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This paper is concerned with finite-time extended dissipative analysis and nonfragile control for a class of uncertain switched neutral
systems with time delay, and the controller is assumed to have either additive or multiplicative form. By employing the average dwell-
time and linear matrix inequality technique, sufficient conditions for finite-time boundedness of the switched neutral system are
provided. Then finite-time extended dissipative performance for the switched neutral system is addressed, where we can solve H_,
L, — L, Passivity, and (Q, S, R)-dissipativity performance in a unified framework based on the concept of extended dissipative.
Furthermore, nonfragile state feedback controllers are proposed to guarantee that the closed-loop system is finite-time bounded
with extended dissipative performance. Finally, numerical examples are given to demonstrate the effectiveness of the proposed

method.

1. Introduction

Switched system is an important class of hybrid systems,
which consists of a family of subsystems and a logical rule that
orchestrates switching between them. For its practical impor-
tance, switched systems have received considerable attention
in the last decades [1-5]. Meanwhile, time delay exists widely
in many practical systems and may cause undesirable system
performance or even instability [6-9]. Switched system with
time delay is a main issue in recent years. As a special
time delay system, switched neutral systems have received
much attention [10-14]. For example, the problem of stability
analysis and H_, control for several switched neutral systems
were considered in [10] and [13], respectively.

Up to now, most researches for switched neutral systems
focus on Lyapunov asymptotic stability, which is defined over
an infinite time interval. However, in practice, the transient
performance of a system is also of great significance. In
many practical applications such as missile systems and robot
control systems, the main concern is the system behavior
over a finite-time interval. Therefore, finite-time analysis
of switched systems is worth researching. Recently, some

related research results were published in the literatures [15-
20]. More specifically, finite-time H_, control of switched
systems was addressed in [16], and finite-time stabilization
and boundedness of switched linear system were investigated
in [19].

On the other hand, the controller coefficients are gener-
ally exact values when designing a desired controller. How-
ever, in practice, uncertainty cannot be avoided in controller
design, and it may be caused by many reasons, such as
numerical round-off errors and actuator degradation. The
existence of uncertainty motivates the study of nonfragile
control. Over decades, much attention has been devoted to
the issue of controller fragility and related remedies [21-24].
To name a few, the problem of passivity-based nonfragile con-
trol for Markovian jump systems with aperiodic sampling is
studied in [22], and nonfragile H_ control for linear systems
with multiplicative controller gain variations is investigated
in [24], respectively. More recently, an effective tool named
extended dissipative was firstly proposed by Zhang et al. in
[25] to deal with the problem of robust control. By adjusting
weighting matrices, the extended dissipative covers some
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well-known performance indices such as H, performance,
L, — L, performance, Passivity performance, and (Q, S, R)-
dissipativity performance. This concept has been successfully
applied to the stability analysis for several neural networks
[26-30]. Could this concept be applied to switched systems?
To the best of our knowledge, the topic of nonfragile finite-
time extended dissipative control for a class of uncertain
switched neutral systems has not been investigated yet, which
motivates our study.

This paper is organized as follows. In Section 2, pre-
liminaries and problem statement are formulated and some
necessary lemmas are given. In Section 3, by employing the
average dwell-time and linear matrix inequality approach,
some sufficient conditions of finite-time boundness and
finite-time extended dissipative performance for switched
neutral systems are established. Furthermore, existence and
the design method of the nonfragile state feedback controllers
are proposed. All of the results are in terms of a set of linear
matrix inequalities which can be easily resolved using the
LMIs toolbox. In Section 4, numerical examples are given
to show the effectiveness of the proposed approach. The
main contributions of this paper include the following. (1)
We firstly apply the concept of extended dissipative to the
nonfragile finite-time analysis and control to the uncertain
switched neutral systems. (2) More general switched systems
are considered in our paper, including the time-varying delay
and distributed delay, neutral parameters, and additive and
multiplicative form controller.

Notation. The notations used in this paper are standard.
R" denotes the n-dimensional Euclidean space and M
represents the transpose of the matrix M. The notation X > 0
(>0) is used to denote a symmetric positive definite (positive-
semidefinite) matrix. | X|| represents the Euclidean norm of
the matrix X; A;,(P) and A, (P) denote the minimum
and maximum eigenvalue of matrix P, respectively. I is the
identity matrix with appropriate dimension. diag{-} stands for
a block-diagonal matrix. The asterisk * in a matrix is used to
denote a term that is induced by symmetry.

2. Preliminaries and Problem Statement

Consider the following switched neutral system with time-
varying delay:

k(t) = Copi (t =T (1))

= Ayx (t) + Bygyx (t = h (1)) + Dygyw (1)

t

+ Eyptt () + Gy J x(s)ds, 1

t—r(t)
z(t) = Fypyx (1),
x(0)=9(0),

where x(t) € R” is the state vector, u(t) is the control
input, w(t) is the exogenous disturbance which belongs to
L,[0,00), and z(t) € R" is the output. The switching signal
o(t) : [0,00) —» M = {1,2,...,1} is a piecewise continuous

VO € [-1,0],
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function, where [ is the number of subsystems and o(t) = i
means that the ith subsystem is activated. ¢(0) is the initial
condition, and h(t), r(t), and 7(t) denote the time-varying
delay and satisfy

0<h(t) <h,
h(t)<h<1,

0<t(t)<T,, (2)
T()<T<1,

0<r(t)<r,.

Furthermore, -7 = max{h,,, 1,,}, and for each o(t) = i,
A, B, C;, and G, are uncertain real-valued matrices with
appropriate dimensions. We assume that the uncertainties are
norm-bounded and of the form

[Ai’Bi’Ci’Gi] = [Ai’BPCi’Gi] 3)
+ LiE; (1) [My;, My M, M) 5
where A;, B;, C;, G;, M,;, M,;, Ms;, and M,; are known
real-valued constant matrices with appropriate dimensions
and E,(t) is unknown and possibly time-varying matrix with
Lebesgue measurable elements satisfying &/ (£)E;(t) < I.

In this paper, we consider the following nonfragile state
feedback controller: u(t) = K, (£)x(t), where K, (t) =
K;+AK;(1), K; is the controller gain and AK;(t) is a perturbed
matrix with the following forms.

Case 1. AK;(t) has an additive uncertainty which is assumed
to be

AK; (t) = J,;U; (8) T (4)

where J;; and J,; are known real constant matrices with
appropriate dimensions and the time-varying matrix Uj(t)
satisfies Ui(t)UiT(t) <L

Case 2. AK;(t) has a multiplicative uncertainty

ki (00 + 01:)

Kyi (07 + 021)

ki (0 +075) -

ki (03 + 031;)

AK; (t) = , (5)
kmli (Gmi + Gmli) Tt kmm' (Gmi + Gmni)
where k,; is the element of K; and.ap,- and 0, (p. =
1,...,m; q = 1,...,n) are real uncertain parameters which
satisfy
'0 l| <0<l
o (6)
|opqi S0, S0 <1

Assumption 1. For a given time constant Tf, the external
disturbance satisfies

Jf T
0
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Assumption 2. For a given time constant T, the state vector
x(t) is time-varying and satisfies the constraint

Jf

where k is a fixed sufficient large constant number.

