
eCrash: a Framework for Performing Evolutionary Testing
on Third-Party Java Components

José Carlos Bregieiro Ribeiro
Polytechnic Institute of Leiria (IPL)

Morro do Lena, Alto do Vieiro
Leiria, Portugal

jose.ribeiro@estg.ipleiria.pt

Mário Zenha-Rela
University of Coimbra (UC)

CISUC, DEI, 3030-290
Coimbra, Portugal
mzrela@dei.uc.pt

Francisco Fernández de Vega
University of Extremadura (UNEX)

C/ Sta Teresa de Jornet, 38
Mérida, Spain

fcofdez@unex.es

Abstract
The focus of this paper is on presenting a tool for
generating test data by employing evolutionary
search techniques, with basis on the information
provided by the structural analysis and
interpretation of the Java bytecode of third-party
Java components, and on the dynamic execution
of the instrumented test object.

The main objective of this approach is that of
evolving a set of test cases that yields full
structural code coverage of the test object. Such a
test set can be used for effectively performing the
testing activity, providing confidence in the
quality and robustness of the test object.
 The rationale of working at the bytecode level
is that even when the source code is unavailable
structural testing requirements can still be derived,
and used to assess the quality of a test set and to
guide the evolutionary search towards reaching
specific test goals.

1. Introduction

Software testing is an expensive process, typically
consuming roughly half of the total costs involved
in the software development process [1]. Locating
suitable test data can be time consuming, difficult
and expensive; automation of test data generation
is, therefore, vital to advance the state-of-the-art in
software testing.
 Test data selection, generation and
optimization deals with locating good test data for
a particular test criterion. The assessment of the
quality of a given set of test data can be achieved
functionally (black-box testing) or structurally
(white-box testing) [2].
 Black-box testing is concerned with showing
the conformity between the implementation and
its functional specification; with white-box testing
techniques, test case design is performed with
basis on the program structure.

 When white-box testing is performed, the
metrics for measuring the thoroughness of a given
test set can be extracted from the structure of the
target object’s source code, or even from
compiled code. Traditional white-box criteria
include structural (e.g. statement, branch)
coverage and data flow coverage [3]. The basic
idea is to ensure that all of the control elements in
a program are executed by a given test set,
providing evidence of the quality of the testing
activity; a test set that contains test cases that
exercise all such elements is said to be adequate
with respect to the corresponding criterion.
 The evaluation of test data quality using
white-box criteria generally requires the definition
of an underlying model for program
representation – usually a control-flow graph
(CFG) [4]. The CFG is an abstract graph-based
representation of a given method in a class – in
the case of software testing, the test object.
Evaluating the quality of a test set involves using
CFGs to compute coverage metrics.
 The observations needed to assemble the
metrics required for the evaluation can be
collected by abstracting and modelling the
behaviours programs exhibit during execution [5],
either by static or dynamic analysis techniques.
 Static analysis involves the construction and
analysis of an abstract mathematical model of the
system (e.g. symbolic execution); testing is
performed without executing the method under
test, but rather this abstract model. This type of
analysis is complex, and often incomplete due to
the simplifications in the model. In contrast,
dynamic analysis involves executing the actual
test object and monitoring its behaviour; while it
may not possible to draw general conclusions
from dynamic analysis, it provides evidence of the
successful operation of the software.
 If dynamic analysis techniques are employed,
the ability to observe program execution is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IC-online

https://core.ac.uk/display/61795997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

