
 Procedia Computer Science 46 (2015) 859 – 866

Available online at www.sciencedirect.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication Technologies (ICICT 2014)
doi: 10.1016/j.procs.2015.02.155

ScienceDirect

International Conference on Information and Communication Technologies (ICICT 2014)

Model Based Distributed Testing of Object Oriented Programs
Vipin Kumar K Sa,*, Sheena Mathewb

aDept. of CSE, Govt Engineering College, Thrissur,680009,India
bSchool of Engineering, Cochin University of Science and Technology,682022,India

Abstract

In recent times the software systems have evolved in size and complexity. This has resulted in usage of object
oriented programming in the development of such systems. Though object oriented programs are helpful in
programming large systems, testing of such systems requires much more effort and time. For this the program is
analyzed to create a model based on System Dependence Graph(SDG) which is then used to find locations within
the program where the state of the program can be freezed and reused while executing other test cases.
© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication
Technologies (ICICT 2014).

Keywords: Distributed Testing; SDG; FCFS; Object Oriented Program Testing;

1. Introduction

In this paper we introduce a novel approach to distributed testing of object oriented programs based on state
where intermediate state of the program is saved for reuse. The system brings about efficiency to testing by reusing
saved states of the program during execution. The state of a program that is executing can be saved by using
snapshotting techniques. In Java, continuation object can be used to capture everything in the java stack of a client
(host) node. The continuation objects is then serialized and send to server which reinstates the state on a client node
with the help of a client supervisor running on the client node. We propose a hosted model for this system where we
have the client supervisor running above the operating system. This simplifies the client supervisor system as it need

* Corresponding author. Tel.: +919288139331; fax: +91487 2334590.

E-mail address:vipin.kumar.k.s@gmail.com

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication
Technologies (ICICT 2014)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82655268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.02.155&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.02.155&domain=pdf

860 K.S. Vipin Kumar and Sheena Mathew / Procedia Computer Science 46 (2015) 859 – 866

not keep track of drivers and resources as these responsibilities will be taken care off at the operating system level.
Fig.1. depicts the host with the client supervisor running over the host operating system. The client supervisor
executes the testcase by reinstating the state of the program at a predetermined point within the program.

Nomenclature

FCFS First Come First Serve
SDG System Dependence Graph
ANTLR Another Tool for Language Recognition

The program to be tested is analyzed and a model is constructed based on SDG. The model helps in identifying

potential points within the program where the state of the program in execution can be saved for further reuse.
During execution of each testcase, the host saves the state at these points and sends these states to the server along
with an identifier which will help in identifying the testcase to be run by reinstating the saved state. The host
continues executing the testcase it was executing after sending the saved state to the server.

The analyzer is basically a compiler that builds the model and then analyzes and profiles the code with statements
for saving state and sending the state over to the server.

The system apart from executing testcases simultaneously, it also bring about efficiency by reusing intermediate
state of the already executed program by carefully analyzing for points within the program for which the subsequent
statements have no dependence to preceding statements. It is worth noting that in traditional path coverage based
testing the preceding statements are executed more times than statements that appear after a succeeding condition
statement. In this approach however succeeding statements are the ones that will be executed more times as the
preceding statements are not executed when the state is reinstated. In the discussion that follows we consider
condition statements and focus on two paths corresponding to true and false evaluation of the condition statement.
The loops can be accommodated into this concept by similar treatment. However for simplicity we focus only on
condition statement. The result of analysis of similar approach to regression testing in the work published in11 is also
presented in the Analysis section (section 4).

Fig. 1 Client supervisor Fig. 2. System Architecture

2. Intermediate representation for the compiled program

The compiler analyses the program and profiles the code to be able to distribute the execution across various
client nodes. The Fig.3 depicts the role of the compiler in analyzing the input program. During analysis the compiler

Clien

Serve
r

Client

Client

Client

Client

Client

Client

Client

Operating
System

Hardwar
e

Client
hypervisor

Program
run

861 K.S. Vipin Kumar and Sheena Mathew / Procedia Computer Science 46 (2015) 859 – 866

constructs a model based on SDG for the compiled program. This model is built by incorporating control flow and
method sequence into the SDG. We augment control flow into the SDG1,2 by introducing control flow edges which
represents the ordering of statements within a given method. Method sequences are used within the model to
represent methods invoking other methods along with the messages used for the invocation. An MM-Path (Method -
Message Path) proposed in3,4 represents the sequence in which methods are executed and the corresponding
messages invoking these methods. Detailed discussion about the model is available in9,10. Sample program as well as
the augmented SDG is shown in Fig. 4 and Fig. 5.

