) < [uellz2p) = Z (f (), [Val)p. (2.16)
Integrating over [0, 7] on both sides of the above equation, we have
g 2 g 2 r2 2
| 180 Beoyds < [l amds = [ S @ VaPods. (217)
0 0 0

(iii) is immediately obtained by (2.17), (i) and (ii).
(iv). Taking the derivative in t on both sides of (1.24), we get

1
Ut — Aut + E_Qf,(u>Ut = 0. (218)
Testing (2.18) with u;, then
1d C
5%”7%”%2(@) + HvutH%Q(D) < E—QHUtH%%D)- (2.19)

Suppose the maximum of |[u|7, is obtained when ¢ = ¢;, then integrating above

equality over [0,¢;] and [0, co] respectively, we get

1 t
§|Iut(t1)l\iz<p> +/O [V (5)]172(pyds (2.20)

1 ) c (" )
SEHUt(O)HL?(D) t3 || (8)]72(pyds
0

and

o COO
| IVt < 5 [ ooy (221)
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By (2.2) and (ii), we have

1 t B g
@l + [ 906} anyds < Ol 4 72
0

and

< 062 min{—o1—1,02}

/0 ||VUt(S)H%2('D)dS < Ce 272,

By (2.22) and (ii), we have

| Aul|72py < C(EmnEorbozd 4 72172)

< CGQ min{—o1—1,02}

Then (iv) can proved by (2.24), (i) and (ii).

(v). By (2.18), we have

1
el 10y <Vl p2ep) + 2 Sup

C
<||Vu|p2py + 6—2||f’(u)||L°°(D)||Ut||L2(D)

¢cHL(D)

(f'(w)ug, @)p

|[o[| a1 (D)

1
SC{||VUt||L2(D) + 6_2||Ut||L2(D)}‘

By (ii) and (iv), we get

(2.22)

(2.23)

(2.24)

(2.25)

o [e.e] 1 [ee]
A|mwm;@msw{éwa@@m+gl|wwﬂ&@m}@%>

: 1
2min{—o1—1,02} —201
<Ce +C e

<C€2 min{—o1—2,02}
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Using (iv), we have

) )
/0 ||Aut(s)||?{—1(’D)d8 < /0 ||vut||%2(p)d3 < CEQmm{_Ul_l’U2}_

Then (v) is proved.
(vi). Testing (2.18) with uy, we get

1d 1
HuttHL2 o T zdtHVUtHL? G_(f/(u)utautt)D = 0.
Then
el By + - 1Vl oy = = = (F (0, )
(D) 2dt €2 ’
1
S‘H“tt”%?(p) + @||f’(u)||%w(p)||ut|!%2(p)

That is,

gz, 4 1d

— Vel |2 p) lf W)[Zoe (o | el [72()

§HuttHL2( 2 dt = 2 9¢d

Integrating both sides of (2.30) over [0, c0] and using (ii), we have

/ ||Utt(3>||%2(p)d8 < O@min{-o1-2,-0s}
0

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

Suppose the maximum of ||Vut||%2(p) is obtained at t = t;, then integrating (2.30)

over [0, t1], and using (2.3) and (ii), we get

ess sup ||Vut||L2 < Cmin{-o1-2-03)
t€[0,00)
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Adding (2.31) and (2.32), (vi) is derived.
(vii). Testing (2.18) with Awu,, and integrating over [0, o], we get

[ ) o 1 )
/ HAUtH%ﬂ('D)dt = / (Utt, Aut>Dd$ + / <€—2f (U)U,t, Aut)pds. (233)
0 0 0

Using Young’s inequality, (2.31) and (ii), we have
/0 Ay (3)|[72p)yds < Cemmizm=2mest, (2.34)
Then (vii) is proved.
O
Next, we quote a lower bound estimate for the principal eigenvalue of the following
linearized Allen-Cahn operator:

Lac = A+ f(u), (2.35)

where [ stands for the identity operator.

Proposition 2.2.2. Suppose that (2.1) and (2.2) hold. Given a smooth initial
curve/surface Ty, let ug be a smooth function satisfying T'g = {x € D;ug(x) = 0}
and some profile as described in [19]. Let u denote the solution of problem (1.24)—
(1.27). Then there exists a positive e-independent constant Cy such that the principle

eigenvalue of the linearized Allen-Cahn operator L o satisfies for 0 < e << 1

2 —2 /
A= inf Vol + ¢ (f(u)w’w)>_co. (2.36)

2 -
wef;éD) H¢|’L2(D)

Remark 2.2.3. (a) A proof of Proposition 2.2.2 can be found in [19]. A discrete
generalization of (2.36) on C° finite element spaces was proved in [/5]. It plays a
pivotal role in the nonstandard convergence analysis of [45]. In the next section, we

shall prove another discrete generalization of (2.36) on DG finite element spaces.
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(b) The restriction on the initial function ug is needed to guarantee that the
solution u(t) satisfies certain profile at later time t > 0 which is required in the
proof of [19]. One example of admissible initial functions is ug = tanh(dOT(x)), where
do(x) stands for the signed distance function to the initial interface T'y. Such a ug is

smooth when Ty is smooth.

The classical Gronwall lemma derives an estimate for any function which satisfies
a first order linear differential inequality. It is a main technique for deriving
error estimates for continuous-in-time semi-discrete discretizations of many initial-
boundary value PDE problems. Similarly, the discrete counterpart of Gronwall
lemma is a main technical tool for deriving error estimates for fully discrete schemes.
However, for many nonlinear PDE problems, the classical Gronwall lemma does not
apply because of nonlinearity, instead, some nonlinear generalization must be used.
In case of the power (or Bernoulli-type) nonlinearity, a generalized Gronwall lemma
was proved in [48]. In the following we state a discrete counterpart of the lemma
in [48], and the proof of a similar lemma can be found in [73]. This lemma will be

utilized crucially in the next section and in Chapter 3.

Lemma 2.2.4. Let {S;}s>1 be a positive nondecreasing sequence and {bs}e>1 and

{ke}e>1 be nonnegative sequences, and p > 1 be a constant. If

Sei1— Se < bSy + k:gSf for € >1, (237)
-1
SIPH+(1—p) Y kay b >0 forl>2, (2.38)
s=1
then
] -1 =
Sy < =8P 4 (1— koai ® or 0 > 2, 2.39
0> aé{ 1 ( p) S_Zl +1} J ( )
where
-1y
ap = Sl_[l 170 for £ > 2. (2.40)
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Proof.

¢ /—1
e —ag= [+ =TI +07" (2.41)
s=1 s=1

Define

a; = 1. (2.42)

Multiplying (2.37) by ass1 and using (2.41), we have

CLg+1Sg+1 - [1 + bg]ag_HSg S k‘gag_HSg. (243)

That is

ag+1Sg+1 — CLgSg S k’ga@_le. (244)

By Mean Value Theorem,

(@er1Se11) 7P = (arSe)' ™ = (1 = p)a™(ap41 501 — arSe), (2.45)

where x lies between a,y15p.1 and a,Sy. It is easy to see that a, is nonincreasing and

Sy is nondecreasing, so we have

x > agSg > G@Jrng if agSg < ag+1Sg+1, (2.46)

T > apr15011 = 1Sy if @S> 15041 (2.47)
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Using (2.44) and (2.45), we get in both cases,
(ars1Se41)' ™" = (aeSe)' ™" > (1 = p)kea, T (2.48)

Now setting ¢ = s in (2.48) and taking the sum over s from 1 to £ — 1, we obtain

(agS)" P > (a1.51) P + (1 — Z keall?. (2.49)

Taking ¢'" roots, we have

1/(1-p)
Sy < {(51 NP 4 ( Zk asH} . (2.50)

Moving a, into right-hand side, we get our conclusion. O

2.3 Fully discrete interior penalty discontinuous

Galerkin approximations

2.3.1 Formulations

Let T, be a quasi-uniform “triangulation” of D such that D = UKeTh K. Let hg
denote the diameter of K € T, and h := max{hy; K € T,}. We recall that the

standard broken Sobolev space H*(7;,) and DG finite element space V}, are defined as

)= [ #(K),  Vi:= ][] P(X),

KeTy, KeTy,

where P,.(K) denotes the set of all polynomials whose degrees do not exceed a given
positive integer . Let £ denote the set of all interior faces/edges of Ty, EF denote

the set of all boundary faces/edges of Ty, and &, := & U EP. The L-inner product
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for piecewise functions over the mesh 7, is naturally defined by

= 3 [ owds

KeTy,

and for any set S, C &, the L?-inner product over Sy, is defined by

<v,w>$h = Z vw ds.

e€Sy, €

Let K, K" € T, and e = 0K N OK’ and assume global labeling number of K is
smaller than that of K’. We choose n. := ng|. = —ng|. as the unit normal on e and

define the following standard jump and average notations across the face/edge e:

[v] :=v|x — v|g onecé&f, [v]:=v onecé&?,

1
{v} I:§(U|K+U|K/) onec &l {v}:=v onec&l

for v € Vj,.

Let M be a (large) positive integer. Define 7 := T/M and t,, := m7 for m =

M

0,1,2,--- , M be a uniform partition of [0, T]. For a sequence of functions {v™}_,,

we define the (backward) difference operator

We are now ready to introduce our fully discrete DG finite element methods for
problem (1.24)—(1.27). They are defined by seeking uj* € V), for m = 0,1,2,--- | M
such that

m m 1 m
(dtuh +1,Uh)77I + ah(uh +1, Uh) + 6_2(f +1, Uh)Th =0 Vvh € Vh, (251)
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where

ah(wh,vh) (th, Vvh) <{6 wh} Up, >51 (252)

+ )\<[wh], {anvh}>g}{ + jh(wiu Uh)a

wh,vh Zh U}h Uh o (253)
eGSI
= (Y g or [ = ) -t (254)

where A = 0,+1 and o, is a positive piecewise constant function on &, which will
be chosen later (see Lemma 2.3.4). In addition, we need to supply u) to start the
time-stepping, whose choice will be clear (and will be specified) later when we derive
the error estimates in section 2.3.4.

We conclude this subsection with a few remarks to explain the above IP-DG

methods.

Remark 2.3.1. (a) The mesh-dependent bilinear form ay(-,-) is a well-known IP-DG
discretization of the negative Laplace operator —A, see [82].

(b) Different choices of A give different schemes. In this chapter we only focus on
the symmetric case with A = —1. Also, o, is called the penalty constant.

(¢) The time discretization is the simple backward Fuler method for the linear
terms. However, we shall prove in section 2.3.2 that the treatment of the nonlinear
term results in two implicit schemes which have different stability properties with
respect to €. We also note that only fully implicit scheme (i.e., fm = (u]"™)3 —
w1 ) was considered in [/5], and the resulted finite element method was proved only

conditionally stable there.

2.3.2 Discrete energy laws and well-posedness

As a gradient flow, problem (1.24)—(1.27) enjoys an energy law which leads to the

estimate (ii) and then the subsequent estimates given in Proposition 2.2.1. One
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simple criterion for building a numerical method for problem (1.24)-(1.27) is whether
the method satisfies a discrete energy law which mimics the continuous energy law
[39, 45]. The goal of this subsection is to show that the IP-DG methods proposed
in the previous subsection are either unconditionally energy stable when f™m+! =

m+1

UZLH)B — Up

(u;)? — u or conditionally energy stable when fm+! = (
First, we introduce three mesh-dependent energy functionals which can be
regarded as DG counterparts of the continuous Cahn-Hilliard energy J. defined in

(1.28).

1 1.
" (v) = SlIVollZacm) = ({Onv} ]y + Sinlvv) Vo€ HX(Ty),  (2.55)
1
Jhw) == o"(v) + e_Q(F(U)’ 1)71 Yo € H*(Ty), (2.56)
1
I"v) == d"v) + G—Q(Fj(v), 1),  VoeHXTy), (2.57)
where F(v) = 1(v* = 1)? and F.(v) := 1(v* + 1).
If we define F (v) := 3v?, then there holds the convex decomposition F(v) =

Ff(v) — F7(v). Tt is easy to check that ®" and I" are convex functionals but J" is

c

not because F' is not convex. Moreover, we have

Lemma 2.3.2. Let A = —1 in (2.52), then there holds for all vy, w, € V},

§®" (vy,) . O (v, + swy) — D" (vy)
( 5o ,wh>7_h = ll_I)I(l) . = ap(vp, wp), (2.58)
h h _ 7k
(<5J6 (vn) | wh) . lim J7 (vn 4 swp) — S (vp) (2.59)
5Uh T s—0 S
1
= ah(vh, wh) + 6_2 (F/(Uh), wh)Th’
h h _7h
(51& (o) wy) = lim 12 on + swn) = I (0n) (2.60)
oy, T s—0 S

= ah(vh,wh) + é((Fj)’(vh),wh)ﬁ.

The proofs are straightforward. They can be proved by the definition of ®"(v),
JM(v) and I"(v).
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Remark 2.3.3. We remark that (2.58)(2.60) provide respectively the representations
of the Fréchet derivatives of the energy functionals ®", J* and I" in V. This simple
observation is very helpful, it allows us to recast our DG formulations in (2.51)—(2.54)
as a minimization/variation problem at each time step. It is also a deeper reason why

the proposed DG methods satisfy some discrete energy laws to be proved below.

Lemma 2.3.4. There exist constants oy, > 0 such that for o, > oy for all e € &,
there holds
@h(vh) > oz||vh||iDG Yo, € Vi, (2.61)

where
[onll3 pe = VORI 2275 + dn(vn, vn).- (2.62)

Proof. Inequality (2.61) follows immediately from the following observation
2<I)h(vh) = Clh(’l)h, ’Uh) Yo € Vy, (263)

and the well-known coercivity property of the DG bilinear form ay(-,-) (cf. [82]). O

We now are ready to state our discrete energy/stability estimates.

Theorem 2.3.5. Let {u}'} be a solution of scheme (2.51)~(2.54). Then there exists

oy > 0 such that for o, > o,Ve € &,

Jhub) + k i: R < JMup)  for0< €< M, (2.64)
m=0
where
k k
ti= (12 5 ) e Wy + IV e, (2.65)
5, A ) gl P = 1) e,
and the “+7 sign in the first term is taken when ™+ = (u™)® —u® and “” sign

is taken when fm = (u]™)? —
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Proof. Setting v = dyu}"*" in (2.51) we get

ey 1227,y + an(up ™, dyu ™) + (fm+1 dyu ™) = 0. (2.66)

By the algebraic identity a(a — b) = 3(a® — b%) + 1(a — b)? we have

k
an(u"tt Vdau ) = —d rap (u a4 —(||thu;7+1||§2(m (2.67)

2By Y, [ ) gy (Y da ) ).
It follows from the trace and Schwarz inequalities that

2<{dta Up, fany s [dtum+1]>g}{ 2 —2||{dtanuzn+l}||L2(5,{)||[dtUZLH]HLZ(e,{) (2.68)
_1 m m
> —Ch2 |l d;Vup e ey 2y

1 m m
> —§Hdtvuh Nieery — Ch™H[druy, H]Hiqg}{)-
Then there exists o; > 0 such that for . > o

an(uy"™, Vdaut ) > 2d rap (w u (2.69)
k;
<’|th“2n+l||L2(Th) +]h(dtuh o dtumﬂ))'

We now bound the third term on the left-hand side of (2.66) from below. We first

consider the case f™*! = (u}**1)® —u*. To the end, we write

fm+1 — UZL+1<|um+1|2 o ) + kdtum+1

— %(( P ) + kde ) (Jup P = 1) + kdgup
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A direct calculation then yields

(fm-‘rl d um-‘rl) pdt|||um+1|2 . 1”%2(7_h) (270)

||dt(|um+1|2 = DliZer) + ||dt up -
On the other hand, when f™' = f(u"*") = (u}"*')® — u;**!, we have (cf. [45])

(fm-l—l dt m-l—l) > th|||um+l|2 _ 1||%2(7_h) (2‘71)
k

k m
+ ™ = Dl = 5alldin ™ 1z2e7)-
It follows from (2.66), (2.69), (2.63) and (2.70) (resp. (2.71)) that
k m m
(11—)||dtuh+1||m () 4 gl = 1)

2 2
(||thum+1||p,,h + g (d ™ dy Y + —||d (Jun 1| — 1>||§2(7.h)) <0.

Finally, applying the summation operator k Z s ' and using the definition of Jh
we obtain the desired estimate (2.64). The proof is complete. ]

The above theorem immediately infers the following corollary.

Corollary 2.3.6. The scheme (2.51)—(2.54) is stable for all h,k > 0 when f™! =
(u™)3 — w and is stable for h > 0,2¢2 > k > 0 when fm*! = (u"*1)? — !

)

provided that o, > max{og, oy} for every e € &,.

Theorem 2.3.7. Suppose that o, > max{og, 01} for every e € &,. Then there
exists a unique solution u]"™ to the scheme (2.51)~(2.54) at every time step ty.1 for
h,k > 0 in the case f™+ = (u]"™)® — u®. The conclusion still holds provided that

h > 0,262 >k >0 in the case f™ ' = (u"*')? —uj*t!.
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Proof. Define the following functionals

k 1 m
G(v) := k®"(v) + 6—2(F(v), l)Th + §||U||2L2(7’h) - (Uh >U)Th,

k 1 k .
H(v) := k®"(v) + E—Z(Fj(v), 1)Th + §||v||%2(¢h) — <€—2 + 1> (uh ,U)Th.

Clearly, H is strictly convex for all A,k > 0. G is not always convex, however, it
becomes strictly convex when k < 2¢2. To see this, we write F(v) = FF(v) — F. (v)

c

in the definition of G(v) and notice that

ko, 1 1 k
—5(Fe @) 1) 5 4 5lIvllzee) = 5(1 - 6—2> [oll22(7,,,

which is strictly convex when k < 2€2.
Using (2.58)—(2.60), it is easy to check that problem (2.51)—(2.54) is equivalent to

the following minimization/variation problems:

upt! = argmin G(vy,), when f™H! = (1) — ot
vRLEVR

upt™ = argmin H(vy),  when f7 = (u"")? —uj.
v EVR

Thus, the conclusions of the theorem follow from the standard theory of finite-

dimensional convex minimization problems. The proof is complete. O

2.3.3 Discrete discontinuous Galerkin spectrum estimate

In this subsection, we shall establish a discrete counterpart of the spectrum estimate
(2.36) for the DG approximation. Such an estimate will play a vital role in our error
analysis to be given in the next subsection. We recall that the desired spectrum
estimate was obtained in [45] for the standard finite element approximation and it
plays a vital role in the error analysis of [45]. Compared with the standard finite

element approximation, the main additional difficulty for the DG approximation
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is caused by the nonconformity of the DG finite element space V) and its mesh-
dependent bilinear form a(, -).

First, we introduce the DG elliptic projection operator P : H*(T,) — Vj, by
an(v — P, wy,) + (v — P, wh)Th =0 Yw, €V, (2.72)

for any v € H*(Ty).

Next, we quote the following well known error estimate results from [22, 82].

Lemma 2.3.8. Let v € W**(T,), then there hold

o = Prollzagny + IV (o — Bo)lgamy < Rl (273)
1
|Inh|”

o= Pl ey + IV (0 = PPl ey < CR 0 . (274)

where T := min{1,r} — min{1,r — 1}.
Let

C1 = max|f"(&)|. (2.75)

1€1<2

and }A)qf’, corresponding to P", denote the elliptic projection operator on the finite

element space S, := Vj, N C°(D), there holds the following estimate [45]:
lu — Pl poe < Ch22 [|u| 2. (2.76)

We now state our discrete spectrum estimate for the DG approximation.

Proposition 2.3.9. Suppose there exists a positive number ~v > 0 such that the
solution u of problem (1.24)—(1.27) satisfies

ess sup [|u(t)||wr10opy < Ce 7. (2.77)
te[0,T
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Then there exists an e-independent and h-independent constant cq > 0 such that for

e€(0,1) and a.e. t € [0,T]

an(tn,n) + & (f/(PPu(t)) v, v )

APE(t) := inf T > ¢, (2.78)
" %;‘21 ”d’hH%z(Th)
provided that h satisfies the constraint

278 < Co(CCy)~temaxlontiont2) (2.79)
prin{r+Lst Iy |7 < Cp(CLCy) L2, (2.80)

where Cy arises from the following inequality:
i — Plull oz oy < Coh™™ 19 b, (2.81)
Hu - ﬁrhuHLoo((O,T);Loo(D) S CQhQigﬁi max{01+1,02}' (282)

Proof. Let S := V,, N C°(D). For any 1, € V},, we define its finite element (elliptic)

projection ¢;* € S}, by

an(Vy", on) = an(Un, on)  Ven € S, (2.83)

where

an(, 0) = an(ih, ©) + B, ©)7. Vb, € H*(Th),

and [ is a positive constant to be specified later.

By Proposition 8 of [45] we have under the mesh constraint (2.79) that

||f,(PrhU) - f/(u)”LOO((O,T);LOO(D)) < Coé’. (2.84)
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Similarly, under the mesh constraint (2.80) we can show that

[ F/(Pru) — f'(u) || poo (0,022 (p)) < Coe.
Then
L/ (PPu) = f'(PrMu) || oo o) (0y) < 2C0€%.

Therefore,

f/(Pru) > f'(PPu) — 2Coe®.

By the definition of ;" we have

an(Vn, V) = an(Vy", 00" + an(Un — 0, Y — ") — 2B8(n — ¥p,"

Using the above inequality and equality we get

() =5 (/ (Bl i, )

h

> an (U 05) + — (£ (Pra). i)

+ah<¢h— ;P;E,l/)h_ EE)_26(¢h_ £E7 }P;E)Th

(2.85)

(2.86)

(2.87)

) IP;E)Th

(2.88)

1 ~
+ 5 (F (Bru(), @n)? = @W5")2)_ = 2Collunlliar

h

We now bound the fourth and fifth terms on the right-hand side of (2.88) from

below. For the fourth term we have

=28 (n = p" ") . = 28108 127y — 28M10R" N2y 1l 27 (2.89)

> BllnEllZecry — BlUnllzzcr,)-
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To bound the fifth term, by (2.54) and the L*-norm estimate for u(t) — ﬁfu(t)

we have that under the mesh constraint (2.79)

1 (Pru() || s my < 1/ ()| ooy + 1/ (w(t)) = F/(Pru(t))|| oo o)
< I )l z=(@) + Cllult) = Prut)|| =) < C.

Thus, by the algebraic formula |a* — b%| < |a — b]* + 2|ab|, we get for some C' > 0

1 ~ C
S (1 Pra®), ) = W) =~ = Wy (2:90)
C
> == (Il = VEPIacy + 2 — U3 Lo 03 oy )

C -
— (T + ) on = U3EIEa ) + IR )

Vv

Now it comes to a key idea in bounding [|1)5, — ¥}"||2(7;,), Which is to use the
duality argument to bound it from above by the energy norm ay (¢, —¢;", ¥y — ZE)%
To the end, we consider the following auxiliary problem: find ¢ € H*(D) N H2_ (D)

such that
an(¢.x) = (n =" x),.  Yx € H'(D).

We assume the above variational problem is H'*?-regular for some 6 € (0, 1], that is,

there exists a unique ¢ € H'*(D) such that

[l zrvopy < Cllton — V3" 2(p)-

It should be noted that C'(> 0) can be made independent of f.
By the definition of ¢}® in (2.83), we immediately get the Galerkin orthogonality

an(Yn =" xn) =0 Vxi € Sh.
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The above orthogonality allows us easily to obtain by the duality argument (cf. [82]

for a general duality argument for DG methods)

[n = VRPN 7207y < OB an(n — U5°, on — ¥5°) (2.91)

Again, the constant C' can be made independent of f3.
By Proposition 8 of [45] we also have the following spectrum estimate in the finite

element space Sj:

FE | FE 1 (D FE FE
an (U ) + 5 (1 (Blu(). ")) = 20l ey (292)

Finally, combining (2.88)—(2.92) we get

() + 5 (1 (Pr®) ) (299

> (1= Ch e )an(tn — V5", ¥n — U3°)
+ (8 —C = 2C0) 1451327,y — (B + 2C0) l1vnll32 7
> —(B+2C0) 1vnllizemy — Yon € Va,

provided that /3 is chosen large enough such that 3—C —2Cy > 0 and 1 —Ch?e* > 0,
under the mesh constraint (2.80). The proof is complete after setting ¢y = 5+2Cy. O

Remark 2.3.10. The proof actually is constructive in finding the e- and h-
independent constant cq. As expected, co > 2Cy. We also note that inequality (2.93)
15 a Garding-type inequality for the non-coercive elliptic operator L ,¢.

1

2.3.4 Polynomial order in ¢ error estimates

The goal of this subsection is to derive optimal order error estimates for the global
error u(t,,) — u}’ of the fully discrete scheme (2.51)—(2.54) under some reasonable

mesh constraints on h,k and regularity assumptions on wug. This will be achieved

40



by adapting the nonstandard error estimate technique with a help of the generalized
Gronwall lemma (Lemma 2.2.4) and the discrete spectrum estimate (2.78).

The main result of this subsection is the following error estimate theorem.

Theorem 2.3.11. suppose o, > max{og,op}. Let u and {ul*}M_, denote respectively
the solutions of problems (1.24)—(1.27) and (2.51)~(2.54). Assume u € H?((0,T);
L*(D)) N L2((0,T); W>°(D)) and suppose (GA) and (2.77) hold. Then, under the

following mesh and initial value constraints:

h 2 < 00(0102) 1 max{01+3 a'2+2}

hmin{r—&—Ls}’ In h|? < 00(0102)_167+2,
k?2 + h2 min{r+1,s} < €4+d+2(0'1+2)

8+2d+do

k< Ce +a |

up € Sy, such that  ||ug — Uh”L2 ) < Cpmintrtlis

there hold
M 1
oo, ) = iy + (B 3 IeCuttn) = )l))* (299
< Ck+ hmm{rﬂ,s}){(oﬁz)’
M 1

(k: 3 Jlutm) — u;"||§,1(m) < Ok + printrH1s} =1y —(e1+43), (2.95)
m=1
o ax u(t) — || oo (ryy < CR™M L In p|7e? (2.96)

+ OB~ (k o Rt Lsh) (o142,

Proof. We only give a proof for the case fm*! = (u}"*')® — u" because its proof is
slightly more difficult than that for the case f™*! = (u]"™)? — u}**!. Since the proof

is long, we divide it into four steps.
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Step 1: We begin with introducing the following error decompositions:
U(tm) —u" =™ + €™, 0™ = u(ty) — Plu(ty,), €™ := PMu(t,) —u
It is easy to check that the exact solution u satisfies

(dewltms1) vn) 7 + an(utinrr), vn) + é(f(u(tmﬂ)), )y = (Bmsr,vn) . (2.97)

for all v, € V},, where

1 [tme
Rm—l—l = —E/ (t — tm)utt(t) dt.
tm

Hence

. 1 ‘ tm“ tm+t1
k:mz:() | Ry [|72(p) < =7 mz: </m (s — tm)st) (/tm el 22y ds) (2.98)

< C]{IQG_Q max{o1+2,03} )

Subtracting (2.51) from (2.97) and using the definitions of ™ and ™ we get the

following error equation:

(dtferl’ Uh) +ap (ferl Uh) + é(f(u(tm+1>> - ferla Uh)Th (299>
= (RerlaUh) (dtﬁmﬂ )Th — an(n™*, vp)

= (Rm+1,Uh) (dtnm+1 )Th + (nm—i_l,vh)’]’h.

Setting v, = £™*! and using Schwarz inequality yield

1 m m m m
5 (€™ My + Rlldg™ gy ) + an(€™ 1, €74)
1 m m
5 (F(ultme)) = 7460

< (1B Loy + Nl ey + 1™ sy ) NE™
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Summing in m (after having lowered the index by 1) from 1 to ¢(< M) and using
(2.73) and (2.98) we get

10327, +2k2k||dt§ 1227 +2k2ah £, em) (2.100)

+ 2k Z 5 (Flultn) = £7.67),
L
<k DI ey + 20E Moy + O (W22

m=1

4 p2min{r+1,s} HuH?p((o,T);HS(D))) '

Step 2: We now bound the fourth term on the left-hand side of (2.100). By the

definition of f™ we have

Fultn) = £ = Fu(tn) - f(Pfu( n)) + f( ultn) = f"

=~ [f(ultm)) = f (Plu(tn))] + (Plu(tn)” = Plulty) = (uf)® +uf™

= = [f(ultn) = F(Prultn))] + (( (1)) + Plrut) uf? + (7)€"
—&" — kdyuy

— [ (ultm)) = J (Prultn))] + (3(Pu(tn)” = 1)€" = 3PLu(tn) (€7)?
+ (&™) — kdyuy!

= [ (ult)) = F(Plu(tn))] + £/ (Pru(tn)) € — 3Pru(ty) (€)?
+ (£™)° = kdyuy!.
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Hence, on noting that — [ f(u(t,)) — f(Pru(tm))] > —C|n™|, we have

r

~

2% 3 5 (Flultn)) — 7€)

¢ ¢
Ck m m 1 m
— 2 " ey €7 ey +28 D 5 (7 (Pluttn)). (7))
m=1 m=1
Ck = | s 2% o~ | i 2% o " .
T e Z 1€ ||L3(7’h) + 2 Z 1€ ||L4(Th) T e Z k| dyuj, ||L2(7’h) 1€ ||L2(E)
> %Z S (F(Pruten)). €?) + Z [ Z €™ sy
~k Z €™ 22y — € (A2 o oy saeco) + 26 TAR)).

Here we have used the fact that |P*u(t,,)| < C and (2.64).
Substituting the above estimate into (2.100) yields

¢ ¢
m 2 m

1603 275, + 2k Z k€™ | 7207 + L > €™ e (2.101)

m=1
+ 2% Z (ah e, + 5 (f (Plu(tn), <£m)2)7h)
m Ck m
<2k Z 1€ ||%2(Th) + =) Z 1€ ”?iS(Th)
m=1 m=1

el + O (20200 4 42

+ Cp2mintrilsl (||U||§{1((0,T);HS(D)) + 6_4”“”%2((0,T);H3(D)>'

Step 3. To control the second term on the right-hand side of (2.101) we use the

following Gagliardo-Nirenberg inequality [2]:

a 6=
sy < CUVOl o vl By VE € Th
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to get

¢ L
Ck - i
5 2N iy < Pak Y7 IVE e (2.102)
m=1 m=1
y4
_2(4+d) m 2(6=d)
+Ce i kz Z H€ ”Lg(;é)
m=1KeT,,
V4
<Eak Y Ve 327 (2.103)
m=1

4 _
DY Bt
m=1

Finally, for the fourth term on the left-hand side of (2.101) we utilize the discrete

spectrum estimate (2.78) to bound it from below as follows:

2% z (e (7 (Prate). @) ) (2:104)

=2(1 - Ak i <ah(§m,§m) + é(f’(P[‘u(tm)% (é’”)Q)Th)
+268% ) (ah(é’”, ") + é(f’(PfU(tm)), (5’”)2>Th>

¢ l4 ¢
> —2(1 =)ok Y 1€ 15 + 4%k Y 1IE™ 3 pe = O D 1IE™ 13073
m=1 m=1 m=1

where we have used (2.63) and (2.61) to get the second term on the right-hand side.