•

•

•

paramount. Events that need to be captured range
from simple observations – such as execution of
structural entities – to more complex examinations
– such as thread and object creation, field
manipulations, and object locking behaviour [4].
Dynamic monitoring of structural entities can be
achieved by the instrumenting the test object, and
dynamically tracing the execution of the structural
entities transversed during execution.
 Instrumentation in Java software is performed
by inserting probes in the test object that log the
entities exercised during execution. This operation
can be performed either at the source-code level
or at the Java bytecode level.
 Java bytecode is an assembly-like language
that retains much of the high-level information
about the original source program [6]. Class files
(i.e. compiled Java programs containing bytecode
information) are a portable binary representation
that contains class related data, such as the class’s
name, its superclass’s name, information about the
variables and constants, and the bytecode
instructions of each method.
 Given that the target object’s source code is
often unavailable, performing instrumentation and
CFG building with basis on bytecode allows
broadening the scope of applicability of software
testing tools. They can be used, for instance, to
perform structural testing on third-party Java
components. In addition, the bytecode can be seen
as an intermediate language, so the analysis
performed at this level can be mapped back to the
original high-level language that generated the
bytecode.
 Evolutionary algorithms have been applied
successfully to the search for quality test data in
the field object-oriented unit-testing [7-11].
However, the application of search-based
strategies in this area has not yet been investigated
comprehensively; what’s more, existing
approaches work at the test object’s source-code
level. The evolutionary paradigm is expected to be
equally suited if Java bytecode is employed as the
basis for evolutionary search guidance and quality
assessment.

The application of evolutionary algorithms to
test data generation is often referred to as
Evolutionary Testing [12, 13]. In evolutionary
testing, meta-heuristic search techniques are
employed to select or generate test data. The
search space is the input domain of the test object,

and the problem is to find a (minimal) set of test
cases that satisfies a certain test criterion.

In the particular case of object-oriented
programs, a sequence of method invocations is
required to cover the test goal, and the sequence
search space is an explosive space. Within the
paradigm of object-orientation, the major concept
is the object – which possesses attributes,
constructors and methods. A test case for object-
oriented software does not comprise only
numerical test data; a sequence of constructor and
method calls is also necessary.

Usually, multiple objects are involved in one
single test case [11]:

at least, an instance of the Class Under Test
(CUT) is needed;
additional objects, which are required (as
parameters) for the instantiation of the CUT
and for the invocation of the method under
test (MUT), must be available, and for the
creation of these additional objects more
objects may be required;
the participating objects may have to be put
into particular states in order for the test
scenario to be processed in the desired way
and, consequently, method calls must be
issued for these objects.

 A fitness function for object-oriented
evolutionary testing should evaluate test cases
according to their ability to meet a given test goal.
Fitness evaluation is, however hindered by the
State Problem. The State Problem occurs with
methods that exhibit state-like qualities by storing
information in internal variables [14]; such
variables are hidden from the optimization
process, because they are protected from external
manipulation using access modifiers (most
notably “getter” and “setter” methods). The only
way to change their values is through execution of
statements that perform assignments to them.

In this paper, we present a prototypical tool –
eCrash – that aims to provide a means to perform
structural unit-testing on object-oriented software,
using evolutionary techniques and with basis on
the test object’s bytecode. Firstly, in the following
section, related work is reviewed. In section 3, the
framework of our tool is outlined, and a case
study that illustrates the methodology is described
in chapter 4. The concluding section resumes the
key ideas of this paper and presents some topics
for future research.

2. Related Work

A first approach to the field of evolutionary
testing of object-oriented software was presented
in [10]; in this work, input sequences are
generated using evolutionary algorithms for the
white-box testing of classes. Genetic algorithms
are the evolutionary approach employed, with
potential solutions (test cases) being represented
as chromosomes. A source-code representation is
used, and an original evolutionary algorithm, with
special evolutionary operators for recombination
and mutation on a statement level (i.e. mutation
operators insert or remove methods from a test
program), is defined. A population of individuals,
representing the test cases, is evolved in order to
increase a measure of fitness, accounting for the
ability of the test cases to satisfy a coverage
criterion of choice. New test cases are generated
as long as there are targets to be covered or a
maximum execution time were reached.
 However, the encapsulation problem was not
addressed, and this proposal only dealt with a
simple state problem. Additionally, with this
approach, Universal Evolutionary Algorithms (i.e.
evolutionary algorithms, provided by popular
toolboxes, which are independent from the
application domain and offer a variety of
predefined, probabilistically well-proven
evolutionary operators) could not be applied due
to the usage of custom-made operators and
original evolutionary algorithms.
 An approach which employed an Ant Colony
Optimization algorithm was presented in [9]. The
focus is on the generation of the shortest method
call sequence for a given test goal, under the
constraint of state dependent behaviour and
without violating encapsulation. Ant PathFinder,
hybridizing Ant Colony Optimization and
Multiagent Genetic Algorithms are employed. To
cover those branches enclosed in private/protected
methods without violating encapsulation, call
chain analysis on class call graphs was introduced.
 In [11] the focus was on the usage of
Universal Evolutionary Algorithms. An encoding
is proposed that represents object-oriented test
cases as basic type value structures, allowing for
the application of various search-based
optimization techniques such as Hill Climbing or
Simulated Annealing. The generated test cases can
be transformed into test classes according to

