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This paper is concernedwith finite-time extended dissipative analysis andnonfragile control for a class of uncertain switched neutral
systemswith time delay, and the controller is assumed to have either additive ormultiplicative form. By employing the average dwell-
time and linear matrix inequality technique, sufficient conditions for finite-time boundedness of the switched neutral system are
provided.Then finite-time extended dissipative performance for the switched neutral system is addressed, where we can solve𝐻∞,𝐿2 − 𝐿∞, Passivity, and (𝑄, 𝑆, 𝑅)-dissipativity performance in a unified framework based on the concept of extended dissipative.
Furthermore, nonfragile state feedback controllers are proposed to guarantee that the closed-loop system is finite-time bounded
with extended dissipative performance. Finally, numerical examples are given to demonstrate the effectiveness of the proposed
method.

1. Introduction

Switched system is an important class of hybrid systems,
which consists of a family of subsystems and a logical rule that
orchestrates switching between them. For its practical impor-
tance, switched systems have received considerable attention
in the last decades [1–5]. Meanwhile, time delay exists widely
in many practical systems and may cause undesirable system
performance or even instability [6–9]. Switched system with
time delay is a main issue in recent years. As a special
time delay system, switched neutral systems have received
much attention [10–14]. For example, the problem of stability
analysis and𝐻∞ control for several switched neutral systems
were considered in [10] and [13], respectively.

Up to now, most researches for switched neutral systems
focus on Lyapunov asymptotic stability, which is defined over
an infinite time interval. However, in practice, the transient
performance of a system is also of great significance. In
many practical applications such asmissile systems and robot
control systems, the main concern is the system behavior
over a finite-time interval. Therefore, finite-time analysis
of switched systems is worth researching. Recently, some

related research results were published in the literatures [15–
20]. More specifically, finite-time 𝐻∞ control of switched
systems was addressed in [16], and finite-time stabilization
and boundedness of switched linear system were investigated
in [19].

On the other hand, the controller coefficients are gener-
ally exact values when designing a desired controller. How-
ever, in practice, uncertainty cannot be avoided in controller
design, and it may be caused by many reasons, such as
numerical round-off errors and actuator degradation. The
existence of uncertainty motivates the study of nonfragile
control. Over decades, much attention has been devoted to
the issue of controller fragility and related remedies [21–24].
To name a few, the problemof passivity-based nonfragile con-
trol for Markovian jump systems with aperiodic sampling is
studied in [22], and nonfragile𝐻∞ control for linear systems
with multiplicative controller gain variations is investigated
in [24], respectively. More recently, an effective tool named
extended dissipative was firstly proposed by Zhang et al. in
[25] to deal with the problem of robust control. By adjusting
weighting matrices, the extended dissipative covers some
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well-known performance indices such as 𝐻∞ performance,𝐿2 − 𝐿∞ performance, Passivity performance, and (𝑄, 𝑆, 𝑅)-
dissipativity performance.This concept has been successfully
applied to the stability analysis for several neural networks
[26–30]. Could this concept be applied to switched systems?
To the best of our knowledge, the topic of nonfragile finite-
time extended dissipative control for a class of uncertain
switched neutral systems has not been investigated yet, which
motivates our study.

This paper is organized as follows. In Section 2, pre-
liminaries and problem statement are formulated and some
necessary lemmas are given. In Section 3, by employing the
average dwell-time and linear matrix inequality approach,
some sufficient conditions of finite-time boundness and
finite-time extended dissipative performance for switched
neutral systems are established. Furthermore, existence and
the designmethod of the nonfragile state feedback controllers
are proposed. All of the results are in terms of a set of linear
matrix inequalities which can be easily resolved using the
LMIs toolbox. In Section 4, numerical examples are given
to show the effectiveness of the proposed approach. The
main contributions of this paper include the following. (1)
We firstly apply the concept of extended dissipative to the
nonfragile finite-time analysis and control to the uncertain
switched neutral systems. (2)More general switched systems
are considered in our paper, including the time-varying delay
and distributed delay, neutral parameters, and additive and
multiplicative form controller.

Notation. The notations used in this paper are standard.𝑅𝑛 denotes the 𝑛-dimensional Euclidean space and 𝑀𝑇
represents the transpose of thematrix𝑀.The notation𝑋 > 0
(≥0) is used to denote a symmetric positive definite (positive-
semidefinite) matrix. ‖𝑋‖ represents the Euclidean norm of
the matrix 𝑋; 𝜆min(𝑃) and 𝜆max(𝑃) denote the minimum
and maximum eigenvalue of matrix 𝑃, respectively. 𝐼 is the
identitymatrix with appropriate dimension. diag{⋅} stands for
a block-diagonal matrix. The asterisk ∗ in a matrix is used to
denote a term that is induced by symmetry.

2. Preliminaries and Problem Statement

Consider the following switched neutral system with time-
varying delay:

�̇� (𝑡) − �̂�𝜎(𝑡)�̇� (𝑡 − 𝜏 (𝑡))
= �̂�𝜎(𝑡)𝑥 (𝑡) + �̂�𝜎(𝑡)𝑥 (𝑡 − ℎ (𝑡)) + 𝐷𝜎(𝑡)𝑤 (𝑡)
+ 𝐸𝜎(𝑡)𝑢 (𝑡) + �̂�𝜎(𝑡) ∫𝑡

𝑡−𝑟(𝑡)
𝑥 (𝑠) 𝑑𝑠,

𝑧 (𝑡) = 𝐹𝜎(𝑡)𝑥 (𝑡) ,
𝑥 (𝜃) = 𝜑 (𝜃) , ∀𝜃 ∈ [−𝜏, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector, 𝑢(𝑡) is the control
input, 𝑤(𝑡) is the exogenous disturbance which belongs to𝐿2[0,∞), and 𝑧(𝑡) ∈ 𝑅𝑛 is the output. The switching signal𝜎(𝑡) : [0,∞) → 𝑀 = {1, 2, . . . , 𝑙} is a piecewise continuous

function, where 𝑙 is the number of subsystems and 𝜎(𝑡) = 𝑖
means that the 𝑖th subsystem is activated. 𝜑(𝜃) is the initial
condition, and ℎ(𝑡), 𝑟(𝑡), and 𝜏(𝑡) denote the time-varying
delay and satisfy

0 ≤ ℎ (𝑡) ≤ ℎ𝑚,
ℎ̇ (𝑡) ≤ ℎ̂ < 1,
0 ≤ 𝜏 (𝑡) ≤ 𝜏𝑚,

�̇� (𝑡) ≤ �̂� < 1,
0 ≤ 𝑟 (𝑡) ≤ 𝑟𝑚.

(2)

Furthermore, −𝜏 = max{ℎ𝑚, 𝜏𝑚}, and for each 𝜎(𝑡) = 𝑖,�̂�𝑖, �̂�𝑖, �̂�𝑖, and �̂�𝑖 are uncertain real-valued matrices with
appropriate dimensions.We assume that the uncertainties are
norm-bounded and of the form

[�̂�𝑖, �̂�𝑖, �̂�𝑖, �̂�𝑖] = [𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, 𝐺𝑖]
+ 𝐿 𝑖Ξ𝑖 (𝑡) [𝑀1𝑖,𝑀2𝑖,𝑀3𝑖,𝑀4𝑖] , (3)

where 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, 𝐺𝑖, 𝑀1𝑖, 𝑀2𝑖, 𝑀3𝑖, and 𝑀4𝑖 are known
real-valued constant matrices with appropriate dimensions
and Ξ𝑖(𝑡) is unknown and possibly time-varying matrix with
Lebesgue measurable elements satisfying Ξ𝑇𝑖 (𝑡)Ξ𝑖(𝑡) ≤ 𝐼.

In this paper, we consider the following nonfragile state
feedback controller: 𝑢(𝑡) = 𝐾𝜎(𝑡)(𝑡)𝑥(𝑡), where 𝐾𝜎(𝑡)(𝑡) =𝐾𝑖+Δ𝐾𝑖(𝑡),𝐾𝑖 is the controller gain andΔ𝐾𝑖(𝑡) is a perturbed
matrix with the following forms.

Case 1. Δ𝐾𝑖(𝑡) has an additive uncertainty which is assumed
to be

Δ𝐾𝑖 (𝑡) = 𝐽1𝑖𝑈𝑖 (𝑡) 𝐽2𝑖, (4)

where 𝐽1𝑖 and 𝐽2𝑖 are known real constant matrices with
appropriate dimensions and the time-varying matrix 𝑈𝑖(𝑡)
satisfies 𝑈𝑖(𝑡)𝑈𝑇𝑖 (𝑡) ≤ 𝐼.
Case 2. Δ𝐾𝑖(𝑡) has a multiplicative uncertainty

Δ𝐾𝑖 (𝑡) =
[[[[[[
[

𝑘11𝑖 (𝜎1𝑖 + 𝜎11𝑖) ⋅ ⋅ ⋅ 𝑘1𝑛𝑖 (𝜎1𝑖 + 𝜎1𝑛𝑖)𝑘21𝑖 (𝜎2𝑖 + 𝜎21𝑖) ⋅ ⋅ ⋅ 𝑘2𝑛𝑖 (𝜎2𝑖 + 𝜎2𝑛𝑖)... d
...

𝑘𝑚1𝑖 (𝜎𝑚𝑖 + 𝜎𝑚1𝑖) ⋅ ⋅ ⋅ 𝑘𝑚𝑛𝑖 (𝜎𝑚𝑖 + 𝜎𝑚𝑛𝑖)

]]]]]]
]
, (5)

where 𝑘𝑝𝑞𝑖 is the element of 𝐾𝑖 and 𝜎𝑝𝑖 and 𝜎𝑝𝑞𝑖 (𝑝 =1, . . . , 𝑚; 𝑞 = 1, . . . , 𝑛) are real uncertain parameters which
satisfy 𝜎𝑝𝑖 ≤ 𝜎1𝑝𝑖 ≤ 1,𝜎𝑝𝑞𝑖 ≤ 𝜎𝑝𝑞𝑖 ≤ 𝜎2𝑝𝑖 ≤ 1.

(6)

Assumption 1. For a given time constant 𝑇𝑓, the external
disturbance satisfies

∫𝑇𝑓
0
𝑤𝑇 (𝑡) 𝑤 (𝑡) 𝑑𝑡 ≤ 𝑑, 𝑑 ≥ 0. (7)
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Assumption 2. For a given time constant 𝑇𝑓, the state vector𝑥(𝑡) is time-varying and satisfies the constraint

∫𝑇𝑓
0
𝑥𝑇 (𝑡) 𝑥 (𝑡) 𝑑𝑡 ≤ 𝑘, (8)

where 𝑘 is a fixed sufficient large constant number.

Assumption 3 (see [25]). Matrices 𝜓1, 𝜓2, 𝜓3, and 𝜓4 satisfy
the following conditions:

(1) 𝜓1 = 𝜓𝑇1 ≤ 0, 𝜓3 = 𝜓𝑇3 > 0, 𝜓4 = 𝜓𝑇4 ≥ 0;
(2) (‖𝜓1‖ + ‖𝜓2‖)𝜓4 = 0.

Assumption 4. For ∀𝛼 ≥ 0, 𝜇 ≥ 1, ∀𝑡 ∈ [0, 𝑇𝑓], we have
𝑒𝛼𝑡𝜇𝑁𝜎(0,𝑡) ≤ 𝑏, (9)

where 𝑁𝜎(0, 𝑡) denotes the switching number of 𝜎(𝑡) over(0, 𝑡) and 𝑏 denotes a positive number.

Definition 5 (see [25]). For given matrices 𝜓1, 𝜓2, 𝜓3, and𝜓4 satisfying Assumption 3, system (1) is said to be extended
dissipative if the following inequality holds for any 𝑇𝑓 ≥ 0
and all 𝜇(𝑡) ∈ 𝐿2[0,∞):

∫𝑇𝑓
0
𝐽 (𝑡) 𝑑𝑡 − sup

0≤𝑡≤𝑇𝑓

𝑧𝑇 (𝑡) 𝜓4𝑧 (𝑡) ≥ 0, (10)

where

𝐽 (𝑡) = 𝑧𝑇 (𝑡) 𝜓1𝑧 (𝑡) + 2𝑧𝑇 (𝑡) 𝜓2𝑤 (𝑡)
+ 𝑤𝑇 (𝑡) 𝜓3𝑤 (𝑡) . (11)

Remark 6. The concept of extended dissipative introduced
in Definition 5 contains a few of well-known performance
indices as special cases by setting the weighting matrices:

(1) 𝐿2 − 𝐿∞ performance: 𝜓1 = 0, 𝜓2 = 0, 𝜓3 = 𝛾2𝐼, and𝜓4 = 𝐼;
(2) 𝐻∞ performance: 𝜓1 = −𝐼, 𝜓2 = 0, 𝜓3 = 𝛾2𝐼, and𝜓4 = 0;
(3) Passivity performance: 𝜓1 = 0, 𝜓2 = 𝐼, 𝜓3 = 𝛾𝐼, and𝜓4 = 0;
(4) (𝑄, 𝑆, 𝑅)-dissipativity performance: 𝜓1 = 𝑄, 𝜓2 = 𝑆,𝜓3 = 𝑅 − 𝛽𝐼, and 𝜓4 = 0.

Definition 7 (see [17]). Given three positive constants 𝑐1, 𝑐2,
and 𝑇𝑓 with 𝑐1 < 𝑐2, a positive definite matrix 𝑅 and a
switching signal 𝜎(𝑡), assume that 𝜇(𝑡) ≡ 0, ∀𝑡 ∈ [0, 𝑇𝑓], and
switched neutral system (1) is said to be finite-time bounded
with respect to (𝑐1, 𝑐2, 𝑅, 𝑇𝑓, 𝜎), if, ∀𝑡 ∈ [0, 𝑇𝑓],

sup
−𝜏≤𝜃≤0

{𝑥𝑇 (𝜃) 𝑅𝑥 (𝜃) , �̇�𝑇 (𝜃) 𝑅�̇� (𝜃)} ≤ 𝑐1 ⇒
𝑥𝑇 (𝑡) 𝑅𝑥 (𝑡) ≤ 𝑐2.

(12)

Furthermore, if the condition above holds with𝑤(𝑡) ≡ 0, ∀𝑡 ∈[0, 𝑇𝑓], the system is said to be finite-time stable.