Assumption 3 (see [25]). Matrices ¥, ¥, Y5, and y, satisty
the following conditions:

Wy =y <O, y3=y3 >0, =y, 20

(2) (lyll + lya Dy = 0.

Assumption 4. ForVa > 0, p > 1, Vt € [0,Tf], we have

eoct#Nv(O,t) < b, (9)

where N,(0,t) denotes the switching number of o(t) over
(0,t) and b denotes a positive number.

Definition 5 (see [25]). For given matrices v, ¥,, ¥, and
y, satisfying Assumption 3, system (1) is said to be extended
dissipative if the following inequality holds for any T; > 0
and all u(t) € L,[0, 00):

T
J ’ J(t)dt — sup zr ) yuz (t) >0, (10)
0 0<t<Ty

where

J() =2" (®)yyz (1) + 22" () yw (t) W
11
+w' () yw(t).

Remark 6. The concept of extended dissipative introduced
in Definition 5 contains a few of well-known performance
indices as special cases by setting the weighting matrices:

(1) L, - L, performance: ¥, = 0, y, = 0, y; = y*I, and

vy=1

(2) H,, performance: v, = -I,y, = 0, y; = y°I, and
Yy =0;

(3) Passivity performance: v, = 0, y, = I, v; = yI, and
v, =0

(4) (Q, S, R)-dissipativity performance: v, = Q, y, = S,
w3 =R—fl,and y, = 0.

Definition 7 (see [17]). Given three positive constants ¢, ¢,,
and T, with ¢ < ¢, a positive definite matrix R and a
switching signal o(t), assume that u(t) = 0, V¢t € [0, Tf], and
switched neutral system (1) is said to be finite-time bounded
with respect to (¢}, 6, R, T, 0), if, Vt € [0, T],

sup {x" (0)Rx(0),x" (O) Rx (O)} <, =
-7<0<0 (12)
x! () Rx (t) < c,.

Furthermore, if the condition above holds with w(t) = 0, Vt €
[0, T], the system is said to be finite-time stable.

Definition 8 (see [17]). Forany T, > T} > 0, let N (T}, T;)
denote the switching number of o(t) over (T}, T,). If

T, -T
N, (T,,T,) < Ny + 2—2
T

a

(13)

holds for 7, > 0 and an integer N, > 0, then 7, is called an
average dwell-time. Without loss of generality, in this paper
we choose N = 0.

Lemma 9 (see [29]). Let a and b be real matrices of appropri-
ate dimensions and satisfy 2a"b < a’a + b' b.

Lemma 10 (see [31]). For any positive definite symmetric
matrix N € R™", scalar T > 0, and a vector function x(s) :
[-7,0] — R", the following integral inequality is satisfied:

-7 J;t_ x! (s) Nx(s)ds
! (14)

t

< - J:_T X! (s)dsN J

t—

x (s)ds.

Lemma 11 (see [32]). Let J and L be real matrices of appropri-
ate dimensions. Then, for any scalar € > 0, one has

JUBOL+U @D <elJ" +e'L7L, (15)
when U(t) satisfies uTu®) < L.

Lemma 12 (see [33]). Let G be real positive definite symmetric
matrices and let B and L be appropriate dimensional real
matrices. Then, one has

BL+ (BL)" < BG'B" + L'GL. (16)

3. Main Results

3.1. Finite-Time Boundedness Analysis. Consider the follow-
ing unforced switched neutral system without uncertainties:

% (t) = Copyx (t =7 (1))

= Aa’(t)x (t) + Ba(t)x (t -h (t)) + Do(t)w (t)

t

+ Gy j x (s)ds, 17)

t—r(t)
4 (t) = Fo.(t)x (t) 5

x(ty+0)=¢(0), VO e€[-1,0].

In this section, the problem of finite-time boundedness
analysis of the switched neutral system is proposed, by using
the average dwell-time approach, sufficient conditions are
derived by solving some linear matrix inequalities, and the
results are shown as follows.

Theorem 13. For given positive scalars «, h, 7, h,,, and r,,, if
there exist positive definite symmetric matrices P, Q;, Z;, T},
and M; and matrices N;, X,,;, X155 Xppp Hyp and H,; with
appropriate dimensions, then



4
X, X
Xi= 117 12i >0,
* o Xy
[ X1 X1 Hy
A= = Xy Hy >0,
. T
[b11 b12 ¢i3
TS T
* ¢y ¢y B; Z,D;+h,B; T:D;
0, =
% ok %k
% % %k
hold, where

¢y = —aP; + DA, + A,Tpi +Q+ A;'FZ‘AI'
+hy, AT, A, + 1, M; + Hy + Hy + b, X

¢, = P,B, + A1 Z,B; + h,,A'T;B, — H,; + Hy,
+h, X

$i3 = PC; + A?Z‘Cz‘ + hmAzTTisz

¢4 = P;D; + A?ZiDi + hmAzTTiDv

x % ¢y CI'Z.D;+h,CIT.D;

Complexity

PG, + ATZ,G; + h,ATT,G;]
B! Z,G; +h,,B/T,G,
CI'ZG; + h,,C/T,G,
DI'Z.G, +h, DTG,

b1

<0,

¢44

—~ ~ M.
* G/ Z,G;+h,G/T,G,- —

m A

¢ =—(1- E) Q; + B/ ZB; + h,,B] T;B; - Hy; — Hy,
+h, X
=B'Z.C.+h B'T.C,
¢23 i “ii + m=i i
¢33 =—(1-7)Z, + C Z,C; + h,CIT,C,,

$gg = —N; + DiTZ'Di + hszTTiDi’

h h
(A + ™ Ay + 7,85 Ay + hye™ s + 1,657 A
—aT
o+ Ad < gAie

meanwhile, the average dwell-time satisfies

Tflny

T,> 7T, =
We define

B, = RV*PR,
3, = R2Q.R',
Z;=R"ZR",
. = RVPTR?,
M, = R/’ MR,

Ain (B) = Ay,

Max (B) = Ass

Amax (Qi) = A3

In(1,6,) =In[(A, + h,,ends + 7,65 Ay + hyemds + 7,62 A6) ¢ + Ayd] — T

Armax (Zi) = Ay
Aax (Ti) = As,
Ammax (Mi) = A
Aaxe (N;) = A5,

(24)

where y > 1 satisfies

P. < yﬁj,

Al

< .“aj,

NI

<uZ,

~

<uT,,

(18)

(19)

(20)

(1)

(22)

(23)
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M; < uM;,
Vi, j € M.
(26)
Then, switched system (17) is finite-time bounded with respect
to (¢, ¢, d, R, T, 0).