45



Step 4: Substituting (2.102) and (2.104) into (2.101) we get

~

€2y + 3 (2Kde€™ 32y + 3% ll€713 (2.105)
m=1
- m||2 _20+d) : m %
< CA+ ek Y 1€ T2+ C =0k 1€ | o)
m=1 m=1

2 gy + OR (2 )

+ Cp2min{rils) <||u||%(1((0,T);HS(D)) + 6_4”“”%2((0,T);HS(D)>'

At this point, notice that there are two terms on the right-hand side of (2.105)
that involve the approximated initial datum u). On one hand, we need to choose u
such that [|€%]|z2¢7;,) = O(R™™{+15}) to maintain the optimal rate of convergence in
h. Clearly, both the L? and the elliptic projection of uy will work. In fact, in the
latter case, & = 0. On the other hand, we want J(u2) to be uniformly bounded in
h. but the jump term in J"(u)) always depend on h unless it vanishes. To satisfy
this requirement, we ask u) € Sj,. Therefore, we are led to choose u{ to be the L? or
the elliptic projection of u( into the finite element space Sj,.

It then follows from (2.105) and (ii), (iv), (vii) in Proposition 2.2.1 that

l
€0+ B D (2RIAE™ B+ Beall€™ R o) (2.106)
m=1

¢ 9 _ 2(4+d) ¢ 28167*:)
< C(l‘{‘CO)k’Z ||£m||L2(7;l) + Ce "a-d kz“gmHL2(_Th)
m=1

m=1

+ Ck,2€—2(01+2) + Ch2 min{r+1,s}e—2(01+2)‘

On noting that uf can be written as

¢
uy =k Z dyul + uj), (2.107)

m=1
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then by (2.1) and (2.64), we get
¢
lupllzzmy < kD el 2y + gl ey < Ce> (2.108)

m=1

By the boundedness of the projection, we have

€817 275y < Ce2. (2.109)
Then (2.106) can be reduced to
¢
16N 22y + 5 Y (2Kde€™ 727, + 3e*ll€™ | pe ) < M+ Mo, (2.110)
(Th)
m=1
where
-1 ) e 26-)
m - m 4—d
My =C(+c)k Y €™ 7o) + Ce 0 k> _[1€™ | 4 (2.111)
m=1 m=1

+ Ck2€—2(01+2) + Ch2 min{r+1,s}€—2(01+2)7

(6-d)
24 “i=a

)2 2 g
My 2 = C(1+ co)k[|€"[ T2 + Ce™ =T k||E°)| 57 (2.112)
It is easy to check that
1 o . 8+2d+40q
My < §||§ 17207 provided that &k < Ce 4 . (2.113)
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By (2.110) we have

l
1602y + kD (2™ 227y + 3%all€™ R ) < 2
m=1

-1

2(6—d)
:20(1+c0)k;2\|§m||i2(m+2oe = ZHg [E

+ 201{32 2(01+2) + Oh2 min{r+1, s} 2(o1+2)
-1

2(6-d)
SC(1+co)kZ||€m||%2(Th)+C€ = kZH§ ”L?Th

m=1

+ Cvk,2€—2(01+2) + Ch2 min{r+1,s}€—2(o'1+2)'
Let dy > 0 be the slack variable such that

)4
€22+ D (2R Wy + Bel€™ I ) + e
m=1

-1

= C(1+ o)k 3 €™ 22, + Ce Tk leﬁmHLz )

m=1

+ Ck26—2(01+2) + Oh2 min{r+1,s}€—2(01+2)’
and define for ¢ > 1

¢
Sevr s = [€03a() + B 3 (2K1d€™ By + 3E3all€7 13 g ) + di

m=1
S = Ck2e2o1+2) + Ch2min{T+1’s}5_2(Ul+2)7
then we have

2(4+d)

6—d
Ser1 — S < 0(1 + Co)k‘Sg + Ce¢ "4-4 ]CS;_d for £ > 1.
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Applying Lemma 2.2.4 to {Sy},>1 defined above, we obtain for £ > 1

4—d
-1 -3
2 20k (44d) —_-2_
S, < a[l{Sl e el asfld} (2.119)
s=1
provided that
-1
1 -2 2Ck (4+d) — 2
i v e a5 > 0. (2.120)
s=1

We note that as (1 < s < /{) are all bounded as k — 0, therefore, (2.120) holds under
the mesh constraint stated in the theorem. It follows from (2.119) and (2.120) that

SE < 2@;151 < Ck2€72(01+2) + Ch?min{?"+1,s}€72(a'1+2). (2121>

Finally, using the above estimate and the properties of the operator P" we obtain
(2.94) and (2.95). The estimate (2.96) follows from (2.95) and the inverse inequality

bounding the L>-norm by the L?-norm and (2.81). The proof is complete. O

2.4 Convergence of the numerical interface to the
mean curvature flow

In this section, we establish the convergence and rate of convergence of the numerical
interface T"* which is defined as the zero-level set of the numerical solution {u?} (see
the precise definition below), to the sharp interface limit (the mean curvature flow)
of the Allen-Cahn equation. The key ingredient of the proof is the L>°(J; L>) error

estimate obtained in the previous section, which depends on e~!

in a low polynomial
order. It is proved that the numerical interface converges with the rate O(e?|In €|?)
before the singularities appear. We note that the proof to be given below essentially
follows the same lines as in the proof of [45]. For the reader’s convenience, we provide

here a self-contained proof. Throughout this section, u* denotes the solution of the

Allen-Cahn problem (1.24)—-(1.27).
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We notice that, unlike in the finite element case, the DG solution wu} is
discontinuous in space (and in time). As a result, the zero-level set of u} may not
be well defined. To circumvent this technicality, we introduce the finite element
approximation uy" of u}* which is defined using the averaged degrees of freedom of u}
as the degrees of freedom for determining u}* (cf. [58]). The following approximation

result was proved in Theorem 2.1 in [58].

Theorem 2.4.1. Let T}, be a conforming mesh consisting of triangles when d = 2,
and tetrahedra when d = 3. For v, € V},, let vy, be the finite element approximation

of v, as defined above. Then for any vy, € Vi, and i = 0,1 there holds

> llon = Bullzrey < € Y T N unll 7o) (2.122)

KeTy 665{L

where C' > 0 is a constant independent of h and vy, but may depend on r and the

minimal angle Oy of the triangles in Ty,.

Using the above approximation result we can show that the error estimates of

Theorem 2.3.11 also hold for uj.

Theorem 2.4.2. Let uj’ denote the solution of the DG scheme (2.51)—(2.54) and uj’
denote its finite element approximation as defined above. Then under the assumptions
of Theorem 2.3.11 the error estimates for uy' given in Theorem 2.5.11 are still valid

for uy, in particular, there holds

_~m min{r+1,s} T_—
oax u(ty) — Uy || Loo(ry < Ch |Inh|"e (2.123)

+ Ch_g(k + hmin{r+1,s})€—(01+2)‘

Proof. We only give a proof for (2.123) because other estimates can be proved likewise.

By the triangle inequality we have

() = By < Nutn) = lommy + ot = Bllzmery. (2124)
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Hence, it suffices to show that the second term on the right-hand side is an equal or
higher order term compared to the first one.
Let u!(t) denote the finite element interpolation of u(t) into Sy. It follows from

(2.122) and the trace inequality that

||UZI — 717;?”%2(7;0 S C Z he” [U;Ln] ||%2(e) (2125)
665{1
=C D helllup = ' ()72
eESi
<O Y heh gt =l (tn)Faga
KEeT,

< C(lluy’ = ultm) 22z + llultm) = v (tn) 727, )-
Substituting (2.125) into (2.124) after using the inverse inequality yields

m -4y m
la(tn) = @ llmcriy < Na(tn) = af looeimy + Ch 3l = 5L cecm)
< Ju(tm) = L=

—d/m
+ Ch™2 ([lup = ulta)ll 27 + lJu(tm) — o' (tn) 2273

which together with (2.94) implies the desired estimate (2.123). The proof is complete.
O

We are now ready to state the main theorem of this section.

Theorem 2.4.3. Let {I';} denote the (generalized) mean curvature flow defined in

[35], that is, Ty is the zero-level set of the solution w of the following initial value

problem.:

D?*wDw - Dw
| Dwl?

w(-,0) = wy(*) in R?. (2.127)

w, = Aw — in R x (0, 00), (2.126)
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Let u™* denote the piecewise linear interpolation in time of the numerical solution

{up'} defined by

t—tm -
A () + G (1), b <t <t (2.128)

uk (1) = T Uh ’

for0<m < M —1. Let {Fi’h’k} denote the zero-level set of u“"*, namely,
oM = oz € Dy u™*(z,t) = 0}. (2.129)

Suppose Ty = {x € D;up(x) = 0} is a smooth hypersurface compactly contained in
D, and k = O(h?). Let t, be the first time at which the mean curvature flow develops
a singularity, then there exists a constant €, > 0 such that for all e € (0,¢;) and
0 <t <t there holds

sup {dist(z,Ty)} < Ce?|1n €|

zerohk

Proof. We note that since u"*(z, ) is continuous in both ¢ and z, then T is well

defined. Let I; and O; denote the inside and the outside of I'; defined by
I, .= {z € R w(x,t) > 0}, O, = {z € R% w(x,t) < 0}. (2.130)

Let d(z,t) denote the signed distance function to I'; which is positive in [, and
negative in O;. By Theorem 6.1 of [9], there exist €5 > 0 and 61 > 0 such that for all
t >0 and € € (0,€) there hold

Ue(x,t) >1—€ Vz € {z € D; d(z,t) > Cié*| In €|?}, (2.131)

u(z,t) < —14+¢ Vre{zeD;dat)<—Cie|ln ). (2.132)
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Since for any fixed = € T wo™k (2, t) = 0, by (2.123) with k = O(h?), we have

|u5(:p,t)| - |u€(x,t) - u€’h7k(x>t)|

< é(hmin{r—i-l,s}‘ lnh’FE—'y + h—%(k + hmin{r+1,s}>€—(01+2)) )
Then there exists € > 0 such that for € € (0,¢;) there holds
lu(z,t)| <1 —e. (2.133)

Therefore, the assertion follows from setting e; = min{€;, €1 }. The proof is complete.

O

2.5 Numerical experiments

In this section, we present three two-dimensional numerical tests to gauge the
performance of the proposed fully discrete IP-DG method with » = 1. All tests
are done on the square domain D = [—1,1]* and uy(z) = tanh(%&?), where do(x)
stands for the signed distance from x to the initial curve I'y.

The first test uses a smooth initial curve I'y, hence the requirements for wuq are
satisfied. Consequently, the results established in this chapter apply to this test
example. In the test we first verify the spatial rate of convergence given in (2.94)
and (2.95), and the decay of the energy J"(uf) defined in (2.64) using € = 0.1. As
expected, the energy decreases monotonically during the whole evolution. We then
compute the evolution of the zero-level set of the solution of the Allen-Cahn problem
with € = 0.125,0.025,0.005,0.001 and at various time instances.

On the other hand, the second and third tests use non-smooth initial curve Iy, so
up defined above is not smooth anymore, hence the theoretical results of this chapter

may not apply to these two cases. Nevertheless, we still use our DG method to

compute the solutions, the energy decay as well as the evolution of the zero-level sets
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of the solutions of these two test problems. The numerical results suggest that the
proposed DG method still works well in these two cases where a convergence theory
is missing.

Test 1. Consider the Allen-Cahn problem with the following initial condition:

tanh(%2)if A R

up(z) = V2e 036 ' 0.04 =
0 =
_ . 2 2
tanh( jéf)% if o+ 55 < 1.
o} 23

Here d(z) stands for the distance function to the ellipse oo e = L

Table 2.1: Spatial errors and convergence rates of Test 1.

L>°(L?) error | L>°(L?) order | L*(H') error | L*(H"') order
h=0.4v2 0.28704 1.22726
h=0.2v2 0.10847 1.4040 0.69576 0.8188
h=0.1v2 0.02146 2.3376 0.32855 1.0825
h = 0.05v2 0.00511 2.0703 0.16448 0.9982
h = 0.025/2 0.00129 1.9860 0.08230 0.9989

Table 2.1 shows the spatial L? and H'-norm errors and convergence rates, which
are consistent with what are proved for the linear element in the convergence theorem.
Figure 2.1 plots the change of the discrete energy J"(u}) in time. This graph clearly

confirms the energy decay property.

Figure 2.1: Decay of the numerical energy J"(uf) of Test 1.
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o=0.005
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e=0.001

Figure 2.2: Test 1: Snapshots of the zero-level set of u™* at time ¢t = 0,2 x
1072,3.2 x 1072,4 x 1072 and € = 0.125,0.025, 0.005, 0.001.

Figure 2.2 displays four snapshots at four fixed time points of the zero-level set

of the numerical solution u&"*

with four different e. Once again, we observe that at
each time point the zero-level set converges to the mean curvature flow I['; as € tends

to zero, and the zero-level set evolves faster in time for larger e.

Test 2. This test considers a case with nonsmooth initial curve I'j which encloses
a dumbbell-shaped domain. To explicitly define the desired initial function, we

introduce the following functions:

et —e " -1+ /0.8y +0.04
1 —+/1.92y + 0.2304
Po(y) = v J ) Y3(y) =

tanh(z) == ———— U1(y) = 5
—1++/—0.8y +0.04
2 2 ’

er 4+ e’
1 —/—1.92y + 0.2304 10245142
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We then consider the Allen-Cahn problem (1.24)-(1.27) with the following initial

condition:

tanh(—-(—=+/(z = 0.14)2 + (y — 0.15)2)), if 2 > 0.14,0 <y < —g3(z — 0.5),

tanh(T( V(z—0.14)2 + (y +0.15)2)), if 2 >0.14, Z(z — 0.5) <y <0,

tanh(—(—/(z +0.3)2 + (y - 0.15)?)), ife<-03,0<y< 3(z+0.5),

tanh(T( V(@ +0.3)2+ (y+0.15)2), ifz<-03,-3(z+05)<y<0,

tanh( T (/(z —0.5)2 + y2 — 0.39)) if v >0.14,y > — 3 (z — 0.5)
ory < Z(z—0.5),

tanh( - (v/(z +0.5)2 + 32 - 0.25)), if 2 < —0.3,y > —3(2 +0.5)
ory < —3(z+0.5),

tanh( -(lyl = 0.15)), if —0.3<x<0.14,

uo(z,y) = V1(y) <z < Pay)

and 13(y) <z < Yu(y),

tanh(T( (x —0.5)%2 + y? — 0.39)), if —03<x<0.14, > a(y)
and 2 > 5(y),

tanh(f( (x —0.5)%2 + y? — 0.39)), if —0.3<x<0.14, x> 4(y)
and x > ¢5(y),

tanh( - (v/(z +0.5)2 + 32 - 0.25)), if —0.3<2<0.14, 2 <(y)
and x < ¥5(y),

tanh( - = (v/(z +0.5)2 + y2 — 0.25)) if —0.3<z<0.14, = < 3(y)
and x < 15(y).

We note that uy can be rewritten as

Uy = tanh( \/<_€)>
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Since 'y contains conner points, it is only Lipschitz. Then uq is not smooth, hence,
it does not satisfy the assumptions of Proposition 2.2.2. As a result, the convergence
theorem of this chapter may not apply to this case. Nevertheless, the numerical results
given in Table 2.2 show that the spatial L? and H'-norm errors and convergence rates

are still consistent with what are proved for the linear element in the convergence

theorem.
Table 2.2: Spatial errors and convergence rates of Test 2.
L>(L?) error | L=(L?) order | L*(H") error | L*(H") order

h=0.4v2 0.20604 0.95123

h=0.2V2 0.04598 2.1638 0.49633 0.9385
h=0.1/2 0.01330 1.7896 0.25199 0.9779
h = 0.05v/2 0.00372 1.8381 0.12686 0.9901
h = 0.025v/2 0.00098 1.9244 0.06350 0.9984

Figure 2.3 plots the change of the discrete energy J"(uf) in time, which should
decrease according to (2.64). This graph clearly confirms this decay property.

Energy

Figure 2.3: Decay of the numerical energy J"(uf) of Test 2.

Figure 2.4 displays four snapshots at four fixed time points of the zero-level set of
the numerical solution u*"* with four different e. They clearly indicate that at each
time point the zero-level set converges to the mean curvature flow I'; as € tends to

zero. It also shows that the zero-level set evolves faster in time for larger e.
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Figure 2.4: Test 2: Snapshots of the zero-level set of u®™* at time t =
0,0.06,0.09,0.2 and € = 0.125,0.025, 0.005, 0.001.

Test 3. Consider the Allen-Cahn problem (1.24)—(1.27) with the following initial

condition:

[ tanh(-L (min{d, (z), d T B B P M BN

tanh(—- (min{di(z), d2(2)})),  if 55: + 535 = Loas + oz = Ly
Gt 3 Gt 3

()_ Orm—i-mgl,m‘i‘mgla
uo x o 1 . x 2 1'2 $2

tanh(T( min{d;(x),ds(z)})), if a1+ 0§6 <Lz tom> L
il' 2132 $2 2

L 0064+0326>1’0§6+004<1

Here d;(x) and do(z) stand for, respectively, the distance functions to the two ellipses.
Obviously, the above I'y is not smooth, moreover, it contains four self-intersection
points. A topological change (i.e., a singularity) is expected to occur instantaneously
in such a case. Figure 2.5 displays four snapshots at four fixed time points of the

e,h,k

zero-level set of the numerical solution u with four different e. It clearly shows

how the pinch-off occurs for this self-intersected curve under the mean curvature flow.
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Figure 2.5: Test 3: Snapshots of the zero-level set of u™* at time ¢t = 0,6 x
1073,1.2 x 1072,2 x 1072 and € = 0.125,0.025, 0.005, 0.001.

We also compute the spatial L? and H'-norm errors and convergence rates in
Table 2.3, they are consistent with what are proved for the linear element in the
convergence theorem although the theorem does not cover this case. Figure 2.6 plots
the change of the discrete energy J"(u}) in time. The graph not only confirms the
energy decay property but also reveals the rapid decay of the energy at the beginning

of the evolution, which is caused by the singularity.
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Table 2.3: Spatial errors and convergence rates of Test 3.

L>(L?) error | L>(L?) order | L*(H"') error | L*(H") order
h=0.4v2 0.09186 0.29686
h=0.2V2 0.03670 1.3237 0.16331 0.8622
h=0.1y/2 0.00911 2.0103 0.07603 1.1030
h = 0.05v/2 0.00276 1.7228 0.03740 1.0235
h = 0.025v/2 0.00071 1.9588 0.01846 1.0186

Energy

Figure 2.6: Decay of the numerical energy J"(uf) of Test 3.
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Chapter 3

Discontinuous Galerkin Methods

for the Cahn-Hilliard Equation

3.1 Introduction

The Cahn-Hilliard equation plays an important role in materials phase transition,
and it also has been extensively studied due to its close relation with the Hele-Shaw
problem. It was first formally proved by Pego [74] that the chemical potential w :=
—eAu + % f(u) tends to a limit which satisfies the following free boundary problem
known as the Hele-Shaw problem (1.18)-(1.21). A rigorous justification that v — +1
in the interior or exterior of I'; for all ¢ € [0,7] as € N\, 0 was given by Stoth [88]
for the radially symmetric case, and by Alikakos, Bates and Chen [3] for the general
case. In addition, Chen [20] established the convergence of the weak solution of the
Cahn-Hilliard problem to a weak (or varifold) solution of the Hele-Shaw problem.
Numerical approximations of the Cahn-Hilliard equation have been extensively
carried out in the past thirty years (cf. [28, 31, 46] and the references therein). On
the other hand, the majority of these works were done for a fixed parameter €. The
error bounds, which are obtained using the standard Gronwall inequality technique,

show an exponential dependence on 1/e. Such an estimate is clearly not useful
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for small €, in particular, in addressing the issue whether the computed numerical
interfaces converge to the original sharp interface of the Hele-Shaw problem. Better
and practical error bounds should only depend on 1/e in some (low) polynomial
orders because they can be used to provide an answer to the above convergence
question, which in fact is the best result (in terms of €) one can expect. The first
such polynomial order in 1/e a priori estimate was obtained in [47] for mixed finite
element approximations of the Cahn-Hilliard problem (1.30)—(1.33). In addition,
polynomial order in 1/e a posteriori error estimates were obtained in [49] for the
same mixed finite element methods. One of the key ideas employed in all these
works is to use a nonstandard error estimate technique which is based on establishing
a discrete spectrum estimate (using its continuous counterpart) for the linearized
Cahn-Hilliard operator. An immediate corollary of the polynomial order in 1/¢ a
priori and a posteriori error estimates is the convergence of the numerical interfaces
of the underlying mixed finite element approximations to the Hele-Shaw flow before
the onset of singularities of the Hele-Shaw flow as e and mesh sizes h and k all tend
to zero.

The objectives of this chapter are twofold: Firstly, we develop some MIP-DG
methods and establish polynomial order in 1/e¢ a priori error bounds, as well as
prove convergence of numerical interfaces for the MIP-DG methods. This goal is
motivated by the advantages of DG methods in regard to designing adaptive mesh
methods and algorithms, which is an indispensable strategy with the diffuse interface
methodology. Secondly, we use the Cahn-Hilliard equation as another prototypical
model problem [40] to develop new analysis techniques for analyzing convergence of
numerical interfaces to the underlying sharp interface for DG (and nonconforming
finite element) discretizations of phase field models. To the best of our knowledge,
no such convergence result and analysis technique is available in the literature for
fourth order PDEs. The main obstacle for improving the finite element techniques of

[47] is that the DG (and nonconforming finite element) spaces are not subspaces of
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HY(D). As a result, whether the needed discrete spectrum estimate holds becomes a
key question to answer.

This chapter consists of four additional sections. In section 3.2 we first collect some
a priori error estimates for problem (1.30)-(1.33), which show the explicit dependence
on the parameter e. We then cite an important technical lemma to be used in the later
sections. This states the spectral estimate for the linearized Cahn-Hilliard operator.
In section 3.3, we propose two fully discrete MIP-DG schemes for problem (1.30)-
(1.33), they differ only in their treatment of the nonlinear term. The first main
result of this section is to establish a discrete spectrum estimate in the DG space,
which mimics the spectral estimates for the differential operator and its finite element
counterpart. The second main result of this section is to derive optimal error bounds
which depends on 1/¢ only in low polynomial orders for both fully discrete MIP-DG
methods. In section 3.4, using the refined error estimates of section 3.3, we prove the
convergence of the numerical interfaces of the fully discrete MIP-DG methods to the
interface of the Hele-Shaw flow before the onset of the singularities as e, h and & all
tend to zero. Finally, in section 3.5 we provide some numerical experiments to gauge

the performance of the proposed fully discrete MIP-DG methods.

3.2 Preliminaries

In this section, we shall collect some known results about problem (1.30)-(1.33) from
[19, 46, 47], which will be used in sections 3.3 and 3.4. Some general assumptions on
the initial condition, as well as some energy estimates based on these assumptions,
will be cited. Standard function and space notations are adopted in this chapter
(2, 13]. We use (-,-) and || - |72 to denote the standard inner product and norm on
L?(D). Throughout this chapter, C' denotes a generic positive constant independent
of €, space and time step sizes h and k, which may have different values at different

occasions.
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The following assumptions on the initial datum wuy, were made in [46, 42], they
were used to derive a priori estimates for the solution of problem (1.30)-(1.33).

General Assumption (GA)

(1) Assume that mg € (—1, 1) where
5 [ w()d 3.)
mo := — [ ug(x)dz. :
"Dl

(2) There exists a nonnegative constant o7 such that

Je(ug) < Ce 21, (3.2)

(3) There exists nonnegative constants o9, o3 and o4 such that

H — eAugy + 6_1f(u0)HHZ(D) < Ce 2t 1=0,1,2. (3.3)

Under the above assumptions, we formally prove the following a priori solution

estimates, and the brief proofs could also be found in [46, 47].

Proposition 3.2.1. The solution u of problem (1.30)—(1.33) satisfies the following

enerqy estimates:

. € 1 2 ua(s) 12, ds
(i) ess sup (SIVullfe + [ F@)l ) + 47 " < J.(uo),

te[0,00) fooo ||Vw(3)||%2 ds

(i) ess sup ||ul[fe < C(1 + Je(up)),
te[0,00)

(iii) ess sup ||u® — 1||7: < CeJc(up).
te[0,00)
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Moreover, suppose that (3.1)—~(3.3) hold, uy € H*(D) and 0D € C**, then u satisfies

the additional estimates:

—
~—

(x

1
W/pu(m,t)daz =my Vt>0,
T
/ | Aul|?,ds < Ce™ o1 +3),
0
T
/ IV Au|Eads < e+,
0

ess sup e[ .
t€[0,00) + 6/ HVUtH?de < Oe—max{201+3,203}’
ess sup ||Vuw||2, 0
t€(0,00)
—max{al—i—g,ag—i-l}
)

ess sup ||Aul|z2 < Ce

te[0,00)
ess sup [[VAulr2 < Ce max{o1+5,03+1}
te[0,00)
T 2
f(] ||ut||L2dS -+ ess sup €||AUH%2 < Ce™ maX{2gl+%’2g3+%7202+1}7
foT ||Aw||%2ds te[0,T)

T
ess sup [ug[f2 + ¢ / | A |2ads < Cemaxtiors 2ot amtd2on)
t€[0,T] 0

Furthermore, if there exists o5 > 0 such that

lim ||Vut(s)||L2 S 06_05, (34)
s—0*t

then there hold for d = 2,3,

T
(xii) ess sup ||[Vug|3. + e/ |V Auy||22ds < Cpole, d),
0

te[0,7]
T

(xii) / luwllZyrds < Cor(e, d),
0

ess sup ||A%ul|2 < Cpale),
te[0,7

(xiv)
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where

2 13 7
po(E,d) — ¢ od max{201+5,203+2} —max{201+ 35,203+ 5,202+4} + 6—205

— max{201+7,203+4}
+€ )

p1(€,d) == €po(€,d),

- max{01+5703+%,02+g,04+1}

pa(€) =€

Proof. (i). Taking the time derivative of the Cahn-Hilliard energy functional, we get

— || (T %I_l,
@ g u(t) = Ol (3.5)
—[IVw(®)|[7.-

Assume the maximum of J,(u(t)) is obtained at ¢t = ¢y, then integrating both sides of
(3.5) over (0,ty) and (0, 00) respectively, (i) is obtained.
(ii). Using Young’s inequality to 2u®, we get

/DF(U) = }l/D(u4 —2u® + 1)dx, (3.6)

11,
> Z/D(ﬁu — 1)dx. (3.7)

By (i), we get (ii) immediately.

(iii). It is an immediate corollary of (i).

(iv). Integrating both sides of (1.30) over (0,¢), and using (3.1), (iv) is obtained.
(v). Testing (1.30) with u, we get

1
(us, u) + (eAu — = f(u), Au) = 0. (3.8)
€
Integrating both sides over (0,7"), we get

T e 1
e/ | Aul|?2dt + E/ (f'(u)Vu, Vu)dt < 5”’&(0)”%2 (3.9)
0 0
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By Lemma 2.2 in [47], (i), and the following fact:

—(f'(wv,v) < vllz:, (3.10)
we can get (v).
(vi). Rewrite (1.31) as

Ay = 612 (u) — %w. (3.11)

Then applying the operator V to (3.11), taking the L? norm and integrating both
sides of (3.11) over (0,7, we get

T 1

|=Vw||3.ds. (3.12)

T T 1
t/HVAw%%§2/‘ky%wVW%%+2/
0 0 0

=
By Lemma 2.2 in [47] and (i), we can get (vi).
(vii). Taking the derivative with respect to ¢ on both sides of (1.30), we get
2 1 /
U + eA%uy — EA(f (w)ug) = 0. (3.13)

Testing (3.13) with —A ™1, and integrating over (0,m), we get

/ — || Vw||F2ds + 6/ |V ||F2ds + —/ (f'(uw)ug, u)ds = 0. (3.14)
o dt 0 € Jo

Interpolating ||u;||zz between ||ug|| g1 and ||ug| -1, and using Young’s inequality, we
get

€

V()3 + &

m C m
/0 1V ||22ds < [|[Vw(0)]|22 + 6—3/0 e ||3-1ds. (3.15)
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By (GA) and (i), together with the fact ||Vw||zz = ||| g-1, we obtain (vii).
(viii). By (3.11),

1 1
ess sup ||Aul|zz < —2©58 Sup | f(w)]| L2 + —ess sup ||w]| 2. (3.16)
€

te[0,00) te[0,00) te[0,00)

By Lemma 2.2, Lemma 2.3 in [47], we get

c C
ess sup ||Aul|zz < — + —ess sup J(u(t)) +ess sup ||[Vw| 2. (3.17)
te[0,00) € t€[0,00) t€[0,00)

Using (i) and (vii), (viii) is proved.

(ix). Apply the operator V to both sides of (3.11), we get

1 1
ess sup [V Aullze < oss sup /() Vull + o sup Qe (319
6 €

t€[0,00) te0,00 t€(0,00)
By Lemma 2.2 in [47], (i) and (vii),

1

ess sup ||VAu||pz < e 773 +- ¢~ maxtorts.os} (3.19)
t€[0,00)
Then (ix) is proved.
(x). Testing (1.30) with u;, we get
1
el + 5 el Al + £ (f'(u) Vit, V) = 0. (3.20)

Integrating (3.20) over (0,7"), and using Schwarz’s inequality, we get
T
2/ l|||32ds + ess sup || Au(t)||3. (3.21)
0 t€(0,17]

T T
< ess sup e[| Au(0)|% + ¢} / 1/ () Vulads + b / IV ]2.ds.
0 0

t€[0,T]
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Using Lemma 2.2 in [47], (i) and (vii), we can get (x).
(xi). Testing (3.13) with u;, we get

d 1,
el + ell AullEs — = (A(F (@), ) = 0, (322

Integrating both sides of (3.22), and using integration by part, we get

T
ess sup u(t)[F+ ¢ [ 1w ads (3.23)
te(0,7 0
1 r / 2
< = (f'(u)ue, Auy) + ess sup [|u(0)]|72
€ Jo te[0,7)

1 T e [T
<o [ M @ulads + 5 [ Aulfads + ess sup a0
€ Jo 0 te[0,7]

By Lemma 2.2 in [47] and (x), we get (xi).
(xii). Multiplying (3.13) by —Au,, we get

1d

1 /
2dtHVutHLz + €| VA2, = E(V(f (w)ug), VAw,) (3.24)
1
= E(f”(u)Vuut + f’(u)Vut,VAut)
€
< SIVAw|Z: + 3 (HVUHLooHutHLz + ([ Vu|7:).

Using the following Gagliardo-Nirenberg inequality [2],
IVl < (I ARl 4l ). (3.25)

we have

1d

S S IFwllEs + 19 A3, (3.26)

C
< S[ 1wl + (198015 + 1)l
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Using (3.26), (vii), (ix) and (x), we get (xii).
(xiii). From (3.13), we have

< Uy, ¢ >
sl = sup ———— 0 (3.27)
ozger [0l
1
< ellVAu 2 + 2NV (w)ur) | 2.
Then
2
ol < 22198l + 5 (IV0leulls + Vel ). 629
Integrating (3.28) over (0,7"), and using (3.25) and (xii), we get (xiii).
(xiv). Rewrite (1.30) as
Ay = lAf(u) - 1u (3.29)
€2 e ' '
_ 1 1" / 20 1
=3 F () Au+ f'(u)|Vul —ur.
By triangle inequality, Lemma 2.2 in [47], (viii) and (xi), we can obtain (xiv). O

The next lemma concerns with a lower bound estimate for the principal eigenvalue

of the linearized Cahn-Hilliard operator, a proof of this lemma can be found in [19].