Definition 8 (see [17]). For any 𝑇2 > 𝑇1 ≥ 0, let 𝑁𝜎(𝑇1, 𝑇2)
denote the switching number of 𝜎(𝑡) over (𝑇1, 𝑇2). If

𝑁𝜎 (𝑇1, 𝑇2) ≤ 𝑁0 + 𝑇2 − 𝑇1𝜏𝑎 (13)

holds for 𝜏𝑎 > 0 and an integer 𝑁0 ≥ 0, then 𝜏𝑎 is called an
average dwell-time. Without loss of generality, in this paper
we choose𝑁0 = 0.
Lemma 9 (see [29]). Let 𝑎 and 𝑏 be real matrices of appropri-
ate dimensions and satisfy 2𝑎𝑇𝑏 ≤ 𝑎𝑇𝑎 + 𝑏𝑇𝑏.
Lemma 10 (see [31]). For any positive definite symmetric
matrix 𝑁 ∈ 𝑅𝑛×𝑛, scalar 𝜏 > 0, and a vector function 𝑥(∙) :[−𝜏, 0] → 𝑅𝑛, the following integral inequality is satisfied:

− 𝜏∫𝑡
𝑡−𝜏
𝑥𝑇 (𝑠)𝑁𝑥 (𝑠) 𝑑𝑠

≤ −∫𝑡
𝑡−𝜏
𝑥𝑇 (𝑠) 𝑑𝑠𝑁∫𝑡

𝑡−𝜏
𝑥 (𝑠) 𝑑𝑠.

(14)

Lemma 11 (see [32]). Let 𝐽 and 𝐿 be real matrices of appropri-
ate dimensions. Then, for any scalar 𝜖 > 0, one has

𝐽𝑈 (𝑡) 𝐿 + (𝐽𝑈 (𝑡) 𝐿)𝑇 ≤ 𝜖𝐽𝐽𝑇 + 𝜖−1𝐿𝑇𝐿, (15)

when 𝑈(𝑡) satisfies 𝑈𝑇(𝑡)𝑈(𝑡) ≤ 𝐼.
Lemma 12 (see [33]). Let𝐺 be real positive definite symmetric
matrices and let 𝐵 and 𝐿 be appropriate dimensional real
matrices. Then, one has

𝐵𝐿 + (𝐵𝐿)𝑇 ≤ 𝐵𝐺−1𝐵𝑇 + 𝐿𝑇𝐺𝐿. (16)

3. Main Results

3.1. Finite-Time Boundedness Analysis. Consider the follow-
ing unforced switched neutral system without uncertainties:

�̇� (𝑡) − 𝐶𝜎(𝑡)�̇� (𝑡 − 𝜏 (𝑡))
= 𝐴𝜎(𝑡)𝑥 (𝑡) + 𝐵𝜎(𝑡)𝑥 (𝑡 − ℎ (𝑡)) + 𝐷𝜎(𝑡)𝑤 (𝑡)
+ 𝐺𝜎(𝑡) ∫𝑡

𝑡−𝑟(𝑡)
𝑥 (𝑠) 𝑑𝑠,

𝑧 (𝑡) = 𝐹𝜎(𝑡)𝑥 (𝑡) ,
𝑥 (𝑡0 + 𝜃) = 𝜑 (𝜃) , ∀𝜃 ∈ [−𝜏, 0] .

(17)

In this section, the problem of finite-time boundedness
analysis of the switched neutral system is proposed, by using
the average dwell-time approach, sufficient conditions are
derived by solving some linear matrix inequalities, and the
results are shown as follows.

Theorem 13. For given positive scalars 𝛼, ℎ̂, �̂�, ℎ𝑚, and 𝑟𝑚, if
there exist positive definite symmetric matrices �̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖,
and �̃�𝑖 and matrices 𝑁𝑖, 𝑋11𝑖, 𝑋12𝑖, 𝑋22𝑖, 𝐻1𝑖, and 𝐻2𝑖 with
appropriate dimensions, then
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𝑋𝑖 = [𝑋11𝑖 𝑋12𝑖∗ 𝑋22𝑖] ≥ 0, (18)

Δ 𝑖 = [[[
[

𝑋11𝑖 𝑋12𝑖 𝐻1𝑖∗ 𝑋22𝑖 𝐻2𝑖
∗ ∗ �̃�𝑖

]]]
]
≥ 0, (19)

Θ𝑖 =
[[[[[[[[[[[
[

𝜙11 𝜙12 𝜙13 𝜙14 �̃�𝑖𝐺𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐺𝑖
∗ 𝜙22 𝜙23 𝐵𝑇𝑖 �̃�𝑖𝐷𝑖 + ℎ𝑚𝐵𝑇𝑖 �̃�𝑖𝐷𝑖 𝐵𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐵𝑇𝑖 �̃�𝑖𝐺𝑖
∗ ∗ 𝜙33 𝐶𝑇𝑖 �̃�𝑖𝐷𝑖 + ℎ𝑚𝐶𝑇𝑖 �̃�𝑖𝐷𝑖 𝐶𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐶𝑇𝑖 �̃�𝑖𝐺𝑖
∗ ∗ ∗ 𝜙44 𝐷𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐷𝑇𝑖 �̃�𝑖𝐺𝑖
∗ ∗ ∗ ∗ 𝐺𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐺𝑇𝑖 �̃�𝑖𝐺𝑖 − �̃�𝑖𝑟𝑚

]]]]]]]]]]]
]

< 0, (20)

hold, where

𝜙11 = −𝛼�̃�𝑖 + �̃�𝑖𝐴 𝑖 + 𝐴𝑇𝑖 �̃�𝑖 + �̃�𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐴 𝑖
+ ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐴 𝑖 + 𝑟𝑚�̃�𝑖 + 𝐻1𝑖 + 𝐻𝑇1𝑖 + ℎ𝑚𝑋11𝑖,

𝜙12 = �̃�𝑖𝐵𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐵𝑖 + ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐵𝑖 − 𝐻𝑇1𝑖 + 𝐻2𝑖
+ ℎ𝑚𝑋12𝑖,

𝜙13 = �̃�𝑖𝐶𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐶𝑖 + ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐶𝑖,
𝜙14 = �̃�𝑖𝐷𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐷𝑖 + ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐷𝑖,

𝜙22 = − (1 − ℎ̂) �̃�𝑖 + 𝐵𝑇𝑖 �̃�𝑖𝐵𝑖 + ℎ𝑚𝐵𝑇𝑖 �̃�𝑖𝐵𝑖 − 𝐻2𝑖 − 𝐻𝑇2𝑖
+ ℎ𝑚𝑋22𝑖,

𝜙23 = 𝐵𝑇𝑖 �̃�𝑖𝐶𝑖 + ℎ𝑚𝐵𝑇𝑖 �̃�𝑖𝐶𝑖,
𝜙33 = − (1 − �̂�) �̃�𝑖 + 𝐶𝑇𝑖 �̃�𝑖𝐶𝑖 + ℎ𝑚𝐶𝑇𝑖 �̃�𝑖𝐶𝑖,
𝜙44 = −𝑁𝑖 + 𝐷𝑇𝑖 �̃�𝑖𝐷𝑖 + ℎ𝑚𝐷𝑇𝑖 �̃�𝑖𝐷𝑖,

(21)

(𝜆2 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆3 + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆4 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆5 + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆6)
⋅ 𝑐1 + 𝜆7𝑑 < 𝑐2𝜆1𝑒−𝛼𝑇𝑓 ; (22)

meanwhile, the average dwell-time satisfies

𝜏𝑎 > 𝜏∗𝑎 = 𝑇𝑓 ln 𝜇
ln (𝜆1𝑐2) − ln [(𝜆2 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆3 + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆4 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆5 + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆6) 𝑐1 + 𝜆7𝑑] − 𝛼𝑇𝑓 . (23)

We define

�̃�𝑖 = 𝑅1/2𝑃𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑄𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑍𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑇𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑀𝑖𝑅1/2,

(24)

𝜆𝑚𝑖𝑛 (𝑃𝑖) = 𝜆1,
𝜆𝑚𝑎𝑥 (𝑃𝑖) = 𝜆2,
𝜆𝑚𝑎𝑥 (𝑄𝑖) = 𝜆3,

𝜆𝑚𝑎𝑥 (𝑍𝑖) = 𝜆4,
𝜆𝑚𝑎𝑥 (𝑇𝑖) = 𝜆5,
𝜆𝑚𝑎𝑥 (𝑀𝑖) = 𝜆6,
𝜆𝑚𝑎𝑥 (𝑁𝑖) = 𝜆7,

(25)
where 𝜇 > 1 satisfies

�̃�𝑖 < 𝜇�̃�𝑗,
�̃�𝑖 < 𝜇�̃�𝑗,
�̃�𝑖 < 𝜇�̃�𝑗,
�̃�𝑖 < 𝜇�̃�𝑗,
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�̃�𝑖 < 𝜇�̃�𝑗,
∀𝑖, 𝑗 ∈ 𝑀.

(26)

Then, switched system (17) is finite-time bounded with respect
to (𝑐1, 𝑐2, 𝑑, 𝑅, 𝑇𝑓, 𝜎).
Proof. Choose the piecewise Lyapunov-Krasovskii functional
candidate as

𝑉 (𝑡) = 𝑉𝜎(𝑡) (𝑡) = 𝑉𝑖 (𝑡)
= 𝑉1𝑖 (𝑡) + 𝑉2𝑖 (𝑡) + 𝑉3𝑖 (𝑡) + 𝑉4𝑖 (𝑡) + 𝑉5𝑖 (𝑡) , (27)

where
𝑉1𝑖 (𝑡) = 𝑥𝑇 (𝑡) �̃�𝑖𝑥 (𝑡) ,
𝑉2𝑖 (𝑡) = ∫𝑡

𝑡−ℎ(𝑡)
𝑒𝛼(𝑡−𝑠)𝑥𝑇 (𝑡) �̃�𝑖𝑥 (𝑡) 𝑑𝑠,

𝑉3𝑖 (𝑡) = ∫𝑡
𝑡−𝜏(𝑡)

𝑒𝛼(𝑡−𝑠)�̇�𝑇 (𝑡) �̃�𝑖�̇� (𝑡) 𝑑𝑠,
𝑉4𝑖 (𝑡) = ∫0

−ℎ𝑚

∫𝑡
𝑡+𝜖
𝑒𝛼(𝑡−𝑠)�̇�𝑇 (𝑡) �̃�𝑖�̇� (𝑡) 𝑑𝑠 𝑑𝜖,

𝑉5𝑖 (𝑡) = ∫0
−𝑟𝑚

∫𝑡
𝑡+𝜖
𝑒𝛼(𝑡−𝑠)𝑥𝑇 (𝑡) �̃�𝑖𝑥 (𝑡) 𝑑𝑠 𝑑𝜖,

(28)

in which 𝛼 is a given scalar and �̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖, and �̃�𝑖
are positive definite matrices to be determined. Taking the
derivative of 𝑉(𝑡) with respect to 𝑡 along the trajectory of
system (17) yields

�̇�1𝑖 (𝑡) = 2𝑥𝑇 (𝑡) �̃�𝑖�̇� (𝑡) ,
�̇�2𝑖 (𝑡)
= 𝛼𝑉2𝑖 (𝑡) + 𝑥𝑇 (𝑡) �̃�𝑖𝑥 (𝑡)
− 𝑒𝛼ℎ(𝑡) (1 − ℎ̇ (𝑡)) 𝑥𝑇 (𝑡 − ℎ (𝑡)) �̃�𝑖𝑥 (𝑡 − ℎ (𝑡))

≤ 𝛼𝑉2𝑖 (𝑡) + 𝑥𝑇 (𝑡) �̃�𝑖𝑥 (𝑡)
− (1 − ℎ̂) 𝑥𝑇 (𝑡 − ℎ (𝑡)) �̃�𝑖𝑥 (𝑡 − ℎ (𝑡)) ,

�̇�3𝑖 (𝑡)
= 𝛼𝑉3𝑖 (𝑡) + �̇�𝑇 (𝑡) �̃�𝑖�̇� (𝑡)
− 𝑒𝛼𝜏(𝑡) (1 − �̇� (𝑡)) �̇�𝑇 (𝑡 − 𝜏 (𝑡)) �̃�𝑖�̇� (𝑡 − 𝜏 (𝑡))

≤ 𝛼𝑉3𝑖 (𝑡) + �̇�𝑇 (𝑡) �̃�𝑖�̇� (𝑡)
− (1 − �̂�) �̇�𝑇 (𝑡 − 𝜏 (𝑡)) �̃�𝑖�̇� (𝑡 − 𝜏 (𝑡)) ,

�̇�4𝑖 (𝑡)
= 𝛼𝑉4𝑖 (𝑡) + ℎ𝑚�̇�𝑇 (𝑡) �̃�𝑖�̇� (𝑡)
− ∫𝑡
𝑡−ℎ(𝑡)

𝑒𝛼(𝑡−𝑠)�̇�𝑇 (𝑠) �̃�𝑖�̇� (𝑠) 𝑑𝑠

≤ 𝛼𝑉4𝑖 (𝑡) + ℎ𝑚�̇�𝑇 (𝑡) �̃�𝑖�̇� (𝑡)
− ∫𝑡
𝑡−ℎ(𝑡)

�̇�𝑇 (𝑠) �̃�𝑖�̇� (𝑠) 𝑑𝑠,
�̇�5𝑖 (𝑡)
= 𝛼𝑉5𝑖 (𝑡) + 𝑟𝑚𝑥𝑇 (𝑡) �̃�𝑖𝑥 (𝑡)
− ∫𝑡
𝑡−𝑟(𝑡)

𝑒𝛼(𝑡−𝑠)𝑥𝑇 (𝑠) �̃�𝑖𝑥 (𝑠) 𝑑𝑠
≤ 𝛼𝑉5𝑖 (𝑡) + 𝑟𝑚𝑥𝑇 (𝑡) �̃�𝑖𝑥 (𝑡)
− ∫𝑡
𝑡−𝑟(𝑡)

𝑥𝑇 (𝑠) �̃�𝑖𝑥 (𝑠) 𝑑𝑠.
(29)

Using the Leibniz-Newton formula, we have

2 [𝑥𝑇 (𝑡)𝐻1𝑖 + 𝑥𝑇 (𝑡 − ℎ (𝑡))𝐻2𝑖]
⋅ [𝑥 (𝑡) − ∫𝑡

𝑡−ℎ(𝑡)
�̇� (𝑠) 𝑑𝑠 − 𝑥 (𝑡 − ℎ (𝑡))] = 0. (30)

Let

𝜒 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡))]𝑇 , (31)

and it obviously holds that

ℎ𝑚𝜒𝑇 (𝑡) 𝑋𝑖𝜒 (𝑡) − ∫𝑡
𝑡−ℎ(𝑡)

𝜒𝑇 (𝑡) 𝑋𝑖𝜒 (𝑡) 𝑑𝑠 ≥ 0. (32)

By Lemma 10, it is easy to obtain

− ∫𝑡
𝑡−𝑟(𝑡)

𝑥𝑇 (𝑠) �̃�𝑖𝑥 (𝑠) 𝑑𝑠
≤ − 1𝑟𝑚 ∫

𝑡

𝑡−𝑟(𝑡)
𝑥𝑇 (𝑠) 𝑑𝑠�̃�𝑖 ∫𝑡

𝑡−𝑟(𝑡)
𝑥 (𝑠) 𝑑𝑠.