Proof. Choose the piecewise Lyapunov-Krasovskii functional
candidate as

VA(t) = Vo (8) = Vi (1)

(27)
= V3 () + V5 () + V3 (1) + Vi (8) + Vi (1)
where
vy, (5) = x" (1) Bix (1),
t
Vi () = J T (1) Qux (t) ds,
t=h(t)
t
_ a(t-s) . T > .
Vi (t) = J;_T(t) e X (t) Z;x (t)ds, (28)
0t _
v, (t) = J I LT (1) T () ds de,
—h,, Jt+e
0t .
Vg (t) = J j 5T (1) Myx (t) ds de,
=1, Ji+€

in which « is a given scalar and P, Q;, Z;, T;, and M;
are positive definite matrices to be determined. Taking the
derivative of V(¢) with respect to t along the trajectory of
system (17) yields

V(6 =2x" (1) Pix (),
Vi ()
= aVy; (1) +x" () Q;x (t)
—MO(1-h@®) " (¢ = h(E) Qx (t = h (1)
< aVy; () + x (£) Qx (1)
~(1-h)x" (t-h (@) Qx (t - h (1)),
Vi (1)
= aVy; (1) + &° (t) Z% (£)
—e (-t & (t-T1) Zix (t -7 (1))
< aVy (6) + %7 (t) Z% (t)
Q=D -T@) Zx (- T (),
Vi ()

=V, (t) + h,x' () T;x (1)

t
- J I () Tk (s) ds
t—h(t)

< aVy,; (t) + h,x" () T;x (t)
_ Jt &7 (s) T (s) ds,
t—h(t)

Vs (t)

= aVy, (t) +1,,x" (£) Mx (t)
t
- J 5T () M,x (s)ds
t—r(t)
<aV (t) + rmxT (t) M;x (t)

t
- J X! (s) M;x (s) ds.
t—r(t)

Using the Leibniz-Newton formula, we have
2 [x" () Hy; + x" (¢ = h () Hy
t
-[x(t)—J jc(s)ds—x(t—h(t))]:o.
~h(t)
Let
T
x@®=[x"@) “t-hw)],
and it obviously holds that
t
hox" (8) Xix () - j X' (t) X;x (t) ds > 0.
t-h(t)
By Lemma 10, it is easy to obtain

t
- J Xl (s) IT/Iix (s)ds
t—r(t)

t

< L J: x! (s) ds]VIi J

T Jt=r(t) t=r(t)

x (s) ds.

Thus we have

V(1) —aV (t) - w’ (£) Naw (t)
<X"(1)O,X(t) - r 9" (t,5) A9 (t, s)ds,
t—h(t)

where

X (t)

- [xT(t) Tt-h@) T t-1@) W ) jf_r(t) X7 (s)ds]T,

99 =[x"(0) " (t-h(t) )] -
Considering (19) and (20), we can obtain that

V() —aV () - w' (t) Naw (t) < 0.

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)
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Integrating (36), it can be obtained from (26) and (36) that, < eanMNU(O,Tf) [V 0) + J’Tf W' (s) Now (s) ds
Yt € [t i), 0

¢ sy N OTD [V (0) + Aoy (N) d] .
V() < Y () +J T () Nw (s)ds e H [V (0) + Ao (N;) ]

t (37)
< e“(t_t")yV (t) + J =97 (s) Nyw (s)ds From Definition 8, we can deduce that N,(0,T;) < T/,
t and then we can obtain
< e“(t_t")pt [ea(t"_tk’l)V (te-1) V (t) < e@nulm)Ty [V (0)+A,d]. (38)
On the other hand

bk
+J et T(s)Nw(s)ds] B
i V() > x () Bx (t) = x () R* PR x (1)

t
+J 9T (5) Naw (s) ds > Amin (P) X" () Rx () = A, x" (£) Rx (£),
ti
T ah,, ]

_ ea(t—tk,l)‘uv (tkfl) 14 (0) = /\max (Pz) x (0) Rx (0) + hme /\max (Qt)

" - sup {x" (O)Rx(0),x" (6) Rx (6)}
+ptj 9 T(S)Nw(s)ds r=0<0

. + Tmearm/\max (Zz)

t
N L ST () Now (5) ds < - - sup {x" () Rx(6), %" (6) Rx (6)}
; -7<6<0
< elx(t—O)‘uNo(O’t)V (0) +h eahm/\max ( 1)
t
. ‘MNU(O,t) J e(x(t—s)wT (s) Niw (s)ds . suep {xT (0)Rx (0), 5CT (0) Rx (9)} (39)
. -7<0<0

+ rme“rmAmax (Mz)

t2
+ “Nd(tht) J-t =) T (S)Nw(s)ds +---

1

- sup {x" (O)Rx(6),x" (6) R (0)} < [Apay (P))

L o(t— S) T —-7<0<0
+u J e” (s) Nyw (s)ds
tk ! + hmeahm/\max (Ql) + Tme max (Z )
t
r J etx(t—s)wT (s) Naw (s)ds i h ahm/\ ( ) +r, earm/\ (Ml)]
ti
T T )
_ 200, N0y () - sup X" O)Rx (6),%" O)Rx(0)] < [A,
+ re alt- S>”N 0T (s) Now (s) ds + hme“h’"/\3 +7,e"" A, + hme"‘hm/\5 + rme"‘rmxlé]
0
Q.

t
at N, (0,t) N,(0,t) at T
seu V) +u € _[0 w (s) Njw (s) ds From (38)-(39), we can obtain

V) A+ he Ay + 1,0 Ay + he A+ 1,6 A 6 + Ayd

x () Rx (t) < < e Tr sl (40)
M M
When p = 1, it is obvious that x” (£)Rx(t) < ¢, by (22). + B, s + T Ag) 6 + Aod] ol > 0.
When u > 1, by virtue of (22), we have that (41)

In(1,c,) ~In [(/\2 + hmeahmAs + 7,65y From (23), we can obtain
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Ty . In(A6) = In [(A, + e Ay + 7,57 Ay + he™ A5 + 7,67 Ag) ¢ + Apd] — T

Ta

In (u)

CIn[Aiee T (g + e Ay + 1, A + e As 1,65 A ) 6 + Ard )|

In ()

Substituting (42) into (40) yields

[Ay + he Ay + 7,5 Ay + B A + 1,6 Ag | ¢ + Aod

xT () Rx (t) < [

Aloze_“Tf

(fo
" ] ¢

[ (A, + hemdy + 1,65 Ay + h,eMm g +1,,e5mAg) ¢ + /\7d] e

The proof is completed. O

Based on Theorem 13, when we set w(t) = 0, the following
corollary is proposed to solve the finite-time stable problem.