Fig. 3. Compiler analyses the program and profiles the code to be able to save and distribute the execution.

public class Fibonacci {
 public static void main(String a[]){
 int Count = 15;
 int i, feb1, feb2, feb3;
 feb1 = 0;
 feb2 = 1;
 i=2;
 System.out.print(feb1);
 System.out.print(feb2);
 while(i < Count){
 feb3 = feb1 + feb2;
 System.out.print(feb3);
 feb1 = feb2;
 feb2 = feb3;
 i++;
 }
 }
}

Fig. 4. Sample Program.

Automated
program
nalyser

and
code profiler

Program Profiled code

862 K.S. Vipin Kumar and Sheena Mathew / Procedia Computer Science 46 (2015) 859 – 866

Fig. 5. Augmented SDG for the sample program in Fig. 4 9,10.

The code is profiled (Fig.3.) to save state and to send the serialized state object to the server. Server then sends it
to other client nodes for distributed execution of other testcases. The point at which the state is to be freezed or
saved is determined by data dependence analysis. Each of the condition expression allows the execution to proceed
along two different paths, doubling the number of execution paths considered till that statement. Each of the
segments in the control flow path can be identified uniquely using the critical edge. The critical edge is the edge that
connects the condition expression node with the next node along a control flow. In the Fig 6. the edge<si+2, si+3>
as well as the edge <si+2,si+5> are critical edges representing two paths corresponding to two different control flow
along the condition node si+2. In order to find the point at which the code is to be profiled with respect to the
condition node si+2 we follow the data dependence edges originating initially at the node si+2 to preceding node
until no more data dependence edges exists from a node. In Fig. 6. there is no further data dependence edge from
node si. The code is profiled by inserting appropriate code to save state and send the state along with a condition
statement identifier to the server for distributed testing. Critical edge information is particularly useful as the system
works under the pretext that path information of each testcase is available before hand.

3. Scheduling of execution of testcases

The server performs the scheduling on a first come first serve basis (FCFS). Each time a state object is received
by the server, there are exactly half of the testcases being executed or already scheduled for execution by the server
with respect to the number of test cases required with respect to the current condition node. As each condition node
has the effect of doubling the number of test cases for achieving path coverage. Hence the server will schedule those
many more testcase runs on a first come first serve basis. First come first serve scheduling is an optimal scheduling
in this scenario if there are no resource considerations during testing. This is because testcases are scheduled
according to decreasing execution times as state is saved for distributed testing. As FCFS leads to least delay and
since the testcases are scheduled according to decreasing execution time, it leads to an optimal scheduling.

Control Dependence

Control Flow

Data Dependence public class Fibonacci public statc void main(String a[])

int Count = 15;

System.out.print(feb1);

int i = 2; feb1 = 0; feb2 = 1;

System.out.print(feb2);

feb3 = feb1 + feb2;

while(i < Count)

feb1 = feb2;

System.out.print(feb3);

feb2 = feb3; i++;

863 K.S. Vipin Kumar and Sheena Mathew / Procedia Computer Science 46 (2015) 859 – 866

Fig. 6. Code profiling

4. Analysis of the proposed method

 For the purpose of analysis an arbitrary program with uniform features is assumed. It is assumed that the program
has conditional statements at equal intervals between the first and last conditional statements and all of them are
present sequentially. The conditional statements branches the control flow within the program along two different
paths creating a multiplication effect of two to the total number of execution paths that exists till that statement.

Fig. 7.Data dependence for the condition nodes. Fig. 8. Code Fragment and part of the model representing the fragment

We also assume that for each of the ci
th (Condition i in Fig.7.)condition statement is data dependent on a

statement between the ci-1
th condition statement and ci

th condition statement and that this statement is

 ...
s1 cin >> x;
s2 y=x;
s3 if(y){
s4 ...
s5 ...
 }
 else{
s6 ...
s7 ...
 }
 ...

si

si+1

si+2

si+

si+

si+

si+6

si+7

Control flow

Data Dependence

si-1
Profile code to save state and
distribute the freezed state to

864 K.S. Vipin Kumar and Sheena Mathew / Procedia Computer Science 46 (2015) 859 – 866

approximately at the middle of this code segment. A code fragment and the part of the model representing the code
fragment are shown in Fig.8.
 Each condition statement ci makes it necessary to double the testcases in order to achieve path coverage Fig.9. Let
the arbitrary program discussed above have a total of 'c' conditional statements. Then we require a total of ' 2c '
testcases Fig.9. Let us assume that each testcases take the same amount of execution time ‘t’ to finish execution.
Then the total execution time for executing all the test cases is:

= t/c*2c-1 + 2t/c * 2c-2 + 3t/c * 2c-3 + 4t/c * 2c-4 + … + (c-1)t/c * 21 + t * 20 (1)

 c-1

= Σ t/c * (c-i) * 2i

 i=0

 =t/c(2c+1 - (c+2))

Fig. 9.Testcase count increases two fold with respect to each condition statement.