(33)

Thus we have

�̇� (𝑡) − 𝛼𝑉 (𝑡) − 𝑤𝑇 (𝑡)𝑁𝑖𝑤 (𝑡)
≤ 𝑋𝑇 (𝑡) Θ𝑖𝑋 (𝑡) − ∫𝑡

𝑡−ℎ(𝑡)
𝜗𝑇 (𝑡, 𝑠) Δ 𝑖𝜗 (𝑡, 𝑠) 𝑑𝑠, (34)

where

𝑋 (𝑡)
= [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑡 − 𝜏 (𝑡)) 𝑤𝑇 (𝑡) ∫𝑡

𝑡−𝑟(𝑡)
𝑥𝑇 (𝑠) 𝑑𝑠]𝑇 ,

𝜗 (𝑡, 𝑠) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑠)]𝑇 .
(35)

Considering (19) and (20), we can obtain that

�̇� (𝑡) − 𝛼𝑉 (𝑡) − 𝑤𝑇 (𝑡)𝑁𝑖𝑤 (𝑡) < 0. (36)
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Integrating (36), it can be obtained from (26) and (36) that,∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1),
𝑉 (𝑡) < 𝑒𝛼(𝑡−𝑡𝑘)𝑉 (𝑡𝑘) + ∫𝑡

𝑡𝑘

𝑒𝛼(𝑡−𝑠)𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠
< 𝑒𝛼(𝑡−𝑡𝑘)𝜇𝑉 (𝑡−𝑘 ) + ∫𝑡

𝑡𝑘

𝑒𝛼(𝑡−𝑠)𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠
< 𝑒𝛼(𝑡−𝑡𝑘)𝜇 [𝑒𝛼(𝑡𝑘−𝑡𝑘−1)𝑉 (𝑡𝑘−1)
+ ∫𝑡𝑘
𝑡𝑘−1

𝑒𝛼(𝑡𝑘−𝑠)𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠]
+ ∫𝑡
𝑡𝑘

𝑒𝛼(𝑡−𝑠)𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠
= 𝑒𝛼(𝑡−𝑡𝑘−1)𝜇𝑉 (𝑡𝑘−1)
+ 𝜇∫𝑡𝑘
𝑡𝑘−1

𝑒𝛼(𝑡−𝑠)𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠
+ ∫𝑡
𝑡𝑘

𝑒𝛼(𝑡−𝑠)𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠 < ⋅ ⋅ ⋅
< 𝑒𝛼(𝑡−0)𝜇𝑁𝜎(0,𝑡)𝑉 (0)
+ 𝜇𝑁𝜎(0,𝑡) ∫𝑡1

0
𝑒𝛼(𝑡−𝑠)𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠

+ 𝜇𝑁𝜎(𝑡1 ,𝑡) ∫𝑡2
𝑡1

𝑒𝛼(𝑡−𝑠)𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠 + ⋅ ⋅ ⋅
+ 𝜇∫𝑡𝑘
𝑡𝑘−1

𝑒𝛼(𝑡−𝑠)𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠
+ ∫𝑡
𝑡𝑘

𝑒𝛼(𝑡−𝑠)𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠
= 𝑒𝛼(𝑡−0)𝜇𝑁𝜎(0,𝑡)𝑉 (0)
+ ∫𝑡
0
𝑒𝛼(𝑡−𝑠)𝜇𝑁𝜎(𝑠,𝑡)𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠

< 𝑒𝛼𝑡𝜇𝑁𝜎(0,𝑡)𝑉 (0) + 𝜇𝑁𝜎(0,𝑡)𝑒𝛼𝑡 ∫𝑡
0
𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠

< 𝑒𝛼𝑇𝑓𝜇𝑁𝜎(0,𝑇𝑓) [𝑉 (0) + ∫𝑇𝑓
0
𝑤𝑇 (𝑠)𝑁𝑖𝑤 (𝑠) 𝑑𝑠]

< 𝑒𝛼𝑇𝑓𝜇𝑁𝜎(0,𝑇𝑓) [𝑉 (0) + 𝜆max (𝑁𝑖) 𝑑] .
(37)

From Definition 8, we can deduce that 𝑁𝜎(0, 𝑇𝑓) < 𝑇𝑓/𝜏𝑎,
and then we can obtain

𝑉 (𝑡) < 𝑒(𝛼+ln 𝜇/𝜏𝑎)𝑇𝑓 [𝑉 (0) + 𝜆7𝑑] . (38)

On the other hand

𝑉 (𝑡) > 𝑥𝑇 (𝑡) �̃�𝑖𝑥 (𝑡) = 𝑥𝑇 (𝑡) 𝑅1/2𝑃𝑖𝑅1/2𝑥 (𝑡)
≥ 𝜆min (𝑃𝑖) 𝑥𝑇 (𝑡) 𝑅𝑥 (𝑡) = 𝜆1𝑥𝑇 (𝑡) 𝑅𝑥 (𝑡) ,

𝑉 (0) ≤ 𝜆max (𝑃𝑖) 𝑥𝑇 (0) 𝑅𝑥 (0) + ℎ𝑚𝑒𝛼ℎ𝑚𝜆max (𝑄𝑖)
⋅ sup
−𝜏≤𝜃≤0

{𝑥𝑇 (𝜃) 𝑅𝑥 (𝜃) , �̇�𝑇 (𝜃) 𝑅�̇� (𝜃)}
+ 𝜏𝑚𝑒𝛼𝜏𝑚𝜆max (𝑍𝑖)
⋅ sup
−𝜏≤𝜃≤0

{𝑥𝑇 (𝜃) 𝑅𝑥 (𝜃) , �̇�𝑇 (𝜃) 𝑅�̇� (𝜃)}
+ ℎ𝑚𝑒𝛼ℎ𝑚𝜆max (𝑇𝑖)
⋅ sup
−𝜏≤𝜃≤0

{𝑥𝑇 (𝜃) 𝑅𝑥 (𝜃) , �̇�𝑇 (𝜃) 𝑅�̇� (𝜃)}
+ 𝑟𝑚𝑒𝛼𝑟𝑚𝜆max (𝑀𝑖)
⋅ sup
−𝜏≤𝜃≤0

{𝑥𝑇 (𝜃) 𝑅𝑥 (𝜃) , �̇�𝑇 (𝜃) 𝑅�̇� (𝜃)} ≤ [𝜆max (𝑃𝑖)
+ ℎ𝑚𝑒𝛼ℎ𝑚𝜆max (𝑄𝑖) + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆max (𝑍𝑖)
+ ℎ𝑚𝑒𝛼ℎ𝑚𝜆max (𝑇𝑖) + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆max (𝑀𝑖)]
⋅ sup
−𝜏≤𝜃≤0

{𝑥𝑇 (𝜃) 𝑅𝑥 (𝜃) , �̇�𝑇 (𝜃) 𝑅�̇� (𝜃)} ≤ [𝜆2
+ ℎ𝑚𝑒𝛼ℎ𝑚𝜆3 + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆4 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆5 + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆6]
⋅ 𝑐1.

(39)

From (38)-(39), we can obtain

𝑥𝑇 (𝑡) 𝑅𝑥 (𝑡) ≤ 𝑉 (𝑡)𝜆1 < [𝜆2 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆3 + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆4 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆5 + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆6] 𝑐1 + 𝜆7𝑑𝜆1 𝑒𝛼𝑇𝑓𝜇𝑇𝑓/𝜏𝑎 . (40)

When 𝜇 = 1, it is obvious that 𝑥𝑇(𝑡)𝑅𝑥(𝑡) < 𝑐2 by (22).
When 𝜇 > 1, by virtue of (22), we have that

ln (𝜆1𝑐2) − ln [(𝜆2 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆3 + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆4

+ ℎ𝑚𝑒𝛼ℎ𝑚𝜆5 + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆6) 𝑐1 + 𝜆7𝑑] − 𝛼𝑇𝑓 > 0.
(41)

From (23), we can obtain
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𝑇𝑓𝜏𝑎 <
ln (𝜆1𝑐2) − ln [(𝜆2 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆3 + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆4 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆5 + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆6) 𝑐1 + 𝜆7𝑑] − 𝛼𝑇𝑓

ln (𝜇)
= ln [𝜆1𝑐2𝑒−𝛼𝑇𝑓/ ((𝜆2 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆3 + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆4 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆5 + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆6) 𝑐1 + 𝜆7𝑑)]

ln (𝜇) .
(42)

Substituting (42) into (40) yields

𝑥𝑇 (𝑡) 𝑅𝑥 (𝑡) < [[𝜆2 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆3 + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆4 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆5 + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆6] 𝑐1 + 𝜆7𝑑𝜆1 ] 𝑒𝛼𝑇𝑓
[ 𝜆1𝑐2𝑒−𝛼𝑇𝑓(𝜆2 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆3 + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆4 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆5 + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆6) 𝑐1 + 𝜆7𝑑] = 𝑐2.

(43)

The proof is completed.

Based onTheorem 13, whenwe set𝑤(𝑡) = 0, the following
corollary is proposed to solve the finite-time stable problem.

Corollary 14. Consider system (17) with 𝑤(𝑡) = 0. For given
positive scalars 𝛼, ℎ̂, �̂�, ℎ𝑚, and 𝑟𝑚, if there exist positive definite
symmetric matrices �̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖, and �̃�𝑖 and matrices 𝑋11𝑖,𝑋12𝑖,𝑋22𝑖,𝐻1𝑖, and𝐻2𝑖 with appropriate dimensions, then

[𝑋11𝑖 𝑋12𝑖∗ 𝑋22𝑖] ≥ 0,

[[
[
𝑋11𝑖 𝑋12𝑖 𝐻1𝑖∗ 𝑋22𝑖 𝐻2𝑖∗ ∗ �̃�𝑖

]]
]
≥ 0,

[[[[[[[[
[

Δ 11 Δ 12 Δ 13 �̃�𝑖𝐺𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐺𝑖
∗ Δ 22 Δ 23 𝐵𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐵𝑇𝑖 �̃�𝑖𝐺𝑖
∗ ∗ Δ 33 𝐶𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐶𝑇𝑖 �̃�𝑖𝐺𝑖
∗ ∗ ∗ 𝐺𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐺𝑇𝑖 �̃�𝑖𝐺𝑖 − �̃�𝑖𝑟𝑚

]]]]]]]]
]
< 0

(44)

hold, where

Δ 11 = −𝛼�̃�𝑖 + �̃�𝑖𝐴 𝑖 + 𝐴𝑇𝑖 �̃�𝑖 + �̃�𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐴 𝑖
+ ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐴 𝑖 + 𝑟𝑚�̃�𝑖 + 𝐻1𝑖 + 𝐻𝑇1𝑖 + ℎ𝑚𝑋11𝑖,

Δ 12 = �̃�𝑖𝐵𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐵𝑖 + ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐵𝑖 − 𝐻𝑇1𝑖 + 𝐻2𝑖
+ ℎ𝑚𝑋12𝑖,

Δ 13 = �̃�𝑖𝐶𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐶𝑖 + ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐶𝑖,
Δ 22 = − (1 − ℎ̂) �̃�𝑖 + 𝐵𝑇𝑖 �̃�𝑖𝐵𝑖 + ℎ𝑚𝐵𝑇𝑖 �̃�𝑖𝐵𝑖 − 𝐻2𝑖
− 𝐻𝑇2𝑖 + ℎ𝑚𝑋22𝑖,

Δ 23 = 𝐵𝑇𝑖 �̃�𝑖𝐶𝑖 + ℎ𝑚𝐵𝑇𝑖 �̃�𝑖𝐶𝑖,
Δ 33 = − (1 − �̂�) �̃�𝑖 + 𝐶𝑇𝑖 �̃�𝑖𝐶𝑖 + ℎ𝑚𝐶𝑇𝑖 �̃�𝑖𝐶𝑖,
(𝜆2 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆3 + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆4 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆5 + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆6)
⋅ 𝑐1 < 𝑐2𝜆1𝑒−𝛼𝑇𝑓 ;

(45)

meanwhile, the average dwell-time satisfies

𝜏𝑎 > 𝜏∗𝑎 = 𝑇𝑓 ln 𝜇
ln (𝜆1𝑐2) − ln [(𝜆2 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆3 + 𝜏𝑚𝑒𝛼𝜏𝑚𝜆4 + ℎ𝑚𝑒𝛼ℎ𝑚𝜆5 + 𝑟𝑚𝑒𝛼𝑟𝑚𝜆6) 𝑐1] − 𝛼𝑇𝑓 , (46)

where 𝜇 > 1 satisfying (26) and �̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖, 𝜆1, 𝜆2,𝜆3, 𝜆4, 𝜆5, and 𝜆6 are defined just the same as (25). Then
the switched system (17) is finite-time stable with respect to(𝑐1, 𝑐2, 𝑑, 𝑅, 𝑇𝑓, 𝜎).
Proof. The proof is similar to that of Theorem 13, and it is
omitted here.

3.2. Finite-Time Extended Dissipative Analysis. In this sec-
tion, the finite-time extended dissipative analysis is consid-
ered in the following theorem.

