1,006 research outputs found

    Disturbance-observer-based robust control for time delay uncertain systems

    Get PDF
    A robust control scheme is proposed for a class of systems with uncertainty and time delay based on disturbance observer technique. A disturbance observer is developed to estimate the disturbance generated by an exogenous system, and the design parameters of the disturbance observer are determined by solving linear matrix inequalities (LMIs). Based on the output of the disturbance observer, a robust control scheme is proposed for the time delay uncertain system. The disturbance-observer-based robust controller is combined of two parts: one is a linear feedback controller designed using LMIs and the other is a compensatory controller designed with the output of the disturbance observer. By choosing an appropriate Lyapunov function candidate, the stability of the closed-loop system is proved. Finally, simulation example is presented to illustrate the effectiveness of the proposed control scheme

    Non-fragile H∞ control with randomly occurring gain variations, distributed delays and channel fadings

    Get PDF
    This study is concerned with the non-fragile H∞ control problem for a class of discrete-time systems subject to randomly occurring gain variations (ROGVs), channel fadings and infinite-distributed delays. A new stochastic phenomenon (ROGVs), which is governed by a sequence of random variables with a certain probabilistic distribution, is put forward to better reflect the reality of the randomly occurring fluctuation of controller gains implemented in networked environments. A modified stochastic Rice fading model is then exploited to account for both channel fadings and random time-delays in a unified representation. The channel coefficients are a set of mutually independent random variables which abide by any (not necessarily Gaussian) probability density function on [0, 1]. Attention is focused on the analysis and design of a non-fragile H∞ outputfeedback controller such that the closed-loop control system is stochastically stable with a prescribed H∞ performance. Through intensive stochastic analysis, sufficient conditions are established for the desired stochastic stability and H∞ disturbance attenuation, and the addressed non-fragile control problem is then recast as a convex optimisation problem solvable via the semidefinite programme method. An example is finally provided to demonstrate the effectiveness of the proposed design method

    Output Strictly Passive Control of Uncertain Singular Neutral Systems

    Get PDF
    This paper concerns the problem of output strictly passive control for uncertain singular neutral systems. It introduces a new effective criterion to study the passivity of singular neutral systems. Compared with the previous approach, this criterion has no equality constraints. And the state feedback controller is designed so that the uncertain singular neutral systems are output strictly passive. In terms of a linear matrix inequality (LMI) and Lyapunov function, the strictly passive criterion is formulated. And the desired passive controller is given. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed approach

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area

    Singular Value Decomposition-Based Method for Sliding Mode Control and Optimization of Nonlinear Neutral Systems

    Get PDF
    The sliding mode control and optimization are investigated for a class of nonlinear neutral systems with the unmatched nonlinear term. In the framework of Lyapunov stability theory, the existence conditions for the designed sliding surface and the stability bound α∗ are derived via twice transformations. The further results are to develop an efficient sliding mode control law with tuned parameters to attract the state trajectories onto the sliding surface in finite time and remain there for all the subsequent time. Finally, some comparisons are made to show the advantages of our proposed method

    Systems Structure and Control

    Get PDF
    The title of the book System, Structure and Control encompasses broad field of theory and applications of many different control approaches applied on different classes of dynamic systems. Output and state feedback control include among others robust control, optimal control or intelligent control methods such as fuzzy or neural network approach, dynamic systems are e.g. linear or nonlinear with or without time delay, fixed or uncertain, onedimensional or multidimensional. The applications cover all branches of human activities including any kind of industry, economics, biology, social sciences etc

    Time-Delay Systems

    Get PDF
    Time delay is very often encountered in various technical systems, such as electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, robotics, etc. The existence of pure time lag, regardless if it is present in the control or/and the state, may cause undesirable system transient response, or even instability. Consequently, the problem of controllability, observability, robustness, optimization, adaptive control, pole placement and particularly stability and robustness stabilization for this class of systems, has been one of the main interests for many scientists and researchers during the last five decades
    • …
    corecore