Corollary 14. Consider system (17) with w(t) = 0. For given
positive scalars &, b, 7, h,,, and r,,, if there exist positive definite
symmetric matrices P, Q;, Z,, T;, and M; and matrices X,
X i Xoir Hyj» and H,; with appropriate dimensions, then

X X
* X

Xy X Hy
* X Hyi | 20,
« %« T,

1 d

B _ _ (44)
Ay Ay Ay PiGi+A;'FZiGi+hmAzTTiGi-

Ay Ay B/ Z.G; + h,,BIT,G;
% Aj, CiTZ-Gi + thiTT,-Gi <0

_ _ M.
* * * GiTZ,-Gi + hmGiTT,-G,- -—

L Ty A

hold, where

Ay =-aP;+PA + AP, +Q; + Al Z,A,
+hy, ATT, A, + 1, M, + Hy + H + X
D T T T
A, =PB;+A;ZB;+h,A;T;B, - H, + Hy
+h, X5
_ = .
Ay =PC;+ Al Z,C; + h, AT T.C,,
Ay =-(1-h)Q +B/ZB, +h,BT;B,— Hy
T
—Hy; + hy, X
A,y =Bl Z,C; +h,B'T,C,

,=-(1-2)Z;+C/ Z,C; +h,C'T,C,

A3
A, + by e ) )\, + h,e ) Hm A
3+ h, e A+ 1,6 Ay + B e A + 1,65 A

—aT
o < gAe

meanwhile, the average dwell-time satisfies

Telnp

*_
T,>T,

where y > 1 satisfying (26) and P, Q;, Z;, Ty, M, Ay, Ay,
As, Ay As, and Ag are defined just the same as (25). Then
the switched system (17) is finite-time stable with respect to
(¢1,6,d, R, Tf, o).

Proof. The proof is similar to that of Theorem 13, and it is
omitted here. O

CIn(Ay6) - In[(A, + ke, + 1,65 A, + by, em g + 1,65 ) ¢ ] — aTy’

(42)

(43)

(45)

(46)

3.2. Finite-Time Extended Dissipative Analysis. In this sec-
tion, the finite-time extended dissipative analysis is consid-
ered in the following theorem.

Theorem 15. For given positive scalars &, h, 7, h,, r,,, and b,
if there exist positive definite symmetric matrices P,, Q;, Z,,



T, and M; and matrices X,,;, X 3 Xop5» Hy;» and H,; with
approprzate dimensions, then

Complexity

b — Fl'y,F, >0, (47)
[ X1 Xy
X, = " TPz, (48)
L ox Xy
[ X1 Xio Hyi
Aj=| * Xy Hy |20, (49)
| * * Ti
[ @) @), D5 Dy PG, + A{ Z,G; + h, A{T,G,]
% ®©, ®y B/ZD;+h,BT,D;,  B'ZG,+h,B TG,
T+ T T T
D, = * % Oy G ZD;+h, G T,D; & fiGi +h,C; 7:iGi <0 (50)
*oook o F Dyy D;ZG; + h,,D; T,G;
— . M.
x ok k G/ ZG, +h,G/ T,G,- —
L Ty A
hold, where Ao (1//2 1//2)
@), = —aP, + DA+ A[P; + Q + A] Z,A, Ao (15 =
+ b, AL T;A; = F/yF; + 1, M; + Hy; + Hy, P, = Rl/zPiRl/z,
+hy, X1 3. = RV2QR?
+h, X150 Ti _ RI/ZT,-RI/Z,
®,=P,C,+A'ZC, +h,AIT,C, _
13 i i - M. = R MRV,
®y = P.D; + A Z,D; + h, A;T;D; - F vy, (53)
D,, = _( )Q + B Z.B +h, B T.B, - H,, - H1 7?’1611, system (17) isﬁnite—time bounded with extended dissipa-
tive performance with respect to (0,¢,,d, R, T, 0).
+h, X5
mea Proof. Choose the same Lyapunov-Krasovskii function as in
D,y = BiTZCi +h, BzTTiCi’ Theorem 13, similar to the proof of Theorem 13, and we obtain
e _ Vt)-aV () -] () < X ()X (t
®y3=-(1-7)Z +C] ZC, +h,CT,C, ) ®-7@) (1 ®X 0 50
t 54
— ~ T
@,y = =y + D; Z,D; + h,, D/ T:D;; - J;_hm 9 (t,5) A9t 5)ds,
meanwhile, the average dwell-time satisfies where
T,>7T, = >, (52 T
* In(Ai) ~In[Agk + (Ag + Ay) d] — Ty =[x K" t-h@) Fe-c@) W@ [, 5" Gds] . (55)
where 99 = [x" (0 " t-ne) )]s
Ain (P) = Ay, by virtue of (49)-(50) we can obtain that
Amax( ) Agr V(E)-aV () -T() <0 (56)



Complexity

follows the proof line of (37); it is easy to obtain the following
inequality:

V(1) < 00 (0) + J w9 Mo ] () ds; (57)
under zero initial condition V(0) = 0, it can be calculated that

V() < ezxt N, (0,t) Jt](s) ds, (58)

and it is equivalent to

V() '
gagon < ), J©ds (59)
by Assumption 4, we have
v ;t) I 7 (s)ds, (60)

so we obtain

J J(s)ds > VT() > X Tt Pix (t) > 0, (61)
considering inequality
T, ,
[T1@de- sw T Ovz0z0 @
0 0<t<Ty
when y, = 0, one obtains
Ty
j J ()dt = 0; (63)
0

when y, > 0, by Assumption 3 we have y;, = 0, ¥, = 0, and
Y5 > 0, and then we obtain

t t
J ] (s)ds = J w' (s) yyw (s) ds; (64)
0 0
thus, for Vt € [0, T¢], we have
Ty t 1 _
j J(s)ds > J J(s)ds > ExT (t) Pix (t) > 0; (65)
0 0
it follows from (47) that

T,
J "1 (s)ds > %xT ) Bux (t) = x" (t) F 'y, Fox (1)
0

(66)
=z () y,z (1),
so we get
T, ,
J J(@t)dt — sup z° (t) yuz (t) = 0. (67)
0 OstsTf

Thus the proof of extended dissipative is completed.