Theorem 15. For given positive scalars 𝛼, ℎ̂, �̂�, ℎ𝑚, 𝑟𝑚, and 𝑏,
if there exist positive definite symmetric matrices �̃�𝑖, �̃�𝑖, �̃�𝑖,
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�̃�𝑖, and �̃�𝑖 and matrices 𝑋11𝑖, 𝑋12𝑖, 𝑋22𝑖, 𝐻1𝑖, and 𝐻2𝑖 with
appropriate dimensions, then

1𝑏 �̃�𝑖 − 𝐹𝑇𝑖 𝜓4𝐹𝑖 > 0, (47)

𝑋𝑖 = [𝑋11𝑖 𝑋12𝑖∗ 𝑋22𝑖] ≥ 0, (48)

Δ 𝑖 = [[[
[

𝑋11𝑖 𝑋12𝑖 𝐻1𝑖∗ 𝑋22𝑖 𝐻2𝑖
∗ ∗ �̃�𝑖

]]]
]
≥ 0, (49)

Φ𝑖 =
[[[[[[[[[[[
[

Φ11 Φ12 Φ13 Φ14 �̃�𝑖𝐺𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐺𝑖
∗ Φ22 Φ23 𝐵𝑇𝑖 �̃�𝑖𝐷𝑖 + ℎ𝑚𝐵𝑇𝑖 �̃�𝑖𝐷𝑖 𝐵𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐵𝑇𝑖 �̃�𝑖𝐺𝑖
∗ ∗ Φ33 𝐶𝑇𝑖 �̃�𝑖𝐷𝑖 + ℎ𝑚𝐶𝑇𝑖 �̃�𝑖𝐷𝑖 𝐶𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐶𝑇𝑖 �̃�𝑖𝐺𝑖
∗ ∗ ∗ Φ44 𝐷𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐷𝑇𝑖 �̃�𝑖𝐺𝑖
∗ ∗ ∗ ∗ 𝐺𝑇𝑖 �̃�𝑖𝐺𝑖 + ℎ𝑚𝐺𝑇𝑖 �̃�𝑖𝐺𝑖 − �̃�𝑖𝑟𝑚

]]]]]]]]]]]
]

< 0 (50)

hold, where

Φ11 = −𝛼�̃�𝑖 + �̃�𝑖𝐴 𝑖 + 𝐴𝑇𝑖 �̃�𝑖 + �̃�𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐴 𝑖
+ ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐴 𝑖 − 𝐹𝑇𝑖 𝜓1𝐹𝑖 + 𝑟𝑚�̃�𝑖 + 𝐻1𝑖 + 𝐻𝑇1𝑖
+ ℎ𝑚𝑋11𝑖,

Φ12 = �̃�𝑖𝐵𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐵𝑖 + ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐵𝑖 − 𝐻𝑇1𝑖 + 𝐻2𝑖
+ ℎ𝑚𝑋12𝑖,

Φ13 = �̃�𝑖𝐶𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐶𝑖 + ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐶𝑖,
Φ14 = �̃�𝑖𝐷𝑖 + 𝐴𝑇𝑖 �̃�𝑖𝐷𝑖 + ℎ𝑚𝐴𝑇𝑖 �̃�𝑖𝐷𝑖 − 𝐹𝑇𝑖 𝜓2,
Φ22 = − (1 − ℎ̂) �̃�𝑖 + 𝐵𝑇𝑖 �̃�𝑖𝐵𝑖 + ℎ𝑚𝐵𝑇𝑖 �̃�𝑖𝐵𝑖 − 𝐻2𝑖 − 𝐻𝑇2𝑖

+ ℎ𝑚𝑋22𝑖,
Φ23 = 𝐵𝑇𝑖 �̃�𝑖𝐶𝑖 + ℎ𝑚𝐵𝑇𝑖 �̃�𝑖𝐶𝑖,
Φ33 = − (1 − �̂�) �̃�𝑖 + 𝐶𝑇𝑖 �̃�𝑖𝐶𝑖 + ℎ𝑚𝐶𝑇𝑖 �̃�𝑖𝐶𝑖,
Φ44 = −𝜓3 + 𝐷𝑇𝑖 �̃�𝑖𝐷𝑖 + ℎ𝑚𝐷𝑇𝑖 �̃�𝑖𝐷𝑖;

(51)

meanwhile, the average dwell-time satisfies

𝜏𝑎 > 𝜏∗𝑎 = 𝑇𝑓 ln 𝜇
ln (𝜆1𝑐2) − ln [𝜆8𝑘 + (𝜆9 + 𝜆10) 𝑑] − 𝛼𝑇𝑓 , (52)

where
𝜆𝑚𝑖𝑛 (𝑃𝑖) = 𝜆1,

𝜆𝑚𝑎𝑥 (𝐹𝑇𝑖 𝐹𝑖) = 𝜆8,

𝜆𝑚𝑎𝑥 (𝜓𝑇2 𝜓2) = 𝜆9,
𝜆𝑚𝑎𝑥 (𝜓3) = 𝜆10,

�̃�𝑖 = 𝑅1/2𝑃𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑄𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑍𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑇𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑀𝑖𝑅1/2.

(53)
Then, system (17) is finite-time bounded with extended dissipa-
tive performance with respect to (0, 𝑐2, 𝑑, 𝑅, 𝑇𝑓, 𝜎).
Proof. Choose the same Lyapunov-Krasovskii function as in
Theorem 13, similar to the proof ofTheorem 13, andwe obtain

�̇� (𝑡) − 𝛼𝑉 (𝑡) − 𝐽 (𝑡) ≤ 𝑋𝑇 (𝑡) Φ𝑖𝑋(𝑡)
− ∫𝑡
𝑡−ℎ(𝑡)

𝜗𝑇 (𝑡, 𝑠) Δ 𝑖𝜗 (𝑡, 𝑠) 𝑑𝑠, (54)

where
𝑋 (𝑡)
= [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑡 − 𝜏 (𝑡)) 𝑤𝑇 (𝑡) ∫𝑡

𝑡−𝑟(𝑡)
𝑥𝑇 (𝑠) 𝑑𝑠]𝑇 ,

𝜗 (𝑡, 𝑠) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑠)]𝑇 ;
(55)

by virtue of (49)-(50) we can obtain that
�̇� (𝑡) − 𝛼𝑉 (𝑡) − 𝐽 (𝑡) < 0 (56)
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follows the proof line of (37); it is easy to obtain the following
inequality:

𝑉 (𝑡) < 𝑒𝛼𝑡𝜇𝑁𝜎(0,𝑡)𝑉 (0) + ∫𝑡
0
𝑒𝛼(𝑡−𝑠)𝜇𝑁𝜎(𝑠,𝑡)𝐽 (𝑠) 𝑑𝑠; (57)

under zero initial condition𝑉(0) = 0, it can be calculated that
𝑉 (𝑡) < 𝑒𝛼𝑡𝜇𝑁𝜎(0,𝑡) ∫𝑡

0
𝐽 (𝑠) 𝑑𝑠, (58)

and it is equivalent to

𝑉 (𝑡)𝑒𝛼𝑡𝜇𝑁𝜎(0,𝑡) < ∫
𝑡

0
𝐽 (𝑠) 𝑑𝑠; (59)

by Assumption 4, we have

𝑉 (𝑡)𝑏 < ∫𝑡
0
𝐽 (𝑠) 𝑑𝑠, (60)

so we obtain

∫𝑡
0
𝐽 (𝑠) 𝑑𝑠 > 𝑉 (𝑡)𝑏 > 1𝑏𝑥𝑇 (𝑡) �̃�𝑖𝑥 (𝑡) > 0, (61)

considering inequality

∫𝑇𝑓
0
𝐽 (𝑡) 𝑑𝑡 − sup

0≤𝑡≤𝑇𝑓

𝑧𝑇 (𝑡) 𝜓4𝑧 (𝑡) ≥ 0; (62)

when 𝜓4 = 0, one obtains
∫𝑇𝑓
0
𝐽 (𝑡) 𝑑𝑡 ≥ 0; (63)

when 𝜓4 > 0, by Assumption 3 we have 𝜓1 = 0, 𝜓2 = 0, and𝜓3 > 0, and then we obtain

∫𝑡
0
𝐽 (𝑠) 𝑑𝑠 = ∫𝑡

0
𝑤𝑇 (𝑠) 𝜓3𝑤 (𝑠) 𝑑𝑠; (64)

thus, for ∀𝑡 ∈ [0, 𝑇𝑓], we have
∫𝑇𝑓
0
𝐽 (𝑠) 𝑑𝑠 > ∫𝑡

0
𝐽 (𝑠) 𝑑𝑠 ≥ 1𝑏𝑥𝑇 (𝑡) �̃�𝑖𝑥 (𝑡) > 0; (65)

it follows from (47) that

∫𝑇𝑓
0
𝐽 (𝑠) 𝑑𝑠 ≥ 1𝑏𝑥𝑇 (𝑡) �̃�𝑖𝑥 (𝑡) ≥ 𝑥𝑇 (𝑡) 𝐹𝑇𝑖 𝜓4𝐹𝑖𝑥 (𝑡)

= 𝑧𝑇 (𝑡) 𝜓4𝑧 (𝑡) ,
(66)

so we get

∫𝑇𝑓
0
𝐽 (𝑡) 𝑑𝑡 − sup

0≤𝑡≤𝑇𝑓

𝑧𝑇 (𝑡) 𝜓4𝑧 (𝑡) ≥ 0. (67)

Thus the proof of extended dissipative is completed.

Next, we proof finite-time boundedness. Following the
proof above, we can deduce that

𝑉 (𝑡) < 𝑒𝛼𝑡𝜇𝑁𝜎(0,𝑡) ∫𝑡
0
𝐽 (𝑠) 𝑑𝑠,

𝑉 (𝑡) < 𝑒(𝛼+ln 𝜇/𝜏𝑎)𝑇𝑓 ∫𝑇𝑓
0
𝐽 (𝑠) 𝑑𝑠.

(68)

When 𝜓1 ≤ 0, we can obtain

∫𝑇𝑓
0
𝐽 (𝑠) 𝑑𝑠 ≤ ∫𝑇𝑓

0
[2𝑧𝑇 (𝑠) 𝜓2𝑤 (𝑠) + 𝑤𝑇 (𝑠)

⋅ 𝜓3𝑤 (𝑠)] 𝑑𝑠,
𝑉 (𝑡) < 𝑒(𝛼+ln 𝜇/𝜏𝑎)𝑇𝑓 [∫𝑇𝑓

0
[2𝑧𝑇 (𝑠) 𝜓2𝑤 (𝑠)

+ 𝑤𝑇 (𝑠) 𝜓3𝑤 (𝑠)] 𝑑𝑠] ,

(69)

so we get

𝑥𝑇 (𝑡) 𝑅𝑥 (𝑡) ≤ 𝑉 (𝑡)𝜆1
< 𝑒(𝛼+ln 𝜇/𝜏𝑎)𝑇𝑓𝜆1 [∫𝑇𝑓

0
[2𝑧𝑇 (𝑠) 𝜓2𝑤 (𝑠)

+ 𝑤𝑇 (𝑠) 𝜓3𝑤 (𝑠)] 𝑑𝑠] ,
(70)

by

∫𝑇𝑓
0
[2𝑧𝑇 (𝑠) 𝜓2𝑤 (𝑠) + 𝑤𝑇 (𝑠) 𝜓3𝑤 (𝑠)] 𝑑𝑠
= ∫𝑇𝑓
0
[2𝑥𝑇 (𝑠) 𝐹𝑇𝑖 𝜓2𝑤 (𝑠) + 𝑤𝑇 (𝑠) 𝜓3𝑤 (𝑠)] 𝑑𝑠,

(71)

and by Lemma 9, we have

2𝑥𝑇 (𝑠) 𝐹𝑇𝑖 𝜓2𝑤 (𝑠) ≤ 𝑥𝑇 (𝑠) 𝐹𝑇𝑖 𝐹𝑖𝑥 (𝑠)
+ 𝑤𝑇 (𝑠) 𝜓𝑇2 𝜓2𝑤 (𝑠) .

(72)

According to (106), we can obtain

𝑥𝑇 (𝑡) 𝑅𝑥 (𝑡) ≤ 𝑉 (𝑡)𝜆1
< 𝑒(𝛼+ln 𝜇/𝜏𝑎)𝑇𝑓𝜆1 [∫𝑇𝑓

0
[2𝑧𝑇 (𝑠) 𝜓2𝑤 (𝑠)

+ 𝑤𝑇 (𝑠) 𝜓3𝑤 (𝑠)] 𝑑𝑠]
< 𝑒(𝛼+ln 𝜇/𝜏𝑎)𝑇𝑓𝜆1 [∫𝑇𝑓

0
[𝑥𝑇 (𝑠) 𝐹𝑇𝑖 𝐹𝑖𝑥 (𝑠)
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+ 𝑤𝑇 (𝑠) 𝜓𝑇2 𝜓2𝑤 (𝑠) + 𝑤𝑇 (𝑠) 𝜓3𝑤 (𝑠)] 𝑑𝑠]
< 𝑒(𝛼+ln 𝜇/𝜏𝑎)𝑇𝑓𝜆1 [𝜆8𝑘 + (𝜆9 + 𝜆10) 𝑑] .

(73)

From (52), we can conclude that 𝑥𝑇(𝑡)𝑅𝑥(𝑡) ≤ 𝑐2. Thus the
proof is completed.

3.3. Nonfragile Finite-Time Extended Dissipative Control.
Consider system (1), under the controller 𝜇(𝑡) = 𝐾𝜎(𝑡)𝑥(𝑡),
the corresponding closed-loop system is given by

�̇� (𝑡) − �̂�𝜎(𝑡)�̇� (𝑡 − 𝜏 (𝑡))
= (�̂�𝜎(𝑡) + 𝐸𝜎(𝑡)𝐾𝜎(𝑡) (𝑡)) 𝑥 (𝑡) + �̂�𝜎(𝑡)𝑥 (𝑡 − ℎ (𝑡))

+ 𝐷𝜎(𝑡)𝑤 (𝑡) + �̂�𝜎(𝑡) ∫𝑡
𝑡−𝑟(𝑡)

𝑥 (𝑠) 𝑑𝑠,
𝑧 (𝑡) = 𝐹𝜎(𝑡)𝑥 (𝑡) ,
𝑥 (𝑡0 + 𝜃) = 𝜑 (𝜃) , ∀𝜃 ∈ [−𝜏, 0] .