popular testing frameworks. Still, the suggested
encoding did not prevent the generation of
individuals which could not be decoded into test
programs without errors; the fitness function used
different penalty mechanisms in order to penalize
invalid sequences and to guide the search towards
regions that contained valid sequences. Due to the
generation of infeasible sequences, the approach
lacked efficiency for more complicated cases.
 In [7] an approach in which potential solutions
were encoded using a Strongly-Typed Genetic
Programming (STGP) methodology was
presented, with method call sequences being
represented by method call trees; these trees are
able to express the call dependences of the
methods that are relevant for a given test object.
To account for polymorphic relationships which
exist due to inheritance relations, the STGP types
used by the function set are specified in
correspondence to the type hierarchy of the test
cluster classes. The emphasis of this work is on
sequence feasibility; the usage of STGP preserves
feasibility throughout the entire search process.
The fitness function does need, however, to
incorporate a penalty mechanism for test cases
which include method call sequences that generate
runtime exceptions. The issue of runtime
exceptions was precisely the main topic in [8].
 The methodology proposed in [7, 8] yielded
very encouraging results. For a simple custom-
tailored test cluster, the set of generated test cases
achieved 100% branch coverage; in a more
complex scenario, four classes where tested and
full coverage was achieved for all of the test
objects.
 In all of the abovementioned approaches, the
underlying model for program representation (i.e.
CFG) is built with basis on the test object’s
source-code; moreover, instrumentation of the test
object for extracting tracing information is also
performed at the source-code level. To the best of
our knowledge, there are no evolutionary
approaches to the unit-testing of object-oriented
software that employ dynamic bytecode analysis
to derive structural testing criteria.
 The application of evolutionary algorithms
and bytecode analysis for test automation was,
nonetheless, studied in different scenarios. A
black-box approach using program specifications
written in JML was employed in [15], and [16]
describes a methodology based on static analysis
techniques.

3. Framework Overview

This focus of this paper is on presenting the
framework of a tool (which we named “eCrash”)
for evolving test sets for structural unit-testing of
third-party object-oriented software.
 The ideas that lead to this approach were
greatly inspired by the previous works of [6-8, 11,
17]. Test cases are evolved using a STGP
mechanism, with the metrics required to evaluate
their quality being collected at the bytecode level.
The framework of our tool is outlined in Figure 1.

Figure 1. Framework overview

 For evolving the set of test cases, the
Evolutionary Computation in Java (ECJ) package
[18] is used. ECJ is a research package that
incorporates several Universal Evolutionary
Algorithms, and includes built-in support for Set-
Based STGP. It is highly flexible, having nearly
all classes and their settings being dynamically
determined at runtime by user provided Parameter
files and Function Set files.