Lemma 3.2.2. Suppose that (3.1)—(3.3) hold. Given a smooth initial curve/surface
Lo, let ug be a smooth function satisfying To = {x € D;up(x) = 0} and some profile
described in [19]. Let u be the solution to problem (1.30)—(1.33). Define Loy as

Lon = A <EA _ % f’(u)1> | (3.30)
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Then there exists 0 < €y << 1 and a positive constant Cy such that the principle

eigenvalue of the linearized Cahn-Hilliard operator Loy satisfies

Acg = inf €| Vil + £ (f' (W), 9)

> —C, 3.31
o;ézﬁezip(p) Vw7, =0 (3:31)

fort €[0,T] and € € (0, ¢€).

Remark 3.2.3. (a) A discrete generalization of (3.31) on C° finite element spaces
was proved in [40, 47]. It plays a pivotal role in the nonstandard convergence analysis
of [46, 47]. In the next section, we shall prove another discrete generalization of
(3.31) on the DG finite element space.

(b) The restriction on the initial function ug is needed to guarantee that the
solution u(t) satisfies certain profile at later time t > 0 which is required in the
proof of [19]. One example of admissible initial functions is ug = tanh(doT(x)), where
do(x) stands for the signed distance function to the initial interface I'y. Such a ug is

smooth when L'y is smooth.

3.3 Fully discrete mixed interior penalty discon-
tinuous Galerkin approximations

In this section we present and analyze two fully discrete MIP-DG methods for the
Cahn-Hilliard problem (1.30)—(1.33). The primary goal of this section is to derive

! only in low polynomial

error estimates for the DG solutions that depend on e~
orders, instead of exponential orders. As in the finite element case (cf. [47]), the crux
is to establish a discrete spectrum estimate for the linearized Cahn-Hilliard operator

on the DG space.
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3.3.1 Formulations of the mixed interior penalty discontinu-

ous Galerkin method

Let 7, = {K}kep be a quasi-uniform triangulation of D parameterized by h > 0.
For any triangle/tetrahedron K € T, we define hyx to be the diameter of K, and

h := maxger, hi. The standard broken Sobolev space is defined as
H*(Tp) := {v € L*(D); VK € Ty, v|x € H*(K)}. (3.32)

For any K € T, P.(K) denotes the set of all polynomials of degree at most r(> 1)

on the element K, and the DG finite element space V}, is defined as
Vi :={v e L*(D); VK € Ty, v|x € P.(K)}. (3.33)

Let L2 denote the set of functions in L2(D) with zero mean, and let Vj, := Vj, N L2.
We also define &/ to be the set of all interior edges/faces of Ty, £ to be the set of
all boundary edges/faces of T, on I' = 9D, and &, := & UEP. Let e be an interior

edge shared by two elements K; and K5. For a scalar function v, define
1 I
{U}:§(U|K+U|K'), [v] =v|x —v|g, one€E,

where K is K; or K, whichever has the bigger global labeling and K’ is the other.

The L2-inner product for piecewise functions over the mesh 7}, is naturally defined by

(v, W), = Z /Kvwda:.

KeTy

Let 0 < tg <t < - - <ty =T be a partition of the interval [0, T with time
step k = t,41 — t,. Our fully discrete MIP-DG methods are defined as follows: for
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any 1 <m < M, (U™, W™) €V, xV, are given by

(dtUma 77) + ah(Wmv Tl) =0 VT] € Vh7 (334)
1

eap(U™v) +=(f"v) — (W™ v)=0 VYvel,, (3.35)
€

where

ap(u,v) = Z /K Vu - Voudr — Z {Vu-n.}v]ds (3.36)

KeTy eES,Il ¢
0
-3 (Vo nfu] ds + Z/QZ—Z[u][U] ds,
eEL‘f,IL 665,{

and ¢? > 0 is the penalty parameter. There are two choices of f™ considered in this

chapter, namely
fm — (Um)3 _ Um—l and fm — (Um)3 _ Um’

which lead to the energy-splitting scheme and fully implicit scheme respectively. d;
is the (backward) difference operator defined by d,U™ := (U™ — U™ 1) /k and U :=
ﬁhuo (or @huo) is the starting value, with the continuous finite element projection
P, (or Qp) to be defined below. We refer to [40] for the details why the continuous
projection is needed for the initial condition. We remark that only the fully implicit
case was considered in [46, 47] for the mixed finite element method.

In order to analyze the stability of (3.34)-(3.35), we need some preparations.
First, we introduce three projection operators that will be needed to derive the error
estimates in section 3.4. P, : H*(T,) — V} denotes the elliptic projection operator
defined by

ap(u — Pyu,vp) 4+ (u — Pyu,vp) =0 Yo, € Vi, (3.37)
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which has the following approximation properties (see [22]):

||U — PhUHLQ(Th) + hHV(U - PhU)HLZ(’Th) S Ohmin{r+1,s}||u| Hs(Th)» (338)

1 min{r s
lo = Puoll ey + RV (w = Poa) [ o=y < CR™ 0 oo (7). (3.39)

A"

Here 7 := min{1, 7} — min{1,r — 1}.
Let P, : HY(T) — S, == Vi, N C%D) denote the standard continuous finite
element elliptic projection, which is the counterpart of projection P,. It has the

following well-known property [46, 47]:
lu — Pyul|poe < Ch22 ||u| . (3.40)

Next, for any DG function ¥, € Vj,, we define its continuous finite element

projection WI'F € Sh by
an(V, ", vn) = an(h, vp) Vup € Sh, (3.41)
where
dh(u7 U) = ah(ua U) + a(u, U)7

and « is a parameter that will be specified later in section 3.3.
A mesh-dependent H~! norm will also be needed. To the end, we introduce
the inverse discrete Laplace operator A;l Vi — ‘O/h as follows: given ¢ € V},, let

A,jl( €V, such that
an(—A5 ¢ wn) = (¢ wa) Ywy, € Vi (3.42)

We note that A" is well defined provided that o > ¢? for some positive number o
and for all e € &, because this condition ensures the coercivity of the DG bilinear

form ay(-,-).
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We then define “-1” inner product by

(&)1 = an(=A31¢, =018 = (¢, =01 = (=A,1¢,9), (3.43)

and the induced mesh-dependent H~! norm is given by

¢l =10 == 4/ (¢, Q) —1p = sup % (3.44)

0£EEVS
where |||¢]]]a := Van(&, §). The following properties can be easily verified (cf. [1]):
(COI<ICh-1alliéllla VEE VA, ¢ €Va, (3.45)
I¢ll-1 < ClC 2 V(e Vi, (3.46)
and, if 7Ty, is quasi-uniform, then
Illze < CA7H Kl V€ € Ve (3.47)

3.3.2 Discrete energy law and well-posedness

In this subsection we first establish a discrete energy law, which mimics the differential
energy law, for both fully discrete MIP-DG methods defined in (3.34)—(3.35). Based
on this discrete energy law, we prove the existence and uniqueness of solutions to the
MIP-DG methods by recasting the schemes as convex minimization problems at each
time step. It turns out that the energy-splitting scheme is unconditionally stable but

the fully implicit scheme is only conditionally stable.
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Theorem 3.3.1. Let (U™, W™) € V}, x V}, be a solution to scheme (3.34)-(3.35).
The following energy law holds for any h,k > 0 :

)4 l
€ m 1 m
En(U") + kY U2+ k) {§|||dtU Ila + 2 U122 (3.48)

m=1 m=1

1 m m 1 m
+ 2—€||U d,U ||%2 + 2—€||dtU ||%2} = Eh(Uo)
forall 1 <0 < M, where
1 €
E = —||U? = 1% + = 2, 3.49
W(0) = 07 =11 + SO (3.49)

The sign “£7 in (3.48) takes “+” when f™ = (U™)> — U™ and “—” when f™ =
(Um)3 —_ym,
Proof. Taking n = —A;'d,U™ in (3.34) and v = d;U™ in (3.35) to get

U™ (%, + (W™, d,U™) =0, (3.50)

1
ean, (U™, ,U™) + —(f™,d,U™) — (W™, d,U™) = 0. (3.51)
€
Besides, noticing the following inequalities:

1
an(U™, U™ = 5 | dil[[U™l[a + Kl d U™ 112 (3.52)
1 k
(O™ = U™ dU™) = 2dll(U™) = 172 + 71 d(U™) 172 (3.53)
k m m||2 k m||2
+ 107U [ + SNdU™

Adding (3.50) and (3.51), using (3.52) and (3.53), and applying the operator k an:p

we get the conclusion for the case when f™ = (U™)3 — U™ 1.
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Using the equality below, we get the conclusion for the case when f™ = (U™)% — U™.
(Um™?3 —um = [(Um)?’ -~ Um—l] - [Um - Um—l} (3.54)

]

Corollary 3.3.2. Let 00 > 0 be a sufficiently large constant. Suppose that ¢° > o0
for all e € &,. Then scheme (3.34)—(3.35) is stable for all h,k > 0 when ™ =
(U™)3 — U™ and is stable for h > 0 and k = O(e*) when f™ = (U™)3 —U™.

Proof. The first case holds trivially from (3.48). In the second case, the “bad term”
|d:U™|| > can be controlled by the “good terms” |[U™ |2, , and |[|JU™]||2 by using the

norm interpolation inequality (3.81) provided that k = O(€?). O

Theorem 3.3.3. Suppose that 00 > ¥ for all e € &,. Then scheme (3.34)-(3.35)
has a unique solution (U™, W™) at each time step for for all h,k > 0 in the case
fm=(U™)3—-U™" and for h > 0 and k = O(e®) in the case f™ = (U™)3 —U™.

Proof. Setting n = —A, v in (3.34) we get

(d:U™ ) )+ (W™ ) =0.

Adding the above equation to (3.35) yields
m m 1 m
(dtU ’U)—l,h + eah(U ,v) + E<f ,v) = 0.
Hence, U™ satisfies

(3.55)

k
o, ”)_1,h +kean (U™, v) + E(fm7 v) = (U, v)—l,h'

In the case f™ = (U™)> — U™ ! it is easy to check that (3.55) can be recast
as a convex minimization problem (cf. [1, 40]) whose well-posedness holds for all

h,k > 0. Hence, in this case there is a unique solution U™ to (3.34)—(3.35). On the
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other hand, when f™ = (U™)?> — U™, there is an extra term —ke (U™, v) comes
out from the nonlinear term in (3.55). This extra term contributes a “bad term”
—ke Y||U™||3. to the functional of the minimization problem. Again, this term can
be controlled by the “good terms” |[U™||%, , and |||[U™]||2 in the functional by using
the norm interpolation inequality (3.81), provided that & = O(¢®). Hence, in the case
f™ = (U™)3 — U™, there is a unique solution U™ to (3.34)—(3.35) for all A > 0 and
k = O(e?). The proof is complete. O

3.3.3 Discrete spectrum estimate on the discontinuous Galerkin
space

In this subsection, we shall establish a discrete spectrum estimate for the linearized
Cahn-Hilliard operator on the DG space, which plays a vital role in our error
estimates.

To the end, we first state a slightly modified version of a discrete spectrum estimate
for the linearized Cahn-Hilliard operator on the continuous finite element space first

proved in [46, 47].

Lemma 3.3.4. Suppose the assumptions of Lemma 3.2.2 hold, and Cy is the same
as in (3.31). Cy and Cy are defined by

L "

Cy = &%}éo'f I, (3.56)

u — ﬁhu L>o((0.T):Lo° S 02h2—%6min{—01—g,—03—1}' 3.57
((0,T);L°°)

Then there exists 0 < e; << 1 such that, for any € € (0,€,), there holds

3

\FE — inf €| Vpnl|72 + %5 (f'(ﬁhu)l/fhﬂ/}h)
CH o tpnel2(D)NS, VA=Y, |12,

> —(Co+1), (3.58)

78



provided that h satisfies

vl

h2_ S (0102)—1€max{0'1+%,0'3+4}'

Here A=': L3(D) — H'(D) N Li(D) denotes the inverse Laplace operator.

Proof. Following Theorem 2.3 in [3], we can know that
Jull (o) < 5Co
By using (3.57), (3.59) and (3.60), when € is small enough, we have
1Bl e i) < Ml e i) + 1P — | i) < 2Co.
It then follows from the Mean Value Theorem that

1f/(Plu) = f' ()l (i) < Juax OB w = o sz

<0102h2—gemin{—al—g,—zm—l}

<é,

where the last inequality comes from the assumption (3.59). Therefore,

f'(Pru) = f'(u) - €,
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and we have

L elVYIlE: + ()Y, ¥)
AL > inf _ & € L € ’ 3.64
OH = e 13(D)H! (D) {( 2 IVA=1]7, (364)
L ZIV0lE = 20 = $)lvE,
VAT,
3 (1— )2
> (1 — — o 2
> (1= 5)C 52
> —(Cy +1).
O

We are now ready to state the discrete spectrum estimate on the DG space.

Proposition 3.3.5. Suppose the assumptions of Lemma 3.2.2 hold. Let u be the
solution of (1.30)—(1.33) and Pyu denote its DG elliptic projection. Assume

ess sup [|ullwi+ne < Ce, (3.65)
t€[0,00)

for a constant v, then there exrists 0 < € << 1 and an e-independent and h-

independent constant ¢y > 0, such that for any € € (0,€;), there holds

ean(®p, @p) + =S (f(Pyu) @y, )

)\DG _ inf —Cp, 3.66

OH = 4o, eI3(0) Vi VA=, [2, CO 00
provided that h satisfies the constraints

B < (C10y) ettty (3.67)

h1+r| In h|F < (C'1C'3)71€7+3, (3.68)
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where Cy and Cy are same as in Lemma 3.5.4, 7 and C3 are defined by

7 =min{l,r} — min{l,r — 1},

|u — Pyullpoo 0.1y 000y < Csh'™|In h|"e™7.
Proof. By Proposition 2 in [46], under the mesh constraint (3.67), we have
1/ (Bue) = f' ()| o= (o.myn0) < € (3.69)

Similarly, under the mesh condition (3.68), we can show that for any € > 0, there
holds
[ (Pru) — f'(w)l| oo 0,750y < e (3.70)

It follows from (3.69) and (3.70) that
1/ (Pow) = /(o) | oy < 26° and  f/(Pyu) > f'(Pou) — 265 (3.71)

Therefore,

1—¢3

(f'(Puu)®p, ) (3.72)

eah(CI)h, CI)h) +

1—c¢ ~
> eap(Pp, D) + (f'(Pyu)@p, 1) — 26°(1 — €)[|®]|72
1—é3 1—¢3 ~
— 61 ~ (q)h, @h) =+ (f/(PhU)(I)h, CI)h)

7

—2¢(1 = €)[|@u|Z: +
1—6

Dy, O
2 (@, 9,)

an (P, Bp) + <I>h (@5’5)2) dx

=€

2

1—6 4

€
/f (Pyu)(@FP)2da — 262(1 — €%)|| @y + .

(Zh(q)h, (Dh)
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Next, we derive a lower bound for each of the first two terms on the right-hand

side of (3.72). Notice that the first term can be rewritten as

an(®Ppn, @) = an(®y — OLE, &) — OFF) + 2a,(Pp, PLF) — ap(PFF, @FF)  (3.73)
= an(O — D7, @ — 7)) + [V, P22 + 20|07 — |7

+ 20 (D} 7 — By, D).
To bound ||®;, — ®F'F|| 2 from above, we consider the following auxiliary problem:
an(d,x) = (2n — 2%, x)  Vx € H (D).

For 00 > ¢? for all e € &, the above problem has a unique solution ¢ € H*?(D) for

0 < 6 <1 such that
¢l arsopy < Cll®p = @7l for 6 € (0,1]. (3.74)
By the definition of ®}*, we immediately get the following Galerkin orthogonality:
an (@ — 3, xn) =0 Vi € S
It follows from the duality argument (cf. [82, Theorem 2.14]) that

|®n — ®FE|2, < Oh*ay (D) — BEE, ) — BEF) (3.75)

< Ch¥ay (O, — @F 7, @) — 0 F) + Ch¥ 0| @), — 17|35

For all h satisfying Ch¥a < 1, we get

Ch29

FE |2
[@n — @3, 7|72 < T Chzig®

(®n — @57, @4 — B 7). (3.76)

82



Now the last term on the right-hand side of (3.73) can be bounded as follows:

200( " — @, @) > =20 D T — D[ 2]| D | 12 (3.77)
ChQG(lh(th — @5E, q)h — (I)ﬁE)
= _20‘\/ 1— Ch¥a a2z
1 B rE 2Ca’h? )
> —5an(Pn = P, P — ) — T [Pl

The second term on the right-hand side of (3.72) can be bounded by

| Pua((@)? = @) do = =C [ @0 = (@7 do (3.79)

. _c/ = (@ — OFF)" + 20, (0, — BF) | da
D

€3

3 3
rene (1 —€) 9 — 3
> —C||Pp — @, 772 — _° [Pz _063(1_63)|

2

@y — O5 7|72,
Here we have used the facts that
lull oo ryz=y < C, 1f (Pau)| < |f/(u)] + € < C. (3.79)

Substituting (3.76) into (3.78) yields

1—¢ .
< / £ (Bow) ((24)? — (BFF)?) da (3.80)
D
e(l — ¢ e2(1 — ¢
> =D (@, - a7, - afP) - LDy 2,
I=5 -3
where . .
Ch29 1 — € _ &
> -2C 2 14 —2
B =1 Ona €(1—¢€3) ( * e3(1—e3)/’

and h is chosen small enough such that 3 < 1/4.
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The term ||®4]|7, can be bounded by

N |=

|72 = (Pp, 1) = an(A;, Py, Dp) < ah(Aﬁl@mAﬁl@hﬁah(‘I’h, D)

—

<

NI

1
an(A; @, A0 + %ah(q)h, D)

for any constant p > 0.

(3.81)

Adding the fifth term on the right-hand side of (3.72), the last term on the right-
hand side of (3.77) and that of (3.80), we get for all h satisfying 2Ca?h? /(1 —

Ch?a) < e

e(1—¢€%) 20a’h?®  32(1—¢
B — & 1—Ch?»a + 1—€
2

3) 4e%(1 — €3)
)chhuiz > 470D 15,12

2 1 2

4

T2
€ _ _

>~ 5 =y n(Bn ) = Can(B1 0, 4,12, ).

Combining (3.73), (3.77), (3.80) and (3.82) with (3.72), we have

1—¢3

€

eah(CI)h, @h) + /Df,(Phu)(Cbh)2 dx

e(l—é 20e(1 — €3

> W u,—of® o, afn) + 2 Djape g2,
2

e(l—é3 _ _

+ (—@)HVCPWH% — Can(A, ' @n, A1 By)
)
[ B e+ (@)
U T+ ——a )

Applying the spectrum estimate (3.58), we get

1—¢€ 1—¢é
EjHV‘I’fEﬂiz +—
2

/D F(Pyu) (®FF)? di

1—¢3
-=5 (eHV@ﬁEH%z ¥
2

3
.
1 2

€

/D f’<ﬁhu><q>5E>2dx>

1—¢é
2_ €3
2

(Co+ DIIVATI |2,
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which together with (3.83) implies that

1—¢€

Gah(@h, (I)h) —|— c

/D f’(Phu)(@h)Q d!L‘

20e(1 — €3
> Can(Aridy, ATLDy) — C[VA-IOFE|2, 1 22

2

By the stability of A™!, we have
IVAT (@, — @) 172 < Cl|@h — B |7,
which together with the triangle inequality yields

IVATIOEP|2, < 2| VAT D, |12 + 20| @), — BLZ||2,.

Similarly, since A;1<I>h is the elliptic projection of A~'®,, there holds

ah(A}:1<I>h, A}:l@h) S OHVA_I(I)}LH%Q

Therefore, choosing o = 0(66*1), (3.84) can be further reduced into

1—¢3

eah(CI)h, CI)h) —I— c

for some ¢y > 0. This proves (3.66), and the proof is complete.

3.3.4 Error analysis

| rPa@)de > -l VA B
D

(3.84)

€)
127 — ®ulZo.

In this subsection, we shall derive some optimal error estimates for the proposed MIP-

DG schemes (3.34)—(3.35), in which the constants in the error bounds depend on e~

only in low polynomial orders, instead of exponential orders. The key to obtaining

such refined error bounds is to use the discrete spectrum estimate (3.66). In addition,

the nonlinear Gronwall inequality presented in Lemma 2.2.4 also plays an important
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role in the proof. To ease the presentation, we set » = 1 in this subsection and section
3.4, and generalization to » > 1 can be proven similarly.

The main results of this subsection are stated in the following theorem.

Theorem 3.3.6. Let {(U™, W™)}M_ be the solution of scheme (5.34)-(5.35) with
r = 1. Suppose that (GA) holds and 0° > ¢° for all e € &,, and define

,03(6) — 67max{201+%,203+%,202+4,204}747 (385)

r(h, ke, d,o;) = k*pi(e;d) + h°ps(e). (3.86)

Then, under the following mesh and starting value conditions:

W28 < (CLCy) T temalnt sl (3.87)

R In h|" < (C1C5) e, (3.88)
k<eé when f™ = (U™)* - U™, (3.89)

h? < Ceél;:z), (3.90)

k< Cetina a2 (3.91)

(U°1) = (ug, 1), (3.92)

lug = U1 < CR?|ug| 2, (3.93)
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there hold the error estimates

masx [u(tn) = U -+ (D0 Bldiultn) = U™ )° (3.94)

0<m<M

S CT(h, ka €, da O-’i)%y

1

(k fj Jutn) = U™ )° (3.95)

< C(n2e men Bt 2 ke, d, o)} ).
(x Z 19 (ult) ~ U712’ (3.96)
< C’(he_ max{o1+3,05+1} | e 2r(h, ke, d, ai)%>.
Moreover, if the starting value U° satisfies
[uo — Ul < Ch?|Jug]| s, (3.97)
then there hold

oo, ) = U™+ (1 32 M) =U™)IE)" (398)

L ( Zuw )’
< C(h2p3(e)% + 6’%7”(}1, ke, d, a,;)%),

max |[u(ty) — U™ L= (3.99)

0<m<M

< C<h2| Inhle™ + h=3e 3r(h, ks e, d, U,-)%>.
Furthermore, suppose that the starting value W9 satisfies

| Pywo — WO 2 < CHP (3.100)
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for some B > 1, and there exists a constant ~' such that

ess sup ||Jw|lwae < Ce™, (3.101)
tel0,00)
then we have
- m 2 B
Jmax [fw(tn) = W2 < C(h pa(e) + h (3.102)

N |=

+ l{:_%e_?’r(h, kie d,o;)

).

max [ w(ty) — W™ < o(h-% (k—%e—?’r(h, ke, d,o;)F + hﬁ) (3.103)

0<m<M

+ 12 lnh\e’7/>.

Proof. In the following, we only give a proof for the convex splitting scheme
corresponding to f™ = (u™)3 —u™"! in (3.44) because the proof for the fully implicit
scheme with f™ = (u™)® — u™ is almost same. Since the proof is long, we divide it

into four steps.

Step 1: It is obvious that equations (1.30)—(1.33) imply that

(we(tm)s ) + an(w(tm),n) = 0 Vi € Vi, (3.104)
can(u(tn), vn) + %( Fultn),on) = (wltn)ion)  Von € Vi (3.105)

Define error functions E™ := u(t,,) —U™ and G™ := w(t,,) — W™. Subtracting (3.34)
from (3.104) and (3.35) from (3.105) yield the following error equations:

(deE™,mn) + an(G™,mn) = (R(uw,m),mn)  Vnu € Vi, (3.106)

can(E™,un) + < (f(ultn)) = F(U™), 1)

(G™, vp) Yo, € Vi, (3.107)

where

R(uy;m) = %/m (s — tim—1)un(s)ds.

tm—1
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It follows from (xiv) in Proposition 3.2.1 that

(" (5=t ds) [ " el ds)

m—1

M:

1
k Z [ R (wse; m ||H E

Ck pl(E,d).

m=1

IN

Introduce the error decompositions
E"=0"4+ 0", G"=A"+U0™ (3.108)
where

O™ = u(ty,) — Prulty), O™ := Pyu(t,) — U™,
A™ = w(ty) — Paw(ty), U™ := Paw(ty,) — WM.

Using the definition of the operator P in (3.37), (3.106)—(3.107) can be rewritten as

(de®™ 1) + an (O™, 1) = —(de©™, mp) + (R(uy,m), ) Vo € Vi, (3.109)

ECLh((I)m, Uh) -+ %(f(u(tm)) — fm, Uh) = (qu,?]h) + (Am,Uh) Vvh € Vh. (3110)

Setting 7, = —A;'®™ in (3.109) and v, = ®™ in (3.110), adding the resulting

equations and summing over m from 1 to ¢, we get
¢
(A, A + Y T ap(AOT — AR AR — AT (3.111)
m=1
—|—2k26ah o™, ™) +2]<:Z — fmem)
2% Z (R, m), =A710™) = (4,6, ~A;10™) + (A", @™) )

+ an(A;, 10, A} 1Y),
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Step 2: For 00 > o¢ for all e € &, the first long term on the right-hand side of
(3.111) can be bounded as follows

2% 3 (Bl m), —A;107) + (407, —A;10™) + (A", 0™) ) (3.112)

ngls

14
< Ck Y (IR G m) s + 1@ [ + (1= )| A" )
m=1

4

kZ(ah AP A 4 ah(ém,fb’"))

1—¢€3

64

<k
- 1—¢€3

MN

<ah(A,;1q>m, AZL™) 4 an(®™, cpm)>

1

n C<k2p1(e, d) + h6p3(6)>7

3
I

where we have used (xi) in Proposition 3.2.1 and the following facts [29]:
lu — Poullg—1 < Ch3||ul| g2, |w — Pywl|| g1 < Ch3||w||ge.

We now bound the last term on the left-hand side of (3.111). By the definition of

f™, we have

f(u<tm)> /"= f(u<tm)) - f(PhU(tm)) + f(Phu<tm)) -
> —|f(utn)) = F(Pou(tn))| + (Pou(tm))® = Pau(ty) — (U™ + U™
> _Clem| + ((Phu(tm)) 4 Pou(t,) U™ + (Um)2> o™ — O™ — kd,U™

v

—C|O™| + f(Pyultn)) ®™ — 3Pyu(ty) (™) + (™) — kd, U™,
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By the discrete energy law (3.48), (3.44) and (3.81), we obtain for any 1 < ¢ < M

14

1
2k:2 ~(flultm)) = f7, @) (3.113)
> __Z 107|571 7y 9™ | 1127 +2/<;Z ( (Puu(t )),(qfﬂ)?)
Z E— Z Jom g — = Z B[ 2™
’ 1 ! m\2 2k m m
> 2% (1 (Pault), (@) )+?Z @715 —Z @713
m=1 m=1
— ket D [0 2 = C (R ull o zyire oy + K2 En(uf))
l 12 l
1 2k Ck
> 2 Y = (f (Puult), (@72) + = D7 0|18 = = > llo" 3
m=1 m=1

€ m Fm - —
— kg Y an (@™, ") - c(hﬁe [T 6Eh(U0)).

m=1

Substituting (3.112) and (3.113) into (3.111) we get

an(A; 1D AT —i—Zah ATIP™ — AFLETTLASIE™ - AT (3.114)

¢ 3

2k1—5 1—¢€
1_636 Z(ea (®™, ™) +

——(f'(Pru(tn)) 2", @™) )

m=1
6! o R R
+T€3kn;ah(® , @ )‘*‘?ZH@ 74

0
< Ck Y an(A'O™ ALID™) +—Z ™3,
m=1

— 10ke® Y (f'(Poult))@™, ™) + C (k*p1(€; d) + hps(e))

m=1

o+ C (B0 ull o myereoy + K26 CEn(U°)).
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Step 3: To control the second term on the right-hand side of (3.114), we appeal
to the following Gagliardo-Nirenberg inequality [2]:

d 6—d

Thus we get

y4 ¢ J4

Cl - - Ck -

SO < S VO gy + — SO (3.115)
m=1 m=1 m=1

Fo Y o
m=1

¢ Ck « ,
Sk D m(en @ HT;”@ [

m=1

4(1+d) ¢ 2(6-d)
+Ce kY |jom|| i
m=1
The third item on the right-hand side of (3.114) can be bounded by

— 10ke*(f'(Pyu(t,y,)) @™, &™) (3.116)
64
<
- kl —e3

an(®", ™) + kCayp (A} @™, A, 10™).

Again, here we have used (3.81).
Finally, for the third term on the left-hand side of (3.114), we utilize the discrete
spectrum estimate (3.66) to bound it from below as follows:

1—¢é

€

ean(P™, d™) + (f'(Pru(ty,)®™, @™) > —co [ VAT O™||7.. (3.117)

By the stability of A™! and (3.81), we also have

64

col|[ VAT O™ |7, < O|@™3. < mah(cpm,«bm) + Cap (A1 O™ ATO™). (3.118)
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Step 4: Substituting (3.115), (3.116), (3.117), (3.118) into (3.114), we get

L
an (A0 AR £ T an(ASTE™ = AR AR — AR (3.119)

4

264k e m
+ s ) m(@" +—ZH<1> 144

m=1

L

Z Ale™ AR +—Z||<1>m||m

m

4(1+d) 4 —d)
ZH@’”HL TR pi(ed) + ps(e)
+ C(h6€_6HU”Lz((O’T);Hs(ID) + k’2€_6Eh(UO)> .
By discrete energy law (3.48), General Assumption (3.2), H! stability of elliptic

projection, L stability(or L error estimate and triangle inequality) of elliptic

projection, we can get for any 0 < ¢ < M

l
U e < 5> N dU™ 2 + |U°||z2 < Ce.

m=1

Since the projection of u is bounded, then for any 0 < ¢ < M

@2 < Ceor. (3.120)

2(6—d)
A—d

We point out that the exponent for Hq)m” 2 18
d = 2,3. By (3.120) we have

, which is bigger than 3 for

[l < cflomle, (oM < G em .
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Using the Schwarz and Young’s inequalities, we have

. 3
Jo [ = ([07]17)" = an(-a5" @™, @)
< an(A; 1™, AID™) ay (BT, D™

< 6%4_014_2((1_2)01 €

+ 06—46—%—01—2@—2)01

Therefore, (3.119) becomes

an(A; 14 AT +

]~

ah(Aglq)m o A}:l@?’ﬂ—l) A];lq)m o A;l@m_l)

3
&

l ¢
m m 2k m
W(®7, @)+ =53 o,
m=1 m=1

L
SCEY ap(A @™ ATO™)

_ 4(6+4d)

l
+ Ckﬁ ﬂ_201_4(d 2 0’1 Z ah 1®m 1®m)3
m=1
+ C(K*p1(e;d) + h°ps(e)) + C(

L
< CEY ap(A' ™ AL ™)

4(64d)
+ Cke 1-d —201—4(d—2)o1

]~

ah(Agl@m, A,:lfbm)3

3
Il

+ C(K*p1(e; d) + h®ps(e)).