(74)

Firstly, for the additive gain variation model satisfying
the form of Case 1, that is, Δ𝐾𝑖(𝑡) = 𝐽1𝑖𝑈𝑖(𝑡)𝐽2𝑖, we have the
following theorem.

Theorem 16. For given positive scalars 𝛼, ℎ̂, �̂�, ℎ𝑚, 𝑟𝑚,𝛿, 𝜖, and 𝑏, if there exist positive definite symmetric
matrices �̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖, and �̃�𝑖 and matrices 𝐿 𝑖, 𝑀1𝑖,𝑀2𝑖, 𝑀3𝑖, 𝑀4𝑖, 𝐽1𝑖, and 𝐽2𝑖 with appropriate dimensions,
then

1𝑏 �̃�𝑖 − 𝐹𝑇𝑖 𝜓4𝐹𝑖 > 0, (75)

[𝑋11𝑖 𝑋12𝑖∗ 𝑋22𝑖] ≥ 0, (76)

[[[
[

𝑋11𝑖 𝑋12𝑖 𝐻1𝑖∗ 𝑋22𝑖 𝐻2𝑖
∗ ∗ �̃�𝑖

]]]
]
≥ 0, (77)

[[[[[[[[[[[[[[[[[[[[[[[[[
[

Θ11 Θ12 𝐶𝑖𝑅𝑖 𝐷𝑖 − 𝑅𝑖𝐹𝑇𝑖 𝜓2 𝐺𝑖 Θ16 Θ17 𝑅𝑖𝑀𝑇1𝑖 𝑅𝑖𝐽𝑇2𝑖 𝑅𝑖𝐹𝑇𝑖
∗ Θ22 0 0 0 𝑅𝑖𝐵𝑇𝑖 ℎ𝑚𝑅𝑖𝐵𝑇𝑖 𝑅𝑖𝑀𝑇2𝑖 0 0
∗ ∗ Θ33 0 0 𝑅𝑖𝐶𝑇𝑖 ℎ𝑚𝑅𝑖𝐶𝑇𝑖 𝑅𝑖𝑀𝑇3𝑖 0 0
∗ ∗ ∗ −𝜓3 0 𝐷𝑇𝑖 ℎ𝑚𝐷𝑇𝑖 0 0 0
∗ ∗ ∗ ∗ −�̃�𝑖𝑟𝑚 𝐺𝑇𝑖 ℎ𝑚𝐺𝑇𝑖 𝑀𝑇4𝑖 0 0
∗ ∗ ∗ ∗ ∗ Θ66 Θ67 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Θ77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛿𝐼 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜓−11

]]]]]]]]]]]]]]]]]]]]]]]]]
]

< 0 (78)

hold, where

Θ11 = −𝛼𝑅𝑖 + 𝐴 𝑖𝑅𝑖 + 𝑅𝑖𝐴𝑇𝑖 + 𝐸𝑖𝑌𝑖 + 𝑌𝑇𝑖 𝐸𝑇𝑖 + �̂�𝑖
+ 𝑟𝑚�̂�𝑖 + �̂�1𝑖 + �̂�𝑇1𝑖 + ℎ𝑚�̂�11𝑖 + 𝛿𝐿 𝑖𝐿𝑇𝑖
+ 𝜖𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 ,

Θ12 = 𝐵𝑖𝑅𝑖 − �̂�𝑇1𝑖 + �̂�2𝑖 + ℎ𝑚�̂�12𝑖,
Θ16 = 𝑅𝑖𝐴𝑇𝑖 + 𝑌𝑇𝑖 𝐸𝑇𝑖 + 𝛿𝐿 𝑖𝐿𝑇𝑖 + 𝜖𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 ,

Θ17 = ℎ𝑚𝑅𝑖𝐴𝑇𝑖 + ℎ𝑚𝑌𝑇𝑖 𝐸𝑇𝑖 + ℎ𝑚𝛿𝐿 𝑖𝐿𝑇𝑖
+ 𝜖ℎ𝑚𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 ,

Θ22 = − (1 − ℎ̂) �̂�𝑖 − �̂�2𝑖 − �̂�𝑇2𝑖 + ℎ𝑚𝑋22𝑖,
Θ33 = − (1 − �̂�) �̂�𝑖,
Θ66 = −𝑊𝑖 + 𝛿𝐿 𝑖𝐿𝑇𝑖 + 𝜖𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 ,
Θ67 = ℎ𝑚𝛿𝐿 𝑖𝐿𝑇𝑖 + 𝜖ℎ𝑚𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 ,
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Θ77 = −ℎ𝑚𝑉𝑖 + ℎ𝑚𝛿𝐿 𝑖𝐿𝑇𝑖 + 𝜖ℎ2𝑚𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 ;
(79)

the matrices are defined as follows:

𝐾𝑖�̃�𝑖−1 = 𝑌𝑖,
�̃�𝑖−1 = 𝑅𝑖,
�̃�𝑖−1 = 𝑊𝑖,
�̃�𝑖−1 = 𝑉𝑖,

�̃�𝑖−1�̃�𝑖�̃�𝑖−1 = �̂�𝑖,
�̃�𝑖−1�̃�𝑖�̃�𝑖−1 = �̂�𝑖,
�̃�𝑖−1�̃�𝑖�̃�𝑖−1 = �̂�𝑖,
�̃�𝑖−1𝐻1𝑖�̃�𝑖−1 = �̂�1𝑖,
�̃�𝑖−1𝐻2𝑖�̃�𝑖−1 = �̂�2𝑖,
�̃�𝑖−1𝑋11𝑖�̃�𝑖−1 = �̂�11𝑖,
�̃�𝑖−1𝑋12𝑖�̃�𝑖−1 = �̂�12𝑖,
�̃�𝑖−1𝑋22𝑖�̃�𝑖−1 = �̂�22𝑖;

(80)

meanwhile, the average dwell-time satisfies

𝜏𝑎 > 𝜏∗𝑎 = 𝑇𝑓 ln 𝜇
ln (𝜆1𝑐2) − ln [𝜆8𝑘 + (𝜆9 + 𝜆10) 𝑑] − 𝛼𝑇𝑓 , (81)

where

𝜆𝑚𝑖𝑛 (𝑃𝑖) = 𝜆1,
𝜆𝑚𝑎𝑥 (𝐹𝑇𝑖 𝐹𝑖) = 𝜆8,
𝜆𝑚𝑎𝑥 (𝜓𝑇2 𝜓2) = 𝜆9,
𝜆𝑚𝑎𝑥 (𝜓3) = 𝜆10,

�̃�𝑖 = 𝑅1/2𝑃𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑄𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑍𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑇𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑀𝑖𝑅1/2.

(82)

Then the switched linear neutral system is finite-time bounded
with extended dissipative performance. Furthermore, the non-
fragile controller can be chosen by

𝑢 (𝑡) = 𝐾𝜎(𝑡) (𝑡) 𝑥 (𝑡) . (83)

Proof. Replacing 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, and 𝐺𝑖 in (50) with �̂�𝑖 + 𝐸𝑖𝐾𝑖 +𝐸𝑖Δ𝐾𝑖(𝑡), �̂�𝑖, �̂�𝑖, and �̂�𝑖 and by Schur complement, we obtain

Λ 𝑖 =

[[[[[[[[[[[[[[[[[[
[

Λ 11 Λ 12 �̃�𝑖�̂�𝑖 �̃�𝑖𝐷𝑖 − 𝐹𝑇𝑖 𝜓2 �̃�𝑖�̂�𝑖 Λ 16 ℎ𝑚 (�̂�𝑖 + 𝐸𝑖𝐾𝑖 + 𝐸𝑖Δ𝐾𝑖 (𝑡))𝑇 �̃�𝑖
∗ Λ 22 0 0 0 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ Λ 33 0 0 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ ∗ −𝜓3 0 𝐷𝑇𝑖 �̃�𝑖 ℎ𝑚𝐷𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ −�̃�𝑖𝑟𝑚 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ ∗ −�̃�𝑖 0
∗ ∗ ∗ ∗ ∗ ∗ −ℎ𝑚�̃�𝑖

]]]]]]]]]]]]]]]]]]
]

, (84)

where
Λ 11 = −𝛼�̃�𝑖 + �̃�𝑖 (�̂�𝑖 + 𝐸𝑖𝐾𝑖 + 𝐸𝑖Δ𝐾𝑖 (𝑡))

+ (�̂�𝑖 + 𝐸𝑖𝐾𝑖 + 𝐸𝑖Δ𝐾𝑖 (𝑡))𝑇 �̃�𝑖 + �̃�𝑖
+ 𝑟𝑚�̃�𝑖 − 𝐹𝑇𝑖 𝜓1𝐹𝑖 + 𝐻1𝑖 + 𝐻𝑇1𝑖 + ℎ𝑚𝑋11𝑖,

Λ 12 = �̃�𝑖�̂�𝑖 − 𝐻𝑇1𝑖 + 𝐻2𝑖 + ℎ𝑚𝑋12𝑖,
Λ 16 = (�̂�𝑖 + 𝐸𝑖𝐾𝑖 + 𝐸𝑖Δ𝐾𝑖 (𝑡))𝑇 �̃�𝑖,

Λ 22 = − (1 − ℎ̂) �̃�𝑖 − 𝐻2𝑖 − 𝐻𝑇2𝑖 + ℎ𝑚𝑋22𝑖,
Λ 33 = − (1 − �̂�) �̃�𝑖;

(85)

Λ 𝑖 can be rewritten as

Ω𝑖 + Γ1𝑖𝑈𝑖 (𝑡) Γ2𝑖 + Γ𝑇2𝑖𝑈𝑇𝑖 (𝑡) Γ𝑇1𝑖, (86)

where
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Ω𝑖 =

[[[[[[[[[[[[[[[[[[[[
[

Ω11 Ω12 �̃�𝑖�̂�𝑖 �̃�𝑖𝐷𝑖 − 𝐹𝑇𝑖 𝜓2 �̃�𝑖�̂�𝑖 Ω16 ℎ𝑚 (�̂�𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖
∗ Ω22 0 0 0 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ Ω33 0 0 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ ∗ −𝜓3 0 𝐷𝑇𝑖 �̃�𝑖 ℎ𝑚𝐷𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ −�̃�𝑖𝑟𝑚 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ ∗ −�̃�𝑖 0
∗ ∗ ∗ ∗ ∗ ∗ −ℎ𝑚�̃�𝑖

]]]]]]]]]]]]]]]]]]]]
]

, (87)

with

Ω11 = −𝛼�̃�𝑖 + �̃�𝑖 (�̂�𝑖 + 𝐸𝑖𝐾𝑖) + (�̂�𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖 + �̃�𝑖
+ 𝑟𝑚�̃�𝑖 − 𝐹𝑇𝑖 𝜓1𝐹𝑖 + 𝐻1𝑖 + 𝐻𝑇1𝑖 + ℎ𝑚𝑋11𝑖,

Ω12 = �̃�𝑖�̂�𝑖 − 𝐻𝑇1𝑖 + 𝐻2𝑖 + ℎ𝑚𝑋12𝑖,
Ω16 = (�̂�𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖,
Ω22 = − (1 − ℎ̂) �̃�𝑖 − 𝐻2𝑖 − 𝐻𝑇2𝑖 + ℎ𝑚𝑋22𝑖,
Ω33 = − (1 − �̂�) �̃�𝑖;

(88)

by using Lemma 11, there exists a scalar 𝜖 > 0, such that

Ω𝑖 + Γ1𝑖𝑈𝑖 (𝑡) Γ2𝑖 + Γ𝑇2𝑖𝑈𝑇𝑖 (𝑡) Γ𝑇1𝑖
< Ω𝑖 + 𝜖Γ1𝑖Γ𝑇1𝑖 + 𝜖−1Γ𝑇2𝑖Γ2𝑖,

(89)

where

Γ1𝑖 = [𝐽𝑇1𝑖𝐸𝑇𝑖 �̃�𝑖 0 0 0 0 𝐽𝑇1𝑖𝐸𝑇𝑖 �̃�𝑖 ℎ𝑚𝐽𝑇1𝑖𝐸𝑇𝑖 �̃�𝑖]𝑇 ,
Γ2𝑖 = [𝐽2𝑖 0 0 0 0 0 0] . (90)

Here we consider the norm-bounded uncertainties, and we
set Ω𝑖 = Ω1𝑖 + Ω2𝑖, where

Ω1𝑖 =

[[[[[[[[[[[[[[[[[[[
[

Ξ11 Ξ12 �̃�𝑖𝐶𝑖 �̃�𝑖𝐷𝑖 − 𝐹𝑇𝑖 𝜓2 �̃�𝑖𝐺𝑖 Ξ16 ℎ𝑚 (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖
∗ Ξ22 0 0 0 𝐵𝑇𝑖 �̃�𝑖 ℎ𝑚𝐵𝑇𝑖 �̃�𝑖
∗ ∗ Ξ33 0 0 𝐶𝑇𝑖 �̃�𝑖 ℎ𝑚𝐶𝑇𝑖 �̃�𝑖
∗ ∗ ∗ −𝜓3 0 𝐷𝑇𝑖 �̃�𝑖 ℎ𝑚𝐷𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ −�̃�𝑖𝑟𝑚 𝐺𝑇𝑖 �̃�𝑖 ℎ𝑚𝐺𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ ∗ −�̃�𝑖 0
∗ ∗ ∗ ∗ ∗ ∗ −ℎ𝑚�̃�𝑖

]]]]]]]]]]]]]]]]]]]
]

, (91)

with

Ξ11 = −𝛼�̃�𝑖 + �̃�𝑖 (𝐴 𝑖 + 𝐸𝑖𝐾𝑖) + (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖 + �̃�𝑖
+ 𝑟𝑚�̃�𝑖 − 𝐹𝑇𝑖 𝜓1𝐹𝑖 + 𝐻1𝑖 + 𝐻𝑇1𝑖 + ℎ𝑚𝑋11𝑖,

Ξ12 = �̃�𝑖𝐵𝑖 − 𝐻𝑇1𝑖 + 𝐻2𝑖 + ℎ𝑚𝑋12𝑖,
Ξ16 = (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖,
Ξ22 = − (1 − ℎ̂) �̃�𝑖 − 𝐻2𝑖 − 𝐻𝑇2𝑖 + ℎ𝑚𝑋22𝑖,
Ξ33 = − (1 − �̂�) �̃�𝑖,

Ω2𝑖 =

[[[[[[[[[[[[[[[[[
[

�̃�𝑖𝐿 𝑖
0
0
0
0
�̃�𝑖𝐿 𝑖
ℎ𝑚�̃�𝑖𝐿 𝑖

]]]]]]]]]]]]]]]]]
]

Ξ𝑖 (𝑡) [𝑀1𝑖 𝑀2𝑖 𝑀3𝑖 0 𝑀4𝑖 0 0]
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+
[[[[[[[[[[
[

𝑀𝑇1𝑖𝑀𝑇2𝑖𝑀𝑇3𝑖0𝑀𝑇4𝑖00

]]]]]]]]]]
]

Ξ𝑇𝑖 (𝑡) [𝐿𝑇𝑖 �̃�𝑖 0 0 0 0 𝐿𝑇𝑖 �̃�𝑖 ℎ𝑚𝐿𝑇𝑖 �̃�𝑖] .