The process of CFG building, bytecode
instrumentation and event tracing is achieved with
the aid of Sofya [4], a dynamic Java bytecode
analysis framework. The Sofya package provides
implementations and tools for the construction of
various kinds of graphs – most notably CFGs –
and native capabilities for dispatching event
streams of specified program observations, which
include instrumentators, event dispatchers, and
event selection filters for semantic and structural
event streams. Additionally, it contains tools to
perform various analyses using the outputs

generated by its components (statistics, coverage
reports, …) and to visualize the trace information
produced by the executions of instrumented
programs.
 The test cluster analysis phase is performed by
the “Automatic Test Object Analyser” (ATOA)
module of the eCrash tool. It’s main task is that of
generating Parameter Files containing the
constraints needed for the STGP system.

4. Case Study

In this experiment, the simple test cluster defined
in [8] is used for demonstration purposes. The
Controller.reconfigure(Config) public method was used
as the method under test (MUT); its source code is
depicted in Figure 2.

public void reconfigure(Config cfg) throws Exception {
 if(cfg.getSignalCount() > MAX_SIGNALS)
 throw new Exception("Too many signals.");
 if(cfg.getPort()<MIN_PORT||cfg.getPort()>MAX_PORT)
 throw new Exception("Invalid port.");
 this.cfg = cfg;
 signals = new int[cfg.getSignalCount()];
}

Figure 2. Method Under Test’s source code [8]

4.1. Test Cluster Analysis

The test cluster’s Java bytecode analysis is
performed by the ATOA module of the eCrash
framework; it is at this step that the Function and
Terminal sets are defined, and hence it must
precede the test set evolving and evaluation
phases.
 The first task is that of extracting the list of
public methods from the test object’s bytecode by
means of the Java Reflection API; this list
comprises the set of MUTs that are to be the
subject of the unit-testing process. Secondly, the
Extended Method Call Dependence Graph
(EMCDG) is determined; this structure describes
the method call dependences involved in the test
case construction [7].
 Function and Terminal sets are then computed
for each of the MUTs by evaluating the EMCDG.
These sets define the restrictions that must be
imposed to STGP tree nodes; specifically, they
identify the children and return types of each

node. This information is used to generate ECJ
Parameter files that contain the constraints of the
STGP system, and assures that the test cases’ call
dependences are taken into account.

Figure 3. Method Under Test’s bytecode instructions

For this case study’s MUT, the EMCDG
analysis yielded the Function Set depicted in [7],
which includes both the terminal and non-terminal
STGP nodes involved in the method call sequence
construction. A distinct approach was, however,
employed for the definition of terminal nodes
representing numerical values – the Ballista fault
injection methodology [2].

With the Ballista methodology, testing is
performed by passing combinations of acceptable,
boundary and exceptional inputs as parameters to
the test object via an ordinary method call.

With this in mind, 9 additional terminal nodes
were defined for this MUT, containing the
following constant values: 4, 5, 6; 7999, 8000,
8001; 8004, 8005, 8006. The analysis that lead to

the definition of this sub-set of terminal nodes
follows.

Bytecode instructions (Figure 3) at positions
4, 22 and 32 (iconst_5; sipush 8000; sipush 8005) push
the integer values 5, 8000 and 8005 onto the top
of the operand stack, for usage in posterior
instructions of type “if”. These constant values
are, therefore, potential boundaries for numerical
condition evaluation; the rationale for this
inference is the perception that this constitutes a
common programming pattern. This approach
allows us to emulate the behaviour proposed by
Ballista, as it is a step towards the definition of
valid, invalid and boundary test cases – if integers
5, 8000 and 8005 are indeed boundaries in
decision structures.

public void reconfigure(Config cfg)
0: aload_1
1: invokevirtual cfg.Config.getSignalCount ()I (6)
4: iconst_5
5: if_icmple #18
8: new <java.lang.Exception> (7)
11: dup
12: ldc "Too many signals." (8)
14: invokespecial java.lang.Exception (java.lang.String)
17: athrow
18: aload_1
19: invokevirtual cfg.Config.getPort ()I (10)
22: sipush 8000
25: if_icmplt #38
28: aload_1
29: invokevirtual cfg.Config.getPort ()I (10)
32: sipush 8005
35: if_icmple #48
38: new <java.lang.Exception> (7)
41: dup
42: ldc "Invalid port." (11)
44: invokespecial java.lang.Exception (java.lang.String)
47: athrow
48: aload_0
49: aload_1
50: putfield cfg.Controller.cfg Lcfg/Config; (2)
53: aload_0
54: aload_1
55: invokevirtual cfg.Config.getSignalCount ()I (6)
58: newarray <int>
60: putfield cfg.Controller.signals [I (3)
63: return