The execution time for executing testcases on a single node would be t and for executing over 'n' number of
nodes is t /n.
 For a program having 10 condition statements and a execution time of 1 millisecond would require 1024
milliseconds for a system with distributed testing without saving of state compared to 202.8 milliseconds for a
system with distributed testing with state saving.
 The details relating to structural details and object oriented metrics can be used in testcase selection and testcase
creation for the system discussed here 5,7,8. The system works based on the assumption that the internal structural
details pertaining to each testcase is available beforehand. So such a system can work in tandem where testcases are
generated automatically by code analysis or under the pretext that at least there is path information available for
each testcase.
 A similar approach was followed in our work cited in11 which related to regression testing with state saving
approach is given below. The system with distributed execution with state saving is compared with single node
execution and distributed execution of testcases without state saving in Fig.10 and Fig.11. The system was
implemented by constructing a compiler in ANTLR6 following a similar approach.

Condition 1

Condition 2

Condition c

2c testcases

2c-1 testcases

865 K.S. Vipin Kumar and Sheena Mathew / Procedia Computer Science 46 (2015) 859 – 866

4.1. Scenario in which this system is useful is:

 When test cases are generated automatically using testcase generation tools which also provide execution trace
information of each testcase.

 Structural testing of software (white box testing).
 Regression testing where trace information of prior run testcases are available.

Fig. 10. Execution times obtained during test runs

Fig. 11. Test results

5. Conclusion

 The system reduces the time required for testing considerably. This approach can be adopted for testing of
programs that are tested over a platform that allows snapshotting or for languages that support features like
continuation which allow for saving of states during execution.

No o f tes tcas es Single Machine
Dis tributed tes ting

witho ut s ta te
s aving

Dis tributed tes ting
with s aved s ta tes

5.0 217.9277493 72.64258311 86.47432859
7.0 305.0988491 101.6996164 89.09685871
9.0 392.2699488 130.7566496 93.00884871
11.0 479.4410485 159.8136828 96.10804778
13.0 566.6121483 188.8707161 99.30014751
15.0 653.783248 217.9277493 104.6101478

866 K.S. Vipin Kumar and Sheena Mathew / Procedia Computer Science 46 (2015) 859 – 866

6. Future Work

 The system can be implemented with a concept of k-coverage where the program is split into different segment
and each segment can be executed exactly k-times. Each segment is independent with respect to other in terms of
data dependence. Such an approach would increase the reliability of testing unlike the case where there is a chance
that some segments are executed more often than others.

 References

1. L Larsen and MJ Harrold. Slicing object oriented software, Proc.of the 18th International Conference On Software Engineering,
March1996,p. 495–505.

2. TJ McCabe, LA Dreyer et al. Testing an object oriented application, Journal of the Quality Assurance Institute, October 1994, p 2127
3. Ruilian Zhao, Ling Lin. An UML Statechart Diagram-Based MM-Path Generation Approach for Object-Oriented Integration Testing,

International Journal of Applied Mathematics and Computer Sciences, 3: 1.
4. Paul C Jorgensen, Carl Erickson. Object-Oriented Integration Testing, Communications of ACM, 37:9, p. 30-38, 1994.
5. Chidamber, S.R.; Kemerer, C.F. A metrics suite for object oriented design, IEEE Transactions on Software Engineering,20: 6,p. 476 – 493,

June 1994
6. Terence Parr. Definitive ANTLR reference, Building domain specific languages, The Pragmatic Bookshelf.
7. Fenton N and Neil M. Software metrics: roadmap. In ICSE – Future of SE Track (2000), p. 357–370.
8. Sayed Mohsen Jamali, Object Oriented Metrics(A Survey Approach),Tehran, Iran, January 2006
9. Vipin Kumar.K.S, Rajib Mall, A Novel Intermediate Representation for Real Time Safety Critical Object Oriented Program, Proceedings of

National Conference on Computational Science and Engineering NCCSE2009, pp. 20-26, 2009.
10. Vipin Kumar K S and Sheena Mathew. A Model Based Approach For Regression Testing Utilizing Distributed Architecture. International

Journal of Computer Applications 16(2):26–31, February 2011.
11. Vipin Kumar K S, Lallu A and Sheena Mathew. An Efficient Approach for Distributed Regression Testing of Object Oriented Programs,

ICONIACC-2014, ACM Conference (http://dx.doi.org/10.1145/2660859.2660944).