(92)

By Lemma 11, there exists a scalar 𝛿 > 0, such that

Ω2𝑖 ≤ 𝛿
[[[[[[[[[[
[

�̃�𝑖𝐿 𝑖0000�̃�𝑖𝐿 𝑖ℎ𝑚�̃�𝑖𝐿 𝑖

]]]]]]]]]]
]

[𝐿𝑇𝑖 �̃�𝑖 0 0 0 0 𝐿𝑇𝑖 �̃�𝑖 ℎ𝑚𝐿𝑇𝑖 �̃�𝑖]

+ 𝛿−1

[[[[[[[[[[[[[[[[
[

𝑀𝑇1𝑖
𝑀𝑇2𝑖
𝑀𝑇3𝑖0
𝑀𝑇4𝑖0
0

]]]]]]]]]]]]]]]]
]

[𝑀1𝑖 𝑀2𝑖 𝑀3𝑖 0 𝑀4𝑖 0 0] .

(93)

Then pre- and postmultiplying (78) by diag{�̃�𝑖, �̃�𝑖, �̃�𝑖, 𝐼, 𝐼, �̃�𝑖,�̃�𝑖, 𝐼, 𝐼, 𝐼}, we have

Π1𝑖 =

[[[[[[[[[[[[[[[[[[[[[[[[[
[

Π11 Π12 �̃�𝑖𝐶𝑖 �̃�𝑖𝐷𝑖 − 𝐹𝑇𝑖 𝜓2 �̃�𝑖𝐺𝑖 Π16 Π17 𝑀𝑇1𝑖 𝐽𝑇2𝑖 𝐹𝑇𝑖
∗ Π22 0 0 0 𝐵𝑇𝑖 �̃�𝑖 ℎ𝑚𝐵𝑇𝑖 �̃�𝑖 𝑀𝑇2𝑖 0 0
∗ ∗ Π33 0 0 𝐶𝑇𝑖 �̃�𝑖 ℎ𝑚𝐶𝑇𝑖 �̃�𝑖 𝑀𝑇3𝑖 0 0
∗ ∗ ∗ −𝜓3 0 𝐷𝑇𝑖 �̃�𝑖 ℎ𝑚𝐷𝑇𝑖 �̃�𝑖 0 0 0
∗ ∗ ∗ ∗ −�̃�𝑖𝑟𝑚 𝐺𝑇𝑖 �̃�𝑖 ℎ𝑚𝐺𝑇𝑖 �̃�𝑖 𝑀𝑇4𝑖 0 0
∗ ∗ ∗ ∗ ∗ Π66 Π67 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Π77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛿𝐼 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜓−11

]]]]]]]]]]]]]]]]]]]]]]]]]
]

< 0, (94)

where

Π11 = −𝛼�̃�𝑖 + �̃�𝑖 (𝐴 𝑖 + 𝐸𝑖𝐾𝑖) + (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖 + �̃�𝑖
+ 𝑟𝑚�̃�𝑖 + 𝐻1𝑖 + 𝐻𝑇1𝑖 + ℎ𝑚𝑋11𝑖 + 𝛿�̃�𝑖𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖
+ 𝜖�̃�𝑖𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 �̃�𝑖,

Π12 = �̃�𝑖𝐵𝑖 − 𝐻𝑇1𝑖 + 𝐻2𝑖 + ℎ𝑚𝑋12𝑖,
Π16 = (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖 + 𝛿�̃�𝑖𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖

+ 𝜖�̃�𝑖𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 �̃�𝑖,
Π17 = ℎ𝑚 (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖 + ℎ𝑚𝛿�̃�𝑖𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖

+ 𝜖ℎ𝑚�̃�𝑖𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 �̃�𝑖,
Π22 = − (1 − ℎ̂) �̃�𝑖 − 𝐻2𝑖 − 𝐻𝑇2𝑖 + ℎ𝑚𝑋22𝑖,

Π33 = − (1 − �̂�) �̃�𝑖,
Π66 = −�̃�𝑖 + 𝛿�̃�𝑇𝑖 𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖 + 𝜖�̃�𝑇𝑖 𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 �̃�𝑖,
Π67 = ℎ𝑚𝛿�̃�𝑇𝑖 𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖 + 𝜖ℎ𝑚�̃�𝑇𝑖 𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 �̃�𝑖,
Π77 = −ℎ𝑚�̃�𝑖 + ℎ𝑚𝛿�̃�𝑇𝑖 𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖 + 𝜖ℎ2𝑚�̃�𝑇𝑖 𝐸𝑖𝐽1𝑖𝐽𝑇1𝑖𝐸𝑇𝑖 �̃�𝑖.

(95)

Based on above discussion, from Π1𝑖 < 0, by Schur comple-
ment, we can conclude that Λ 𝑖 < 0. Similar to the proof of
Theorem 15, we can obtain

�̇� (𝑡) − 𝛼𝑉 (𝑡) − 𝐽 (𝑡) ≤ 𝑋𝑇 (𝑡) Λ 𝑖𝑋 (𝑡)
− ∫𝑡
𝑡−ℎ(𝑡)

𝜗𝑇 (𝑡, 𝑠) Δ 𝑖𝜗 (𝑡, 𝑠) 𝑑𝑠,
(96)
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where
𝑋 (𝑡)
= [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑡 − 𝜏 (𝑡)) 𝑤𝑇 (𝑡) ∫𝑡

𝑡−𝑟(𝑡)
𝑥𝑇 (𝑠) 𝑑𝑠]𝑇 ,

𝜗 (𝑡, 𝑠) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑠)]𝑇 ;
(97)

Δ 𝑖 is given in (77). The following proof is similar to that of
Theorem 15; it is omitted here.

Furthermore, for the multiplicative gain variation modelΔ𝐾𝑖(𝑡) with the form in (5) of Case 2, we have the following
theorem.

Theorem 17. For given positive scalars 𝛼, ℎ̂, �̂�, ℎ𝑚, 𝑟𝑚, 𝛿, 𝜖, 𝑏,
and 0 ≤ 𝑐 ≤ 1, if there exist positive definite symmetricmatrices�̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖, and �̃�𝑖 andmatrices 𝐿 𝑖,𝑀1𝑖,𝑀2𝑖,𝑀3𝑖, and𝑀4𝑖,
then

1𝑏 �̃�𝑖 − 𝐹𝑇𝑖 𝜓4𝐹𝑖 > 0, (98)

[−𝑐𝐼 𝑊𝑞𝑖𝑊𝑞𝑖 −𝑄𝑞𝑖] < 0, (99)

[𝑋11𝑖 𝑋12𝑖∗ 𝑋22𝑖] ≥ 0, (100)

[[[
[

𝑋11𝑖 𝑋12𝑖 𝐻1𝑖∗ 𝑋22𝑖 𝐻2𝑖
∗ ∗ �̃�𝑖

]]]
]
≥ 0, (101)

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

Γ11 Γ12 𝐶𝑖𝑅𝑖 Γ14 𝐺𝑖 Γ16 Γ17 𝑌𝑇𝑖 𝑅𝑖𝐹𝑇𝑖 𝑅𝑖𝑀𝑇1𝑖 Ψ1𝑖𝐾𝑖
∗ Γ22 0 0 0 𝑅𝑖𝐵𝑇𝑖 ℎ𝑚𝑅𝑖𝐵𝑇𝑖 0 0 𝑅𝑖𝑀𝑇2𝑖 0
∗ ∗ Γ33 0 0 𝑅𝑖𝐶𝑇𝑖 ℎ𝑚𝑅𝑖𝐶𝑇𝑖 0 0 𝑅𝑖𝑀𝑇3𝑖 0
∗ ∗ ∗ −𝜓3 0 𝐷𝑇𝑖 ℎ𝑚𝐷𝑇𝑖 0 0 0 0
∗ ∗ ∗ ∗ −�̃�𝑖𝑟𝑚 𝐺𝑇𝑖 ℎ𝑚𝐺𝑇𝑖 0 0 𝑀𝑇4𝑖 0
∗ ∗ ∗ ∗ ∗ Γ66 Γ67 0 0 0 Ψ2𝑖𝐾𝑖∗ ∗ ∗ ∗ ∗ ∗ Γ77 0 0 0 Ψ3𝑖𝐾𝑖∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜓−11 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛿𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 𝑛∑

𝑞=1

𝜎2𝑞𝑖𝐼

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

< 0, (102)

where
Γ11 = −𝛼𝑅𝑖 + 𝐴 𝑖𝑅𝑖 + 𝑅𝑖𝐴𝑇𝑖 + 𝐸𝑖𝑌𝑖 + 𝑌𝑇𝑖 𝐸𝑇𝑖 + �̂�𝑖

+ 𝑟𝑚�̂�𝑖 + �̂�1𝑖 + �̂�𝑇1𝑖 + ℎ𝑚�̂�11𝑖 + 𝛿𝐿 𝑖𝐿𝑇𝑖
+ 𝜖𝐸𝑖02𝑖 𝐸𝑇𝑖 + 𝑚 𝑛∑

𝑞=1

𝜎2𝑞𝑖�̂�𝑞𝑖,
Γ12 = 𝐵𝑖𝑅𝑖 − �̂�𝑇1𝑖 + �̂�2𝑖 + ℎ𝑚�̂�12𝑖,
Γ14 = 𝐷𝑖 − 𝑅𝑖𝐹𝑇𝑖 𝜓2,
Γ16 = 𝑅𝑖𝐴𝑇𝑖 + 𝑌𝑇𝑖 𝐸𝑇𝑖 + 𝛿𝐿 𝑖𝐿𝑇𝑖 + 𝜖𝐸𝑖02𝑖 𝐸𝑇𝑖 ,

Γ17 = ℎ𝑚𝑅𝑖𝐴𝑇𝑖 + ℎ𝑚𝑌𝑇𝑖 𝐸𝑇𝑖 + ℎ𝑚𝛿𝐿 𝑖𝐿𝑇𝑖 + 𝜖ℎ𝑚𝐸𝑖02𝑖 𝐸𝑇𝑖 ,
Γ22 = − (1 − ℎ̂) �̂�𝑖 − �̂�2𝑖 − �̂�𝑇2𝑖 + ℎ𝑚�̂�22𝑖,
Γ33 = − (1 − �̂�) �̂�𝑖,
Γ66 = −𝑊𝑖 + 𝛿𝐿 𝑖𝐿𝑇𝑖 + 𝜖𝐸𝑖02𝑖 𝐸𝑇𝑖 ,
Γ67 = 𝜖ℎ𝑚𝐸𝑖02𝑖 𝐸𝑇𝑖 + ℎ𝑚𝛿𝐿 𝑖𝐿𝑇𝑖 ,
Γ77 = −ℎ𝑚𝑉𝑖 + ℎ𝑚𝛿𝐿 𝑖𝐿𝑇𝑖 + 𝜖ℎ2𝑚𝐸𝑖02𝑖 𝐸𝑇𝑖 ,
0𝑖 = diag {𝜎11𝑖, 𝜎12𝑖, . . . , 𝜎1𝑚𝑖} ,
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Ψ1𝑖 = [𝐸𝑖𝑉1𝑖 𝐸𝑖𝑉2𝑖 ⋅ ⋅ ⋅ 𝐸𝑖𝑉𝑚𝑖] ,
Ψ2𝑖 = [𝐸𝑖𝑉1𝑖 𝐸𝑖𝑉2𝑖 ⋅ ⋅ ⋅ 𝐸𝑖𝑉𝑚𝑖] ,
Ψ3𝑖 = [ℎ𝑚𝐸𝑖𝑉1𝑖 ℎ𝑚𝐸𝑖𝑉2𝑖 ⋅ ⋅ ⋅ ℎ𝑚𝐸𝑖𝑉𝑚𝑖] ,
𝑉𝑝𝑖 = diag{0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝−1

, 1, 0, . . . , 0} ;
(103)

the matrices are defined as follows:

𝐾𝑖�̃�𝑖−1 = 𝑌𝑖,
�̃�𝑖−1 = 𝑅𝑖,
�̃�𝑖−1 = 𝑊𝑖,
�̃�𝑖−1 = 𝑉𝑖,

�̃�𝑖−1𝑄𝑞𝑖�̃�𝑖−1 = �̂�𝑞𝑖,
�̃�𝑖−1�̃�𝑖�̃�𝑖−1 = �̂�𝑖,
�̃�𝑖−1�̃�𝑖�̃�𝑖−1 = �̂�𝑖,
�̃�𝑖−1�̃�𝑖�̃�𝑖−1 = �̂�𝑖,
�̃�𝑖−1𝐻1𝑖�̃�𝑖−1 = �̂�1𝑖,
�̃�𝑖−1𝐻2𝑖�̃�𝑖−1 = �̂�2𝑖,
�̃�𝑖−1𝑋11𝑖�̃�𝑖−1 = �̂�11𝑖,
�̃�𝑖−1𝑋12𝑖�̃�𝑖−1 = �̂�12𝑖,

�̃�𝑖−1𝑋22𝑖�̃�𝑖−1 = �̂�22𝑖;
(104)

the average dwell-time satisfies

𝜏𝑎 > 𝜏∗𝑎
= 𝑇𝑓 ln 𝜇
ln (𝜆1𝑐2) − ln [𝜆8𝑘 + (𝜆9 + 𝜆10) 𝑑] − 𝛼𝑇𝑓 ,

(105)

𝜆𝑚𝑖𝑛 (𝑃𝑖) = 𝜆1,
𝜆𝑚𝑎𝑥 (𝐹𝑇𝑖 𝐹𝑖) = 𝜆8,
𝜆𝑚𝑎𝑥 (𝜓𝑇2 𝜓2) = 𝜆9,
𝜆𝑚𝑎𝑥 (𝜓3) = 𝜆10,

(106)

�̃�𝑖 = 𝑅1/2𝑃𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑄𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑍𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑇𝑖𝑅1/2,
�̃�𝑖 = 𝑅1/2𝑀𝑖𝑅1/2.