4.2. Test Set Representation and Generation

Test cases are represented as GP trees; test sets
correspond to GP individuals, each containing a
pre-defined number of GP trees. Individuals and
trees are generated automatically by the ECJ tool,
in conformity with the constraints imposed in the
Parameter files.

Figure 4. Example GP tree

The task of defining the number of GP trees
(test cases) involves identifying all the problem
blocks in the CFG – i.e. nodes at which execution
takes a critical branch, making it impossible to
reach a certain target node once the control flow
has diverged. The minimum number of test cases
is equal to the number of distinct control flow
paths.

For the abovementioned MUT, the set of
problem blocks includes blocks 4, 8 and 11 of the

CFG depicted in Figure 6 (Basic Instruction
blocks of subtype “if”) and hence the number of
GP trees was set as 3 per GP individual. CFG
definition and interpretation will be described in
further detail in the next subchapter.
 The first step involved in the generation of the
test cases’ source-code is the linearization of the
GP trees using a depth-first transversal algorithm.
The tree linearization process yields the ordered
method call sequence; source-code generation is
performed by translating the method call sequence
into test cases using the information encoded into
each node. The STGP mechanism assures that
only valid GP trees – i.e. that can be transformed
into compilable test cases – were generated.
 Figure 4 contain the an example GP tree
generated by ECJ for this case study’s MUT, and
Figure 5 depicts the corresponding test case’s
source-code.

Figure 5. Example test case

4.3. Test Set Evaluation and Fitness Definition

The main objective of this case study was that of
conducting a successful evolutionary search for a
test set that achieved full structural coverage – i.e.
a test set that yields the transversal of all the Java
bytecode instructions of the MUT.
 Control-Flow Graphs are used as the
underlying model for program representation, and
are built solely with basis on the information

extracted from the Java bytecode of the test
object. The evaluation of the quality of a given

package testCases;
import testObject.*;

public class MainG0I2T2 {
 public static void main(String[] args) {
 try {
 Controller controller0 = new Controller();
 Controller controller1 = new Controller();
 Config config2 = controller1.getConfig();
 controller0.reconfigure(config2);
 Controller controller3 = new Controller();
 Config config4 = controller3.getConfig();
 int int5 = 4;
 config4.setPort(int5);
 int int6 = 7999;
 config4.addSignal(int6);
 controller0.reconfigure(config4);
 } catch (Exception e) {
 System.err.println("MainG0I2T2: " + e);
} } } Initial

bc inst
final
bc inst

node
type

node
subtype

node
number

0
4
8
18
22
28
32
38
48
58

1
5
17
19
25
29
35
47
55
63

Call
Basic
Basic
Call
Basic
Call
Basic
Basic
Call
Basic

If
Throw

If

If
Throw

Return

2
4
5
6
8
9
11
12
13
15

Figure 6. Method Under Test’s Control-Flow Graph;
mapping between bytecode instructions, basic

instruction blocks, basic instruction block subtypes, and
node numbers in MUT’s CFG