On noting that U™ can be written as

L
U'=k» dUm™+U°,

m=1
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(3.121)
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(3.123)



then by (3.2) and (3.48), we get

4
U < ST U™+ [0 < Ce

m=1

Using the boundedness of the projection, we have
@42, < Ce2

Also, (3.122) can be written in the following equivalent form

J4
ah(A}:IQZ l(pZ _|_ Z ah lq)m . 1@771—17 A}:l@m . A;l@m—l)
m=1
l

'k 2k
+ 1 ) m(@", )+7Z||<1> 14, < My + My,
m=1 m=1
where
-1
My = Ck Y an(A,'0™ A ™)
m=1
A6+d) 95 —4(d—2)0y — —1gm A—1gFm\3
+ Cke™ -1 D an(ALeT ATE™)
m=1

+ C’(k:Qpl(e; d) + h6p3(e)),
My == Ckap(A; 10, A 105

n Ck674(46j—;) —201—4(d—2)01 ah(A,f(I)Z, A]:lq)f)ii'

It is easy to check that

1 )
M, < §||CI>ZH2,UL provided that k& < Ce P+ (4d—-2)0n
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Under this restriction, we have

l
an (A O AR + 2 ap(ASTR™ — AT AR — AR (3.130)

2tk < Y
g D (@) + = e
m=1

m=1
{—1
< 2Ck Z ah(Ahlq)m A 1(I)m) + 20(/{7 pl(é d) + h6p3( ))
m=1

< Ck Y ap(A' ™ ASO™) + C (K pa (€ d) + hCps(e))

m=1

~

-1
b Che i 2427 3™ g (ASLpm A1),
1

3
I

Define the slack variable d, > 0 such that

l
an(A O AR + 2 ap(ATE™ — AT AR — ATE™T)(3.131)

m=1

2k Ak s
1o 2 @8+ 2 5 9 +d,

~
|
—

=CEY  ap(A;10™ AT0™) 4 C (K2 (e;d) + hPps(e))
1

3
Il

~

-1
+ Ck€7%720174(d72)01 CLh(Aglq)m, A}:lq)m)?)

m=1
We also define {Sy}i>1 by
¢
Sp=dg+2)  ap(A 0" — AT AT — ATE™T) (3.132)
m=1
2%k <&
+an(A;1 0 AL DY) + Zah (@™, ™) Z 197/ 74,
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and equation (3.131) shows that
S1 = C(K*pi(& d) + h°ps(e)).

Then

4(6+d)

Spy1 — Sy < CkSy + Che ama 2 74d=21 68 gy >, (3.133)

Applying Lemma 2.2.4 ([40, 42, 73])to {S¢}s>1 defined above, we obtain V¢ > 1,

1
-1 —3
Se < aj {S 90 2D, § asfl} (3.134)
s=1
provided that
-1
S - 20 T 2 =D Z azf > 0. (3.135)

s=1

We note that as (1 < s < {) are all bounded as k — 0, therefore, (3.135) holds under
the mesh constraint stated in the theorem. It follows from (3.92) and (3.93) that

Sy < 2a;"51 < C (K pi(e;d) + hPps(e)). (3.136)

Then (3.94) follows from the triangle inequality on E™ = @™ + ®™. (3.96) is
obtained by taking the test function 7, = ®™ in (3.109) and v, = ®™ in (3.110), and
(3.95) is a consequence of the Poincare inequality.

Now setting 7, = ®™ in (3.109) and v, = —2¥™ in (3.110), and adding the

resulting equations yield

Sl F + 1™ B + 0 = 5 (F(u(tn)) = SO, 07) (3137)

1
+ (R(utt, m), (I)m) - (dt@m, q)m) - Z(Am, \Ilm)
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The last three terms on the right-hand side of (3.137) can be bounded in the same

way as in (3.112), and the first term can be controlled as

(b)) — 7™, 97) = S (F(€) B, 0 (3.138)

1 m||2 C m||2
< s+ S e,

Multiplying both sides of (3.137) by k and summing over m from 1 to M yield the
desired estimate (3.98). Estimate (3.99) follows from an applications of the following
inverse inequality:

07| e < BT[] 2, (3.139)

and the following L*° estimate for the elliptic projection:
|u — Poulp~ < CR*| Inh||jullws-~  Vu € H*(D). (3.140)

Finally, it is well known that there holds the following estimate for the elliptic

projection operator:

=

o<m

M
max IA™ |2 + <k‘ Z k‘||thm||%2) < CRh%po(e). (3.141)

Using the identity

1 k
(4™, &™) = §dt||<1>m||%2 + 5||dt<1>m||2LQ, (3.142)
we get
Tk - 1
_“\IJMHL2 +k Z 5 | dyT™||2, = kz (d, o™, o™ §H\110H%2 (3.143)

=1

A/; 1
<k (G + eI ) ¢ S
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The first term on the right hand side of (3.143) can be absorbed by the second term
on the left hand side of (3.143). The second tern on the right hand side of (3.143)
has been obtained in (3.98). Estimate (3.102) for W™ then follows from (3.141) and
(3.143). (3.103) follows from an application of the triangle inequality, the inverse
inequality, and (3.140). This completes the proof. O

3.4 Convergence of numerical interfaces

In this section, we prove that the numerical interface defined as the zero level set of
the finite element interpolation of the solution U™ converges to the moving interface
of the Hele-Shaw problem under the assumption that the Hele-Shaw problem has a
unique global (in time) classical solution. To the end, we first cite the following PDE

convergence result proved in [3].

Theorem 3.4.1. Let D be a given smooth domain and gy be a smooth closed
hypersurface in D. Suppose that the Hele-Shaw problem starting from T'gg has a
unique smooth solution (w,T := Uycycr (T x {t})) in the time interval [0,T] such
thatT'y C D forallt € [0,T]. Then there exists a family of smooth functions {u§}o<c<1
which are uniformly bounded in € € (0,1] and (x,t) € Dy, such that if u¢ solves the
Cahn-Hilliard problem (1.30)—(1.33), then

1 if (x,t) € O

(i) limuf(z,t) = uniformly on compact subsets, where T
e—0 .
-1 if(x,t) e
and O stand for the “inside” and “outside” of I';

(ii) lim(e " f(u) — eAus)(x,t) = —w(x, t) uniformly on Dr.

e—0

We note that since U™ is multi-valued on the edges of the mesh 7y, its zero-level
set is not well defined. To avoid this technicality, we use a continuous finite element
interpolation of U™ to define the numerical interface. Let U™ € S, denote the finite

element approximation of U™ which is defined using the averaged degrees of freedom
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of U™ as the degrees of freedom for determining g (cf. [58]). By the construction,
Um is expected to be very close to U™, hence, U™ should also be very close to u(t,,).
This is indeed the case as stated in the following theorem, which says that Theorem

3.3.6 also hold for (7’”

Theorem 3.4.2. Let U™ denote the solution of scheme (3.32)~(3.45) and U™ denote
its finite element approzimation as defined above. Then under the assumptions of
Theorem 3.3.6 the error estimates for U™ given in Theorem 3.3.6 are still valid for

(7’”, i particular, there holds

max|[u(t) — U™ || o < o(zﬂ nhle™ + h=3e sr(h, ke, d, az-)%). (3.144)

0<m<M

We omit the proof because it is essentially the same as the proof of Theorem 2.4.1.

We are now ready to state the first main theorem of this section.

Theorem 3.4.3. Let {I';}:>0 denote the zero level set of the Hele-Shaw problem and
(UE’th(I, t), We nx(z, t)) denote the piecewise linear interpolation in time of the finite

element interpolation {(U™, /Wm)} of the DG solution {(U™, W™)}, namely,

tm — ¢

t - tmf = A~ _

Uepp(z,t) = TlUm(x) + U™ (x), (3.145)
t - tmf tm - t _

Wepg(z,t) == TIW"‘(x) T (@), (3.146)

fort,1 <t <t, and 1 < m < M. Then, under the mesh and starting value

constraints of Theorem 3.3.6 and k = O(h?>™) with v > 0, we have
(1) Uepp(z,t) 8 uniformly on compact subset of O,
(i) Uepp(z,t) S8y uniformly on compact subset of T.

(iii) Moreover, in the case that dimension d =2, when k = O(h®), suppose that W°
satisfies |[w§ — W02 < ChP for some 3 > %, then we have W,y (z,t) 9

—w(x,t) uniformly on Dr.
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Proof. For any compact set A C O and for any (z,t) € A, we have

\Uepnp — 1] < |Uehp — u(z, t)| + |u(x,t) — 1 (3.147)

< Vet — (2, D) oory + (1) — 1.

Equation (3.99) of Theorem 3.3.6 infers that there exists a constant 0 < a < 452 such
that
U — u (2, 1)| 1o (pr) < O (3.148)

The first term on the right-hand side of (3.147) tends to 0 when € ~\, 0 (note that
hyk 0, too). The second term converges uniformly to 0 on the compact set A,
which is ensured by (i) of Theorem 3.4.1. Hence, the assertion (i) holds.

To show (ii), we only need to replace O by Z and 1 by —1 in the above proof. To
prove (iii), under the assumptions k¥ = O(h?), (3.103) in Theorem 3.3.6 implies that

there exists a positive constant 0 < ¢ < A‘g—d such that
HWG,h,k — ’LUE”Loo(DT) S ChC (3149)
Then by the triangle inequality we obtain for any (z,t) € Dr,

(Weni(z,t) — (—w)| < [Wepr(z,t) —w(z, t)| + |w(x,t) — (—w)], (3.150)

< N Wenp(@, 1) = w (@, 8)| oo r) + w2, 1) = (—w)].

The first term on the right-hand side of (3.150) tends to 0 when € ~\, 0 (note that
h,k \, 0, too). The second term converges uniformly to 0 in Dz, which is ensured by

(ii) of Theorem 3.4.1. Thus the assertion (iii) is proved. The proof is complete.  [J

The second main theorem of this section which is given below addresses the

convergence of numerical interfaces.
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Theorem 3.4.4. Let T¢"* .= {z € D; U pi(x,t) = 0} be the zero level set of

Ueni(z,t), then under the assumptions of Theorem 3.4.3, we have

sup dist(z, ') 4 uniformly on [0,T].

xeF?hk

Proof. For any n € (0,1), define the open tabular neighborhood N, of width 27 of T,
as

N, = {(z,t) € Dy; dist(z,T}) < n}. (3.151)

Let A and B denote the complements of the neighborhood A, in O and Z, respectively,
ie.

A=0\N, and B=TI\WN,.

Note that A is a compact subset outside I'; and B is a compact subset inside I';, then

there exists €3 > 0, which only depends on 7, such that for any € € (0, €3)

Uepi(z,t) =1 <n V(z,t) € A, (3.152)

Uens(@,t) +1] <n V(z,t) € B. (3.153)
Now for any t € [0,7] and z € ™", from U, 1(z,t) = 0 we have

Uopp(zt) =1 =1 Y(z,t) € A, (3.154)

Upi(e,t) +1] =1 VY(z,t) € B. (3.155)

(3.152) and (3.154) imply that (z,t) is not in A, and (3.153) and (3.155) imply that
(z,t) is not in B, then (x,t) must lie in the tubular neighborhood N,,. Therefore, for

any € € (0, €3),

sup dist(z,I';) <7 uniformly on [0, 7. (3.156)
xef?mk
The proof is complete. O
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3.5 Numerical experiments

In this section, we present three two-dimensional numerical tests to gauge the
performance of the proposed fully discrete MIP-DG methods using the linear element
(i.e., r = 1). The square domain D = [—1,1]? is used in all three tests and the initial
condition is chosen to have the form uy = tanh(dOTg?), where dy(x) denotes the signed
distance from z to the initial interface I'y.

Our first test uses a smooth initial condition to satisfy the requirement for wy,
consequently, the theoretical results established in this chapter apply to this test
problem. On the other hand, non-smooth initial conditions are used in the second
and third tests, hence, the theoretical results of this chapter may not apply. But
we still use our MIP-DG methods to compute the error order, energy decay and the

evolution of the numerical interfaces. Our numerical results suggest that the proposed

DG schemes work well, even a convergence theory is missing for them.

Test 1. Consider the Cahn-Hilliard problem (1.30)-(1.33) with the following initial

condition:

uo(z) = tanh(d\o/(g? ) ,

where tanh(t) = (e'—e™")/(e'+e™ "), and dy(z) represents the signed distance function
to the ellipse:

L

0.36  0.04
Hence, ug has the desired form as stated in Proposition 3.3.5.

Table 3.1 shows the spatial L? and H'-norm errors and convergence rates, which
are consistent with what are proved for the linear element in the convergence theorem.
€ = 0.1 is used to generate the table.

Figure 3.1 plots the change of the discrete energy Ej,(U*) in time, which should
decrease according to (3.48). This graph clearly confirms this decay property. Figure

3.2 displays four snapshots at four fixed time points of the numerical interface with

four different €. They clearly indicate that at each time point the numerical interface
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Table 3.1: Spatial errors and convergence rates of Test 1 with € = 0.1.

L>(L?) error | L>°(L?) order | L*(H') error | L*(H"') order
h = 0.4v2 0.53325 0.84260
h=0.2V2 0.21280 1.3253 0.64843 0.3779
h=0.1v2 0.07164 1.5707 0.43273 0.5835
h = 0.05v2 0.01779 2.0097 0.21411 1.0151
h = 0.025v/2 0.00454 1.9703 0.10890 0.9753

Figure 3.1: Decay of the numerical energy Ej,(U*) of Test 1.

converges to the sharp interface I'y of the Hele-Shaw flow as € tends to zero. It also
shows that the numerical interface evolves faster in time for larger € and confirms the
mass conservation property of the Cahn-Hilliard problem as the total mass does not

change in time, which approximates a constant 3.064.

Test 2. Consider the Cahn-Hilliard problem (1.30)-(1.33) with the following initial

condition:

uo(x) = tanh(\/lﬁe(min{\/(ml +0.3)2 + 22 — 0.3, \/(xl —0.3)2 + 23 — 0.25})>.

We note that uy can be written as

up(z) = tanh(
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Figure 3.2: Test 1: Snapshots of the zero-level set of u®™* at time t =

0,0.005,0.015,0.03 and € = 0.125,0.025, 0.005, 0.001.

Here dy(z) represents the signed distance function. We note that uo does not have
the desired form as stated in Proposition 3.3.5.

Table 3.2 shows the spatial L? and H'-norm errors and convergence rates, which
are consistent with what are proved for the linear element in the convergence theorem.

€ = 0.1 is used to generate the table. Figure 3.3 plots the change of the discrete energy

Table 3.2: Spatial errors and convergence rates of Test 2 with e = 0.1.

L>(L?) error | L®(L?) order | L*(H"') error | L*(H") order
h=0.4v2 0.26713 0.35714
h=0.2y/2 0.07161 1.8993 0.18411 0.9559
h=0.1/2 0.01833 1.9660 0.09620 0.9365
h = 0.05v/2 0.00476 1.9452 0.04928 0.9650
h = 0.025v/2 0.00121 1.9760 0.02497 0.9808

E5,(U*) in time, which should decrease according to (3.48). This graph clearly confirms
this decay property. Figure 3.4 displays four snapshots at four fixed time points of
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Figure 3.3: Decay of the numerical energy Ej,(U*) of Test 2.

the numerical interface with four different e. They clearly indicate that at each time
point the numerical interface converges to the sharp interface I'y of the Hele-Shaw
flow as € tends to zero. It again shows that the numerical interface evolves faster in
time for larger € and confirms the mass conservation property of the Cahn-Hilliard
problem as the total mass does not change in time, which approximates a constant

3.032.

Test 3. Consider the Cahn-Hilliard problem (1.30)(1.33) with the following initial

condition:

up(x) = tanh(ﬁ (min{\/(x1 +0.3)2 4+ 22 - 0.2, \/(:171 —0.3)2 + 22 - 0.2,

\/xi + (22 +0.3)2— 0.2, \/xf 4 (s — 0.3)2 — 0.2})).

Notice that the above uy does not have the desired form as stated in Proposition
3.3.5.

Table 3.3 shows the spatial L? and H'-norm errors and convergence rates with
e = 0.1, which are consistent with what are proved for the linear element in the
convergence theorem. Figure 3.5 plots the change of the discrete energy Ej(U*) in
time, which again decreases as predicted by (3.48). Figure 3.6 displays four snapshots
at four fixed time points of the numerical interface with four different €. Once again,

we observe that at each time point the numerical interface converges to the sharp
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t=0.001

t=0.04 t=0.02

k

Figure 3.4: Test 2: Snapshots of the zero-level set of u®™* at time t =

0,0.001,0.04,0.09 and e = 0.125, 0.025, 0.005, 0.001.

interface I'; of the Hele-Shaw flow as € tends to zero, the interface evolves faster in
time for larger ¢ and the mass conservation property is preserved. The total mass

approximates a constant 2.989.
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Table 3.3: Spatial errors and convergence rates of Test 3 with e = 0.1.

Figure 3.6:

L>(L?) error | L®(L?) order | L*(H"') error | L*(H") order
h =042 0.38576 0.84157
h=0.2V2 0.12347 1.6435 0.55082 0.6115
h=0.1/2 0.03599 1.7785 0.31149 0.8224
h = 0.05v/2 0.00965 1.8990 0.16199 0.9433
h = 0.025v/2 0.00247 1.9660 0.08218 0.9790

£

Figure 3.5: Decay of the numerical energy Ej,(U*) of Test 3.
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Chapter 4

Finite Element Methods for the
Stochastic Mean Curvature Flow

of Planer Curves of Graphs

4.1 Introduction

It is easy to check that (cf. [94, 32]) the level set formulation of (1.35) is given by the

following nonlinear parabolic stochastic partial differential equation (SPDE):

Vo
df = |Vx/f|divx/<|v—jz|> dt + €|V f| o dV;, (4.1)
where f = f(a/,t) with 2’ = (z,24.1) denotes the level set function so that I'; is

represented by the zero level set of f, and ‘o’ refers to the Stratonovich interpretation
of the stochastic integral. Again, stochastic effects are modeled by a standard
R-valued Wiener process W = {W;;t > 0} which is defined on a given filtered
probability space (Q, F,{F;; t > 0}, P).
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In the case that f is a d-dimensional graph, that is, f(2',t) = x4 — u(z,t),

equation (4.1) reduces to

= /11 [Voul? divx<\/%> dt + e/T¥ [Vouf odWi.  (4.2)

To the best of our knowledge, a comprehensive PDE theory for the SPDE (4.2) is
still missing in the literature. For the case d = 1, (4.2) reduces to the following

one-dimensional nonlinear parabolic SPDE:

2
du = ﬁdt + €4/ 1+ \Gqu @) th (43)
= O, (arctan(9,u))dt + ey/1 + |D,ul? o dW.

Here 0,u stands for the derivative of u with respect to x. This Stratonovich SPDE
can be equivalently converted into the following 1to SPDE:

2 2 2
du = [%aﬁw (1-°¢ ) Oy u P}dt+e\/1+ 19,2 AW, (4.4)

271+ |0u
2 2

=0, < 0 u—l—(l—%)arctan )dt—i-e\/l—i-\(? ul? dW.

As is evident from (4.3), (4.4), the stochastic mean curvature flow (4.2) for d =
1 may be interpreted as a gradient flow with multiplicative noise. Recently, Es-
Sarhir and von Renesse [32] proved existence and uniqueness of (stochastically) strong
solutions for (4.3) by a variational method, based on the Lyapunov structure of the
problem (cf. [32, property (H3)]) which replaces the standard coercivity assumption
(cf. [32, property (A)]). As is pointed out in [32], mild solutions for (4.3) may not be
expected due to its quasilinear character.

The primary goal of this chapter is to develop and analyze by a variational method
some semi-discrete and fully discrete finite element methods for approximating (with
rates) the strong solution of the It6 form (4.4) of the stochastic MCF. The error

analysis presented in this chapter differs from most existing works on the numerical
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analysis of SPDEs, where mild solutions are mostly approximated with the help of
corresponding discrete semi-groups (see [61] and the references therein). We also note
that the error estimates derived in [55] which hold for general quasilinear SPDEs
do not apply to (4.4) because the structural assumptions, such as the coercivity
assumption [55, cf. Assumption 2.1, (ii)] and the strong monotonicity assumption [55,
cf. Assumption 2.2, (i)] fail to hold for (4.4), and also the regularity assumptions [55,
cf. Assumption 2.3| are not known to hold in the present case. In this chapter, we use
a variational approach similar to [55, 15, 17] to analyze the convergence of our finite
element methods. One main difficulty for approximating the strong solution of (4.4)
with certain rates is caused by the low regularity of the solution. To circumvent this
difficulty, we first regularize the SPDE (4.4) by adding an additional linear diffusion
term §0%u to the drift coefficient of (4.4); as a consequence the related drift operator
in (4.7) becomes strongly monotone, and the corresponding solution process u’ is then
H?-valued in space. However, it is due to the ‘gradient-type’ noise that a relevant

Hélder estimate in the H'-norm for the solution u°

seems not available, which is
necessary to properly control time-discretization errors. In order to circumvent this
problematic issue, we proceed first with the spatial discretization (4.12); we may then
use an inverse finite element estimate, and the weaker Holder estimate (4.27) for the
process ud to control time-discretization errors. We remark that addressing space
discretization errors first requires to efficiently cope with the limited regularity of
Lagrange finite element functions in the context of required higher norm estimates,
which is overcome by a perturbation argument (cf. Proposition 4.3.4).

The remainder of this chapter consists of three additional sections. In section 4.2
we first recall some relevant facts about the solution of (4.4) from [32]; we then present
an analysis for the regularized problem. The main result of this section is to prove an
error bound for u’ — u in powers of . In section 4.3 we propose a semi-discrete (in
space) and a fully discrete finite element method for the regularized equation (4.7) of

the SPDE (4.4). The main result of this section is the strong L*-error estimate for

the finite element solution. Finally, in section 4.4 we present several computational
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results to validate the theoretical error estimate, and to study relative effects due to

geometric evolution and gradient-type noises.

4.2 Preliminaries and error estimates for a partial
differential equation regularization

The standard function and space notation will be adapted in this chapter. For
example, H%(I) denotes the Sobolev space W*2(I) on the interval I = (0,1), and
H°(I) = L*(I). We also use H}"(I) to denote the subspace of H™(I) which consists
of all periodic functions in H™(I). Let (-,-); denote the L-inner product on I. The
quadruple (Q, F,{F;t > 0},P) stands for a given probability space, on which an
R-valued Wiener process W is given. For a random variable X, we denote by E[X]
the expected value of X.

We first quote the following existence and uniqueness result from [32] for the
SPDE (4.4) with periodic boundary conditions. In this context, we refer to the {F;}-
adapted process u : I x [0,7] x 2 — R as a (stochastically) strong solution in case
it satisfies P-a.s. (4.4) in an analytically weak sense, i.e., tested with deterministic

functions.

Theorem 4.2.1. Suppose that uy € H)(I) and fir T > 0. Let € < V2. There
exists a unique strong solution to SPDE (4.3) with periodic boundary conditions and
attaining the initial condition u(0) = wug, that is, there exists a unique H;—valued

{Fit heo,m-adapted process v = {u(t); t € [0,T]} such that P-almost surely

62

(u(t),gp)I = (u0,¢)1—§/0(8xu,8xcp)ld5 (4.5)

2

—(1- %) /Ot(arctan(axu), 33390)1] ds

t
+e/< 1—|—|8Iu|2,g0>ldWS Vo e HY(I) Vtelo,T).
0
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Moreover, u satisfies for some C' > 0 independent of T' > 0,

t:EE}E[||U(t)||z1(I)} <C. (4.6)

It is not clear if such a regularity can be improved from the analysis of [32] because

of the difficulty caused by the gradient-type noise. In particular, H?-regularity in
space, which would be desirable in order to derive some rates of convergence for
finite element methods, seems not clear. To overcome this difficulty, we introduce the

following simple regularization of (4.4):

2 2 82

é
€
du = |6+ 5)0% + (1= 5)5 T 6’2]dt+e\/1+]8u5|2th (4.7)

To make this indirect approach successful, we need to address the well-posedness and
regularity issues for (4.7) and to estimate the difference between the strong solutions

u® of (4.7) and u of (4.4).

Theorem 4.2.2. Suppose that u} € H)(I) and ||uj||m gy < Co, where Cy > 0 is
independent of 6. Let € < \/m Then there exists a unique strong solution to
SPDE (4.7) with periodic boundary conditions and initial condition u’(0) = u, that
is, there exists a unique H)-valued {F;} o -adapted process u® = {u’(t); t € [0,T]}
such that there holds P-almost surely

(u'(t), p), = (up, ©), — (0 + %) /0 (9,0, Oap) , ds (4.8)

t
- (1- %) /0 (arctan(@mu‘s),amgo)lds

t
—I—e/( 1+\8xu5|2,90)1dW3 Vo e HY(I) Ytel[o,T].
0

Moreover, u® satisfies

1 T 1
sup E| 510, (1) 32| + 0| / 1026 () 22(r) ds| < B[S N0 1320 (4.9)

te[0,T

113



Proof. Existence of u° can be shown in the same way as done in Theorem 4.2.1 (cf.
[32]). To verify (4.9), we proceed formally and apply Ito’s formula (cf. e.g. [62], or
[78]) with f(-) = (|0, - |3 12(ry to (a Galerkin approximation of) the solution u® to get

1 t 62 2
S0 ()12 /[—502“ 1-5)| === }d
SN0’ Olitany + | [ (5 + )02 e + N le)
1
—§||(’9u0||L2 1+ |0ul]? ds—l—Mt
Oy - 02 )2

ds+ M, Vtelo,T]

1 su3 52 t
- sl + 5 [ i,

1+ |0,ul|?
where

t
= i .t(s 2 z6 s
6/0 (8 V14 |0,ud(s)] ,8u>1dW

is a martingale. Taking expectation yields

1
B30 0l + [ [F1020 15+ (1 -

< E[éHaIUOHL2]'

Hence, (4.9) hold. The proof is complete. ]

)

Next, we shall derive an upper bound for the error u° — u as a low order power

function of 9.

Theorem 4.2.3. Suppose that u = ug. Let u and u’ denote respectively the strong
solutions of the initial-boundary value problems (4.4) and (4.7) as stated in Theorems

4.2.1 and 4.2.2. Then there holds the following error estimate:

sup E|[[u’(t) — u(t)H%z(I)] + 5]E[/0 10, (1 (s) — u(s))H%Q(I) ds] < CTo. (4.10)

t€[0,T]
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Proof. Let € := u® — u. Subtracting (4.5) from (4.8) we get that P-a.s.

((0).9) — - /Ot[é(ﬁxu,ﬁxap) 40+ 5) (0. 010),

2

+(1- %) (arctan(d,u’) — arctan(9,u), (9xg0)]} ds + M,

for all ¢ € H'(I) and ¢ € [0, 7], with the martingale

t
M, = e/ (V1 + 10,002 = /1 4 [8,ul?, ) AW
0

By It6’s formula (cf. [62]) we get

t
80y = =2 [ [510m0.0:6%), + 5+ 5) 100 (1)
2
+ (1- %) (arctan(0,u’) — arctan(9,u), 0y’ 1} ds

t 2
62/ | VI~ VTH |, s
0 L2(I)
t
+ 26/ <\/1 10w — 1+ |3xu|2765>1dW5.
0

Taking expectations on both sides, and using the monotonicity property of the arctan

function and the inequality (v1+ 22— \/1+ y2)2 < |z — y|?* yield

t t
E[le?(4)|[22()] +25E[/0 1013y ds] < —251@[/ (Oru, 0re?) s

0

< SB[ [ [10:0120 + 101 5],

which and (4.6) imply that

t T
E[\|e5(t)\|i2(1)}+5E[/o ||ax€6‘|§2(1)ds} g(SE[/O HaquiQ(I)ds]

< (CT)s.
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The desired estimate (4.10) follows immediately. The proof is complete. ]

4.3 Finite element methods

In this section we propose a fully discrete finite element method to solve the
regularized SPDE (4.7) and to derive an error estimate for the finite element solution.
This goal will be achieved in two steps. We first present and study a semi-discrete in
space finite element method and then discretize it in time to obtain our fully discrete

finite element method.

4.3.1 Semi-discretization in space

Let 0 =29 < x; < --- < xy41 = 1 be a quasiuniform partition of I = (0,1). Define

hj :=xj41 —x; and h := maxy<;<sh;. Introduce the finite element spaces
V;’h = {Uh € CO(T)? vh‘[$j7$j+1} € PT([xj7xj+l])? j = Oa 17 e 7‘]} N H;<I)a

where P, ([z;,2;4+1] denotes the space of all polynomials of degree not exceeding (>
0) on [zj,z;41]. We note that functions in V" are piecewise continuous periodic
functions. Our semi-discrete finite element method for SPDE (4.7) is defined by

seeking up, (-, t,w) : [0, 7] x Q — V* such that P-almost surely

2

(1), ), = (0),w3), — (5+ ) /0 (O, D,0n) , ds (4.12)

t
—(1- %) /0 (arctan(axui),(?:cvh)jds
t
+e/0 (,/1+|axugy2,vh)1dws Vo, € VP Wt € [0,T),
0

where ug(0) = Pyuj, and P} denotes the L?-projection operator from L2(I) to V"
which is defined by

(P,:w,vh)l = (w,vh)I Yy, € Vrh.
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To derive an SDE for w9 from the above weak formulation, we introduce the

discrete (nonlinear) operator A9 : V* — VI by

2
(Ahwh, Uh) ((5 + B ) (@cwh, vah)l (413)

2
+ (1 — %) (arctan(@xwh), 0xvh)1 Ywp,, vy, € Vrh.

Then (4.12) can be equivalently written as
dul (1) = — ASun(t) dt + ePh< 1+ |8xui(t)\2> AW, (4.14)

Proposition 4.3.1. Fore < \/2(1 + ), there is a unique solutionuf, € C([0, T]; L*(%; V,"))
to scheme (4.12). Moreover, there holds

s B340 + 5[ [ ol 5] (1.15)

0<t<T

1
<E[5[uf0)5a] + €T

Proof. Well-posedness of (4.14) follows from the standard theory for stochastic ODEs
with Lipschitz drift and diffusion. To verify (4.15), applying It6’s formula (cf. [62])
to f(ul) = ||uh||L2(I and using (4.14) we get

o () 22y = s () sy — 2 / (Afui(s),ui(s)) ds (4.16)

1+ [0 ()P
0

t
+26/ (P;; 1+|(9zu2(8)|2,u2)1dW5.
0

2
+é2 ds
L(I)
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It follows from the definitions of A2 and P! that

¢
Iy < IOy — 25+ ) [0y s (@an)
t
—(2—62)/ <arctan(8xui(s)),&Bui(s)) ds
0 I
2 ' ) 2
t+e /0 1+ 0 () | s

t
+26/ <\/1+|8mui(s)|2,ui> dw,.
0 I

Then (4.15) follows from applying expectation to (4.17), and using the coercivity of

arctan. The proof is complete. O

An a priori estimate for ug in stronger norms is more difficult to obtain, which is
due to low global smoothness and local nature of finite element functions. We shall
derive some of these estimates in Proposition 4.3.4 using a perturbation argument
after establishing error estimates for ug.

To derive error estimates for ul, we introduce the elliptic H!-projection R :

HY(I) — Vh ie., for any w € HY(I), Rjw € V" is defined by
(0:[Rhw — w], Opvp) , + (Rhw —w,v,), =0 Vo, € |74 (4.18)
The following error bounds are well-known (cf. [13]),
Jw = Ryw|| oy + Bllw = Riw|| ) < CRlwllgzy  Yw € Hy(I).  (4.19)

Theorem 4.3.2. Let € < \/2(1+46). Then there holds

sup B [[uf(6) = uf (1)]| 2y | + O [/OTHaz[ué(s) — ()] ds]  (420)

t€[0,T

< OR*(1+67?).

118



Proof. Let
Et) :==u’(t) —up(t), 1’ =u’(t) - Ryu'(t), &= Rpu’(t) — up(t).