Next, we proof finite-time boundedness. Following the
proof above, we can deduce that

V(1) < et Jtl (s)ds,
(68)

Ty
V (t) < e@HInH/nTy J 7 (s)ds.
0

When y; < 0, we can obtain

Ty Ty
J J(s)ds < J [227 (5) yow (s) + w' (s)
0 0

S YW (s)] ds,
(69)

Ty
waw“mwﬁjhfw%mg
0
+ wT (s) Ysw (S)] dS] ,

so we get

V()

1

xT () Rx (t) <

e(tx+ln wlta)Ty

T
< /\—1 [L ’ [ZzT (s) yow (s) (70)

+w! ) ysw (S)] ds] s
by

T
L ! [ZZT () yw(s) + w’ (s) yyw (s)] ds
(71)

T
= J ! [ZxT (s) FiTl//zw(s) +w’ (s) %w(s)] ds,
0
and by Lemma 9, we have

2xT (s) Fl.Ty/Zw (s) < X! (s) FiTFix (s)
(72)

+w’ (s) 1//2Tw2w (s).
According to (106), we can obtain
V(t)
A

1

X (t)Rx (t) <

e(oc+ln wlT )Ty

T
< /\—1 Hof [ZZT () y,w (s)

+w’ (s) yyw (s)] ds]

e(zx+ln p./'ra)Tf

T
< /\—1 Ho ! [xT (s) FiTF,-x (s)
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+w’ (s) szl//Zw (s) + w’ () ysw (s)] ds]

e(oc+1n Wt Ty
< [Agk + (Ag + Ayg) d] .
1

(73)

From (52), we can conclude that x” (f)Rx(t) < ¢,. Thus the
proof is completed. 0

3.3. Nonfragile Finite-Time Extended Dissipative Control.
Consider system (1), under the controller u(t) = K,x(t),
the corresponding closed-loop system is given by

% (8) = Copyx (t =7 (1))

= (Za(t) + E; Koy (t)) x(t) + Byyx (t = h(t)

r T
0, 0, GR; D;-RF'y, G
x 0y 0 0 0
* % Oy 0 0
* * * —Y3 0
M,
% % * % -1t
rm
% % * * %
% % * * %
% % * * %
* * * * *
| * % * % %

hold, where
®), = —aR; + AR + RA] + EY, +Y/E[ +Q

_ - T —
+1,,M; + Hy; + Hy, + h,,X,,; + OL,LT
+ €Ei]1i]£EiT’
T -
Oy, = BiR; — Hy; + Hy + h, Xy

T  ToT T T T
O =RA; +Y, E; +0L,L; +€E]J;E;,

Complexity
e t
+ Dypyw (£) + Gy J x (s)ds,
t—r(t)
z (t) = Fg(t)x (t) S
x(t,+60)=9(6), V0 e[-1,0].
(74)

Firstly, for the additive gain variation model satisfying
the form of Case 1, that is, AK;(t) = J,;U;(t)],;> we have the
following theorem.

Theorem 16. For given positive scalars «, h, 7, h,, 1,
0, ¢ and b, if there exist positive definite symmetric
matrices P, Q, Z, T, and M, and matrices L, M,
M,;, M, My, J; and ],; with appropriate dimensions,
then

1~
Epi - FiT%Fi >0, (75)
X Xio0]
11i 12i 20) (76)
# Xpoi
Xlli X12i Hli-
* Xy Hy | >0, (77)
oo T
T T T
®16 ®17 RiMli Ri]2i RiFi
RB] h,RB/ RML 0 0
RC! h,RCI RMy 0 0
pf h,Df 0 0 0
T T T
G; h,,G; My, 0 0 <0 (78)
O O 0 0 0
x 09, 0 0 0
* * -0I 0 0
% * * —l 0
* * * * 1//1_l ]

®,, = h,RA" +h, Y El +h,oL,L"
+ ehmEijli]z;E?’
0, = - (1 - E) Q- Hy - H; +hy, Xonis
0, =-(1-7)Z,
O = —W; + OL,L; +€E,J,,J E; ,

O = hyOL;L! + €h,, E;J, ;] E],



Complexity

0, =

T 2 T T
_hm‘/i + hm(SLiLi + ehmEillijliEi 5

the matrices are defined as follows:

where

Ay =

Ay =
A=

KiP; =Y,
~ -1
P, =R,
— -1
Zi =W,
~ -1
T, =V,
- 1= ~ -1 —
Pl QiPi = Qz’
ﬁiilziﬁiil = Z"
-] — ~ -1 —
P, M.P. =M

1
meanwhile, the average dwell-time satisfies
7 T,>T = Iylnu , (81)
“ In(Mg) -In[Agk+ (Ag + Ay) d] - T
where
Ain (B) = Ay
P — (FiTFi) =Ags
Amax (V’zT‘l/z) = Ao,
Mnax (¥3) = A10s
P;=R"PR", (82)
Q =R"QR",
0) Z, =R ZR"?,

1/2 1/2

T, = R"*T,R'?,
M, = R’ M,R'?
1 1 N

Then the switched linear neutral system is finite-time bounded

i HauPi = Hy; with extended dissipative performance. Furthermore, the non-
o fragile controller can be chosen by
P XyPp = Xy
u(t) = Ko (8) x (1) (83)
~ -1 - -1 —
Py XpypiPi =X
1 1 Proof. Replacing A;, By, C;, and G; in (50) with A, + EK; +
Py XoPi = Xois E,AK;(t), B;, C;, and G; and by Schur complement, we obtain
- L e _ T
Ay Ay PG PD; - FiTV/z PG, Ay hy, (Ai +EK; + E;AK; (t)) T;
~T— ~T~
s Ay 0 0 0 B Z h,B; T;
T~ T~
* *  Ag 0 0 C 7z h,,C, T;
A= = = * ) 0 DITZ» hmDiTTi , (84)
M. —T— T~
P e e . Mgy hGi T
T
* * * * * -Z; 0
L * * * * * * _hmTi ]
AYa T
Ay =- (1 - h) Q; — Hy; — Hy; + h,, X5,
~aP; + P, (A; + EK; + EAK; (1)) Ap=-(1-9)Z;
—_ T ~ —
+ (A + EK; + EAK, (1)) P;+Q, (85)
+7,M, - FiT%Fi +H, + HE +h, X1 A ; can be rewritten as
= 5 T
P,B;— H,, + Hy; + h,, X 5 Q; + T,U; () Ty + LU () T (86)

i
—_ T —
A+ EK; + EAK; (D) Z,,

where



12 Complexity
- —_ —_ T —_ — T —_ 7
Qn Q, PC; PD;-Fy, PG, Q4 h, (Ai + EiKi) T;
T T
£ 0y 0 0 0 BZ h,B; T,
T T
* % (g, 0 0 C Z h,C, T,
Q=1 x = = ~y, 0 D!Z h,,D]T; ; (87)
M. 1~ T
* * * * -— G?Z, h,,G; T,
rm
* * * * * —Z- 0
B * * * * —hmi ]
with by using Lemma 11, there exists a scalar € > 0, such that
B.+B.(A i P40 Q; + LU, (1) Ty + DU ()T
Q,, = -aP; + P, (A, + EK,) + (A + EK;) P;+Q i TV () Ly + 1,05 (O 1y (89)
— T, -14T
+1,,M; - F y,F; + Hy; + Hi + b, X < +elyly; +e Ll
Oy, = T)iBi - HE + Hy; + hy, X150 (38) where
88 - — ~ 1T
— T~ = |JTETD. TETZ. TETT.
016 = (Ai + EiKi) Zi’ rll []liEi Pz 0000 ]lez Zz hm]hEz Tz] ? (90)
~ = L,=J] 00000 0f.
Oy =-(1- h) Qi —Hy - H; +hy, X 2= Va ]
= Here we consider the norm-bounded uncertainties, and we
Oy =-(1-7)Z; set Q; = Qy; + Q,;, where
ro— —_ ~ ~ ~ —_ T ~ -
€, Ep PC; BDi-Fly, PG Ey h,(A+EK) T,
* By 0 0 0 B/Z h,,B/T;
* x By 0 0 C'Z h,CI'T,
T T
Qli = * * * £ 0 Di Zl hmDi Ti > (91)
M; ;= _
cow e Mg e
rm
* * * * * —Zi 0
B % * % * % —hmT, i
with [ PL; ]
- 5 % TS | =
B, =-aP;+P;(A; + EK;) + (A; + EK;) P;+Q; 0
+rmMi_P;TWIFi+Hli+H£+th11i’ 0
o 5 T o
81 = PiB; = Hy; + Hy; + 1y, Xy, Oy = 0 E; (t) [My; My My 0 My 0 0]
o T
Eig = (A +EK;) Z;, 0
= N\~ T —
8y, = - (1-h)Q - Hy — Hy, + h, X500 Z:L;
B3=-(1-0)Z, Lh,,T,L, ]




