19,339 research outputs found

    A Survey on Software Testing Techniques using Genetic Algorithm

    Full text link
    The overall aim of the software industry is to ensure delivery of high quality software to the end user. To ensure high quality software, it is required to test software. Testing ensures that software meets user specifications and requirements. However, the field of software testing has a number of underlying issues like effective generation of test cases, prioritisation of test cases etc which need to be tackled. These issues demand on effort, time and cost of the testing. Different techniques and methodologies have been proposed for taking care of these issues. Use of evolutionary algorithms for automatic test generation has been an area of interest for many researchers. Genetic Algorithm (GA) is one such form of evolutionary algorithms. In this research paper, we present a survey of GA approach for addressing the various issues encountered during software testing.Comment: 13 Page

    Prioritization of Program Elements Based on Their Testing Requirements

    Get PDF
    Even after thorough testing of a program, usually a few bugs still remain. These residual bugs are usually uniformly distributed throughout the code. It is observed that bugs in some parts of a program can cause more frequent and more severe failures compared to those in other parts. It should, then be possible to prioritize the statements, methods and classes of an object-oriented program according to their potential to cause failures. Once the program elements have been prioritized, the testing effort can be apportioned so that the elements causing most frequent failure are tested more. Based on this idea, in this paper we propose a program metric called the influence of program elements. Influence of a class indicates the potential of class to cause failures. In this approach, we have used the intermediate graph representation of a program. The influence of a class is determined through a forward slicing of the graph. Our proposed program metric can be useful in applications such as coding, debugging, test case design and maintenance etc

    Model Based Distributed Testing of Object Oriented Programs

    Get PDF
    AbstractIn recent times the software systems have evolved in size and complexity. This has resulted in usage of object oriented programming in the development of such systems. Though object oriented programs are helpful in programming large systems, testing of such systems requires much more effort and time. For this the program is analyzed to create a model based on System Dependence Graph(SDG) which is then used to find locations within the program where the state of the program can be freezed and reused while executing other test cases

    Using dynamic analysis of Java bytecode for evolutionary object-oriented unit testing

    Get PDF
    The focus of this paper is on presenting a methodology for generating and optimizing test data by employing evolutionary search techniques, with basis on the information provided by the analysis and interpretation of Java bytecode and on the dynamic execution of the instrumented test object. The main reason to work at the bytecode level is that even when the source code is unavailable, structural testing requirements can still be derived and used to assess the quality of a given test set and to guide the evolutionary search towards reaching specific test goals. Java bytecode retains enough high-level information about the original source code for an underlying model for program representation to be built. The observations required to select or generate test data are obtained by employing dynamic analysis techniques – i.e. by instrumenting, tracing and analysing Java bytecode

    A model of software component interactions using the call graph technique

    Get PDF
    Interaction information that is related to operations between components is important, especially when the program needs to be modified and maintained. Therefore, the affected components must be identified and matched based on the requirement of the system. This information can be obtained through performing the code review technique, which requires an analyst to search for specific information from the source code, which is a very time consuming process. This research proposed a model for representing software component interactions where this information was automatically extracted from the source code in order to provide an effective display for the software components interaction representation. The objective was achieved through applying a research design methodology, which consists of five phases: awareness of the problem, suggestion, development, evaluation, and conclusion. The development phase was conducted by automatically extracting the components‘ interaction information using appropriate reverse engineering tools and supporting programs that were developed in this research. These tools were used to extract software information, extract the information of component interactions in software programs, and transform this information into the proposed model, which was in the form of a call graph. The produced model was evaluated using a visualization tool and by expert review. The visualization tool was used to display the call graph from a text format into a graphical view. The processed model evaluation was conducted through an expert review technique. The findings from the model evaluation show that the produced model can be used and manipulated to visualize the component interactions. It provides a process that allows a visualization display for analysts to view the interaction of software components in order to comprehend the components integrations that are involved. This information can be manipulated and improved the program comprehension, especially for other software maintenance purposes

    eCrash: a framework for performing evolutionary testing on third-party Java components

    Get PDF
    The focus of this paper is on presenting a tool for generating test data by employing evolutionary search techniques, with basis on the information provided by the structural analysis and interpretation of the Java bytecode of third-party Java components, and on the dynamic execution of the instrumented test object. The main objective of this approach is that of evolving a set of test cases that yields full structural code coverage of the test object. Such a test set can be used for effectively performing the testing activity, providing confidence in the quality and robustness of the test object. The rationale of working at the bytecode level is that even when the source code is unavailable structural testing requirements can still be derived, and used to assess the quality of a test set and to guide the evolutionary search towards reaching specific test goals

    Slicing of Object-Oriented Software

    Get PDF
    Software maintenance activities generally account for more than one third of time during the software development cycle. It has been found out that certain regions of a program can cause more damage than other regions, if they contain bugs. In order to find these high-risk areas, we use slicing to obtain a static backward slice of a program. Our project deals with the implementation of different intermediate graphical representations for an input source program such as the Control Dependence Graph, the Program Dependence Graph, the Class Dependence Graph and the System Dependence Graph. Once a graphical representation of an input program is obtained, slicing is performed on the program using its System Dependence Graph and a two pass graph reachability algorithm proposed by Horwitz, to obtain a static backward slice

    Improving Function Coverage with Munch: A Hybrid Fuzzing and Directed Symbolic Execution Approach

    Full text link
    Fuzzing and symbolic execution are popular techniques for finding vulnerabilities and generating test-cases for programs. Fuzzing, a blackbox method that mutates seed input values, is generally incapable of generating diverse inputs that exercise all paths in the program. Due to the path-explosion problem and dependence on SMT solvers, symbolic execution may also not achieve high path coverage. A hybrid technique involving fuzzing and symbolic execution may achieve better function coverage than fuzzing or symbolic execution alone. In this paper, we present Munch, an open source framework implementing two hybrid techniques based on fuzzing and symbolic execution. We empirically show using nine large open-source programs that overall, Munch achieves higher (in-depth) function coverage than symbolic execution or fuzzing alone. Using metrics based on total analyses time and number of queries issued to the SMT solver, we also show that Munch is more efficient at achieving better function coverage.Comment: To appear at 33rd ACM/SIGAPP Symposium On Applied Computing (SAC). To be held from 9th to 13th April, 201
    corecore