Then € = n°+£°. Subtracting (4.12) from (4.8) we obtain the following error equation
which holds P-almost surely:

2

(e‘s(t),vh)l +(0+ %) /0 (9.€°(s), Oy vn) ds (4.21)

2

= —(1- %) /Ot (arctan(&,;u‘s(s)) — arctan(9,u (s)), aacvh>ld8

be [ (VIFTATGIF - 1+ 0 ) ) e+ (000,

for all v, € V. Substituting €’ = 7’ + £° and rearranging terms leads to

(55(t),vh)l + (5 + ;) /Ot (89655(5), (9mvh)lds (4.22)

2

+ (1 — %) /Ot (arctan(@xué(s)) — arctan(@xui(s)),(?xvh)lds

t
_ 6/ (VIF 10 = 1+ 10, (5) 2, 0n) W,
0

2

—(6+ %) /0 (n°(s),vn)  ds — (°(t),va) , + (€°(0),vn) -
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Applying 1t6’s formula (cf. [62]) with f(&%) = ||§5||%2(]), and using (4.22) and
(4.13) we obtain
¢
2 2
€012+ (25 +) [ 00 s (423)
¢
+(2—¢) / (arctan(@wRZué(s)) — arctan(@xufb(s)),8m§6(3)>1d3
0

—(2-&) /0 t (arctan (0.4 () — actan (2, Ry (5)), 0.8 (5)) ds
v [ VIR - 1+ 0 o
v2c [ (VIFatGIE - 1+ 0 0). )
- (20+) [ 06).0.6),ds — 207 (0.0,
£2(0(0),€(1)), + (€7(0). £(0))

2
ds
L2(I)

By the monotonicity of arctan, (4.19), (4.9), and the inequality (\/1 + 22 —
V14 y2)2 < |z — y|* we have
t
E[/ (arctan(@xR};u‘s(s)) — arctan(d,ul (s)), 8$£5(3)>Id3} >0,
0
t
(2—E [/ (arctan(@mu‘;(s)) — arctan(amR};u‘s(s)),8x£6(5)>1d5]
0
t
0 - T
= E[/o (F19:€° Mt + 46700 (5) = Bu R ()] ) ) ]

5[ .
< ZE[/O 10,7 (5) g, ds] + Ch%62,
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2
L+ |0 ()P

1+ I&:U‘S(S)I2 -

R

ds}

Hag 2 ds]+06 'E| / 102 13 ds|

)
|: H8x€6 HLZ(] d3:| +Ch25_
E

EU#O&«»J [|m<wm 1P O] < {E[I€O1)] + 002
E[((0,.80),] < TE[IEO10)] + E[I O] < F1E O + O

Taking the expectation in (4.23) and using the above estimates then yields

sup E[Hgs ”iQ(I)] + 3(5E[/0TH6I55(5)H§2(1) ds] < Ch*(1+677). (4.24)

t€[0,7

Finally, (4.20) follows from the triangle inequality, (4.19), and (4.24). The proof is
complete. O

Remark 4.3.3. (a) Estimate (4.20) is optimal in the H'-norm, but suboptimal in
the L*-norm. The suboptimal rate for the L?-error is caused by the stochastic effect,
i.e., the second term on the right-hand side of (4.23), and it is also caused by the lack
of the space-time reqularity in L>°((0,T); H*(I)) for u’.

(b) The proof still holds if the elliptic projection R} is replaced by the L*-projection
Pr.

We now use estimate (4.24) to derive some stronger norm estimates for ug. To

this end, we define the discrete Laplacian 03 : V" — VI by

(8}%wh, Uh)[ = —(wah, &th)[ th, U € ‘/Th. (425)
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Proposition 4.3.4. For ¢ < \/2(1+ ) there hold the following estimates for the

solution ul of scheme (4.12):

T
sup (|0, (00| + 0B [ 1080 ds] <4572, (@20
0<t<T 0
(5 t
B[l (6) — (o) e+ 5 [ 103(O) — 6N By (4.27)

<C(A+67)t—s| VO<s<t<T.

Proof. Notice that u) = £ + Ryu’ with £ = u) — Ryu® € V*. By the H!-stability of

Ry, the following inverse inequality for piecewise polynomial function & (cf. [13]),

10:€° )l 22(r) < CRTHIE ()] z2(ry,

(4.9), and (4.24) we get
sup B0, ()l[32n] <2 sup |0 B (Ol | +2 sup B[[0.6°(1) 320 |
t€[0,T) t€[0,T] te€[0,T]

C
< C sup B0, () [3ap | + 55 sup BJIE(O)F2(r]
t€[0,T] t€[0,T7]

< C(1+4672).

It follows from (4.25) and (4.18) that

Hain Zw”%?(l) = _(aﬂca}% Zwaamsz)I
= (O Rjw, D2w) , + (w — Rjw, 8 Ryw), vw € H*(I),
and hence
107 Riwll 2y < 102wl 20y + lw = Rywll 2y < (14 CR?)|wl| g2y (4.28)
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By an inverse estimate, (4.28), and (4.24) we have

T T
E| / 078 () 32 ds| < 2E| / (103 () 3201y + 192 By () 3y ) s
T
<[ [ (ON 0.8 e + IO () ) )

T
<O 14672+ CE [/ 102 () 3aqr s
0

which and (4.9) give the desired bound in (4.26).
To show (4.27), we fix s > 0 and apply Ito’s formula (cf. [62]) to f(ul) = |lus (t) —
uh(8)]|72(p) to get that
et (£) = wi () 721y (4.29)

= (@ +20) [ (B0 = w0 AluQ) (o))

— (2 - 52)/ (arctan(@mufb(o) + arctan(ﬁmui(s)),(% [up (¢) — “2(3)01 d¢

. S
¢ [IPE U100 £ P L 6 + M

where

M= e [ (VI 10O P — o)

which is an {F;;t € [s, T]}-martingale.
By the L2-stability of P7, the triangle and Young’s inequality, and the properties

of the square root function, we can bound the third term on the right-hand side as
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follows:

t
62/8 HPZ\/le 10, [ (€) iui(s)}leiQ(n dg
‘ 2
< [ (1€ ~ s + 1+ 03N )
<(1+9) / 10:[13,(C) = ud ()] 72 dC

@+ 5 (14 10 (5)l3 ) It = sl
Also
6 t
< 7 10a[up(€) = up(s)]l[7ary dC + (€2 4 20)%67" |t — s[[0zwip ()17,
2-¢) / (arctan (D} (). [ () = ul(s)]) dC
) t
< [ 10000) = w6 dC +4(2 = P57 e = .

Substituting the above estimates into (4.29) yields

el (8) — 1 (5) 22y + / 10:6(C) — ul ()12 de
< 5" (( — )2 4t +52>(1+||8$u2(3)||%2(1)) [t — s| + M,

Finally, (4.27) follows from applying the expectation to the above inequality and using
(4.26) as well as the fact that E[M;] = 0. O

4.3.2 Full discretization in space and in time

Let t, = nt for n = 0,1,--- | N be a uniform partition of [0,7] with 7 = T/N.
Our fully discrete finite element method for SPDE (4.7) is defined by seeking an
{F:;n =0,1,--- , N}-adapted V-valued process {u}; n = 0,1,--- , N} such that
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P-almost surely

2
(o) 470+ 5) (0™ Dr) (430

2
+ 7’(1 — %) (arctan(@xui’nﬂ), 8351);1)[

= (U27n7 Uh)] + 6( 1 + ’axui’nP, 'Uh)[ AWn+1 V'Uh € ‘/,,.h,

where AW, 11 := W (t,41) — W(t,) ~ N(0,7).
We first establish the following stability estimate for ui’".

Proposition 4.3.5. Let € < \/2(1+0). For eachn = 0,1,--- N, there is a V-

valued discrete process {ui’"“; 0 <n < N—1} which solves scheme (4.30). Moreover,

there holds

N
max ||l 72 ] +20 D 7E[ 0|5 | <E[Ilulle ] + 7. 431

n=0

Proof. The existence of solutions to scheme (4.30) for 7,h > 0 can be proved by
Brouwer’s fixed-point theorem, which uses the coercivity of the operator I +7A¢ (see

(4.13)).

To show (4.31), we choose v, = ul" "' (w) in (4.30) to find P-almost surely

n n ]' n n
I oy B ] + S s -
2 2
+7(6+ %) Hazui’"HHiQ(I) +7(1- %) (arctan(@xua’"ﬂ) 0 u‘;’"H)I

h ) YT YA
§ 1 1 1 1
_ e(\/l [Pl 2, Ul S — uh’”> AW,
1

| —
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We compute

(arctan(9, ud™ ), 9 UMH)I >0,

(VT 10 1 = ) AW
2

} an+l

on
1+ |0puy"|?

2
- 2‘ Up HL2(I) 2(I)lAVVM—1|2-

The last estimate controls one part of the stochastic term in (4.32), while the
expectation of the remaining part vanishes. By the tower property for expectations,

there holds

7

such that we get

62
E[| AW P17, | = STE[L+ 100" .

6n
1+ |0puy"|

| i . )
ot [H“i’ Moy = Nl ||iz(1)] +75E[H3x ” “HLQ(D} (4.33)

62 n n
+§TE|:H890U% —HHi?(I) — Haxui’ HiQ(I)] < 7.

After summation, we arrive at

| B[l ] + €T

N
oghiXN]E[Hu ”;(1)] +25720E[Haf“%n iQ(I)

So (4.31) holds. The proof is complete. O

Next, we derive an error bound for uf (t,) — ui".

Theorem 4.3.6. Let r = 1. There holds the following error estimate:

N
OsuENE[Huh u;i;nu;m}+5E[§T;|axug<tn>_axugvn”;m] (4.34)

< CT(l + (572)h727.
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Proof. Let ™ := ud(t,) — uh It follows from (4.12) that for all {¢,;n > 0} there

holds P-almost surely

(ui<tn+1> Uh)[ ( 6 ) (435)

tn+1

% /n+1 arctan(0, uh( ), 0. Uh)

)
/tn+l(,/1+|a WS o) AW, Vo €V

Subtracting (4.30) from (4.35) yields the following error equation:

[

(e u), = (€%, vn), (4.36)
)

€ bt o,n+1
——( 5/ (8uup(s) — Opuy™ ™, Dyuy) s

2

2 ften 5 S+l
- 5)/ (arctan(@xuh(s)) — arctan(0,uy ),aﬂ’h) [ds
tn

tn+1
e/ («/1+|8$u2(5)|2— 1+ |6xui’"|2,vh> dw.,.
tn I

Choosing vj, = e*"*1(w) in (4.36) leads to P-almost surely

1
[||@5’n+1||%2(1) - ||€5’n||%2(1)} + 5“657”“ - GMHE(I) (4.37)

DN | —

2
€ n
+ (5 + 5)7’ ||8m€5’ +1||2L2(I)
62 tn+1
= —(5 +9) / (azui(s) — Ot (tny1), aweé’”“)j_ds
in

2

tnt1
—(1- %) /t ' (arctan(@xui(s)) — arctan (9,u) (tns1))

+ arctan(@ ui(tn+1)) — arctan(ﬁmui’”ﬂ)7 83365’"*1) ds
I

+ € /n+1 <\/1 + 10,ul (s \/1 + |0,ud™ 2, 65’"+1>1dWs.
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We now bound each term on the right-hand side. First, since E[AW,, 1] = 0,

by Ito’s isometry, the inequality (\/1 +22 —/1+ y2)2 < (x — y)?, and the inverse

inequality we get

tn+1
E[g/ (\/1 + |Opu ()| — \/1 + Bl |2, fntt £ e5,n> dWs}
tn )
1 Sn+l Sn||2 €2 [int1 5 on ) i
< E[§H6 il ed HL2(I):| +5 10s [y () — ™ = uh ()] | 2201 ds}
tn

2
1 ., , e 0 n
< §E[H65’ e H%zm} +E[(§ + )7 10w 220
2
9

¢ tn+1
+ (5 + 5) /t ||8w[u‘,i(s) — Ui@n)]HQLQ(I) ds}

62

n n 0 n
E|:||e5, +1 _ @57 ||%2(I)} + (5 + 5)7’E[”8x65’ ||%2(I)}

tni1
+ O+ ) E / [0 () — 2 () 3 ] (4.38)
tn

<

An elementary calculation and an application of an inverse inequality yield

2 tnt1

(% +9) / <8wu2(s) — Ot (tny), 8x65’”+1>1d3
tn

0 . 2(5 +0)* [l

< 27105 gy + 22 [ ouluf6) = sy ds
tn

J " 1,y [

< 3TN0 Gy + (€ +20)%5 2/ i (s) = up(ta) |22y ds. - (4.39)
tn
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By the monotonicity of arctan we get

2

tni1
- (1- %)/t i (arctan(@xui(s)) — arctan (9,u) (tni1))

+ arctan(@zui(tnﬂ)) — arctan(d, o n+1) 3x65,n+1> ds
I

62

tn+1
<—(1- 5) / ' (arctan(@xui(s)) — arctan(@xui(tnﬂ)),83665’”“) ds
tn

62

. 9 tn+1
< ST 10 Wy + 50 = S [ 10 ) — whtus g ds
tn

S 0l

tn+1
< 5710 ey + (2 — €)% AT / lup(s) = (ta)l[72y ds. (4.40)
tn

Finally, substituting the above estimates into (4.37), summing over n =

0,1,2,---, N — 1, and using (4.27) and the fact that ¢** = 0 we get

5 N
é,n 6,n+112
su e + -E [7’ 0pe” }
o0 B 16 e | + G| 3 hone
N tn+1
C(L45 2y / B[ sup [lul(s) = ud(t) 32| ds
n=0 tn Se[tn,tn+1]
<CT(1+6M2h 2T,
which infers (4.34). The proof is complete. O

Remark 4.3.7. Due to the lack of a Hélder continuity (in time) estimate for Oyul in
L2-norm, we have used the inverse inequality to get inequalities (4.38)—(4.40), which
leads to a restrictive coupling of the spatial and time mesh parameters h and T in the

error bound.

We conclude this section by stating the following error estimates for the fully
discrete finite element solution ui’” as an approximation to the solution of the original

mean curvature flow equation (4.4).

Theorem 4.3.8. Let u and ui’" denote respectively the solutions of SPDE (4.4) and
scheme (4.30). Under assumptions of Theorems 4.2.1, 4.5.2, and 4.3.6, there holds
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the following error estimate:

N

n=0

sup ]E[Hu(tn) —ud"
0<n<N

<CTS+C(1+062)h% + CT(1+62)h >,

Inequality (4.41) follows immediately from Theorems 4.2.3, 4.3.2 and 4.3.6, and

an application of the triangle inequality.

Remark 4.3.9. Again, we note that the main reason to have a restrictive coupling
between numerical parameters in (4.41) is due to the lack of Hélder continuity (in
time) estimate for Oyud in L?>-norm. On the other hand, it can be shown that, under

a stronger reqularity assumption, the estimate (4.41) can be improved to

|2
OSSBENE[HMM) — Uy HLQ(I)] (4.42)
N
" 5E[ZTH&CUG”) N axu%””im)} <COW+T1+9).
n=0

This is because we no longer need to use the inverse inequality to get (4.38)—(4.40),

and (4.42) can be obtained by starting with a control of the time discretization first.

4.4 Numerical experiments

In this section we shall first present some numerical experiments to gauge the
performance of the proposed fully discrete finite element method and to examine the
effect of the noise for long-time dynamics of the stochastic MCF of planar graphs, and
we then present a numerical study of the stochastic MCF driven by both colored and
space-time white noises where no theoretical result is known so far in the literature.
We like to note that all our numerical experiments are done in Matlab. At each time

step, a nonlinear algebraic system must be solved, which is done by using Matlab’s
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built-in Newton solver in all our numerical tests. In addition, all space norms are

computed approximately using sufficiently high order numerical quadrature formulas.

4.4.1 Veriftying the rate of convergence of time discretization

To verify the rate of convergence of the time discretization obtained in Theorem
4.3.8, in this first test we use the following parameters ¢ = 1, § = 107°, and
T = 0.1. In order to computationally generate a driving reference R-valued Wiener
process, we use the smaller time step 7 = 107°. The initial condition is set to be
up(z) = sin(rz). To calculate the rate, we compute the solution ul™ for varying
7 = 0.0005,0.001,0.002,0.004. We take 500 stochastic samples at each time step
t, in order to compute the expected values of the L>(L?)-norm of the error. The
computed errors along with the computed convergence rates are exhibited in Table
4.1 and Fig. 4.1. The numerical results confirm the theoretical result of Theorem
4.3.6. In Fig. 4.2, we plot the errors of the computed solution with regularization (i.e.,
d > 0) and without regularization (i.e., 6 = 0). The comparison shows that without
the regularization term our numerical methods still compute correct solutions for

some problems although our convergence theory requires that ¢ > 0.

Table 4.1: Computed time discretization errors and convergence rates.

Expected values of error | order of convergence
dt=0.004 0.41965657 —
dt=0.002 0.27206448 0.62526
dt=0.001 0.18136210 0.58508
dt=0.0005 0.12373884 0.55157

4.4.2 Dynamics of the stochastic mean curvature flow

We shall perform several numerical tests to demonstrate the dynamics of the
stochastic MCF with different magnitudes of noise (i.e., different sizes of the

parameter €).
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Figure 4.1: Plot of the errors in Table 4.1.

Figure 4.3 shows the surface plots of the computed solution ui’" at one stochastic
sample over the space-time domains (0,1) x (0,0.1) (left) and (0,1) x (0,2® x 107°)
(right) with the initial value ug(x) = sin(mx) and the noise intensity parameter e =
0.1. The test shows that the solution converges to a steady state solution at the end.

Figures 4.4-4.6 are the counterparts of Figure 4.3 with noise intensity parameter
€ = 1,v/2,5, respectively. We note that the error estimate of Theorem 4.3.8 does not
apply to the latter case because the condition ¢ < /2(1 + 0) is violated. However,
the computation result suggests that the stochastic MCF also converges to the steady
state solution at the end although the paths to reach the steady state are different
for different noise intensity parameter e.

We then repeat the above four tests after replacing the smooth initial function wug

by the following non-smooth initial function:

¢

10z, if 2 < 0.25,

5—10x, if 0.25 <x < 0.5,
up(z) = (4.43)

10z — 5, if0.5 <z <0.75,

\10— 10z, if0.75 <z < 1.
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Figure 4.2: Comparison of the computed solution with (blue line) and without (red
line) the regularization term (Color figure online).

Figure 4.3: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0,1) x (0,0.1) (left) and (0,1) x (0,2% x 1075) (right). ug(z) =
sin(mz) and € = 0.1.

The surface plots of the computed solutions are shown in Figures 4.7-4.10, respec-
tively. Again, the numerical results suggest that the solution of the stochastic MCF
converges to the steady state solution at the end although the paths to reach the
steady state are different for different noise intensity parameter €. As expected, the
geometric evolution dominates for small €, but the noise dominates the geometric

evolution for large e.
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Figure 4.4: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0,1) x (0,0.1) (left) and (0,1) x (0,2% x 107°) (right). ue(z) =
sin(rz) and € = 1.

Figure 4.5: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0,1) x (0,0.1) (left) and (0,1) x (0,28 x 1075) (right). ug(z) =
sin(rx) and € = /2.

4.4.3 Verifying energy dissipation

It follows from (4.9) that the “energy” J(t) := %E[Haxu‘s(t)ﬂiz)(l)} decreases
monotonically in time. In the following we verify this fact numerically. Again, we
consider the case with the initial function wuy(z) = sin(mz) and the noise intensity
parameter ¢ = 1. It is not hard to prove that J(t) converges to zero as t — oo.
Figure 4.11 plots the computed J(t) as a function of . The numerical result suggests

that J(t) does not change anymore for ¢t > 0.1.
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Figure 4.6: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0,1) x (0,0.1) (left) and (0,1) x (0,2% x 107°) (right). ue(z) =
sin(rz) and € = 5.

Figure 4.7: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0,1) x (0,0.1) (left) and (0,1) x (0,2% x 107°) (right). ug is given
in (4.43) and € = 0.1.

4.4.4 Thresholding for colored noise

In this subsection we present a computational study of the interplay of noise and
geometric evolution in (4.4), which is beyond our theoretical results in section 4.3.1
and 4.3.2. For this purpose, we use driving colored noise represented by the ()-Wiener

process (J € N)

J
We =Y aZBi(t)e; . (4.44)
j=1

where {;(t); t > 0};>1 denotes a family of real-valued independent Wiener processes

on (Q,F,F,P), and {(g;,¢;)}7

5-1 1s an eigen-system of the symmetric, non-negative

trace-class operator @ : L3(I) — L*(I), with e; = v/2sin(jmz). In particular, we like

to numerically address the following questions:
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Figure 4.8: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0, 1) x (0,0.1) (left) and (0,1) x (0,2® x 107°) (right). ug is given
in (4.43) and € = 1.

Figure 4.9: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0,1) x (0,0.1) (left) and (0,1) x (0,2 x 107°) (right). ug is given
in (4.43) and € = /2.

(A) Thresholding: By Theorem 4.2.1, strong solutions of (4.4) exist for ¢ < v/2, and
a similar result can be shown for the PDE problem with the noise (4.44). What
are admissible intensities of the noise suggested by computations? Moreover,
what do the computations suggest about the stochastic MCF in the case of

spatially white noise (i.e., ¢; = 1, J = 00) where no theoretical result is available

so far?

(B) General initial profiles: The deterministic evolution of Lipschitz initial graphs is
well-understood. For example, the (upper) graph of two touching spheres may
trigger non-uniqueness. What are the regularization and the noise excitation
effects in the case of the initial data with infinite energy and using different

noises?
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Figure 4.10: Surface plots of computed solution at a fixed stochastic sample on the
space time domains (0, 1) x (0,0.1) (left) and (0,1) x (0,2® x 107°) (right). ug is given
in (4.43) and € = 5.

Time from 0to 0.1

Figure 4.11: Decay of the energy J(t) on the interval (0,0.1).

Recall that the estimate in Proposition 4.3.5 for V-valued solution ui’n suggests
that € > 0 ought be sufficiently small to ensure the existence. In our test, we employ
the colored noise (4.44) with qj% = 5796 J = 20, and the following non-Lipschitz
initial data:

uo(z) = 0.5 — z|* Ve (0,1), (4.45)

where £ = 0.1. In addition, we set (7,h) = (0.01,0.02) and T' = Figure 4.12

N —=

shows the single trajectory of the stochastic MCF plotted as graphs over the space-
time domain with, respectively, € = 0.1,0.5, /2. The results indicate thresholding,
namely, the trajectories grow rapidly in time for sufficiently large values ¢, and the
noise effect dominates the geometric evolution. The excitation effect of the noise on

the geometric evolution is illustrated by corresponding plots for the evolution of the
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Figure 4.12: Thresholding for colored noise: Trajectories for ¢ = 0.1 (top left),
£ = 0.5 (top right), £ = v/2 (bottom).

functional n — ||6xuin(w)||%2 vs its expectation n IE[H(%U%” 2,] in Figure 4.13
and 4.14. We observe that the geometric evolution dominates for small values of ¢,

while the noise evolution takes over for large values of ¢.

4.4.5 Thresholding for white noise

We now consider the case of white noise in (4.30), that is, ¢; = 1 in (4.44) and J = oo,
for which the solvability of (4.2) is not known. Figure 4.15 shows the single trajectory
of the stochastic MCF (with the same data as in section 4.4.4) plotted as graphs over
the space-time domain with, respectively, € = 0.1,0.5, /2. We observe a very rapid
growth of trajectories (numerical values range between 10 and 10?!) even for small
values of € > 0. These numerical results suggest either a rapid growth or a finite time

explosion for the stochastic MCF in the case of white noise.

138



=01 1k

25 140
120
2
100
15
z z o
T T
2 2
5 5
s £
40
05
il
0 e 0

i i | I I I I I I
001 002 003 004 005 006 007 008 009 07

I I I I I I
0 00 002 003 004 005 006 007 008 009 01

=01 =05
25 100 T

2 a

15 [E1]
= =
2 2
g 5
c C
ir i

1 0

05 ]

0

I I I I I 1 I I I h I I f I
0 001 0m 003 004 005 006 007 008 009 Of 0p1 002 003 004 005 006 007 008 009 071
t t

1
Figure 4.13: Geometric evolution vs colored noise evolution (qj2 = 5796 J = 20):
st row: single trajectory for n — Haxui’"(w)H%Q and € = 0.1 (left), e = 0.5 (right);
2nd row: n — E[H@xuz"|]%2] for e = 0.1 (left), e = 0.5 (right).
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Figure 4.14: Geometric evolution vs colored noise evolution (qj2 = ;7Y J = 50):
st row: single trajectory for n — Haxui’"(w)H%Q and € = 0.1 (left), e = 0.5 (right);
2nd row: n — E[H@xuz"|]%2] for e = 0.1 (left), e = 0.5 (right).
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Figure 4.15: Thresholding and white noise: ¢ = 0.1 (top left), ¢ = 0.5 (top right)
£ = +/2 (bottom).
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Chapter 5

Finite Element Methods for the
Stochastic Allen-Cahn Equation
with Gradient Multiplicative

Noises

5.1 Introduction

In this chapter, we consider a stochastic version of mean curvature flow which
incorporates the influence of noises for (1.4). The uncertainty may arise from
thermal fluctuation, impurities of the materials, and the intrinsic instabilities of the

deterministic evolutions. A simple model is given by [59, 83]:

(o}

Vo(z,t) = —H(x,t) + 0 X (x,t) - n xr €Ty, (5.1)

where }ng R? x [0,T] — R? indicates the Stratonovich derivative of X and § > 0
is the noise intensity that controls the strength of the noise. Formally, the phase

field formulation of (5.1) is given by the following Stratonovich stochastic partial
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differential equation (SPDE):

du

1 o
pri Au — €—2f(u) +0Vu- X. (5.2)

More specifically, we assume X is a vector-field Brownian motion that is white in time

and smooth in space, i.e.,
X(a,1) = X ()W (), (5.3)

where X : R? — R? is a time independent deterministic smooth vector field with
compact support in D and W (t) is a standard R-valued Brownian motion (Wiener
process) on a given filtered probability space (Q, F,{F; : ¢t > 0},P). Thus the
Stratonovich SPDE (5.2) becomes

du = [Au - éf(u)} dt + 6Vu - X o dW(t), (5.4)

and the corresponding Ito SPDE is given by

i ) )
du = Au——ﬂ“(u)#—%V(Vu-X)-X} dt +0Vu - X dW (t) (5.5)
€
= Au——Qf(u)+§(B:Du+b-Vu) dt +6Vu - X dW (t)
€
[ 1 o :
= [Au— = f(u) + E(dlv(BVu) + (b—divB) - Vu) | dt
€

+0Vu- X dW(t),

where B = X ® X € R™? with B;; = X, X, b= (VX)X € R? with b; = (0, X;)X;
and divB —b = (divX)X. For convenience, here we suppress the summation notation
for repeated indices. Note that the It6 SPDE (5.5) has two correction terms which is
hidden in the Stratonovich SPDE (5.4).
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Remark 5.1.1. In general, we can also consider the following vector field [83]

X(x,t) =) X*(@)Wi(t),

I

where K < oo and Wy (t) are independent R-valued standard Brownian motions. In

this case, the corresponding B and b in the SPDE (5.5) are given by

K
BzZX’“@Xk and b=
k=1

(VXM XE.

K
k=1

It is relatively straightforward to generalize the results in this chapter for this X.

We consider the SPDE (5.5) with certain boundary and initial conditions (1.26)—

(1.27) under the following assumptions:

uy € C*(D), (5.6)
X e ¢y (D), (5.7)

for some [y € (0, 1]. According to the existence and regularity results in [83, Theorem
4.1], if the domain D is smooth and the assumptions (5.6)—(5.7) hold, there exists a

unique strong solution u(-, ) such that

(@, t) = uo(x) + /0 t [Au(x, 5) — 612 Flu(z, s)) + %2<B . D?u(z,s)  (5.8)

¢
+b- Vu(a, s))} ds + / SVu(z, s) - X (x) dW (s),
0
ou
S-=0  ondDr, (5.9)
hold P-almost surely, and u(-,t) is a continuous C*?(D)-semimartingale for any 0 <
B < Po. Furthermore, for any multi-index |o| < 3 and p > 1, there exists a positive

constant Cyp = C(p, d, €) such that the following bound for the p-th moment of the

144



spatial derivatives holds

sup E {sup |8”u(:1c,t)|p} < Cy. (5.10)
tefo,7]  LzeD

Note that there are also other solution concepts for the SPDE (5.5) such as
mild solution (semigroup approach) [78] and variational solution [63] (variational
approach). For the analysis, we assume the strong solution of the SPDE (5.5) exists
and satisfies (5.8)—(5.10). Then it is straightforward to see that the solution u(-, )
is an adapted H'(D)-valued process such that for any ¢ € (0,7, the following holds

P-almost surely:

(u(t), &) = (ug, &) — /Ot ((1 n 5;3) Vu(s),ng) ds (5.11)

! (f(u(s)), ¢)ds — %2 ((divB —b) - Vu(s), ¢) ds

620 0

+5/0t(Vu(s)~X,¢)dW(s) V¢ e H'(D),

where (-, -) is the inner product on L?*(D).

The primary goal of this chapter is to develop and analyze some fully discrete
finite element methods for approximating the solution of the SPDE (5.5) with initial
and boundary conditions (1.26)—(1.27). In order to derive the strong convergence
with rates for finite element methods, we will assume u(-,t) € W*>°(D) (s > 3) for

any t € [0,T] and has the following regularity estimate:

sup E [||u||p s,oo(’D)] <Co=C(pde) Vp>1 (5.12)
te[0,T

Note that the assumption (5.12) is reasonable in view of (5.10).
The SPDE (5.5) was proposed in [83] (cf. also [94]) in which the tightness of

solutions in the sharp interface limit was shown. However, the rigorous justification
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of the convergence of (5.5) to (5.1) is still missing. In [84, 51], the stochastic Allen-
Cahn equation in one dimension with additive space-time white noise was studied
and the sharp interface limit was obtained. Also finite element methods of this model
was proposed in [66]. But in higher dimensions, it requires spatial correlations for the
noise otherwise the space-time white noise is too rough which prevents the existence
of solution in reasonable function spaces. In [41], finite element methods for the
stochastic mean curvature flow of planar curves of graphs were investigated, where
the SPDE is quasilinear and arises from the level set formulation of the mean curvature
flow. However, the results in [41] only holds for d = 1. In [79], finite element methods
for a stochastic Allen-Cahn equation with multiplicative noise were proposed, where
the strong convergence with rates are obtained. Due to the limited regularity in space,
the spatial error estimate in [79] is not optimal.

In this chapter, we consider fully discrete finite element approximations of the
SPDE (5.5). Since we are interested in the case where ¢ is small, it is important
to see how estimates depend on e. It is well-known that the nonlinear term in the
deterministic Allen-Cahn equation needs to be controlled properly in order to obtain
a reasonable estimate [45, 40, 69]. However, it is unclear whether the techniques
used in [45, 40, 69] can be extended to the stochastic case. Therefore we apply the
standard div’s inequality to bound the nonlinear term and thus the estimate has
an exponential dependence on % Moreover, the gradient-type noises in the SPDE
(5.5) brings new challenges as it introduces additional diffusion and convection terms.
The additional diffusion contribution in the SPDE (5.5) automatically controls the
gradient-depended noise term so that the stochastic parabolicity condition always
holds [50, 66]. In addition, we assume ¢ is not too large to prevent the convection-
dominance in the SPDE (5.5).

The rest of the chapter is organized as follows. We present in Section 5.2 some
technical lemmas which are crucial for the convergence analysis of finite element
methods. In Section 5.3, two fully discrete finite element schemes are proposed. The

main result of this section is the error estimate for the finite element approximations.
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Finally, in Section 5.4 we present several computational results to illustrate the
performances of the methods and to verify the theoretical error estimates obtained in

Section 5.3.

5.2 Preliminary results

In this section, we present some lemmas that will be used in Section 5.3. Throughout
the chapter we will use C' to denote a generic positive constant independent of e,
0, space and time step sizes h and 7, which can take different values at different
occurrences.