(107)

The controller gains can be given by 𝐾𝑖 = 𝑌𝑖�̃�𝑖. Then
the switched linear neutral system is finite-time bounded
with extended dissipative performance under the nonfragile
controller 𝑢(𝑡) = 𝐾𝜎(𝑡)(𝑡)𝑥(𝑡).
Proof. Replacing 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, and 𝐺𝑖 in (50) with �̂�𝑖 + 𝐸𝑖𝐾𝑖 +𝐸𝑖Δ𝐾𝑖(𝑡), �̂�𝑖, �̂�𝑖, and �̂�𝑖 and by Schur complement, we obtain

Γ𝑖 =

[[[[[[[[[[[[[[[[[
[

Λ 11 Λ 12 �̃�𝑖�̂�𝑖 �̃�𝑖𝐷𝑖 − 𝐹𝑇𝑖 𝜓2 �̃�𝑖�̂�𝑖 Λ 16 ℎ𝑚 (�̂�𝑖 + 𝐸𝑖𝐾𝑖 + 𝐸𝑖Δ𝐾𝑖 (𝑡))𝑇 �̃�𝑖
∗ Λ 22 0 0 0 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ Λ 33 0 0 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ ∗ −𝜓3 0 𝐷𝑇𝑖 �̃�𝑖 ℎ𝑚𝐷𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ −�̃�𝑖𝑟𝑚 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ ∗ −�̃�𝑖 0
∗ ∗ ∗ ∗ ∗ ∗ −ℎ𝑚�̃�𝑖

]]]]]]]]]]]]]]]]]
]

, (108)

where Λ 11 = −𝛼�̃�𝑖 + �̃�𝑖 (�̂�𝑖 + 𝐸𝑖𝐾𝑖 + 𝐸𝑖Δ𝐾𝑖 (𝑡))
+ (�̂�𝑖 + 𝐸𝑖𝐾𝑖 + 𝐸𝑖Δ𝐾𝑖 (𝑡))𝑇 �̃�𝑖 + �̃�𝑖
+ 𝑟𝑚�̃�𝑖 − 𝐹𝑇𝑖 𝜓1𝐹𝑖 + 𝐻1𝑖 + 𝐻𝑇1𝑖 + ℎ𝑚𝑋11𝑖,

Λ 12 = �̃�𝑖�̂�𝑖 − 𝐻𝑇1𝑖 + 𝐻2𝑖 + ℎ𝑚𝑋12𝑖,

Λ 16 = (�̂�𝑖 + 𝐸𝑖𝐾𝑖 + 𝐸𝑖Δ𝐾𝑖 (𝑡))𝑇 �̃�𝑖,
Λ 22 = − (1 − ℎ̂) �̃�𝑖 − 𝐻2𝑖 − 𝐻𝑇2𝑖 + ℎ𝑚𝑋22𝑖,
Λ 33 = − (1 − �̂�) �̃�𝑖;

(109)
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(108) can be rewritten as

Ω𝑖 +

[[[[[[[[[[[[[[
[

�̃�𝑖𝐸𝑖Δ𝐾𝑖 (𝑡) + (𝐸𝑖Δ𝐾𝑖 (𝑡))𝑇 �̃�𝑖 0 0 0 0 (𝐸𝑖Δ𝐾𝑖 (𝑡))𝑇 �̃�𝑖 ℎ𝑚 (𝐸𝑖Δ𝐾𝑖 (𝑡))𝑇 �̃�𝑖∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0

]]]]]]]]]]]]]]
]

, (110)

where

Ω𝑖 =

[[[[[[[[[[[[[[[[[[
[

Ω11 Ω12 �̃�𝑖�̂�𝑖 �̃�𝑖𝐷𝑖 − 𝐹𝑇𝑖 𝜓2 �̃�𝑖�̂�𝑖 Ω16 ℎ𝑚 (�̂�𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖
∗ Ω22 0 0 0 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ Ω33 0 0 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ ∗ −𝜓3 0 𝐷𝑇𝑖 �̃�𝑖 ℎ𝑚𝐷𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ −�̃�𝑖𝑟𝑚 �̂�𝑇𝑖 �̃�𝑖 ℎ𝑚�̂�𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ ∗ −�̃�𝑖 0
∗ ∗ ∗ ∗ ∗ ∗ −ℎ𝑚�̃�𝑖

]]]]]]]]]]]]]]]]]]
]

, (111)

with

Ω11 = −𝛼�̃�𝑖 + �̃�𝑖 (�̂�𝑖 + 𝐸𝑖𝐾𝑖) + (�̂�𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖 + �̃�𝑖
+ 𝑟𝑚�̃�𝑖 − 𝐹𝑇𝑖 𝜓1𝐹𝑖 + 𝐻1𝑖 + 𝐻𝑇1𝑖 + ℎ𝑚𝑋11𝑖,

Ω12 = �̃�𝑖�̂�𝑖 − 𝐻𝑇1𝑖 + 𝐻2𝑖 + ℎ𝑚𝑋12𝑖,
Ω16 = (�̂�𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖,
Ω22 = − (1 − ℎ̂) �̃�𝑖 − 𝐻2𝑖 − 𝐻𝑇2𝑖 + ℎ𝑚𝑋22𝑖,
Ω33 = − (1 − �̂�) �̃�𝑖;

(112)

considering (5), (110) can be rewritten as

Ω𝑖 + �̃�𝑖�̃�𝑖�̃�𝑖 + (�̃�𝑖�̃�𝑖�̃�𝑖)𝑇

+ 𝑚∑
𝑝=1

𝑛∑
𝑞=1

𝜎𝑝𝑞𝑖 [�̃�𝑝𝑞𝑖𝑊𝑞𝑖�̃�𝑖 + (�̃�𝑝𝑞𝑖𝑊𝑞𝑖�̃�𝑖)𝑇] , (113)

where
�̃�𝑖 = diag {𝜎1𝑖, 𝜎2𝑖, . . . , 𝜎𝑚𝑖} ,
�̃�𝑖 = [𝐾𝑖 0 0 0 0 0 0] ,
�̃�𝑖 = [𝐼 0 0 0 0 0 0] ,

𝑉𝑝𝑖 = diag{0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝−1

, 1, 0, . . . , 0} ,

𝑊𝑞𝑖 = diag{0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞−1

, 1, 0, . . . , 0} ,
�̃�𝑖 = [𝐸𝑇𝑖 �̃�𝑖 0 0 0 0 𝐸𝑇𝑖 �̃�𝑖 ℎ𝑚𝐸𝑇𝑖 �̃�𝑖]𝑇 ,
�̃�𝑝𝑞𝑖
= [𝐾𝑇𝑖 𝑉𝑇𝑝𝑖𝐸𝑇𝑖 �̃�𝑖 0 0 0 0 𝐾𝑇𝑖 𝑉𝑇𝑝𝑖𝐸𝑇𝑖 �̃�𝑖 ℎ𝑚𝐾𝑇𝑖 𝑉𝑇𝑝𝑖𝐸𝑇𝑖 �̃�𝑖]𝑇 ;

(114)

based on (6) and Lemma 12, for some 𝜖 > 0, 𝑄𝑞𝑖 > 0 (𝑞 =1, . . . , 𝑛) and 0𝑖 = diag{𝜎11𝑖, 𝜎12𝑖, . . . , 𝜎1𝑚𝑖}, it can be verified
that

�̃�𝑖�̃�𝑖�̃�𝑖 + (�̃�𝑖�̃�𝑖�̃�𝑖)𝑇 ≤ 𝜖�̃�𝑖02𝑖 �̃�𝑇𝑖 + 𝜖−1�̃�𝑇𝑖 �̃�𝑖,
�̃�𝑝𝑞𝑖𝑊𝑞𝑖�̃�𝑖 + (�̃�𝑝𝑞𝑖𝑊𝑞𝑖�̃�𝑖)𝑇
≤ �̃�𝑝𝑞𝑖𝑊𝑞𝑖𝑄−1𝑞𝑖𝑊𝑇𝑞𝑖�̃�𝑇𝑝𝑞𝑖 + �̃�𝑇𝑖 𝑄𝑞𝑖�̃�𝑖,
𝑚∑
𝑝=1

𝑛∑
𝑞=1

𝜎𝑝𝑞𝑖�̃�𝑇𝑖 𝑄𝑞𝑖�̃�𝑖 ≤ 𝑚 𝑛∑
𝑞=1

𝜎2𝑞𝑖�̃�𝑇𝑖 𝑄𝑞𝑖�̃�𝑖,
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𝑚∑
𝑝=1

𝑛∑
𝑞=1

𝜎𝑝𝑞𝑖�̃�𝑝𝑞𝑖𝑊𝑞𝑖𝑄−1𝑞𝑖𝑊𝑇𝑞𝑖�̃�𝑇𝑝𝑞𝑖
≤ 𝑚∑
𝑝=1

𝑛∑
𝑞=1

𝜎2𝑞𝑖�̃�𝑝𝑞𝑖𝑊𝑞𝑖𝑄−1𝑞𝑖𝑊𝑇𝑞𝑖�̃�𝑇𝑝𝑞𝑖.
(115)

On the other hand, by Schur complement,

[−𝑐𝐼 𝑊𝑞𝑖𝑊𝑞𝑖 −𝑄𝑞𝑖] < 0 (116)

is equal to 𝑊𝑞𝑖𝑄−1𝑞𝑖𝑊𝑞𝑖 < 𝑐𝐼. Then 𝑊𝑞𝑖𝑄−1𝑞𝑖𝑊𝑞𝑖 < 𝐼 holds. It
can be proven that �̃�𝑝𝑞𝑖𝑊𝑞𝑖𝑄−1𝑞𝑖𝑊𝑇𝑞𝑖�̃�𝑇𝑝𝑞𝑖 ≤ �̃�𝑝𝑞𝑖�̃�𝑇𝑝𝑞𝑖. Hence,
we have

Ω𝑖 + �̃�𝑖�̃�𝑖�̃�𝑖 + (�̃�𝑖�̃�𝑖�̃�𝑖)𝑇

+ 𝑚∑
𝑝=1

𝑛∑
𝑞=1

𝜎𝑝𝑞𝑖 [�̃�𝑝𝑞𝑖𝑊𝑞𝑖�̃�𝑖 + (�̃�𝑝𝑞𝑖𝑊𝑞𝑖�̃�𝑖)𝑇]

< Ω𝑖 + 𝜖�̃�𝑖02𝑖 �̃�𝑇𝑖 + 𝜖−1�̃�𝑇𝑖 �̃�𝑖 + 𝑚 𝑛∑
𝑞=1

𝜎2𝑞𝑖�̃�𝑇𝑖 𝑄𝑞𝑖�̃�𝑖
+ 𝑚∑
𝑝=1

𝑛∑
𝑞=1

𝜎2𝑞𝑖�̃�𝑝𝑞𝑖�̃�𝑇𝑝𝑞𝑖.
(117)

Here we consider the norm-bounded uncertainties, and we
set

Ω𝑖 = Ω1𝑖 + Ω2𝑖, (118)

where

Ω1𝑖 =

[[[[[[[[[[[[[[[[[
[

Ξ11 Ξ12 �̃�𝑖𝐶𝑖 �̃�𝑖𝐷𝑖 − 𝐹𝑇𝑖 𝜓2 �̃�𝑖𝐺𝑖 Ξ16 ℎ𝑚 (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖
∗ Ξ22 0 0 0 𝐵𝑇𝑖 �̃�𝑖 ℎ𝑚𝐵𝑇𝑖 �̃�𝑖
∗ ∗ Ξ33 0 0 𝐶𝑇𝑖 �̃�𝑖 ℎ𝑚𝐶𝑇𝑖 �̃�𝑖
∗ ∗ ∗ −𝜓3 0 𝐷𝑇𝑖 �̃�𝑖 ℎ𝑚𝐷𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ −�̃�𝑖𝑟𝑚 𝐺𝑇𝑖 �̃�𝑖 ℎ𝑚𝐺𝑇𝑖 �̃�𝑖
∗ ∗ ∗ ∗ ∗ −�̃�𝑖 0
∗ ∗ ∗ ∗ ∗ ∗ −ℎ𝑚�̃�𝑖

]]]]]]]]]]]]]]]]]
]

, (119)

with

Ξ11 = −𝛼�̃�𝑖 + �̃�𝑖 (𝐴 𝑖 + 𝐸𝑖𝐾𝑖) + (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖 + �̃�𝑖
+ 𝑟𝑚�̃�𝑖 − 𝐹𝑇𝑖 𝜓1𝐹𝑖 + 𝐻1𝑖 + 𝐻𝑇1𝑖 + ℎ𝑚𝑋11𝑖,

Ξ12 = �̃�𝑖𝐵𝑖 − 𝐻𝑇1𝑖 + 𝐻2𝑖 + ℎ𝑚𝑋12𝑖,
Ξ16 = (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖,
Ξ22 = − (1 − ℎ̂) �̃�𝑖 − 𝐻2𝑖 − 𝐻𝑇2𝑖 + ℎ𝑚𝑋22𝑖,
Ξ33 = − (1 − �̂�) �̃�𝑖,

Ω2𝑖 =

[[[[[[[[[[[[[[[
[

�̃�𝑖𝐿 𝑖0
0
0
0

�̃�𝑇𝑖 𝐿 𝑖
ℎ𝑚�̃�𝑇𝑖 𝐿 𝑖

]]]]]]]]]]]]]]]
]

Ξ𝑖 (𝑡)

⋅ [𝑀1𝑖 𝑀2𝑖 𝑀3𝑖 0 𝑀4𝑖 0 0] +

[[[[[[[[[[[[[[
[

𝑀𝑇1𝑖
𝑀𝑇2𝑖
𝑀𝑇3𝑖0
𝑀𝑇4𝑖0
0

]]]]]]]]]]]]]]
]

Ξ𝑇𝑖 (𝑡)

⋅ [𝐿𝑇𝑖 �̃�𝑖𝑇 0 0 0 0 𝐿𝑇𝑖 �̃�𝑖 ℎ𝑚𝐿𝑇𝑖 �̃�𝑖] .
(120)

By Lemma 11, there exists a scalar 𝛿 > 0, such that

Ω2𝑖

≤ 𝛿
[[[[[[[[[[[
[

�̃�𝑖𝐿 𝑖0000�̃�𝑖𝐿 𝑖
ℎ𝑚�̃�𝑖𝐿 𝑖

]]]]]]]]]]]
]

[𝐿𝑇𝑖 �̃�𝑖 0 0 0 0 𝐿𝑇𝑖 �̃�𝑖 ℎ𝑚𝐿𝑇𝑖 �̃�𝑖]
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+ 𝛿−1
[[[[[[[[[[[[[[
[

𝑀𝑇1𝑖
𝑀𝑇2𝑖
𝑀𝑇3𝑖0
𝑀𝑇4𝑖0
0

]]]]]]]]]]]]]]
]

[𝑀1𝑖 𝑀2𝑖 𝑀3𝑖 0 𝑀4𝑖 0 0] .