Complexity

- T ~
My,
T
My,
T
My,
0
T
My
0
0

T

1

-
(=)
=

®[LTP; 0 0 0 0 LTZ; h,LIT,].

(92)

By Lemma 11, there exists a scalar § > 0, such that

PL,
0
0
0, <& 8 [LTP, 0 0 0 0 LTZ; h,LTT}]
Z;L;
| b, TiL; |
11, 1, PC, PiDi_FiT‘l/z
« I, 0 0
* * Il 0
* * * *
* * * *
* * * *
* * * *
L * * * *
where

I, = _0‘131' + f)i (A; + EK;) + (A; + EiKi)T 131' + ai

+0P.L.LT

_ T _
+1,M;+ Hy; + Hj; + h, X,y iLiL; P;
+ epiEijli]EEiTﬁi)
= T
I, = P;B; - H}; + Hy; + h,, X5,
T = T
M= (A +EK;) Z; + OP,L,L; Z;
+ EPiEillijz;EiTzi’
M, = h, (A; + EK,) T, +h,,6P,L,LT,
+ EhmlsiEijliIIT;E?Ti’

~\ = T
I, = - (1 - h) Q; — Hy — Hy; + hy, X555,

13

+67! [M,;, My My 0 M, 0 0].

(93)

Then pre- and postmultiplying (78) by diag{P,, P,, P, I, 1, Z,,
T;, I, 1,1}, we have

= T T T 7
PG, I I, M, Jy F
T T T
0 B Z h,B T, My 0 0
T T/ T
0 C Z h,CT, Mj O 0
T T
0 D'Z h,D'T, 0 0 0
M, _r T T
_r_l G Zi h,GT; My 0 0 |y, (94)
m
x I g 0 0 0
* * I1,, 0 0 0
® * * -8 0 0
* % * * —€el 0
* * * * * 1;/;1 ]
Il = -(1-7) Z"
= =T T =T T o T7
Wgs = ~2;+0Z; L;L; Z; + €Z; E;] )] E; Z;,
ST TH =T T -T7
g, = h,6Z; L,L; T; + €h,,Z; EJ\;]E; T},
M. =-h T.+h 6T LI T, + 2T EJ,J E'T
77 = "yl + 1,005 Lyl Ly mt i Lili)ii L
(95)

Based on above discussion, from IT;; < 0, by Schur comple-
ment, we can conclude that A; < 0. Similar to the proof of
Theorem 15, we can obtain

V() —aV () - () < X" (t)A,X(t)

t
L—h(t)

(96)
9" (t,5) A9 (t,5) ds,
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where

X (t)

=[f @ KTE-h@) Fe-c@) WO [, xT(s)ds]T, (97)

9(ts) = [x" () T t-h) i (5] s

A, is given in (77). The following proof is similar to that of

Theorem 15; it is omitted here.

(I, T, GR, Ty G
* L, 0 0 0
* % Iy 0 0
* % * —y; 0
i,
* % * * ——
rm
* % * * *
* % * * *
* % * * *
* % * * *
* % * * *
* % * * *

where

Ty, = —aR; + A;R; + RAT + EY; + Y/ E] +Q

— — T —
+r,M;+H;+H,;+h, X+ 6L,~L1.T

n
T o
+€eE0{E] +m) 5,,,Qup
gq=1
T —
I, = BR; — Hy; + Hy; + h, X5,
T
Ly = D; = RiE; vy,

Complexity

Furthermore, for the multiplicative gain variation model

AK;(t) with the form in (5) of Case 2, we have the following

theorem.

Theorem 17. For given positive scalars &, h, 7, h,,, 1,,, 8, €, b,
and 0 < ¢ < 1, ifthere exist positive definite symmetric matrices

[]  then
g T
I;Pi_Fi vaF; > 0,
—I W, |
[ 71 <o,
qu _qu_
[Xu;' X1 | >0
o Xyl
Xy Xy Hy |
# X Hyi | 20,
* * Ti ]
T T T -
L6 Iy Y, RF RM;; YK
RB! h,RB' 0 0 RML 0
RCI h,RCI 0 0 RML 0
Df h,D] 0 0 0 0
G h,GI 0o 0 M, 0
Te6 I 0 0 0 W K; <0,
. I, 0 0 0 WK
* * -l 0 0 0
* * 1//1_1 0 0
* * * -01 0
n
* * * * * —ZEZqil
gq=1 J

Ty, = h,RAT +h, Y E +h,0L,L" +eh, E0 E],

mEi0;
L, =- (1 - E) Q -Hy- ﬁ; + h X,

Ty, =—(1-7)Z,

T = —W; + OL,L] +eE0’E],

N

17?2

Ty, = eh,,E,0°E! + h,,0L
T,;, = ~h,V; + h,0L;L} + eh’ E0}E],

0; = diag {‘7111" O12i>+ > Glmi} >

P,Q, Z,, T, and M, and matrices L, M,;, M;, M;, and M,

(98)

(99)

(100)

(101)

(102)



Complexity

Y, = [EiVIi EV, -+ EV,

i mi]’

Vi = [Eivli EVy -+ EV,

i mi]’

¥y = [hmEiVIi h,EiVy - hmEiVmi] >

V,; = diag «[0,0,...,0,1,0,...,0};

p1
(103)
the matrices are defined as follows:
-1
KiP; =Y,
131'_1 = R;,
~ -1
Zi =W,
~ -1
i =Ve
- -1 - -1 —
Pz quPi = qu’
O I | —
P QP =Q;
13;12?;1 = Zﬁ
-1 — ~ -1 —
B, M,p, =M,
~ -1 - -1 —
P; H;P; =Hy,
- -1 —~ -1 —
P; HyP; =Hy,
- -1 ~ -1 —
P Xy = Xy
~ -1 ~ -1 —
i Xl = X
_ o - L
Ay Ay PG PiD - Fy, PG,
x Ay O 0 0
* * Ay 0 0
[=| = * * - 0
M
% * % * __t
rm
* * * * %
| ® * ® *

where
Ay, =-ab; + P, (A + EK; + EAK, (1))