We begin with the following uniform estimate for the expectation of the p-th

moment of Cahn-Hilliard energy functional

J(v) = /D (%mmelﬁ(u)) da.

A similar result can be found in [83] without tracking parameters in the estimate.

For convenience of the reader, we include a proof here.

Lemma 5.2.1. Let u(t) be the strong solution to (5.5). For any p > 1 we have

sup B +E | [ pIu(e) ™ ule) g ds| < €1 613

te[0,7)
where w(-) :== —Au(-) + ZF'(u(-)) and Cy = OO IX o2 () T [T (uo)]”.

Proof. We have
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and apply [t0’s formula to the functional ®(u(-)) := J(u(-))? and integration by parts

to obtain

T(u(t))? = J(u)? — / pI ()P [w(5)| o) ds (5.14)
+/0 pJ(u(s))P~! (w( ), 62(3 D2u(s )+b.Vu(s))> ds + M,
+e [ b= ) ((5)2 w(5). Fu(s) - X7 ds

e V(Vuls) - X)P + 5 F(u(s))(Vu(s) - X)?| duds,
5 [oar | 6 |

where M, is the martingale given by

M, _5/ pI(u(s)P (w(s), Vu(s) - X) dW(s). (5.15)

By integration by parts and a direct calculation, we have

62

Bl [|V(Vu( ) - X))+ éF"(u(s))(V - X)Q] dz (5.16)

(w< ) 52(3 Du(s) +0-Vul)

/ / ( u(s) @ Vu(s)) + 6—129<x)F<u(5))) da ds,

where G(+) : D — R4 and ¢(-) : D — R are defined by

9 = Op[Xx01X1]. (5.18)
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Taking expectation on both sides of (5.14), by (5.15) and the fact that E[M,] = 0,

we have the energy equation

E[J(u(®)’] = J(uo)” —E UO pJ (u($))P " lw(s) 72 dS] (5.19)

52
+—-E

i /Oth(u(s))pl/D <G(x) - (Vu(s) ® Vu(s))

+ E%g(x)F(u(s))) dz ds

+ 5] [ b= DI (). Tuts) X ds].

Now it remains to estimate the third and fourth terms on the right-hand side of

(5.19). Observe that
1Glle@) + llgllew) < ClIXZ2p);

the third term can be estimated by

2

%E [ /0 i (u(s)y! /D (G(m) : (Vu(s)@Vu(s))—i—ég(x)F(u(s))) dxds] (5.20)

t
< CoIX s, | BLIG(s)Y] ds.
For the fourth term, by integration by parts and the fact that
1, 1, 1
—Au + e_QF (u) ) Vu=-V-(Vu® Vu) +V §|Vu\ + G—QF(U) :
we have

—E /0 p(p — 1) J(u(s)P~2 (w(s), Vu(s) - X)? ds} (5.21)

< Colp = VP [, | ELT((s)Y] ds
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Finally, combine (5.19)—(5.21) and apply the Gronwall’s inequality, we obtain the
estimate (5.13). O

Remark 5.2.2. In the case of p > 1 in Theorem 5.2.1, the fourth term on the right-
hand side of (5.19) can also be bounded by
62

EE{AE@—lum@»“%w@»VMQ-Xfdﬂ (5.22)

SQ%JW%X%@@{APNM$V1M@W3@d4-

Therefore the estimate (5.13) is replaced by

sup B [J(u(t))"] + CE UO I (u($))" " lw($) 2y dS} <C, (5.23)

t€[0,T]
where

Cp=1-(p=DPX|2p and G =¥ ()]

However, (5.23) implicitly requires the noise intensity to be sufficiently small, i.e.,

0 < 1/(vp =T X|lcw))-

Remark 5.2.3. Note that in case of p =1 and 6 = 0, we recover the deterministic

energy law:

sup J(u(t) + [ (520 ds < (o)

t€[0,T

Next we derive estimates of Holder continuity (in time) for the solution w(t)
in L?norm and H'-seminorm that will be key ingredients for the error analysis

1

in Section 5.3. Clearly, the constants in these estimates depend on € " in some

polynomial orders.
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Lemma 5.2.4. Let u(t) be the strong solution to (5.5). For any s,t € [0,T] with

s <t andp > 2, we have

E [lu(t) = w(s) )| (5.24)
- E[/ (€)= o) i |7 (0() = ) o
+ 222 [ u(6) — w5 |9 (0(6) = u(6) - X

< Oyt — ),

where Cy = C(p, 8, || X||c2py, T)e ™ ([ (uo)P* + C).

Proof. We apply 1t6’s formula to the functional ®(u(-)) = |lu(-) — u(s)||1£2(D) with
fixed s € [0,T") and integration by parts to obtain

[u(t) — u(s)||72 (5.25)
- / Ju(0) — u(s) (u<<>—u<s>,Au<<> - L) ¢
/ llu(C) 172 D) (u(C) —u(s), B : D*u(¢) +b- Vu(()) d¢
+p / (€)= u(s) 52, (w(C) — uls), 6Vu() - X) dW(C)
+ 2P / p = 2)u(C) — u(s) 3 (u(C) — uls), Vu(C) - X)2d
+ 52 [ 6) = o)ty I9(6) - X 0y ¢
=I+I1I+I1IIIT+1V+YV.
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For simplicity, we assume p > 2 in the following proof since p = 2 case is easier

to prove. By Young’s inequality, we have

& [p [ 10) ~ ule) (u(6) — u(s). A ] (5.26)
=&y [ ul6) — w5y | V0~ Vo) o
~E[p [ u(6) — u(s)ly (V(6) = V), V) ]
< 28| [/ u(6) — u(o)psy | 90) ~ Vo) o
+ L2 [ [ 10(0) = wls) 258 19005 €
< 28| [/ Iu(6) — u(s)psy | 90) = Vo) o

252 R [1u(0) ~ o] 6+ B[94 ] ¢ = ).

Similarly, we have

b [ 160~ )t (4(6) — u(s). ~ 21000 ) ] (5.27)

< E[P/ HU<C) U(S)HiQ(QD)
LY(D)

x (%Hu(@(u(é) — u(xoy + = | -

E—QF(U(C))

<2(0-2) [ B[Iu(0) ~u(s)fay)

L P(u(¢))

+ Cpe?/? (sup E [||u( A D)] + sup E
s<¢<t s<C<t €
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From (5.26)-(5.27), we can estimate the first term on the right-hand side of (5.25):

1<-lg U J4(0) = w9 70(6) = Fuls) o ] (5.2)

+ 5<p2 2)/5 [”“( () —uls )||I£2(D)] d +E [||Vu( s D)} )

p/2
]) (t—s).
LY(D)

The second term on the right-hand side of (5.25) can also be estimated by Young’s

L F(u(¢))

€

+ Cpe P2 (sup E [||u(§)|]i’i(p)] + sup E

s<C<t s<C<t

inequality and integration by parts in the following

E[I1] <——]E V (€)= u(s) |22, I 7u(C) - X—Vu(s)»XH%Q(D)dQ] (5.29)

+522(p_2) [ [“““ <>Hm}

X + 12 ) S [uw sy (2= 5).

Next, we bound the fourth and fifth terms on the right-hand side of (5.25) by

Young’s inequality

E[IV+V]<E [ p—1) / [ u() )2ty IV (C) - X||iQ(D)dg] (5.30)

52
< —

(- 1(p—2) / [||u<> () o) ¢

2
o= DPIX ) 50 E[IVa(Oll o] (0= 9)
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Combining (5.25), (5.28)-(5.30) and using the facts ||u||4L4(D) < 8%J(u) + C and
E[II1I] =0, we have

E |llu(t) - u(s)I}s, ] (5.31)
+ E{/ u(€) — u(s) 7321V (u(<) — (s))\l%m)dc}
+ L [ / Q) — ()= IV (u(C) - <s>>-XHiZ(D>d<]

<22 15 / [uum u(s)faqp)) 4

O, 8, X o) " ( sup E [J(u(O)P)] + c) (t—s).

s<C<t

Finally, the estimate (5.24) follows from (5.31), Gronwall’s inequality and
Lemma 5.2.1. ]

Lemma 5.2.5. Let u(t) be the strong solution to (5.5). For any s,t € [0,T] with

s < t, we have
B[N (ult) ~ u(oDlExor) + 58 | [ 1AW ~ u(s) oy de| < Catt =), (532
where

1
Cy = c( (52||Xy|§ﬂ(p) + 81X len ) + 5 + 1> <01 + sup E {HAu(C)H%z@D :

s<(¢<t
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Proof. Applying It0’s formula to the functional ®(u(-)) := ||Vu(:) — VU(S)H%Q(D) with
fixed s € [0,7T") and integration by parts, we have

I9(0) = uls) oy = =2 [ (B(6) = Bulo), Bl ke (533)
+2 [ (800 - du(o) 06D
—5{Ztmeo-au@LB;zﬂu@)+b-vm§»dg
_zg/tAu ~ Au(s), Vau(¢) - X)dIW (C)
+52/ / IV(Vu(¢) - X)|*dw dC.

The first term on the right-hand side of (5.33) can be estimated by Cauchy-

Schwarz inequality as follows

-2 [ (8u0) - du(s). & <<>>d<} (530
— 2| [ 13u0) - Buls)Ex e

~ 2| [ (8u0) - Bu(s) Au(s) e

< & [ [ 180(0) - Bu(s) oy 8] + 1A ot~ ),

Using the Sobolev embedding H'(D) C L%(D) for d < 3, the second term on the
right-hand side of (5.33) can be written as

o { / ( e <<)>) dc} (5.35)
<3E

L/Omw) mmmhm+ww@m§@)ﬂ]
(Ssgggtﬂz 184(Q) 32| + sup E [J<u<o>s]) (t—s).

s<Q<t

<

DA R
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Next we bound the third and fifth terms on the right-hand side of (5.33) in the

following;:
[ 5? / t (Au<c) Au(s), B : DQu(C)+b-Vu(C)> dg] (5.36)

1 1
< 58 | [ 180(0) — Ao, €] + 53041 X s o

« (sup B (1860 o] + 510 E [0 o] ) ¢ - ),

s<(<t

and

{ //\v (Vu(¢ )\dedg} < C8| X8 p) (5.37)

< (s B [I18u(Olltan | + s B [IVu(©)la)] )¢ = 9)

s<(<t

The estimate (5.32) now follows from (5.33)—(5.37), Lemma 5.2.1 and the fact
that the expectation of the fourth term on the right-hand side of (5.34) is 0. O

Finally, we include a Holder continuity estimate for the nonlinear increment
f(u(t)) — f(u(s) in the L? norm which will be useful to control the nonlinear term in

the error analysis.

Lemma 5.2.6. Let u(t) be the strong solution to (5.5). For any s,t € [0,T] with

s < t, we have

E[IIf(u(t)) = fu(s)Z2p)] < Calt =), (5.38)
where
04 - 0(67 €, ||X||Cl(f?)ac()>cl)' (539)

Proof. Consider the functional ®(u(t)) = ||f(u(t)) — f(u(s))[72py with fixed s €
[0,7), and it’s not hard to prove that its first order and second order Frechet
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derivatives are

O'(u(t))(v(t)) = 2/ (f (u(t) — f(u(s)))(B(u(t)* — Do(t)dz, (5.40)

" (u(t))(v(t), m(t)) = 12/p(f(ﬂ(t)) = f(u(s)))u(t)v(t)m(t)dz
+2 /D (3(u(t)? — 1)2u(t)m(t)dz. (5.41)

Apply Itd’s formula to the functional ®(u(t)) := || f(u(t)) — f(u(s))||%2(p), we get

10t = St =2 [ / DE@? -1 642
{Au( ) — —f( (n ))+ dlv(BVu( ) + i (b div B) - Vu(n) | dzdn
2 ) (Bu(n)? — 1)6Vu(n) - XdzdW,

Ju()|6Vu(n) - X|*dxdn

+//3u77 —1)36Vu(n) - X|*dxdn.
s D

Using integration by part and Young’s inequality, we have

1 (u(t)) = f(u(s) 172y < C/ () ooy + Il ooy I (uln)) — (5.43)
+ Ol X2 o /(HU( )| 7oy + 1) | 700 () ) (J () + T (u(n)))
Clt—5) +2 / / D) (Bu(n)? — 1)6Vu(y) - XdedW,.

Taking the expectation on both sides, using Lemma 5.2.1, and using Young’s

inequality again, we get

1f (u(t)) = f(w() 2y < Calt = 5). (5.44)

157



Here

Ci= C<5,6, sup E [|[u(n)l|g=(p)] . sup E [J(u())’] ,||X||01(D)), (5.45)

s<n<t s<n<t

which can be written as (5.39) by regularity result (5.10) and energy law (5.13). [

5.3 Finite element methods

In this section we propose two fully discrete finite element schemes to solve (5.5) and
derive optimal order error estimates for both finite element methods.
Let t, =n7t (n =0,1,..., N) be a uniform partition of [0, 7] with 7 = T/N and

Tn be a quasi-uniform triangulation of D. We consider the finite element space
VhT = {Uh € Hl(D) : 'Uh|K S ,PT<K) VK € 7;1},

where P,(K) denotes the space of all polynomials of degree not exceeding a given
positive integer r on K € 7T,. The fully discrete finite element method for SPDE
(5.5) is defined by seeking an F; -adapted V}-valued process {u}} (n =0,1,...,N)

such that P-almost surely

52 1
(uptt o) + 7 ((I+ EB)VuZH,Vvh) +T€_2(f"“avh) (5.46)

52
= (up,vp) — TS ((divB = b) - Vuy,, vp,)
+6(Vuy - X, v) AW, 11 Yo, € V),
where AW, 1 := W(tpy1) — W(t,) ~ N(0,7) and

fn+1 — (uzerl)S _ UZJrl or fn+1 — (uZJrl)S - UZ (5'47>
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Note that in the deterministic case (6 = 0), (5.47) corresponds to a fully implicit
scheme or a convex-splitting scheme. We choose uy(0) = Pyug to complement (5.46)

where P, : L*(D) — V" is the L-projection operator defined by
(Pow,vp) = (w, vy) v, € V).
The following error estimate results are well-known [13, 23]:

Hw — Ph'IU”LQ('D) + hHV(w — Phw)HL2(D) S Chmin(r+1,s)|’w|

_d
Hw — Phw”Loo('D) S ChQ 2 HwHHQ(D)a . (549)

for any w € H*(D).

We consider a convex decomposition F'(v) = FT(v) — F~(v) where
1
Ft(v) = 1(04 +1)  and  F (v) = =0 (5.50)

Now define

2

G(v) = %(v,v) + g(w, Vo) + %(w X, Vo X)+ G%(F(v), 1) (5.51)

)
~ () + % ((divB — b) - V', v) — 6((Va - X)AW,i1, v),
1 T 762 T
H(v) := 5(1},1}) + §(Vv, V) + T(VU X, Vu-X)+ 6—2(F+(v), 1) (5.52)

- (1 + ?) (uh,v) + - ((divB = b) - Vuj,0) = 6((Tuf - X)AWo1,0).

It is clear that H(v) is strictly convex for all h, 7 > 0 and G(v) is strictly convex when

7 < €. Then a straightforward calculation implies that the discrete problem (5.46)
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is equivalent to the following finite-dimensional convex minimization problems:

uZH = argmin G (vp,), when f"T' = (UZH)S - UZH and 7 <€ (5.53)
’UhEVhT

uptt = argmin H(vy,), when " = (uft)? — u. (5.54)
UhEV}f

Therefore, the existence and uniqueness of the solution to (5.46) is guaranteed for all

h,7 >0 when f" = (up"')? — o and for all 7 < €2 when f"1 = (u}*!)3 — )t

Remark 5.3.1. We can also consider a modified scheme

52 1
(™t op) + 7 ((I + EB)VUZ“, Vvh) + 7'6—2(f”+1,vh) (5.55)

2
+ T% ((div B = b) - Vup™*, vp)

= (up,vp) +0(Vup - X, vp) AW, 11 Yoy, € Vi,

where we replace the term 7‘% ((divB —b) - Vu},v,) in (5.46) by T%((divB —b)
Vuptt vy) in (5.55). Clearly, (5.46) has a simpler form and the stiffness matriz for
(5.46) is symmetric. On the other hand, (5.55) has one more advective contribution

making the stiffness to be non-symmetric.

Remark 5.3.2. Due to the time discretization, it is unclear whether the discrete
analog of energy bound in Lemma 5.2.1 is valid or not. However, the error estimate

below does not require any discrete estimate.
Let €™ :=u(t,) —uy (n=0,1,2,..., N), we now derive an error estimate for e".

Theorem 5.3.3. Let u and {u}}Y_, denote respectively the solutions of problems

(5.5) and (5.46), and u(-) satisfies (5.12). In the case of f** = (u}t)3 — upt!

)

under the following mesh constraint:

T<C (e + (54)_1 , (5.56)
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we have

sup E |:||6n||%2('D)} —f-E

0<n<N

N
ZT”VGnH%?(D)] (5.57)
n=1
C
< T[(Cg(l + 6%+ 6 + _24>T
€
2 | sd\z2mi 1 C2\ , ymin (rs1s) | C(644 1T
+ Co(1 407+ hp2mintret) (Oo+ 6—2);1 min (r-+ 7s>]e e
S 0(5’ € T’ HX”7 CO? 027 037 04) [CT + h2min (T78_1)j| .
In the case of f*™ = (upt™)® — uy, under the following mesh constraint:
TS O+ (5.58)

we have

sup E [He”l\%z(p)} +E

0<n<N

N
ZTHVG”\@(D)] (5.59)

n=1
@Lﬂ%

< Tttt T [(%(1 +07+0%) + —

>
+ Co(1 + 62 4 sH)p2min(rs=h) 4 <CO 4 w> 2 min (rH,S)]
€

< C((S; €, T, ”XH, Co, 027 Cg, 04) [CT + h2min(r,571)} .
Proof. We write " = n™ + £™ where

n" = u(t,) — Pyu(t,) and " = Puu(t,) — uy, n=20,1,2,...,N.
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It follows from (5.11) that for all ¢, (n > 0) there holds P-almost surely

((tsr), on) — (u(t), o) + /t " (Vuls), Vou) ds (5.60)

1 tn+1

+ (F(u(s)), o) ds+% /tnnH(BVu(s),Vvh) ds

2
€ tn
62 tn+1

2 tn

tnt1
= (5/ (Vu(s) - X, vp) dW(s) Yo, € V.
tn

n ((divB = b) - Vu(s),vs) ds

Subtracting (5.46) from (5.60) and using the decomposition of e"™!, we obtain the

following error equation:

tn+1
(€ =€ v) = =" =" ) — / (Vu(s) = Vup ™, Vop)ds — (5.61)
tn

1 tn41

) (f(u(s)) = f"*, vn) ds

€ Ji,
62 tnt1
-3 (B(Vu(s) — Vup™), Vuy,) ds
tn
52 tn+1
Y ((divB —b) - (Vu(s) — Vuy),vs) ds
tt:+1
+ (5/ (Vu(s) — Vuy) - X,vp)) dW(s) Vo, €V,
tn
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Testing (5.61) with v, = "™ (w), we have P-almost surely

(€ — g et = ("t =g - /tth(VU(S) = Vup ™ Ve ds (5.62)
. tt"“( flu(s)) — 41, €1) ds
_ 5; (B(Vuls) — Vupth), vertl) ds
_ 5; ttnﬂ ((divB —b) - (Vu(s) — Vag), € ds

4+ /t T (Vuls) = V) - X, € dW(s),

=T+ T+ T3+ Ty + Ts + Tk

It is easy to obtain from an elementary identity (a — b)a = 1(a? — b*) + 1(a — b)?

that

1
E (€ =€, = E [l 2y — 16" 12 (5.63)

1 n n
+5E [Hf ¢ ”%Q(D)} :

Next, we estimate the right-hand side of (5.62). First, since P, is the L?-projection
operator, we have E [T7] = 0. For the second term on the right-hand side of (5.62),
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we have by Lemma 5.2.5 and Young’s inequality that

Bl = [ [ (Vu(s) - Valtr). 6 85 (560
tnth
~-E { / (Vnth 4 ventt wentt) ds]
o ;
<[ [ 19u(5) - Tultas) oy 3] + 5B [V o)

I 1
+E [IV0" iz | 7+ 7E IV )| 7

—E[|IVE )| 7

n 9 n

In order to estimate the third term on the right-hand side of (5.62), we write

— (f(u(s)) = f,6"Y) = = (f(u(s)) = flu(tntn)),€"H) (5.65)
— (fultnr) = f(Pru(tasa)), ")
— (f(Puultpr)) — fr 67

By Lemma 5.2.6, we obtain

B [(£(u(3) ~ F(ultusr)), €] (5.66)
sgaEMﬂmm—fwmﬂm@wﬂ+%EM@“MWJ
e
—T7+—-E

n+112
< 5o+ 216 )|
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Next, by (5.10) and (5.48)—(5.49), we have

E[(f(ultur) — f(Prultain).€)] (5.67)

=—FE [(U”H (U(tm—l)Q + u(tn—l-l)Phu(t’fH-l) + Phu(tn+1>2 - 1)7 £n+1)]

1
< 4_CTE [HU(MH)Q + Utpi1) Phultngr) + Proultnsr)? = 1 7o)

< | + CHE 16" o)

Wl

4_C'T (E [Hu(th)Q + U(tn+1)Phu(tn+l) + Phu(tn+1)2 - 1“%“(’[))})

X (E [lln”“H%z(D)} >é + GiE [H5"+1”%2(D>]

(B [I1Pvutar) 2o oy + [ultnrn) 2o o) + 1DF])

2
3

i
IS

1
3 3 n
% (B [l 15| )" + G €™+ W |

< o (B 1 5m1))” + G [l ).

When f*! = (uf™)3 — "1, the last term on the right-hand side of (5.65) can

be bounded by the monotonicity property

—E[(f(Pyu(tnsr)) — f77, )] < E[an“”é(p)}- (5.68)

When " = (up™)% — )}, we have an extra term (u ™ — uf, ") adding to (5.67)

and we can control it by Lemma 5.2.4 as follows

E[(up™ =, )] = —E[((0"" =) + (€ =, (5.69)

+E [(ultnin) — ult,), €]

1 Co
< 5B I = '] + CE 167 )| + 5o
2CT L2(D) L2(D) C‘[
n 1 n n
~E (16" s + 567 |17 m) | + CFE [Il6™ s
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Combining (5.65)—(5.69), we choose C} = 1 whenever f"*! = (u;™")3 —u}*" to obtain

C 1 . C . 1
B[R] < 57+ 5B 1€ ) 7+ = (B [0 Mpy]) 7 (5:70)

and choose C: = €2 whenever ! = (4713 — 4 to obtain
T Up, h

C+O . 1 .
E[ly] < 2202 B (6 e 7+ SB[ 1€ 1eco | 7 (5.71)

+—( [ 8acoy) ) 7+ S [ oy + 7o) 7

Similar to the estimate of T5, the fourth and fifth terms on the right-hand side of

(5.62) can also be estimated by Lemma 5.2.5 and Young’s inequality:

52 tn+1
E[Ty] = —EE { / (Vu(s) = Vu(tysr) - X, VET - X) ds] (5.72)
t'n,
52 tn+1 1
- 5E { /t (V" + vt - X, Vet . X) ds]
4 4 2 n+1
< FX N Com® + B [IVE™ ey 7
52

+ 31X e E [IV7 ey | 7 — SB[ IVEH - Kooy |
and

E[T5] = —%ZIE {/ " ((divB = b) - (Vu(s) — Vu(t,)), &) ds} (5.73)
52 /ntnﬂ : n n n+1
——E[ ((divB = b) - (V" + V&™), &) ds
swwa@@#+u+mwa@w%M@“ﬁz}T

X (195" )] 7+ 2 [IV€" ] 7
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By the martingale property and [to’s isometry and Lemma 5.2.5, we have

E[Ty] < 3E [I67 ~ €' oo (574

52 tnt1 )
+SE U 1(Vals) = V) - X ooy ds}
tn

< ZE [l ~ € am)|

52 ) tn+1
+ ?(1 +CHE [/ |(Vu(s) — Vu(t,)) - X||%2(D) ds]
tn
52 n 52 n 2
+ SE (V" + V€ - X )| 7+ 5B | (V0" + V€Y - X )| 7

2

n n 6

g g™ = €3y | + 5 (1 + CHIX I ) Cor?
1 +C// 1 n

+52( : +5) X120y [V ) 7

"k [jver - x|z (L LY xR aE [Iver?
+ SE[IVE" - Xl | 7+ 8 ( 577 + &7 ) IXIEo)B | IVE 2o | 7

Now taking " = 1652||X||C(D and C" = 852||X||C(D in (5.74), we obtain an estimate
for the last term on the right-hand side of (5.62):

1 N N 52
BTy < 5E [J€" = €[] + S (1 + 1682 X |20 IX |20, Csr®  (5.75)

1+ 882 X2, X
(D 2 n|2
g ( 2 IR, ) 1 lem® 193" )| 7

n %QJE [van : XH%Q(D] T+ . 16T [va HLQ(D]

Taking expectation on (5.62) and combining estimates (5.63)—(5.64), (5.70)/(5.71)-
(5.73) and (5.75), summing over n = 0,1,2,....,] — 1 with 1 <[ < N, and using the
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properties of L?-projection and the regularity assumption (5.12), we obtain

1 1
5 (o) 7| 1) + 5

< 2B (1€ + BB [IVE - X ) + B [I9€ o)

1
Ty va"uizw)] (5.76)
n=1

+ {(13(1 +6%+ 0" + f—z] TT
Co

+OO(1+62+54) thm r,S— 1)+ Th2m1n(r+15)
1 4 n|2
g to)E TZIIS 22| -
n=0
whenever [+ = (u*!)? — 7™ and
1 !
{5 — (1) ] E [l | + 3B [T ||vs"||im>)] (5.77)
n=1

4] 3
0 0 9 02
E 1€y + 57E [IV€" X2y | + 2o7E [IVE 2o
(Cg(l + 66+ 02t04) Tr
€

1
2
_|_

2
CO _Z CO ThQ min (r+1,s)
€

-1
5 anuizw)] |
n=0

+CO<1 +52 +54)Th2min(r,sfl) +

1
+(1+—4+54)]E
€

whenever f"*! = (u}*!)® — u}. Here we have not explicitly tracked the constant

| X||c1p) or || X||cp) and some other constants in (5.76) and (5.77).
Finally, estimates (5.57) and (5.59) follow from (5.76)—(5.77), the discrete
Gronwall’s inequality, the L?-projection properties and the fact €2 = 0 and the triangle

inequality. O]

Remark 5.3.4. Error estimates in Theorem 5.3.3 remain unchanged if we consider

the modified schemes (5.55). In fact, we only need to check the fifth term on the

168



right-hand side of (5.62):

E[T3] = —%E [ / (v B = b) - (Tuls) — Vultu)), €) dS} (5.78)
52

tnt1
- E [ / ((divB = b) - (V" 4 V¢, &) ds]
tn
< UK ) Co7° + (1 + X 00" [1€% 22| 7

n 1 n
+ 1X s o, [ IV )| 7+ 6B [IVE 220y 7

Hence the third term 7E |:|‘V§O||%2(D)i| on the right-hand side of (5.76)/(5.77) is
replaced by £TE [HVfOH%z(D)].

Remark 5.3.5. Spatial estimates (5.57) and (5.59) are optimal in the H'-norm,
but suboptimal in the L*-norm. From the proof of Theorem 5.3.3, the suboptimal
estimate in the L?-norm is caused by gradient type of noise, i.e., the emistence of
Ty, Ts and Ty on the right-hand side of (5.62). The proof in Theorem 5.5.3 relies
on the strong p-th moment estimate (5.12) for the solution to (5.5). Otherwise, we
may lose some order of h if a weaker regularity result is used (cf. the derivation
of (5.67)). Note also the estimate depends exponentially on 1/¢* (or 1/¢*), which
seems to be pessimistic. However, this is the case even in the deterministic case (i.e.,
0 = 0) unless the standard error estimate technique is replaced by a much involved
nonstandard technique as used in [}5]. We intend to address this issue in a future

work.

5.4 Numerical results

In this section we present some two-dimensional numerical experiments to gauge the
performance of the proposed fully discrete finite element methods with » = 1, i.e., V},
is the linear finite element space. We also numerically examine the influence of noises

on the dynamics of the numerical interfaces.
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We consider the SPDE (5.5) on the square domain D = [—0.5,0.5]? with two
different initial conditions, and in both tests we define X (z) = o(x)[x1+x9, T1—22]7,

where

___0.001
e 0097-l” = if |z] < 0.3,
p(e) =
0, if |z| > 0.3.

For both tests, we take the Brownian motion step to be 1 x 10~* and examine the
interplay of the geometric evolution and gradient type-noises for M = 500 Monte

o,6,h,T (w)

Carlo realizations. In this section, we denote the numerical solution by u
where 6 > 0 denotes the noise intensity, ¢ > 0 is the interface width, h is the spatial
mesh size, 7 is the time step size and w is a particular sample.

Next, we give a brief description of the algorithm that we use to solve the discrete
problem (5.46). Let N, = dimV}, and {¢;}*, be the nodal basis of V,,. Denote by
u"*! the coefficient vector corresponding to the discrete solution u ™ = SN 1y,

at time ¢,,, = (n + 1)7. Suppose f"*' = (uf™)? — u} (the other case is similar),

(5.46) is then equivalent to

62 n+1 T n+1
M+ A+5Ax u't + S N(u")
€

52
= <]_ —+ 1) Mu" — %Clun + 6AWn+1C2un,

2
where M, A are the standard mass and stiffness matrices, respectively, Ax is the
weighted stiffness matrix whose (i, j) component is (Vi); - X, Vi), - X), N(u™t) is
the nonlinear term, (Cy);; = ((divB — b) - V)5, ¢1), (Ca)i; = (V)5,11) and W is the
discrete Brownian motion with AW, 3 = W, ,1 — W,,. Since we want to generate
as many samples as possible in order to recover the statistical properties, it will be
expensive to use the Newton method to solve this nonlinear system. In fact, we can
solve it by a cheaper fixed-point iteration so that in each iteration. Although in

one simulation it converges slower than Newton’s method, we can store the Cholesky
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factorization

2
M+ T (A+ %AX> =LL/,

and use it for every Monte Carlo realization and at every time step for fixed 7. From
this point of view, the fixed-point iteration outperforms Newton’s method, especially
for large sample size M. In fact, we observed in our experiment that the fixed-point

iteration is more efficient than Newton’s method.

Testl. The initial condition ug is set to be

e = s (12,

where tanh(z) = (e —e™*)/(e"+e~*) and d(z) represents the signed distance between

the point x and the ellipse

A B
0.04  0.01
In Table 5.1, we record the expected values of the L*>°([0,77],]|| - ||z,) -norm of

the errors and rates of convergence of the time discretization for varying 7 with the
fixed parameters 6 = 1, € = 0.1, and 7" = 0.016. The numerical results confirm the

theoretical result of Theorem 5.3.3.

Table 5.1: Computed time discretization errors and convergence rates.

Expected values of error | Order of convergence
7=0.008 0.09895
7=0.004 0.06557 0.5937
7=0.002 0.04472 0.5521
7=0.001 0.03136 0.5120

In Figure 5.1-5.3, we display some snapshots of the zero-level set of the averaged

numerical solution

1 M
—0,6,h,T — d,6.h,T (.
U M Zi:l w (wi)



at several time points with ¢ = 0.01, and three different noise intensity parameters
0 = 0.1,1,10. We observe that the shape of the zero-level set of the expected value

of the numerical solution undergoes more changes as ¢ increases.