test set is, therefore, performed by comparing the
trace information collected by the dynamic
execution of the MUT against its CFG, with the
purpose of verifying the coverage thoroughness
achieved by that test set. The tasks of building the
CFGs and of instrumenting the MUT’s bytecode
for basic block tracing and structural event
dispatch both precede that of evolving test sets,
and are performed with the aid of the Sofya tool.
 The CFG building procedure involves
grouping bytecode instructions into a smaller set
of Basic Instruction and Call blocks, with the
intention of easing the representation of the test
object’s control flow. Additionally, other types of
blocks which represent virtual operations are
defined: Entry blocks, Exit blocks, and Return
blocks. These Virtual blocks encompass no
bytecode instructions; they are used to represent
certain control flow hypothesis. For this case
study’s MUT, Basic Instruction blocks (4, 5, 8,
11, 12, 15) and all the Call blocks (2, 6, 9, 13) of
the CFG depicted in Figure 6 must be transversed
in order to attain full structural coverage.
 Instrumentation of the MUT’s classes for
basic block analysis and structural event dispatch
enables the observation of the blocks transversed
during a given program execution; event tracing is
then performed by automatically executing the
instrumented MUT using each generated test case
as an “input”, with the intention of collecting trace
information with which to derive coverage
metrics. Relevant trace information includes the
list of blocks transversed (Hit List) in the MUT’s
CFG by the execution of each individual test case.
 In our current approach, the Hit List is
computed individually for each test case; the GP
individual’s overall fitness is calculated as the
percentage of bytecode instructions exercised by
the whole test set – i.e. the percentage of blocks
transversed by the execution of all the test cases in
the test set.

4.4. Experimental Observations

 In this experiment, ECJ was configured using
a single subpopulation of 5 GP individuals, with
each individual containing 3 GP trees; each run
stopped if an ideal individual was found or after
300 generations. The remaining parameters used
were the Koza-style [19] definitions used in ECJ

by default: Tournament Selection for
Reproduction, One-Point Mutation and Sub-Tree
Crossover, and Half/Full Tree Initialization.

The best run successfully achieved full
structural coverage with 11 generations. The
definition of Ballista-based terminal nodes proved
to be valuable; in control runs, numerical values
were generated randomly, and only 80% code
coverage was achieved after 300 generations. For
comparison purposes, ECJ was also parameterized
using random mutation, reproduction, and
crossover operators. 100% structural coverage
was also achieved; however, the minimum
number of generations required to do so was 78.
 Still, some problems persist. In this
experiment, it was possible to observe that if full
structural coverage is not achieved in the initial
generations, it’s unlikely that it is achieved in that
run – i.e. as generations evolve, the evolutionary
search is steered towards a local maximum that
hinders the possibility of achieving 100% code
coverage.
 This behaviour can be explained by the State
Problem; the CFG’s problem block 5 is
paradigmatic. The transversal of this block
accounts only for 10% of the fitness, and the
branch that leads to it must be taken at Basic
Instruction block 4 (sub-type “if”); however, a test
case requires 5 calls to the Config.addSignal(int signal)
method of the Config object that will be used as a
parameter in the MUT for this condition to be
evaluated favourably. The fitness function
currently employed provides no guidance for this
particular class of problems.

5. Conclusions and Future Work

This paper presents an evolutionary approach for
the structural unit-testing of third-party object-
oriented software. Preliminary experiments have
been carried out and quality solutions have been
found, proving the pertinence of the approach.

Future work involves addressing the State
Problem, by implementing adequate fitness
functions that can steer the evolutionary search
towards individual test goals on the test object.
This can be achieved by the definition of distance-
based metrics [17], which can express how close
the execution of a test case over the test object is
to reaching a given test goal.

Further research must also be made on the
topics of easing the user’s task of defining
assertions for the generated test cases (e.g. by
minimizing the length of method call sequences),
and on the usage of a set-typing mechanism for
mimicking the polymorphic relations that exist
amongst the test cluster’s classes.

References

[1] Li, K. and M. Wu, Effective software test
automation: developing an automated
software testing tool. 2004, San Francisco,
California ; London: Sybex. xx, 408 p.

[2] Kropp, N.P., P.J. Koopman, and D.P.
Siewiorek. Automated Robustness Testing of
Off the Shelf Software Components. in FTCS
98, IEEE. 1998.

[3] Vincenzi, A.M.R., et al., Coverage testing of
Java programs and components. Special issue
on new software composition concepts, 2005.
56(1-2): p. 211-230.