—~ T o)
+ (A +EK + EAK; (1) P+ Q
— T T
+ 1M = Fyy0 Fy + Hy + Hy + by, X
~ T
Ay, = PiB;— Hy; + Hy; + h, Xy

15
~ -1 ~ -1 —
Py XpiPi = Xoois
(104)
the average dwell-time satisfies
T, > 1,
_ Tilnp (105)
In(1,6,) = In[Agk + (Ag + A19) d] — T ’
Amin (Pz) = /\1’
/\max (FTFI) = /\8’
. (106)
/\max (V/Z 1VZ) = )L9’
/\max (‘/’3) = AIO’
1‘3' _ RI/ZPRI/Z,
6' _ RI/ZQRI/Z
Z, = R'?ZR"?, (107)
F. = RV2T R2
M, = R"*M,R'V?.
The controller gains can be given by K, = Y,P, Then

the switched linear meutral system is finite-time bounded
with extended dissipative performance under the nonfragile
controller u(t) = K, (£)x(t).

Proof. Replacing A;, B;, C;, and G; in (50) with A; + E,K; +
E,AK,(t), B;, C;, and G, and by Schur complement, we obtain

— T ~ A
Ay h, (A +EK, +EAK, (1) T,
B Z, h,B T,
.7, h,C. T,
D/Z, h,,DI'T; , (108)
G2, 1Gi T,
7.
x -h, T, J
—_ T —
Ay = (A + EK, + EAK, (1)) Z,,
N\ A T
Ny =- (1 - h) Q; — Hyi — Hy; + hy, X
Ay =-(1-7)Z;
(109)
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(108) can be rewritten as

Complexity

r = T = T T 7 7
B,E,AK; (t) + (EAK, (1)) P, 0 0 0 0 (EAK, () Z, h, (EAK, ()" T,
* 00 0 0 0 0
* x 000 0 0
Q; + * x % 00 0 0 , (110)
* * % % 0 0 0
* £ % ok ok 0 0
L ® * ok k% * 0 ]
where
_ L o A
Qy Qp PC; PD-Fy, PG Qg h, (Ai+EzK1) T;
T T~
£ Q, 0 0 0 BZ h,,B. T,
T~ T~
ok Qg 0 0 C z h,,C, T;
Q=] % * |« —_— 0 DIZ h,,DI'T, , ()
M, 1— T
L
Tm
* * * * * -Z;
| * * * * * * hmTi ]
with . sz _dlag<lo,0,. ,0,1,0, ..,0},
Q,, = -aP; + P, (Z,- + E,K,-) + (Z,- + EiK,-) P, +Q p
+ 1M, = FlyiFy + Hy + Hy + hy X, qu:diag{o)o’- ,0,1,0, 0]’
q-1
Q,, =PB,-H| + H,, +h,X,,, _ _ _ _
LT T (112) B =[E'B, 0 0 0 0 E'Z h,E'T]
A, +EK;) Z, e
- (A 5x)'Z
™\ = T
Qp == (1-h)Q; - Hy; — Hy, + by X, - [KIVIETB, 0 0 0 0 K'VIE'Z, h,KIVIE'T,] s
Qy=-(1-9Z; (114)
considering (5), (110) can be rewritten as based on (6) and Lemma 12, for some € > 0,Q,; > 0(q =
o 1,...,n) and @; = diag{o,,;,0 5> -.>0},,,}> it can be verified
Q,+BHL + (BHL) that
(113) BHI

where
H; = diag {0}, 031,-.-, 0} »
L,=[K; 00000 0],

T,=[1 00000 0],

~ — ~\T ~ ~ 1~T~
+(BHL) <eBoB +¢ 'L, L,

quiWq i+ (qu,quI,)
7 -1
< KWy Qi Wqu1+1 Qul
m n n T _
Z Z pqz i th i < mZUZqui quIi’
p=1g=1 gq=1



Complexity

m n 1
Z Z"pqt paiVaiQqi W K i
p=1g=1
m n 1
s Z Z ZW pai Q W pqz'
p=1g=1
(115)
On the other hand, by Schur complement,
—cl W,
<0 (116)
Wl _qu

is equal to quQ;Wq < cI. Then W, qu Wy <1 holds. It

can be proven that K WaiQyi WTK pai < K K pqi- Hence,

we have

o, +BATL +(BAL)

g, En PC; PD;- FzT‘I/Z
« Ep 0 0
* % Hyg 0
Q,;=|* * * —Y;
* * * *
x % % *
R *

with

By, = —aP; + P; (A; + EK;) + (A; + EiKi)T P, +Q

— T T
+1,M; - F y,F; + Hj; + H; + h,, X3,

[83]

= T

12 = P;B; —Hy; + Hy; + h,, X5,
T~

6= (A, +EK;) Z,,

=-(1-h

33=_(1_?)Z,',

1

11

S}

~ T
2 ) Q; — Hy — Hy; + hy, X555,

[84]

P.L.

11

©)
[~
|
o O O O
&)
~~
=
=

17
m n _ _ - \T
+ ) D0 [quiwqili + (KpgWyT)) ]
p=lg=1
<Q,+eB0B +¢ 'L I, +mZazq,I,Qq, i
g=1
m n
ZZ 2‘11 pqi qu
117)

Here we consider the norm-bounded uncertainties, and we
set

Q; = Q + Qs (118)
where
piGi Bis hn(A+EK) T
0 B'Z h,BI'T
0 CfZ h,CI'T
0 D;Z h,D; T , (119)
M.
-— GlZ, h,G; T
rm
* -Z; 0
* * _hmTi |
s T A
Mli
T
M2i
T
M3i
S[My; My My 0 My; 0 0]+ | 0 EiT(t)
T
M4i
0
L 0 |
75 T T T/
(LB, 0000 LTZ, h,L'T,|.
(120)

By Lemma 11, there exists a scalar & > 0, such that
Qy;

P,

D T T
[LYP, 0 0 0 0 LTZ; h,L'T}]
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— o T -
M;;
T
MZi
MT
3i
+67'| 0 |[My My Msy 0 M, 0 0].
T
My;
0
L 0
Y, Y, TJiCi Wiy FiGi
* ¥,, 0 0 0
« % Wy 0 0
% % * =3 0
M,
% % * * -
rm
HZ: = * * ¥ * *
* % * * *
* % * % *
* * * * *
x % * * *
% % * * *

where
—~ —~ T D 0O
¥, = -ab; + P, (A; + EK;) + (A, + EK,)' P, + Q,
+ TmMi + Hli + H’11: + thIIi
B B n
+ eP,EGE; P, + mY 6,,Qy
gq=1
_ T=
+ 8PiLiLi P,‘)
~ T
\FIZ = PiBi - Hli + sz + thIZi’
~ T
\1114 = P1D1 _Fi 1//2’
Vi = (Ai + EiKi)T Zi + eﬁiEi@z‘zE?Zi + ai)'L'LT’Zi’