-01 e -01

Figure 5.1: Snapshots of the zero-level set of a®“™7 at time ¢ = 0,0.020, 0.040, 0.043
with 6 = 0.1 and € = 0.01.

Next, we study the effect of € on the evolution process. For this aim, we fix 6 = 0.1.
In Figure 5.4, we depict four snapshots at four fixed time points of the zero-level set
of the averaged numerical solution @™ with three different ¢ = 0.01,0.011,0.02.
We observe that at each time step the zero-level set converges to the stochastic mean

curvature flow as € — 0, and furthermore it evolves faster in time for larger e.
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4,6,h, T

Figure 5.2: Snapshots of the zero-level set of u at time t =

0.005, 0.020, 0.040, 0.043 with § = 1 and € = 0.01.

Test2. First, we define

eV —eV _ —1+ 0.8z, +0.04

tanh(y) := ot Y1 (o) = 2 :
1 —+/1.9225 4+ 0.2304 —1++v/—0.825 + 0.04
Yo(12) 1= v 22 ) Y3(wp) 1= 9 2 )

11— /~1.92z, +0.2304 1= 02451432
¢4(x2) T 2 ) ¢5(x2) T 00049 .
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02 0.2

01 o1

2 R,

01 01

0.2 0.2

0.3 0.3

04 04

DSS 0 0.5 DSS a 05

05 05

04 04

03 03

0.2 0.2

01 01

L O e

0.1 01

02 0.2

03 03

-04 04

USS 0 0.5 USS a 0%

05 a5

04 04

03 03

0z 0.2

01 01

1} O 0 a

0.1 -01

0.2 0.2

03 03

04 04

USDS 0 05 USDS a 05
Figure 5.3: Snapshots of the zero-level set of 4>“™™ at time

0.0025, 0.0050, 0.0100, 0.0200, 0.0250, 0.0280 with 6 = 10 and € = 0.01.
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at time

(23 0.5

04 04

03 ~ 03

0.2 B 02

ol - 0.1

-0.1 ~ 0.1

-0.2 H 0.2

-3 e 0%

04 4 04

-ﬂ—%ﬁ 'U“? 'ﬂli 0‘2 'U‘i U‘ 0‘1 I7I2 0‘3 0‘4 0.5 4 % 5 I7I4 0‘5 'U‘Q 0'1 0‘ I7I| ﬂ.‘2 0‘5 0'4 0.5
05 0s

04 04

03 ~ 03

0.2 H 0z

0.1 : B 0.1 5 9

01 v 4 01 ; =

-0.2 - 0.2

03 e 0.3

04 4 04

-U"%S 'ﬂIQ '[I‘l [I‘Z [I‘\ a ﬂIW [I‘Z ﬂ‘i [I“? 05 0%5 ﬂl4 ﬂ‘i '[I‘Z ﬂIW ﬂ‘ ﬂl| ﬂ‘2 [I‘i ﬂlq 05

Figure 5.4: Snapshots of the zero-level set of a7

0.0010, 0.0050, 0.0125, 0.0175 with 6 = 0.1 and € = 0.01,0.011, 0.02.
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and consider the initial condition ug(x1, xe) = uy(3x1, 372), where uy(xy, x5) is defined

by (cf. Test 2 in [40]):

u (71, v2)
tanh(——(—+/(z1 — 0.14)% + (22 — 0.15)2)), if 21 > 0.14,0 < xp < —5(z1 — 0.5),
tanh(T( V(z1 —0.14)2 + (22 +0.15)2)), if 21 > 0.14, 2 (z1 — 0.5) < 25 < 0,
tanh(f( V(@1 +03)2+ (22 — 0.15)2)), if 21 < —0.3,0 < z9 < 3(21 +0.5),
tanh(T( V(x1+0.3)2+ (22 +0.15)2)), if 23 < —0.3,—2(21 + 0.5) < 22 <0,
tanh(f(\/(xl —0.5)2 + 235 — 0.39)), if 21 > 0.14, 29 > — (21 — 0.5)
or xo < %(wl —0.5),
tanh(T(\/(xl +0.5)2 + 23 — 0.25)), if 21 < —0.3,29 > —3(z1 + 0.5)
or xo < —%(a:l +0.5),
tanh(T(\mﬂ 0.15)), if —0.3<x;<0.14,
= Y1(x2) < 21 < Po(w2)
and 3(r2) < 1 < Yy(x2),
tanh(T(\/(xl —0.5)2 + 22 — 0.39)), if —0.3 <2z <0.14, 21 > o(x2)
and x1 > 15(x2),
tanh(—4(+/(z1 — 0.5)2 + 23 — 0.39)), if —0.3<x <0.14, m1 > y(x2)
and x1 > 5(x2),
tanh( - (v/(21 +0.5)2 + 23 — 0.25)), if —0.3<a <0.14, 1 < hy(a2)
and x1 < ¥5(x2),
tanh(f(\/(xl +0.5)2 + 23 — 0.25)), if —0.3<2z;<0.14, 21 < ¥3(x2)
and x1 < ¥5(x2).

Note that the initial condition is not smooth due to the dumbbell shape of the
zero-level set. Nevertheless, we study the effects of 4 and € on the evolution process.

Figure 5.5-5.7 display a a few snapshots of the zero-level set of the averaged numerical
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el at several time steps with € = 0.01 and three different noise intensity

solution u
0 = 0.1,1,10. Similar to Test 1, the zero-level set evolves faster for larger 6 and the
shape is more irregular. Figure 5.8 plots snapshots at four fixed time steps of the
zero-level set of @™ with 6 = 0.1 and € = 0.01,0.011,0.02. Again, it suggests the

convergence of the zero-level set at each time step to the stochastic mean curvature

flow as € — 0.

[A] 4 01
0 4 0
RN 4 01

e R K ] (] ¥ 73 04 [ HENE ] 0s

ﬂ <D o

Figure 5.5: Snapshots of the zero-level set of a>"™ at time t = 0, 0.040, 0.200, 0.456
with 6 = 0.1 and ¢ = 0.01.
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Figure 5.6: Snapshots of the zero-level set of a®“"7 at time ¢

0.004, 0.040, 0.200, 0.456 with 6 = 1 and € = 0.01.
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Figure 5.7:

Snapshots

of the zero-level

set of

u

d,6,h, T

0.004, 0.040, 0.080, 0.140, 0.180,0.216 with 6 = 10 and ¢ = 0.01.
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Chapter 6

Multiphysics Finite Element
Methods for a Quasi-static

Poroelasticity Model

6.1 Introduction

This chapter considers a general quasi-static model of linear poroelasticity which
is broad enough to contain the well-known Biot’s consolidation model from soil
mechanics (cf. [68, 86]) and the Doi’s model for polymer gels (cf. [38, 93]). The quasi-
static feature is due to the assumption that the acceleration of the solid (described
by the second order time derivative of the displacement vector field) is assumed to be
negligible. We refer the reader to [24, 75, 90] for a derivation of the model and to [85]
for its mathematical analysis. When the parameter ¢, called the constrained specific
storage coefficient, vanishes in the model, it reduces into the above mentioned Boit’s
model and Doi’s model arising from two distinct applications. Their mathematical
analysis can be found in [38] and their finite element numerical approximations based
on two very different approaches were carried out in [68, 38|, respectively. In [75, 76]

the authors proposed and analyzed a semi-discrete and a fully discrete mixed finite
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element method which simultaneously approximate the pressure and its gradient
along with the displacement vector field. Since the implicit Euler scheme is used
for the time discretization, a combined linear system must be solved at each time
step. It is observed in the numerical tests that the proposed fully discrete mixed
finite method may exhibit a “locking phenomenon” in the sense that the computed
pressure oscillates and its accuracy deteriorate when a rapidly changed initial pressure
is given, as explained in the [77] that such a “locking phenomenon” is caused by the
difficulty of satisfying the nearly divergence-free condition of u for very small time
t>0.

The goal of this chapter is to present a multiphysics approach for approximating
the poroelasticity model. A key idea [37] of this approach is to derive a multiphysics
reformulation for the original model which clearly reveals the underlying multiple
physics process (i.e., the deformation and diffusion) of the pore-scale fluid-solid
interaction system. To the end, two pseudo-pressures are introduced, one of them is
shown to satisfy a diffusion equation, while the displacement vector field along with
the other pseudo-pressure variable is shown to satisfy a generalized Stokes system. It
should be noted that the original pressure is eliminated in the reformulation, thus, it is
not approximated as a primary (unknown) variable, instead, it is computed as a linear
combination of the two pseudo-pressures. Based on this multiphysics reformulation we
then propose a time-stepping algorithm which decouples (or couples) the reformulated
PDE problem at each time step into two sub-problems, a generalized Stokes problem
for the displacement vector field along with a pseudo-pressures and a diffusion problem
for another pseudo-pressure field. To make this multiphysics approach feasible
numerically, two critical issue must be resolved: the first one is the uniqueness of the
generalized Stokes problem and the other is to find a good boundary condition for
the diffusion equation so that it also becomes uniquely solvable.We also demonstrate
that, regardless the choice of discretization methods, the proposed formulation has a
built-in mechanism to overcome the “locking phenomenon” associated with numerical

approximations of the poroelasticity model.
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The remainder of this chapter is organized as follows. In Section 6.2 we present
a complete PDE analysis of the poroelasticity model which emphasizes the energy
law of the underlying model. Several conserved quantities are derived for the PDE
solution. Moreover, it is proved that the poroelasticity model converges to the Biot’s
consolidation model as the constrained specific storage coefficient ¢y — 0. In Section
6.3 we propose and analyze some fully discrete finite element methods based on
the above mentioned multiphysics reformulation. Both coupled and decoupled time-
stepping are considered and compared. The Taylor-Hood mixed finite element method
combined with the P;-conforming finite element method is chosen as an example
for spatial discretization. It is proved that the solutions of the fully discrete finite
element methods fulfill a discrete energy law which mimics the differential energy law
satisfied by the PDE solution. Optimal order error estimates in the energy norm are
also established. Finally, in Section 6.4, several benchmark numerical experiments
are provided to show the performance of the proposed approach and methods, and

to demonstrate the absence of “locking phenomenon” in our numerical experiments.

6.2 Partial differential equation model and its

analysis

6.2.1 Preliminaries

D Cc R¥(d = 1,2, 3) denotes a bounded polygonal domain with the boundary 9D. The
standard function space notation is adopted in this chapter, their precise definitions
can be found in [13, 23, 89]. In particular, (-,-) and (-,-) denote respectively the
standard L?*(D) and L?*(9D) inner products. For any Banach space B, we let B =
[B]?, and use B’ to denote its dual space. In particular, we use (-,-)qua to denote

the dual product on (H'(D))' x HY(D), and || - ||re(p) is a shorthand notation for

| Nz (0.1):B)-
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We also introduce the function spaces
Ly(D) :={q € L*(D); (¢,1) =0},  X:=H'(D).

It is well known [89] that the following so-called inf-sup condition holds in the space
X x Li(D):

;
o (1¥V.)

roe . 2 wllelleo Ve Li(D), ao>0. (6.1)
vex || Vv || z2(p)

Let
RM := {r:=a+bxz; ab,rcR

denote the space of infinitesimal rigid motions. It is well known [13, 23, 89] that RM
is the kernel of the strain operator e, that is, r € RM if and only if e(r) = 0. Hence,

we have
e(r)=0, divr=0  Vre RM. (6.2)

Let L2 (9D) and H! (D) denote respectively the subspaces of L?(9D) and H'(D)
which are orthogonal to RM, that is,

H! (D) := {v € HY(D); (v,r) = 0 Vr € RM},
L% (0D) := {g € L*(0D); (g,r) = 0 ¥r € RM}.

It is well known [26] that there exists a constant ¢; > 0 such that

rellfltfl;d ||V + r||L2(D) S Cl||5(v>||L2(D) Vv € Hl(D)
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Hence, for each v € H! (D) there holds

[VIlz2p) = reigjw v +rl22p) < cille(V)]2(p), (6.3)

which and the well-known Korn’s inequality [26] yield that for some ¢y > 0

IVlla1 o) < clllviizeoy + leV)ll2mo)] (6.4)
<co(l+ cl)||5(v)]|Lz(D) Vv e Hi(D)

By Lemma 2.1 of [12] we know that for any ¢ € L*(D), there exists v € H! (D)
such that divv = ¢ and [|[v||g1py < C||q||r2(p). An immediate consequence of this

lemma is that there holds the following alternative version of the inf-sup condition:

(divv, )

sup > o]l ¢l z2(p) Yo € LE(D), o >0. (6.5)

veH! (D) | Vv 22Dy

Throughout the chapter, we assume D C R? is a bounded polygonal domain such
that A : H}(D) N H*(D) — L*(D) is an isomorphism (cf. [25, 54]). In addition, C' is
used to denote a generic positive (pure) constant which may be different in different

places.

6.2.2 Partial differential equation model and its multiphysics

reformulation

The quasi-static poroelasticity model to be studied in this chapter is given by (cf.
[75])

—divo(u)+aVp=f inDp:=Dx (0,T) cRYx (0,7), (6.6)

(cop + adivu), +divvy =¢  in Dr, (6.7)
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where

o(u) := pe(u) + Adivul, e(u) :== = (Vu+ Vvu'), (6.8)

1

2
K

Vo= —M—f(Vp — pfg). (6.9)

Where u denotes the displacement vector of the solid and p denotes the pressure
of the solvent. f is the body force. I denotes the d X d identity matrix and e(u)
is known as the strain tensor. The parameters in the model are Lamé constants A
and f, the (symmetric) permeability tensor K, the solvent viscosity pr, Biot-Willis
constant «, and the constrained specific storage coefficient c¢y. In addition, o(u) is
called the (effective) stress tensor. a(u,p) := o(u) — apl is the total stress tensor.
v is the volumetric solvent flux and (6.9) is the well-known Darcy’s law. We assume
that py # 0, which is a realistic assumption.

To close the above system, suitable boundary and initial conditions must also be
prescribed. The following set of boundary and initial conditions will be considered in

this chapter:

d(u,p)n =o(u)n — apn = f; on 0Dy := 0D x (0,7, (6.10)

K
Vien = —M—f(Vp—pfg) ‘n = ¢ on 0D, (6.11)
u = u, P =Do in D x {t =0}. (6.12)

We note that in some engineering literature the second Lamé constant p is also
called the shear modulus and denoted by G, and B := X\ + %G is called the bulk
modulus. X\, and B are computed from the Young’s modulus E and the Poisson

ratio v by the following formulas:

Ev E E
A= (14 v)(1—2v)’ ”_G_2(1+u)’ B_3(1—2y)'
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Unlike the existing approaches in the literature [75, 68], in this chapter we will not

approximate the above original model directly, instead, we first derive a (multiphysics)

reformulation for the model, we then approximate the reformulated model. This is a

key idea of this chapter and it will be seen in the later sections that this new approach

is advantageous. To the end, we introduce new variables
q := divu, n = cop + agq, £ :=ap— ).
It is easy to check that

p = k1§ + Kam, q = k1n — k3§,

where

« A Co
Kl i= ————, Kgi=-——, Kgi=-—"°.
a2+ Aeg’ a2+ \eg’ a? + ey

Then (6.6)—(6.9) can be written as
—pdive(u) + VE =f in Dr,

k3€ +divu = Kk in Dr,

1 . .
Ny — M—fle [K(V (k1€ + kon) — psg)] = ¢ in Dy,

(6.13)

(6.14)

(6.15)
(6.16)

(6.17)

where p and ¢ are related to & and 7 through the algebraic equations in (6.13).

It is now clear that (u,&) satisfies a generalized Stokes problem and 7 satisfies

a diffusion problem. This new formulation reveals the underlying deformation and

diffusion multiphysics process which occurs in the poroelastic material. In particular,

the diffusion part of the process is hidden in the original formulation but is apparent

in the new formulation. To make use the above reformulation for computation, we

need to address a crucial issue of the uniqueness for the generalized Stokes problem

and the diffusion problem after they are decoupled.
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6.2.3 Analysis of the partial differential equation model

We start this section with a definition of weak solutions to problem (6.6)—(6.12). For
convenience, we assume that f, f;, ¢ and ¢, all are independent of ¢ in the remaining
of the chapter. We note that all the results of this chapter can be easily extended to

the time-dependent cases.

Definition 6.2.1. Let up € H (D), f € L*(D),f; € L*(0D),py € L*(D), ¢ € L*(D),
and ¢; € L*(9D). Assume (f,v) + (f;,v) = 0 for any v.€ RM. Given T > 0, a
tuple (u,p) with

ue L>*(0,T;H| (D)), p e L*(0,T; H'(D)),

(cop + adivu), € L*(0,T; H\(D)),  cip € L*®(0,T; L*(D)),
is called a weak solution to (6.6)—(6.12), if there hold for almost every t € [0,T]
p(e(u),e(v)) + A(divu, divv) — a(p, divv) (6.18)
= (f,v) + (fi,v) vv € HY(D),
. 1
((Cop + adiv u)t7 Sp)dual + ,u_f (K(Vp - pfg)7 Vg&) (619)

= (6.0) + (61,9) Vo€ H'(D),

u(0) =ug,  p(0) = po. (6.20)

Similarly, we can define weak solutions to problem (6.15)—(6.17), (6.10)—(6.12).

Definition 6.2.2. Let up € H'(D),f € L*(D),f; € L*(0D),py € L*(D), ¢ € L*(D),
and ¢; € L*(9D). Assume (f,v) + (f;,v) = 0 for any v.€ RM. Given T > 0, a
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5-tuple (u,&,m,p,q) with

u e L>(0,T;HL (D)), ¢ € L*(0,T; L*(D)),
ne€ L>*(0,T;L*(D)) N H'(0,T; H (D)),  qe€ L>*(0,T;L*(D)),
p € L*(0,T; H'(D)),

is called a weak solution to (6.15)—(6.17), (6.10)—(6.12) if there hold for almost every
te[0,T]

p(e(u),e(v)) — (&, divv) = (f,v) + (fi,v) Vv e H(D), (6.21)
K3 (é, <p) + (div u, <p) = K (77, go) Yo € L*(D), (6.22)

(T’t’ ¢)dual + %(K(Voﬁllg + “277) - pfg)7 V¢) (623)

= (0,0) + (¢1,¥) Vv € H'(D),

pi=r&+ K,  qi= K1) — Ksl, (6.24)
u(0) = uy, p(0) = po, (6.25)
q(0) = qo :=divug,  7(0) = o : = copo + Ao- (6.26)

Remark 6.2.3. (a) After & and n are computed, p and q are simply updated by their
algebraic expressions in (6.24).

(b) Equation (6.23) implicitly imposes the following boundary condition for n:

o 9¢
K}QK% :K,ofg~n—/<alK%. (6.27)

(¢) It should be pointed out that the only reason for introducing the space H' (D) in
the above two definitions is that the boundary condition (6.10) is a pure “Neumann
condition”. If it is replaced by a pure Dirichlet condition or by a mixed Dirichlet-

Neumann condition, there is no need to introduce this space. This fact will be used in
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our numerical experiments in Section 6.4. We also note that from the analysis point

of view, the pure Neumann condition case is the most difficult case.

Lemma 6.2.4. FEvery weak solution (u,p) of problem (6.18)—(6.20) satisfies the

following energy law:

E(t) + Mif/o (K(Vp—psg),Vp)ds — /0 (¢,p) ds — /0 (p1,p)ds = E(0) (6.28)

for all t € [0,T], where

1 .
Et): =3 [MH e(u(t) |72y + Al divu(t) [Z2ip) + coll (1) 1 72(p) (6.29)
—2(f,u(t)) — 2(f;,u(?))|.
Moreover,
. K
| (cop + adivu), [[2.1m-1(p)) < M—fH Vp = prg || 12(pr) (6.30)

+ |9l z2(or) + 1011 2(8D7) < 00.

Proof. We only consider the case u; € L*((0,7);L*(D)), the general case can be
converted into this case using the Steklov average technique (cf. [70, Chapter 2]).
Setting ¢ = p in (6.19) and v = u, in (6.18) yields for a.e. t € [0, T]

. 1
((Cop + adiv u)t7p<t>)dua1 + ,u_f(K(vp - ,Ofg), vp) = (gb’p) + <¢17p>7 (631)
p(e(u),e(wy)) + A(divu, divuy) — a(p, diva,) = (£, ;) + (£, uy). (6.32)
Adding the above two equations and integrating the sum in ¢ over the interval
(0, s) for any s € (0, 7] yield

E(S)—I—Mif/OS(K(Vp—pfg),Vp) dt—/os(gb,p) dt—/05<¢1,p> dt = B(0), (6.33)
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where E/(-) is given by (6.29). Here we have used the fact that f and f; are independent
of t. Hence, (6.28) holds.
(6.30) follows immediately from (6.19). The proof is complete. O

Likewise, weak solutions of (6.21)—(6.26) satisfy a similar energy law which is a

rewritten version of (6.28) in the new variables.

Lemma 6.2.5. Fvery weak solution (u,&,n,p,q) of problem (6.21)—(6.26) satisfies

the following energy law:

J(t) + Mif/o (K (Vp —psg), Vp) ds —/0 (¢,p) ds —/0 (¢1,p)ds = J(0)  (6.34)

for all t € [0,T], where

1
J(t):=5 [MH e(u(t)) 172(py + Rl 0(t) 72y + w3l £(F) 720y (6.35)
—2(f,u(t)) — 2(f, u(t)>].
Moreover,
K
|7 [ 20751 (D)) < M—fH Vp — prg || 12Dy (6.36)

+ 9l z2or) + [|01]l 2207 < 00

Proof. Again, we only consider the case that u; € L?(0,T; L*(D)). Setting v = u; in
(6.21), differentiating (6.22) with respect to ¢ followed by taking ¢ = £, and setting
¥ =p = k1€ + Kon in (6.23); adding the resulting equations and integrating in ¢ yield
the desired equality (6.34). The inequality (6.36) follows immediately from (6.23). O

The above energy law immediately implies the following solution estimates.
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Lemma 6.2.6. There exists a positive constant Cy = Ci(||uol|m(py, [pollz2(m),

11| 2200y, [11] L2(0m), |01l 22Dy |01 ]| 22(om)) such that

Ville() |z o720y + VE2lnll L 0,7;02(0)) (6.37)

[K
+ V "{3||€||L°°(O,T;L2('D)) + Iu_vapHLZ(O’T;L%D)) < Cl-
K
[ullze@rzzmy < Crs Ipllerizzmy < 01(1 + /K—‘”‘) (6.38)
1

We note that (6.38) follows from (6.37), (6.3) and the relation p = k1€ + Kkan.
Furthermore, by exploiting the linearity of the PDE system, we have the following

a priori estimates for the weak solution.

Theorem 6.2.7. Suppose that ug and py are sufficiently smooth, then there exists a
positive constant Cy = C(Ch, || Vol r2()) and Cs = C3(Ch, Ca, [wol| m2(py, |[poll 2 ()
such that there hold the following estimates for the solution to problem (6.15)—
(6.17),(6.10)(6.12):
Villeu)llzzomi2m)) + vezllnellL2om2m) (6.39)
+ \//‘G_SHfth(o,T;LZ(D)) + \/%’|VPHL°°(O7T;L2(D)) < Ch.

Villeo)ll Lo o,rc20)) + vVElnell Lo o,r.02(0)) (6.40)

| K
+ \//433||5t||L00(0,T;L2('D)) + I[,L_f”vptHLz(O’T;L2(D)) S 03'

K
7l 22 (m)) < ”,M_fcg' (6.41)

Proof. On noting that f,f;,¢ and ¢; all are assumed to be independent of ¢,
differentiating (6.21) and (6.22) with respect to t, taking v = w; and ¢ = & in
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(6.21) and (6.22) respectively, and adding the resulting equations yield

M||5(ut)||%2(p) = (qt,&) =k (Ut,ft) - /“”v3||ft||%2(p)- (6.42)
Setting v = py = Kk1& + Komy in (6.23) gives

K d d
10 &) + bl ) + 5190 = prgllian, = g [(6.0) + (00| (6)

Adding (6.42) and (6.43) and integrating in ¢ we get for ¢ € [0, T

K

t
%va(t)—wgui'zwﬁ‘/ [M||5(ut)||L2 + Ralml| 72 D)+’f3||§t||L2 } s
0

K
= 5, IVP0 = pr8lia) + (6:0(0) = po) + (b0, p(0) — 1),

which readily infers (6.39).
To show (6.40), first differentiating (6.21) one time with respect to ¢ and setting
v = uy, differentiating (6.22) twice with respect to ¢ and setting ¢ = &, and adding

the resulting equations we get

N =

d
%Hff(ut)H%?(D) = (Qtt>ft) =K1 (Htt,ft) D) dt”&”p (6.44)

Second, differentiating (6.23) with respect ¢ one time and taking ¢ = p; = k1& +

Koty yield

k1 (et &) + HTHHL2 ot — Py ||th||i2(p) = 0. (6.45)

2dt

Finally, adding the above two inequalities and integrating in ¢ give for ¢ € [0, 7]

MMW@Wﬁm+mwﬁwhm+@MKHm)+——/HWNWD8 (6.46)

= plle(ue(0) 1720y + 2llme(0)1Z2p) + Ksll&:(0)1Z2(p)
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Hence, (6.40) holds. (6.41) follows immediately from the following inequality

1 K
(e, 00) = —#—f(KVPt,V%U) < u_f||th||L2(D)||v¢“L2(D) Vi € Hy(D),

(6.40) and the definition of the H~'-norm. The proof is complete. O

Remark 6.2.8. As expected, the above high order morm solution estimates require
po € H'(D),u(0) € L*D),n(0) € L*(D) and &(0) € L*(D). The values of
u:(0),m:(0) and &(0) can be computed using the PDEs as follows. It follows from
(6.17) that n:(0) satisfies

n(0) = ¢ + ’uifdiv (K (Vpo — prg)].

Hence 1n,(0) € L*(D) provided that py € H*(D).
To find u(0) and &(0), differentiating (6.15) and (6.16) with respect to t and
setting t = 0 we get

—pdive(uy(0)) + VE(0) =0 in D,

k3&:(0) 4+ divug(0) = k1m:(0) in D.
Hence, u:(0) and &(0) can be determined by solving the above generalized Stokes
problem.

The next lemma shows that weak solutions of problem (6.21)-(6.26) preserve some
“invariant” quantities, it turns out that these “invariant” quantities play a vital role

in the construction of our time-splitting scheme to be introduced in the next section.
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Lemma 6.2.9. Every weak solution (u,&,n,p,q) to problem (6.21)—(6.26) satisfies

the following relations:

Cp(t) = (n(-,1),1) = (m0,1) + [(¢, 1) + (¢n, 1)]t, t=>0. (6.47)
Celt) = (1), 1) = d+1mg [ Cy(t) — (£,2) — (1, )] (6.48)
Cy(t) == (q(-,1),1) = k1Cy(t) — r3Ce(t). (6.49)
Cp(t) == (p(+,1),1) = k1Ce(t) + K20y (2). (6.50)
Cu(t) == (u(-,t) -n,1) = Cy(t). (6.51)

Proof. We first notice that equation (6.47) follows immediately from taking ¢ =1 in
(6.23), which is a valid test function.
To prove (6.48), taking v = x in (6.21) and ¢ = 1 in (6.22), which are valid test

functions, and using the identities Vo = I, divae = d, and e(x) = I, we get

p(diva, 1) — d(&,1) = (f,2) + (f1, z), (6.52)
(divu,1) = ri(n, 1) — r3(&, 1). (6.53)
Substituting (6.53) into (6.52) and using (6.47) yield

B 1
~d+ pks

Ce(t) == (&(-,1),1) (ki Cy(t) — (£,2) — (£, 2)]. (6.54)

Hence (6.48) holds. (6.49) follows immediately from (6.53), (6.47) and (6.48).
Finally, since p = k1€ + kon, (6.50) then follows from (6.47) and (6.48). (6.51)
is an immediate consequence of ¢ = divu and the divergence theorem. The proof is

complete. O

Remark 6.2.10. We note that C,), Ce,Cy and C, all are (known) linear functions of

t, and they become (known) constants when ¢ =0 and ¢; = 0.
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With the help of the above lemmas, we can show the solvability of problem (6.6)—
(6.12).

Theorem 6.2.11. Let uy € HY(D),f € L*(D),f, € L*(0D),p, € L*(D), ¢ € L*(D),
and ¢ € L*(0D). Suppose (£f,v) + (fi,v) = 0 for any v.€ RM. Then there exists
a unique solution to problem (6.6)—(6.12) in the sense of Definition 6.2.1, likewise,
there exists a unique solution to problem (6.15)—(6.17),(6.10)—(6.12) in the sense of
Definition 6.2.2.

Proof. We only outline the main steps of the proof and leave the details to the
interested reader.

First, since the PDE system is linear, the existence of weak solution can be proved
by the standard Galerkin method and compactness argument (cf. [89]). We note that
the energy laws established in Lemmas 6.2.4 and 6.2.5 guarantee the required uniform
estimates for the Galerkin approximate solutions.

Second, to show the uniqueness, suppose there are two sets of weak solutions,
again by the linearity of the PDE system it is trivial to show that the difference
of the solutions satisfy the same PDE system with zero initial and boundary data.
The energy law immediately implies that the difference must be zero, hence, the

uniqueness is verified. n

We conclude this section by establishing a convergence result for the solution of
problem (6.15)—(6.17),(6.10)—(6.12) when the constrained specific storage coefficient
¢o tends to 0. Such a convergence result is useful and significant for the following
two reasons. First, as mentioned earlier, the poroelasticity model studied in this
chapter reduces into the well-known Biot’s consolidation model from soil mechanics
(cf. [75, 68]) and Doi’s model for polymer gels (cf. [38, 93]). Second, it proves that
the proposed approach and methods of this chapter are robust under such a limit

process.

Theorem 6.2.12. Let uy € HY(D),f € L*(D),f; € L*(0D),py € L*(D),¢ €
L*(D), and ¢, € L*(0D). Suppose (f,v) + (fi,v) = 0 for any v.€ RM. Let
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(Weg Meos Ecos Peos Aey) denote the unique weak solution to problem (6.15)-(6.17),(6.10)—
(6.12). Then there exists (W, N, &, Puy @) € L2(0, T; HY (D)) x L>(0,T; L*(D)) x
L>(0,T; L*(D))) x L*(0,T; L*(D)) N L*(0,T; HY(D) x L*>(0,T; L*(D)) such that
(Weg, Meos Ecos Peos Qo) CONVETgEs weakly to (Wy, Ny, &, Ps, @) in the above product space

as cg — 0.
Proof. Tt follows immediately from (6.36)—(6.38) and Korn’s inequality that
e u,, is uniformly bounded (in ¢q) in L>(0,T; HY (D)).
e /K2, is uniformly bounded (in ¢p) in L>=(0,T; L*(D)) N L*(0,T; HY(D)).
o /K&, is uniformly bounded (in ¢o) in L*°(0,T’; L*(D)).
e p., is uniformly bounded (in ¢p) in L>(0,T; L*(D)) N L*(0,T; H(D)).
® (., is uniformly bounded (in ¢) in L*>°(0,T; L*(D)).

On noting that lim. ,ok1 = é, limg, 0 ke = ﬁ and lim.,0k3 = 0, by

the weak compactness of reflexive Banach spaces and Aubin-Lions Lemma [26]
we have that there exist (., ., &, s, q) € L®(0,T;HL (D)) x L>®(0,T; L*(D)) x
L>(0,T; L*(D))) x L>=(0,T; L*(D)) n L*(0,T; HY(D) x L>*(0,T;L*D)) and a
subsequence of (U, Ny, Eeoy Pegy ey) (still denoted by the same notation) such that as

co — 0 (a subsequence of ¢y, to be exact)

e u,, converges to u, weak * in L>°(0,7; H! (D)) and weakly in L*(0, T; H} (D)).