[4] Kinneer, A., M. Dwyer, and G. Rothermel,
Sofya: A Flexible Framework for
Development of Dynamic Program Analyses
for Java Software. 2006, Department of
Computer Science and Engineering,
University of Nebraska - Lincoln.

[5] Tracey, N., et al., A search-based automated
test-data generation framework for safety-
critical systems. Systems engineering for
business process change: new directions.
2002: Springer-Verlag New York, Inc.

[6] Vincenzi, A.M.R., et al., Establishing
structural testing criteria for Java bytecode.
Software Practice and Experience, 2006.
36(14): p. 1513-1541.

[7] Wappler, S. and J. Wegener, Evolutionary unit
testing of object-oriented software using
strongly-typed genetic programming, in
GECCO '06: Proceedings of the 8th annual
conference on Genetic and evolutionary
computation. 2006, ACM Press: Seattle,
Washington, USA. p. 1925-1932.

[8] Wappler, S. and J. Wegener, Evolutionary
Unit Testing Of Object-Oriented Software
Using A Hybrid Evolutionary Algorithm, in
Proceedings of the 2006 IEEE Congress on
Evolutionary Computation. 2006, IEEE Press:
Vancouver. p. 3193-3200.

[9] Liu, X., B. Wang, and H. Liu. Evolutionary
search in the context of object-oriented

programs. in MIC2005: The Sixth
Metaheuristics International Conference.
2005. Vienna, Austria.

[10] Tonella, P., Evolutionary testing of classes,
in ISSTA '04: Proceedings of the 2004 ACM
SIGSOFT international symposium on
Software testing and analysis. 2004, ACM
Press: Boston, Massachusetts, USA. p. 119-
128.

[11] Wappler, S. and F. Lammermann, Using
evolutionary algorithms for the unit testing of
object-oriented software, in GECCO '05:
Proceedings of the 2005 conference on genetic
and evolutionary computation. 2005, ACM
Press. p. 1053-1060.

[12] Mantere, T. and J.T. Alander, Evolutionary
software engineering, a review. Applied Soft
Computing, 2005. 5(3): p. 315-331.

[13] McMinn, P., Search-based software test data
generation: a survey. Software Testing,
Verification and Reliability, 2004. 14(2): p.
105-156.

[14] McMinn, P. and M. Holcombe. The state
problem for evolutionary testing. in Genetic
and Evolutionary Computation Conference.
2003. Chicago, USA: Springer-Verlag.

[15] Cheon, Y., M.Y. Kim, and A. Perumandla, A
complete automation of unit testing for Java
programs, in Proceedings of the 2005
International Conference on Software
Engineering Research and Practice (SERP
'05). 2005, CSREA Press: Las Vegas, Nevada,
USA. p. 290-295.

[16] Muller, R.A., C. Lembeck, and H. Kuchen, A
symbolic Java virtual machine for test case
generation, in Proceedings of IASTED
Conference on Software Engineering. 2004. p.
365-371.

[17] Wegener, J., A. Baresel, and H. Sthamer,
Evolutionary test environment for automatic
structural testing. Information & Software
Technology, 2001. 43(14): p. 841-854.

[18] Luke, S., et al. ECJ 16: A Java evolutionary
computation library. 2007 [cited; Available
from:
http://www.cs.gmu.edu/~eclab/projects/ecj/.

[19] Koza, J.R., Genetic programming : on the
programming of computers by means of
natural selection. Complex adaptive systems.
1992, Cambridge, Mass. ; London: MIT.
xiv,819p.

http://www.cs.gmu.edu/%7Eeclab/projects/ecj/

	eCrash: a Framework for Performing Evolutionary Testing on Third-Party Java Components
	1. Introduction
	2. Related Work
	3. Framework Overview
	4. Case Study
	4.1. Test Cluster Analysis
	4.2. Test Set Representation and Generation
	4.3. Test Set Evaluation and Fitness Definition
	4.4. Experimental Observations
	5. Conclusions and Future Work