=1

Y7 = hy (A + EiKi)T T; + ¢h, P.EOE T,
+h,,0B,L,L'T,

¥y, = - (1-h) Q- Hy — Hy; + h,, X0,

¥y = -(1-7)Z,

V=2, + eZiTEiﬂfEiTZi + 67?L,~L?Z,

(121)

i

i

Complexity

Then pre- and postmultiplying (102) by diag{P;, P;, P, I,
1,Z,T,1,I,1,1,..., I}, we have

m
T T T ]
Ki Fi Mli AliKi
hBT, 0 0 My 0
hCiT; 0 0 My 0
h,DIT, 0 0 0 0
T
it 0 0 M4i 0
Yy 00 0 MK | <o (122)
¥, 0 0 0 AK;
-l 0 0 0
oy 00
* % =0l 0
n
* * * _ZEZqu
=1 .
_ T o2 T Sl T
Yo7 = €hyZ; EO;E; T; + hy,0Z; LiL; T,
_ 7 27l 2 T L LT
Y,, = -h,T;+eh, T, EQ;E; T; + h, 0T, L,L;T;,
A= [ﬁiEth‘ BEVy - PiEiVmi]’
Ay = [ZiEiVIi Z’Eivzi ZiEi mi]’
As = [hmTiEiVIi hmTiEiVZi hmTiEi mi]'
(123)

Based on above discussion, from IT,; < 0, by Schur com-
plement, we can conclude that I; < 0. Similar to the proof
of Theorem 15, we can obtain

V(t)—aV(t)-](t)

¢ (124)
<X"TOTX (1) - L_h(t) 9" (t,5) A9 (t,s)ds,

where
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T
X =[x") £ t-hw) Fe-t@) WO [, 5" ©ds]
(125)
T
9(t,s) = [x" (1) x"(t-h®) " )] s
A, is given in (101). The following proof is similar to that of C. _ (-2 1
Theorem 15; it is omitted here. ] 2710 2
Remark 18. The concept of extended dissipative could be 1 1]
employed to lots of other systems, for example, the T-S D, =
fuzzy systems [34-37], which shows the effectiveness of the [0 3]
powerful tool. o
2 4
E, =
4. Numerical Example [0 2]
In this section, we present an example to illustrate the G. = 2 0]
effectiveness of the controller design method. 2712 4
Example 1. Consider system (1) with two subsystems with 4 0]
parameters as follows: F, =
_2 2_
A1 = ? 1:| 5 L [1 0]
113 2= 01
1
B, 0], M M M 04 0
1 =M= Mo =M= o
30 ~
C, , h =001,
10 —1
7 =0.01,
(2 1
D=1 | a =001,
h,, =0.5,
30] "
E, 120 r,, = 0.5,
33 0 =0.5,
G 15| € =0.5.
126
. 1 2] (126)
! 0 3]’ Case I. When AK;(t) satisfies additive form (4), we set
i 1 0] ; 0.1 0]
lo o) "o o1)]’
M M M M 02 0 ; [0.1 0]
n = Mo =M =M =10 o1 27 01]
(127)
A 32 ] 02 0]
27 lo 2] 2710 02]
B 12 ] 02 0
27 lo 2]’ 2710 02
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TABLE 1: Matrices for each case.
Analysis ¥, Y, Y, Y,
L, - L, performance 0 0 VI I
H_, performance -1 0 Y1 0
Passivity 0 I y 0
1
Dissipativity -1 I -Bx1I 0
031

TaBLE 2: Optimized variable for each case.

L, - L, performance H_, performance Passivity Dissipativity
Vi, = 1% 107 Vi, = 1% 107 Vimin = 1 % 107 Bimax = 1.9999999
TaBLE 3: Controller gain of the additive form controller uncertainty for each case.

Subsystem 1 2

. [-85600 ~0.2148] . [-14313 —01736]

L, - L, performance K, =10 = K, =10" *
~0.1787 -9.6241 | | -0.1853 —~0.9176 |
[-1.3762 -0.8518 ] [—4.8652 -0.9760 |

H_, performance K, = 10* # K, =10* %
| -0.5214 —5.3445 | | -1.4654 19109 |
. [ 03767 ~0.1899] . [-14961 ~0.4558]

Passivity K, =10" = K, =10"
| -0.1414 —1.5588 | | -0.7175 —0.5430 |
. [-02581 ~0.1677] . [-10597 ~0.4132]

Dissipativity K, =10" = K, =10"
| -0.1381 —1.2602 | | -0.5249 —0.4398 |

Case 2. When AK;(t) satisfies multiplicative form (5), we
choose

oy =02,
01 =02,
0y, = 04,
0,y =0.2
m=2, n=2),
B (128)
0,1, =02,
019y = 0.4,
0,0, =0.2,
0y, = 0.2
(m=2, n=2).

Furthermore, just as the discussion in Remark 6, we choose
the values for the extended dissipative parameters in Table 1.

Then, solve the LMIs from (47) to (50) in Theorem 15,
and we can get the results of optimized variables of four
performances in Table 2.

Furthermore, solve the LMIs presented in Theorems
16 and 17, and we can obtain the controller gain for the

additive form controller uncertainty and the multiplicative
form controller uncertainty in Tables 3 and 4, respectively.

5. Conclusion

In this paper, we have investigated the problem of finite-
time extended dissipative analysis and nonfragile control of
switched neutral system with unknown time-varying distur-
bance. The average dwell-time approach is utilized for finite-
time boundedness and extended dissipative performance
analysis; controllers are designed to guarantee that the system
is finite-time bounded and satisfies the extended dissipative
performance. Based on extended dissipative performance, we
can solve H,, L, — L, Passivity, and (Q, S, R)-dissipativity
performance in a unified framework. All the results are given
in terms of linear matrix inequalities (LMIs), and numerical
examples are provided to show the effectiveness of the pro-
posed method. In our future research, the nonfragile control
and extended dissipative performance will be extended to
more complex systems, such as Markovian jump delayed
systems, sliding control systems, and T-S fuzzy systems,
which deserve further study.
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TaBLE 4: Controller gain of the multiplicative form controller uncertainty for each case.

Subsystem 1 2
. —-0.8602 —0.2082 5 —-0.1000 -0.1023
L, - L, performance K, =10" = K, =10 =
-0.2037 —0.5895 -0.1017 -0.1090
—-0.1922 -0.2047 -0.4842 -0.2812
H_, performance K, =107« K, =107 =
—-0.0870 -0.4234 —-0.5055 -0.3274
-0.2875 -0.2582 -1.2292 -0.5381
Passivity K, = 5=
-0.1017 -0.7210 -1.2374 -0.5245
-0.2711 -0.4428 —2.5753 —-0.8837
Dissipativity K, = K, =
-0.1380 -1.1896 —2.4237 -0.9115
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