VFale, converges to 22y, weak * in L0, T; L*(D)) and weakly in L?(Dr).

«

K3, converges to 0 weakly in L?*(Dr).
e p., converges to p, weak * in L°>°(0,T; L*(D)) and weakly in L*(0,T; H'(D)).

e g, converges to p, weak x in L>(0,T; L*(D)) and weakly in L*(Dr).
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Then setting c¢o — 0 in (6.21)-(6.26) yields (note that the dependence of the solution

on ¢ is suppressed there)

p(e(w),e(v)) = (& divv) = (£, v) + (fi,v)
1

(le Uy, 90) = a (77*7 90)
((0)e:¥) g + Mif(K (Vp. — prg), Vi)

= (¢,%) + (1, %)
1 A 1
psi= =&+ 5T Qs ‘= T,
(0% (6% (0%

u,(0) = uy,

4+(0) = qo := div uy, 17+(0) = 1o : = aqo.
Equivalently,

p(e(wy),e(v)) = (& divv) = (£,v) + (fi,v)
(le u*ygp) = (Q*a (P)

a((g ), + Mif(K(Vp* — pr8), V) = (6,0) + (b1,0)

1
P« = a<€* + )\Q*> or & = ap. — Ags,

u,(0) = uy,

¢:(0) = qo := divuy.

vv € H'(D),

Vo € L*(D),

vy € H'(D),

vv € H'(D),
Vi € L*(D),

Vi € HY(D),

Hence, (W, nx, &, s, ¢+) is a weak solution of Biot’s consolidation model (cf. [38, 93]).

By the uniqueness of its solutions, we conclude that the whole sequence (U, Meqs &eo

Deos Gey) cONVErges to (Wy, 1s, &x, P, @) as ¢ — 0 in the above sense. The proof is

complete.
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6.3 Fully discrete finite element methods

The goal of this section is to design and analyze some fully discrete finite element
methods for the poroelasticity model based on the above new formulation. As the
time stepping is vital for the overall methods, we first introduce our time-stepping

schemes at the PDE level.

6.3.1 Basic time-stepping algorithm

Based on this new formulation, our multiphysics time-stepping algorithm reads as

follows:

Splitting Algorithm (SA):

(i) Set

0 _ 0 _ 0 __ . . 7
u = Uy, P =po, ¢ = qo:=divuy,

n’ =cop’ +aq’, £ =ap’ — A\

(ii) For n =10,1,2,---, complete the following three steps:

Step 1: Solve for (u™*! ") such that

—pdive(u™h) + Vet = f, in Dr, (6.55)
kg™ 4 divu T = gy t? in Dr, (6.56)
glu" e hn = £ on ODr. (6.57)

Here 6 =0 or 1.
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Step 2: Solve for "™ such that

1
Ao — v [K(V ™ 4 &) = prg)l =0, i Dr. (659)
!
1
M—fK[V(/ﬁg?y"H + k&) —prgl - m=¢;  ondDr.  (6.59)

Step 3: Update p"*! and ¢"*! by
pn-i-l — H15n+1 =+ K2nn+9? qn+1 — ,Lglnn'i_l — /{an-l—l‘ (660)

Where din™™! := (p"*! — n™)/At, At denotes the time step size of a uniform

partition of the time interval [0, 7], and

a:(un+17£n+1) — Iug(un+1> o £n+1[' (661)

We note that (6.58) is the implicit Euler scheme, which is chosen just for the ease
of presentation, it can be replaced by other time-stepping schemes. (6.59) provides a

flux boundary condition for n™*!.

Remark 6.3.1. When 6 = 0, Step 1 and Step 2 are decoupled, hence these two
sub-problems can be solved independently. On the other hand, when 8 = 1, two sub-

problems are coupled, hence, they must be solved together.

6.3.2 Fully discrete finite element methods

In this section, we consider the space-time discretization which combines the above
splitting algorithm with appropriately chosen spatial discretization methods. To the
end, we introduce some notation.

Assume D € R4(d = 2,3) is a polygonal domain. Let 7, be a quasi-uniform
triangulation or rectangular partition of D with mesh size h, and D = |J KeT, K.

Also, let (X3, My) be a stable mixed finite element pair, that is, X; € H!'(D) and
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M,, C L*(D) satisfy the inf-sup condition

divuy,
sup M > BOHQDhHLQ('D) Vg@h € My, := My, N L(Q)(D), 60 > 0. (662)

wneXn IVl 2(m)

A number of stable mixed finite element spaces (Xp,, M) have been known in the
literature [14]. A well-known example is the following so-called Taylor-Hood element

(ct. [10, 14]):

Xy, = {vi, € C'D); vi|x € Po(K) VK € Ty},
My, = {on € C°(D); onlx € Pi(K) VK € Tp}.

In the next subsection, we shall only present the analysis for the Taylor-Hood
element, but remark that the analysis can be extended to other stable mixed elements.
However, piecewise constant space M, is not recommended because that would result
in no rate of convergence for the approximation of the pressure p (see Section 6.3.4).

Finite element approximation space W}, for  variable can be chosen independently,
any piecewise polynomial space is acceptable provided that W, D M. Especially,
W), C L*(D) can be chosen as a fully discontinuous piecewise polynomial space,
although it is more convenient to choose W}, to be a continuous (resp. discontinuous)
space if M}, is a continuous (resp. discontinuous) space. The most convenient choice
is Wj, = M, which will be adopted in the remainder of this chapter.

Recall that RM denotes the space of the infinitesimal rigid motions (see Section
6.2), evidently, RM C X;. We now introduce the L?-projection Px from L?(D) to
RM. For each v € L?(D), Prvy, € RM is defined by

(Pgrvp,t) = (v, r)  ¥r€ RM.
Moreover, we define

V, = (] — PR)Xh = {Vh < Xh; (Vh,r) =0Vre RM} (663)
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It is easy to check that X, = V, @ RM. It was proved in [38] that there holds the

following alternative version of the above inf-sup condition:

div vy,
sup \TYVBO) o g Yon € Mon, B > 0. (6.64)
wneVi || V'V llz2y

Finite Element Algorithm (FEA):

(i) Compute uf) € V;, and ¢j € W), by

112 = Rpuy, pg = 9Oupo, qu N (QO = div uo);

mh = copp +aqp, & = ap) — Ag;.

(ii) For n=10,1,2,---, do the following three steps.

Step 1: Solve for (™! &) € V), x W), such that

ple(upt™),e(vi)) — (&7, divvy) = (£, vi) + (i, va) Vvi € Vi, (6.65)

ks (§ on) + (divay ™, on) = ki (177, 1) Yon € M. (6.66)

Step 2: Solve for 772”rl € Wj, such that

1
(™ n) + M—f(K(V(/ﬁfZH + koY) = prg, V) (6.67)

- (¢7 wh) + <¢17 wh>
Step 3: Update pZH and qZH by

it = k& kot gt = kgt — ks (6.68)
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Remark 6.3.2. At each time step, problem (6.65)-(6.66) is a generalized Stokes
problem with a mized boundary condition for (u,p). The well-posedness of the

generalized Stokes problem follows easily with the help of the inf-sup condition.

6.3.3 Stability analysis of fully discrete finite element meth-

ods

The primary goal of this subsection is to derive a discrete energy law which mimics
the PDE energy law (6.28). It turns out that such a discrete energy law only holds
if h and At satisfy the mesh constraint At = O(h?) when 6 = 0 but for all h, At > 0
when 6 = 1.

Before discussing the stability of (FEA), We first show that the numerical solution
satisfies all side constraints which are fulfilled by the PDE solution.

Lemma 6.3.3. Let {(u}, &7, n)) }nso be defined by the (FEA), then there hold

(77}71171) :Cn(tn> fOT'TL:O,]_72, ) (669)
(&h, 1) = Ce(tn-1+0) forn=1-6,1,2,---, (6.70)
(up -n, 1) = Cultn-140) forn=1-6,1,2,---. (6.71)

Proof. Taking ¢, = 1 in (6.67) yields

(demy ™, 1) = (,1) + (01, 1).

Then summing over n from 0 to £ (> 0) we get

(1) = (0, 1) + [(6,1) + (61, D]tess = (10, 1) + [(6,1) + (1, 1) ]tes1 = Cylterr)

for £=10,1,2,--- . So (6.69) holds.
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To prove (6.70), taking v, = x in (6.65) and ¢, =1 in (6.66), we get

p(divap™, 1) —d(&11,1) = (f,2) + (f1, z), (6.72)
k3 (§ 1) + (divup ™, 1) = £1Cy(tnse)- (6.73)

Substituting (6.73) into (6.72) yields

(d + M’i3>(§}?+17 1) - M’ilcn(tn%—@) - (f7 l’) - <f17x>’

Hence, by the definition of C¢(t) we conclude that (6.70) holds for all n > 1 — 6.
(6.71) follows from (6.69), (6.70), (6.73), and an application of the Divergence
Theorem. The proof is complete. O

The next lemma establishes an identity which mimics the continuous energy law

for the solution of (FEA).

Lemma 6.3.4. Let {(u},& n)}aso be defined by (FEA), then there holds the
following identity:

Jho+Sho=1Jny  fort>160=0,1, (6.74)
where
1
Jﬁ,e =5 [MHd £+1)HL2 (p) T /€2H77£+6HL2 (p) T 53”££+1HL2(D) —2(f, u, ) — 2(fy, w |,

St _Atz

HgAt

||dt +1>‘|L2('D + M_f(vp +1 _ ,0fg7Vp +1)

KgAt
2

ldeng 172 + & 122y — (@i ™) = (D)

K1 KAt
Fof

—(1-0) (devep+t, wppth) |

n+1 = kK €n+1 + /‘5277n+0-

204



Proof. Since the proof for the case § = 1 is exactly same as that of the PDE energy
law, so we omit it and leave it to the interested reader to explore. Here we only

consider the case § = 0. Based on (6.66), we can define 7, ' by

k(s on) = k3(&,on) + (divuy, @) (6.75)

Setting v, = dau)™ in (6.65), ¢ = &' in (6.66), and ¢y, = pp* in (6.67) after

lowing the degree from n + 1 to n, we get
n ILL n
—d le(ay ™2y + FALU (@) 220 (6.76)

= d(f, u}th) + dy(Fr, 0T + (& divdaal ),

(dtfnJrl n+1) (le dtun+1 Z+1) = K (dtnhv nJrl)7 (677)
1
(deny, ™) + #—f(K (V(ki&h + wanyy) — prg), Vi ™) (6.78)

(¢7 n+1) <¢17 n+1>.

The first term on the left-hand side of (6.78) can be rewritten as

(demits i) = (dimpy, 52657 + Ramy) (6.79)
RQAt

n K2 n
= k1 (demp, +1)+ Hdthm(D ?dtthH%?(D)'

Moreover,

K
u—f(V(mf}Z + o) — psg, Vo) (6.80)
KlKAt

K n n
= —(Vpptt — prg, Vi) —

n mn Iﬂ: n
rs(dep 1) = E?’dtth“H%g(

(dtv§n+1 \V4 n+1) '
/QgAt

e 172 - (6.81)
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Adding (6.76)—(6.78), using (6.79)-(6.81) and applying the summation operator
At Zﬁzo to the both sides of the resulting equation yield the desired equality (6.74).

The proof is complete. O

In the case 8 = 1, (6.74) gives the desired solution estimates without any mesh
constraint. On the other hand, when # = 0, since the last term in the expression of
S,‘;ﬁ does not have a fixed sign, hence, it needs to be controlled in order to ensure the

positivity of S’f;ﬂ.

Corollary 6.3.5. Let {(u}}, &', ) }nso be defined by (FEA) with @ = 0, then there
holds the following inequality:

Jho+Sho <y for€>1, (6.82)

provided that At = O(h?). Where

5 ‘ At K
Sho = A0 3 | B e ) + 5 VB oy — 5 (o8 V1)
n=0
/{QAt K,gAt

2

ldeni1I22 ) + =5 e 2oy — (@05 — (61,7 |-

Proof. By Schwarz inequality and inverse inequality (6.85), we get

ki KAt " . KIK . . K .
v ) < G Hw+1vmm@+—wWJ%m)w&>

< Cl"fl
 2uph?

1€ = &l Tepye + ||an+1||L2(D)
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To bound the first term on the right-hand side of (6.83), we appeal to the inf-sup

condition and get

(divvy, &1 — &)

1
el ey, < — sup 6.84
|| h h”L ﬂl oneVa HVVhHLQ(D) ( )
G “up (5(u"+1 —u"),g(vh))
= Biopevy, INAAIEES!

< 2 At dye(upt) | 2.
B,

Substituting (6.84) into (6.83) and combining it with (6.74) imply (6.82) provided
that At < (upf})(2pK ki)~ h?. The proof is complete. O

6.3.4 Convergence analysis

The goal of this section is to analyze the fully discrete finite element algorithm (FEA)
proposed in the previous subsection. Precisely, we shall derive optimal order error
estimates for (FEA) in both L>(0,T; L*(D) and L*(0,T; H'(D))-norm. To the end,
we first list some facts, which are well known in the literature [13, 14], about finite
element functions.

We first recall the following inverse inequality for polynomial functions [23]:
IVonllzeey < cihHenllrzay  Ven € P(K), K € Th,. (6.85)
For any ¢ € L*(D), we define its L*-projection Qy, : L? — W}, as

(Qne, vn) = (¢, ¥n) Uy € Wh,. (6.86)

It is well known that the projection operator Qy : L? — W), satisfies (cf [13]), for
any ¢ € H*(D)(s > 1),

191 — @ll12(m) + BV (Qne — )|l r2y < ChY||@||repy, ¢ = min{2,s}.  (6.87)
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We like to point out that when W), ¢ H'(D), the second term on the left-hand
side of (6.87) has to be replaced by the broken H'-norm.
Next, for any ¢ € H!(D), we define its elliptic projection S, by

(KVShe, Vn) = (KVe, Vo) on € W, (6.88)

(Shgo, 1) = (gp, 1). (6.89)

It is well known that the projection operator Sy, : H'(D) — W), satisfies (cf [13]),
for any ¢ € H*(D)(s > 1),

1She = ¢ll2@) + PIV(She = @)y < CR @l me(py, € = min{2, s} (6.90)
Finally, for any v € H! (D), we define its elliptic projection Ryv by
(e(Rav),e(wyp)) = (e(v),e(wp)) Wy, € V. (6.91)

It is easy to show that the projection Ryv satisfies (cf [13]), for any v € H! (D)N
H*(D)(s > 1),

|RLv =Vl 20y + A V(RV = V)|l L200) < CA™||V| gmp), m = min{3,s}. (6.92)
To derive error estimates, we introduce the following error notation

Ey =u(t,) —uy, Bl :=E&(t,) =&, E)=n(t,) —np,

E) =pty) —ph, By =q(tn) —qp-
It is easy to check that

E;L = Iﬂ?lEgL + HQE;L, E;L = IigEgL + IilE;L. (693)
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Also, we denote

Lemma 6.3.6. Let {(uy, &), ;) a0 be generated by the (FEA) and Ay, Oy, AE, ©F, Ap
and Op be defined as above. Then there holds the following identity:

g4 AtZ[ (VO — psg, O0) (6.94)
A n+1 n+0 n+1
+—(M||dte<@ 220y + £l |22y + sl 2 )|

= &0+ At Z (A2 divd,05) - (divd, AL, 01 |

l VA
+ (A2 (dfmn(tasn), OFT) + ALY (R, 057

n=0 n=0
¢
2 Z K’fl @n+1 v@nJrl)
n=0 'uf
where
Ort! = ki VO + k, VOt (6.95)
1
& 1= 5[l @ ey + €5 oy + w5l O e (6:96)
1 tn+1
R / (5 — tn)mu(s) ds. (6.97)
At ;.
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Proof. Subtracting (6.65) from (6.21), (6.66) from (6.22), (6.67) from (6.23),

respectively, we get the following error equations:

p(e(EL), e(vh)) — (B2, divvy) =0 Vv, € Vi, (6.98)

k3 (B on) + (divER™, op) (6.99)
= k1 (B, on) + At(dim(tasr), on) Yo € My,

(e EpHY n) + %(V(mlEg“ + wa B — prg, V) (6.100)
= (R}, ) Vb, € W,

Using the definition of the projection operators Qp, Sp, Ry, we have

p(e(Oph),e(vi)) — (O, divvy) = (AP divvy), Vv, € Vi, (6.101)
ks (021 on) + (diveyr™, vn) = w1 (077, 0n) (6.102)
— (div A o) + At(din(tnsa), on) Yon € My,

(d:O7 " ) + %(V(m@g“ + /207 — prg, V) (6.103)

= (R, ) Vi, € Wh.

(6.94) follows from setting v, = ;02" in (6.101), ¢ = @2“ (after applying
the difference operator d; to the equation (6.102)), ¢, = (:)ZJr1 = /{1@?“ + Hg@f]“’
in (6.103), adding the resulting equations, and applying the summation operator

At Zﬁ:o to both sides. O
Theorem 6.3.7. Let {(u}, &, ) bnso be defined by (FEA), then there holds the error

estimate for £ < N

max [\/ﬁH&(@ﬁH)HL?(D) + VROl 2(0) + VislOF T | 2o (6.104)

0<n<t

l 1
K - 2
+[At§ #—f||@;+1||;} < C\(T)At + Cy(T)h?,
n=0
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provided that At = O(h*) when 0 = 0. Where

Ci(T) = Cllailz2omy220)) + ClN @it 20,0921 (D) (6.105)
Co(T) = Cl|éll=(0.1):m2(0)) + Cll&ell L2 ((0.7):12(D)) (6.106)

+ C|div ()| 2 ((0,7):12(D)) -

Proof. To derive the above inequality, we need to bound each term on the right-hand

side of (6.94). Using the fact ©), = 0, ©¢ = 0 and O, = 0, we have

l
K . R
Ef + At Z [—f(V@g“ — prg, VO (6.107)

At
+ 5 (1O oy + Rl O o + L )|

¢
n n n M
(At) QZ in(tns), OFF) —i—AtZ (Rp*! .0 o)+ 5”5(@111)“%2(1))

n=0 n=0
£
n : n : n n KJZ
+ AtZ[(A£+1,d1vdt®u“) - (dwthu“,@;l)} + S 1195122
=0

Ny

(1—0)(At)?

n=0

n n K3
Vet vert) + 16w

We now estimate each term on the right-hand side of (6.107). To bound the first
term on the right-hand side of (6.107), we first use the summation by parts formula
and dyn,(t) = 0 to get

L L

S (@nltar), O2F) = é(dm(tm),@?l) =S (), €2, (6.108)

n=0 n=1
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Now, we bound each term on the right-hand side of (6.108) as follows:

1 1
Kt(dm(tuﬁ,@?l) < KtHdtn(tﬁ—&-l)HL?(D)H@?—l||L2(D) (6.109)
| 1 (05, 2(va)) — (AFH divvy)
< — ||77t||L2((te teg1);L2(D)) Sup
At Bl VREV) vahHL2('D)

Cu 1
< gl ey 1Ol + 2 1A )

K 0+1y)12 Cu e
= 4(At)2H€(@u+ Wizw) + 52 2 7 el 2 et 220 52HA+ IZ2(p):
¢ ¢
> (din(ty), dOF) < ZHdm Mz 1O | 2oy (6.110)
i:“d (tn)ll ! sup (d =(Oa"). (Vh)) _ (th?+l>diVVh)
2 —
n=0 " e Pivievs IVVallLe o)

Cu n 1 "
< 5 2t lseqo || (@F ) oy + AT 2o
p n C n
< =2 (O 7am) + g el ia ooy + Hth ez
1
The second term on the right-hand side of (6.107) can be bounded as

|(Ry, 00| < |IRP | -1y VO | 2y (6.111)
K AN 1254 n
< 4_WHV@p+1H%2('D) + ?HRhHH%rl(D)

peAL
3K 792 L2 ((tn,tnt1); H-1(D))

K ~
n+1112
< 4_'uva®p 17200y +
where we have used the fact that

At tn+1

IRy 10y < & 1712131y .
3
tn
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The fourth term on the right-hand side of (6.107) can be bounded by

L
ACY[(Azt diva,opt) — (divd Ayt o] (6.112)
n=0
l
= (AL diveL™) — ALY | (@A divey) + (divdAg, 6pt) |
n=0

1
< SN Bagp) + 5 v O 2oy + AtZ[Hth”“HLz(D

\)

+1le(©% Loy + 1div de A 12y + ||@Z+1||L2(D)]'

When 6 = 0 we also need to bound the last term on the right-hand side of (6.107),

which is carried out below.

¢ 1
D (dvert, vert) <3 [ dOr 2w VO | 12m) (6.113)

n=0 n=0

p(die(O), e(vy)) — (th?H,divvh)
sup

< VheVi V'V L2 (p)

]~

VO 12p)

3
s

/{1At

2
Wk At
[—1 e

h? B

IN

e (@)1 + AP s+ B 98 |

n=0

Substituting (6.108)—(6.113) into (6.107) and rearranging terms we get

MH€(@“1)Hiz(p + mal|O 12y + sl O 12y (6.114)
+ Atz HV@”“HLQ

. Yy (A0? du(AL)?

HnttHLQ((O,T);H*U 52 Hnt”LQ((O,T);L2(D))’
1

¢ ¢
+ |’A§+1||2L2(D) —i—AtZ ||th2HH%2(D) + Atz ||dintAﬁ+1||%2(D)a

n=0 n=0
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provide that At < pu¢87(4pk3K) 1 h? when 6 = 0, but it holds for all At > 0 when 6 =
1. Hence, (6.104) follows from using the approximation properties of the projection

operators Qy, Ry, and Sy,. The proof is complete. ]
We conclude this section by stating the main theorem of the section.

Theorem 6.3.8. The solution of the (FEA) satisfies the following error estimates:

mae [V (u(tn) = @) |2y + Vllitn) =i lzey  (6115)

0<n<N

+ VA€t = &illix) | < Ci(T)AL+ Co(T)R2

Cop L ~
{Atz M—HV(@;“H;(D)} < Ci(T)At + Cy(T)h, (6.116)
n=0
provided that At = O(h?*) when 0 =0 and At > 0 when 0 = 1. Where

Cy(T) := Cy(T),
Co(T) 1= CoT) + [[€]| Lo (0,1);12(D)) + |10l Lo (0,1)522(D))

+ IVl Lo (0.7),2(D)) -

Proof. The above estimates follow immediately from an application of the triangle

inequality on
u(tn) - uZ - Aﬁ + @gv g(tN) - 5]711 = A? + @n’ n(tn) - 77}711 = AZ + 62’

and appealing to (6.87), (6.92) and Theorem 6.3.7. O

6.4 Numerical experiments

In this section we shall present three 2-dimensional numerical experiments to validate
theoretical results for the proposed numerical methods, to numerically examine

the performances of the approach and methods as well as to compare them with
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existing methods in the literature on two benchmark problems. One of these two
problems was used to demonstrate the “locking phenomenon” in [77]. Our numerical
result shows that such a “locking phenomenon” phenomenon does not occur in our
numerical methods, it confirms the fact that our approach and methods have a built-in

mechanism to prevent the “locking phenomenon”.

Test 1. Let D = [0,1] x [0,1], T} = {(1,22);0 < 29 < 1}, I'y = {(21,0);0 <
x1 <1} T3 ={(0,22);0 < 29 < 1}, Ty = {(21,1);0 < 2y < 1}, and T = 0.001. We

consider problem (6.23)—(6.26) with following source functions:

f=—(\+p)t(1, D" + acos(z; + x3)e(1,1)7,

25\ .
b= (co + M_> sin(x; + x2)e’ + a(zy + x9),
f

and the following boundary and initial conditions:

p = sin(x; + x9)e’ on 0D,

U = %aﬁt onT; x (0,T),j=1,3,
Uy = %x%t onI'; x (0,7), j =,2,4,
on — apn = f on dDr,
u(z,0) =0, p(z,0) =sin(z; + z2) in D,

where

fi(z,t) = p(ring, :vgnQ)Tt + My + x9) (04, ng)Tt — asin(zy + z2)(ny, ng)Tet.

It is easy to check that the exact solution for this problem is

2

u(z,t) = (a:f,a:Q)T, p(x,t) = sin(x; + x5)e’.

DO | =+
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We note that the boundary conditions used above are not pure Neumann conditions,
instead, they are mixed Dirichlet-Neumann conditions. As pointed out in Remark
6.2.3 (c), the approach and methods of this chapter also apply to this case, the only
change is to replace the test and trial space H' (D) by H!(D) with some appropriately
built-in Dirichlet boundary condition in Definition 6.2.2.

The goal of doing this test problem is to compute the order of the exact errors and
to show that the theoretical error bounds proved in the previous section are sharp.

Table 6.1 displays the computed L>(0,T; L*(D)) and L*(0,T; H'(D))-norm errors
and the convergence rates with respect to h at the terminal time 7. In the test,
At = 107? is used so that the time error is negligible. Evidently, the spatial rates of

convergence are consistent with that proved in the convergence theorem.

Table 6.1: Spatial errors and convergence rates of Test 1.

L>(L?) error | L=(L?) order | L*(H") error | L*(H") order
h =0.16 2.0789%-3 2.5045e-2
h =0.08 5.9674e-4 1.8006 2.9431e-2 0.9032
h =0.04 1.6227e-4 1.8787 1.5332¢-2 0.9408
h =0.02 4.0971e-5 1.9857 7.6968e-3 0.9942

Figures 6.1 and 6.2 show respectively the surface plot of the computed pressure
p at the terminal time 7" and the color plot of both the computed pressure p and
displacement u with mesh parameters h = 0.02 and At = 107°. They coincide with

the exact solution on the same space-time resolution.

Test 2. In this test we consider so-called Barry-Mercer’s problem, which is a
Benchmark test problem for the poroelasticity model (6.23)—(6.26) (cf. [77, 76] and
the references therein). Again, D = [0,1] x [0, 1] but T' = 1. Barry-Mercer’s problem

assumes no source, that is, f = 0 and ¢ = 0, and takes the following boundary
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Figure 6.1: Test 1: Surface plot of the Computed pressure p at the terminal time
T.

conditions:
p=0 onl'; x(0,7),j=1,3,4,
D= Py onT'; x(0,7T), 5 =2,
up =0 on I'; x (0,7, j=1,3,
Uy =0 on I'; x (0,7), j=2,4,
on —apn = f; := (0,ap)” on 0Dy,
where

sint  when z € [0.2,0.8) x (0,7,
pQ(mlut) =
0 others.

The boundary segments I';,j = 1,2,3,4, which are defined in Test 1, and the
above boundary conditions are depicted in Figure 6.3. Also, the initial conditions
for Barry-Mercer’s problem are u(z,0) = 0 and p(z,0) = 0. We remark that Barry-

Mercer’s problem has a unique solution which is given by an infinite series (cf. [77]).
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Figure 6.2: Test 1: Computed pressure p (color plot) and displacement u (arrow
plot) at T'.

Figures 6.4 and 6.5 display respectively the computed pressure p (surface plot)
and the computed displacement u (arrow plot). We note that the arrows near the
boundary match very well with those on the boundary. Our numerical solution
approximates the exact solution of Barry-Mercer’s problem very well and does not

produce any oscillation in computed pressure.

Test 3. This test problem is taken from [77]. Again, we consider problem (6.23)—
(6.26) with D = [0,1] x [0,1]. Let I'; be same as in Test 1 and ¢g =0, F = 10°,v =
0.4, = 35714 and T" = 0.001. There is no source, that is, f = 0 and ¢ = 0. The

boundary conditions are taken as

—i(Vp—pfg)-n:O on 0Dr,
My

u=20 on I's x (0,7,

on —apn = f; onT'; x (0,7), j=1,2,4,
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Figure 6.3: Test 2: boundary conditions.
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Figure 6.4: Test 2: Surface plot of the computed pressure p at the terminal time T'.

where f; = (f{, f?) and

0 onI'; x (0,7), j=1,2,3,
ft=0 on 0Dy, 2=

~1  onTyx(0,7).

The computational domain D and the above boundary conditions are depicted in

Figure 6.6. Also, the zero initial conditions are assigned for both u and p in this test.
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Figure 6.5: Test 2: Computed pressure p (color plot) and displacement (arrow plot)
at T'.

Figures 6.7—6.8 display respectively the surface and color plot of the computed
pressure, the arrow plot of the displacement vector, and the deformation of the whole
D. There is no oscillation in the computed pressure and the arrows near the boundary
match very well with arrows on the boundary.

We remark that the “locking phenomenon” was observed in the simulation of
[77) at T = 0.001 for this problem, namely, the computed pressure exhibits some
oscillation at T" = 0.001. The reason for the locking phenomenon was explained as
follows: when time step At is small, the displacement vector u is almost divergence
free in the short time while the numerical solution does not observe this nearly
divergence free property, which results in the locking. However, at later times the
displacement vector is no longer divergence free, so no locking exists at later times.

It is clear that our numerical solution does not exhibits the locking phenomenon
at T = 0.001. This is because our multiphysics reformulation weakly imposes the
condition div u = ¢, hence, u automatically becomes nearly divergence free when
q~ 0 for 0 <t << 1. Moreover, the pressure p is not a primary variable anymore in
our reformulation, instead, p becomes a derivative variable and it is computed using
the new primary variables ¢ and 7. Therefore, our numerical methods are insensitive

to the regularity of p.
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Figure 6.6: Test 3: boundary conditions.

Figure 6.7: Test 3: Computed pressure p: surface plot (left) and color plot (right).
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Figure 6.8: Test 3: Arrow plot of the computed displacement (left) and deformation
of D (right).
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Chapter 7

Future Works

The work done in this dissertation can be expanded and extended in a number of

directions. The following are a few projects which will be pursued in the near future.

o Mixed finite element methods for the stochastic Cahn-Hilliard equation with
gradient-type multiplicative noises. I plan to carry out the PDE energy law,
Holder continuity in time of the exact solution, the finite element analysis and

corresponding error estimates, which are parallel to the analysis in Chapter 5.

e Adaptive DG methods for phase field models. Since the mesh size must be very
small for small € in order to resolve the diffuse interface, if uniform meshes
are used, it is computationally infeasible to compute the solutions of phase
field models. As a result, using adaptive meshes is not only efficient but also
imperative to solve phase field models, in particular, in high dimensions. One
of advantages of DG methods is its ease for adaptivity because unstructured
meshes can be easily handled. Hence, I plan to consider adaptive DG methods
for the Allen-Cahn and Cahn-Hilliard equations. It is expected that when the
interface undergoes a topological change, it will change very fast, so I plan
to investigate spectrum-related error indicators which should be sensitive to

topological changes. Moreover, I plan to figure out the approximation orders
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for the eigenvalues of the linearized Allen-Cahn and Cahn-Hilliard operators on

adaptive meshes.

Extending the results of my dissertation to other phase field models. Two-phase

flows and crystal growth are two possible applications to be considered.

Discontinuous Galerkin methods and adaptivity for stochastic Allen-Cahn and
Cahn-Hilliard equations. 1 expect that these extension will be very interesting

and doable.

Analyzing spectrum estimate for linearized stochastic Allen-Cahn and stochastic
Cahn-Hilliard operators. This project is expected to be considerably hard, but
it is the only hope at this time for possibly proving convergence of the numerical

interfaces to the corresponding sharp interfaces.
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