(121)

Then pre- and postmultiplying (102) by diag{�̃�𝑖, �̃�𝑖, �̃�𝑖, 𝐼,𝐼, �̃�𝑖, �̃�𝑖, 𝐼, 𝐼, 𝐼, 𝐼, . . . , 𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

}, we have

Π2𝑖 =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

Ψ11 Ψ12 �̃�𝑖𝐶𝑖 Ψ14 �̃�𝑖𝐺𝑖 Ψ16 Ψ17 𝐾𝑇𝑖 𝐹𝑇𝑖 𝑀𝑇1𝑖 Δ 1𝑖𝐾𝑖
∗ Ψ22 0 0 0 𝐵𝑇𝑖 �̃�𝑖 ℎ𝑚𝐵𝑇𝑖 �̃�𝑖 0 0 𝑀𝑇2𝑖 0
∗ ∗ Ψ33 0 0 𝐶𝑇𝑖 �̃�𝑖 ℎ𝑚𝐶𝑇𝑖 �̃�𝑖 0 0 𝑀𝑇3𝑖 0
∗ ∗ ∗ −𝜓3 0 𝐷𝑇𝑖 �̃�𝑖 ℎ𝑚𝐷𝑇𝑖 �̃�𝑖 0 0 0 0
∗ ∗ ∗ ∗ −�̃�𝑖𝑟𝑚 𝐺𝑇𝑖 �̃�𝑖 ℎ𝑚𝐺𝑇𝑖 �̃�𝑖 0 0 𝑀𝑇4𝑖 0
∗ ∗ ∗ ∗ ∗ Ψ66 Ψ67 0 0 0 Δ 2𝑖𝐾𝑖∗ ∗ ∗ ∗ ∗ ∗ Ψ77 0 0 0 Δ 3𝑖𝐾𝑖∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝜓−11 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛿𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 𝑛∑

𝑞=1

𝜎2𝑞𝑖𝐼

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

< 0, (122)

where

Ψ11 = −𝛼�̃�𝑖 + �̃�𝑖 (𝐴 𝑖 + 𝐸𝑖𝐾𝑖) + (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖 + �̃�𝑖
+ 𝑟𝑚�̃�𝑖 + 𝐻1𝑖 + 𝐻𝑇1𝑖 + ℎ𝑚𝑋11𝑖
+ 𝜖�̃�𝑖𝐸𝑖02𝑖 𝐸𝑇𝑖 �̃�𝑖 + 𝑚 𝑛∑

𝑞=1

𝜎2𝑞𝑖𝑄𝑞𝑖
+ 𝛿�̃�𝑖𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖,

Ψ12 = �̃�𝑖𝐵𝑖 − 𝐻𝑇1𝑖 + 𝐻2𝑖 + ℎ𝑚𝑋12𝑖,
Ψ14 = �̃�𝑖𝐷𝑖 − 𝐹𝑇𝑖 𝜓2,
Ψ16 = (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖 + 𝜖�̃�𝑖𝐸𝑖02𝑖 𝐸𝑇𝑖 �̃�𝑖 + 𝛿�̃�𝑖𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖,
Ψ17 = ℎ𝑚 (𝐴 𝑖 + 𝐸𝑖𝐾𝑖)𝑇 �̃�𝑖 + 𝜖ℎ𝑚�̃�𝑖𝐸𝑖02𝑖 𝐸𝑇𝑖 �̃�𝑖

+ ℎ𝑚𝛿�̃�𝑖𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖,
Ψ22 = − (1 − ℎ̂) �̃�𝑖 − 𝐻2𝑖 − 𝐻𝑇2𝑖 + ℎ𝑚𝑋22𝑖,
Ψ33 = − (1 − �̂�) �̃�𝑖,
Ψ66 = −�̃�𝑖 + 𝜖�̃�𝑇𝑖 𝐸𝑖02𝑖 𝐸𝑇𝑖 �̃�𝑖 + 𝛿�̃�𝑇𝑖 𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖,

Ψ67 = 𝜖ℎ𝑚�̃�𝑇𝑖 𝐸𝑖02𝑖 𝐸𝑇𝑖 �̃�𝑖 + ℎ𝑚𝛿�̃�𝑇𝑖 𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖,
Ψ77 = −ℎ𝑚�̃�𝑖 + 𝜖ℎ2𝑚�̃�𝑇𝑖 𝐸𝑖02𝑖 𝐸𝑇𝑖 �̃�𝑖 + ℎ𝑚𝛿�̃�𝑇𝑖 𝐿 𝑖𝐿𝑇𝑖 �̃�𝑖,
Δ 1𝑖 = [�̃�𝑖𝐸𝑖𝑉1𝑖 �̃�𝑖𝐸𝑖𝑉2𝑖 ⋅ ⋅ ⋅ �̃�𝑖𝐸𝑖𝑉𝑚𝑖] ,
Δ 2𝑖 = [�̃�𝑖𝐸𝑖𝑉1𝑖 �̃�𝑖𝐸𝑖𝑉2𝑖 ⋅ ⋅ ⋅ �̃�𝑖𝐸𝑖𝑉𝑚𝑖] ,
Δ 3𝑖 = [ℎ𝑚�̃�𝑖𝐸𝑖𝑉1𝑖 ℎ𝑚�̃�𝑖𝐸𝑖𝑉2𝑖 ⋅ ⋅ ⋅ ℎ𝑚�̃�𝑖𝐸𝑖𝑉𝑚𝑖] .

(123)

Based on above discussion, from Π2𝑖 < 0, by Schur com-
plement, we can conclude that Γ𝑖 < 0. Similar to the proof
of Theorem 15, we can obtain

�̇� (𝑡) − 𝛼𝑉 (𝑡) − 𝐽 (𝑡)
≤ 𝑋𝑇 (𝑡) Γ𝑖𝑋 (𝑡) − ∫𝑡

𝑡−ℎ(𝑡)
𝜗𝑇 (𝑡, 𝑠) Δ 𝑖𝜗 (𝑡, 𝑠) 𝑑𝑠, (124)

where
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𝑋 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑡 − 𝜏 (𝑡)) 𝑤𝑇 (𝑡) ∫𝑡
𝑡−𝑟(𝑡)

𝑥𝑇 (𝑠) 𝑑𝑠]𝑇 ,
𝜗 (𝑡, 𝑠) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑠)]𝑇 ;

(125)

Δ 𝑖 is given in (101). The following proof is similar to that of
Theorem 15; it is omitted here.

Remark 18. The concept of extended dissipative could be
employed to lots of other systems, for example, the T-S
fuzzy systems [34–37], which shows the effectiveness of the
powerful tool.

4. Numerical Example

In this section, we present an example to illustrate the
effectiveness of the controller design method.

Example 1. Consider system (1) with two subsystems with
parameters as follows:

𝐴1 = [2 1
1 3] ,

𝐵1 = [1 0
1 1] ,

𝐶1 = [3 0
0 −1] ,

𝐷1 = [2 1
2 2] ,

𝐸1 = [3 0
1 2] ,

𝐺1 = [3 3
1 5] ,

𝐹1 = [1 2
0 3] ,

𝐿1 = [1 0
0 1] ,

𝑀11 = 𝑀21 = 𝑀31 = 𝑀41 = [0.2 0
0 0.2] ,

𝐴2 = [3 2
0 2] ,

𝐵2 = [1 2
0 2] ,

𝐶2 = [−2 1
0 2] ,

𝐷2 = [1 1
0 3] ,

𝐸2 = [2 4
0 2] ,

𝐺2 = [2 0
2 4] ,

𝐹2 = [4 0
2 2] ,

𝐿2 = [1 0
0 1] ,

𝑀12 = 𝑀22 = 𝑀32 = 𝑀42 = [0.4 0
0 0.4] ,

ℎ̂ = 0.01,
�̂� = 0.01,
𝛼 = 0.01,
ℎ𝑚 = 0.5,
𝑟𝑚 = 0.5,
𝛿 = 0.5,
𝜖 = 0.5.

(126)

Case 1. When Δ𝐾𝑖(𝑡) satisfies additive form (4), we set

𝐽11 = [0.1 0
0 0.1] ,

𝐽21 = [0.1 0
0 0.1] ,

𝐽12 = [0.2 0
0 0.2] ,

𝐽22 = [0.2 0
0 0.2] .

(127)
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Table 1: Matrices for each case.

Analysis Ψ1 Ψ2 Ψ3 Ψ4𝐿2 − 𝐿∞ performance 0 0 𝛾2𝐼 𝐼𝐻∞ performance −𝐼 0 𝛾2𝐼 0
Passivity 0 𝐼 𝛾 0
Dissipativity −𝐼 𝐼 [

[
1 0
0.3 1]]

− 𝛽 ∗ 𝐼 0

Table 2: Optimized variable for each case.

𝐿2 − 𝐿∞ performance 𝐻∞ performance Passivity Dissipativity𝛾21min = 1 ∗ 10−7 𝛾21min = 1 ∗ 10−7 𝛾1min = 1 ∗ 10−7 𝛽1max = 1.9999999
Table 3: Controller gain of the additive form controller uncertainty for each case.

Subsystem 1 2
𝐿2 − 𝐿∞ performance 𝐾1 = 103 ∗ [[

−8.5600 −0.2148
−0.1787 −9.6241]]

𝐾2 = 104 ∗ [[
−1.4313 −0.1736
−0.1853 −0.9176]]

𝐻∞ performance 𝐾1 = 104 ∗ [[
−1.3762 −0.8518
−0.5214 −5.3445]]

𝐾2 = 104 ∗ [[
−4.8652 −0.9760
−1.4654 −1.9109]]

Passivity 𝐾1 = 108 ∗ [[
−0.3767 −0.1899
−0.1414 −1.5588]]

𝐾2 = 108 ∗ [[
−1.4961 −0.4558
−0.7175 −0.5430]]

Dissipativity 𝐾1 = 108 ∗ [[
−0.2581 −0.1677
−0.1381 −1.2602]]

𝐾2 = 108 ∗ [[
−1.0597 −0.4132
−0.5249 −0.4398]]

Case 2. When Δ𝐾𝑖(𝑡) satisfies multiplicative form (5), we
choose 𝜎111 = 0.2,

𝜎121 = 0.2,
𝜎211 = 0.4,
𝜎221 = 0.2

(𝑚 = 2, 𝑛 = 2) ,
𝜎112 = 0.2,
𝜎122 = 0.4,
𝜎212 = 0.2,
𝜎222 = 0.2

(𝑚 = 2, 𝑛 = 2) .

(128)

Furthermore, just as the discussion in Remark 6, we choose
the values for the extended dissipative parameters in Table 1.

Then, solve the LMIs from (47) to (50) in Theorem 15,
and we can get the results of optimized variables of four
performances in Table 2.

Furthermore, solve the LMIs presented in Theorems
16 and 17, and we can obtain the controller gain for the

additive form controller uncertainty and the multiplicative
form controller uncertainty in Tables 3 and 4, respectively.

5. Conclusion

In this paper, we have investigated the problem of finite-
time extended dissipative analysis and nonfragile control of
switched neutral system with unknown time-varying distur-
bance. The average dwell-time approach is utilized for finite-
time boundedness and extended dissipative performance
analysis; controllers are designed to guarantee that the system
is finite-time bounded and satisfies the extended dissipative
performance. Based on extended dissipative performance, we
can solve 𝐻∞, 𝐿2 − 𝐿∞, Passivity, and (𝑄, 𝑆, 𝑅)-dissipativity
performance in a unified framework. All the results are given
in terms of linear matrix inequalities (LMIs), and numerical
examples are provided to show the effectiveness of the pro-
posed method. In our future research, the nonfragile control
and extended dissipative performance will be extended to
more complex systems, such as Markovian jump delayed
systems, sliding control systems, and T-S fuzzy systems,
which deserve further study.
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Table 4: Controller gain of the multiplicative form controller uncertainty for each case.

Subsystem 1 2
𝐿2 − 𝐿∞ performance 𝐾1 = 10−4 ∗ [[

−0.8602 −0.2082
−0.2037 −0.5895]]

𝐾2 = 10−3 ∗ [[
−0.1000 −0.1023
−0.1017 −0.1090]]

𝐻∞ performance 𝐾1 = 10−3 ∗ [[
−0.1922 −0.2047
−0.0870 −0.4234]]

𝐾2 = 10−3 ∗ [[
−0.4842 −0.2812
−0.5055 −0.3274]]

Passivity 𝐾1 = [[
−0.2875 −0.2582
−0.1017 −0.7210]]

𝐾2 = [[
−1.2292 −0.5381
−1.2374 −0.5245]]

Dissipativity 𝐾1 = [[
−0.2711 −0.4428
−0.1380 −1.1896]]

𝐾2 = [[
−2.5753 −0.8837
−2.4237 −0.9115]]
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