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Abstract 
The focus of this paper is on presenting a tool for 
generating test data by employing evolutionary 
search techniques, with basis on the information 
provided by the structural analysis and 
interpretation of the Java bytecode of third-party 
Java components, and on the dynamic execution 
of the instrumented test object. 

The main objective of this approach is that of 
evolving a set of test cases that yields full 
structural code coverage of the test object. Such a 
test set can be used for effectively performing the 
testing activity, providing confidence in the 
quality and robustness of the test object. 
 The rationale of working at the bytecode level 
is that even when the source code is unavailable 
structural testing requirements can still be derived, 
and used to assess the quality of a test set and to 
guide the evolutionary search towards reaching 
specific test goals. 

1. Introduction 

Software testing is an expensive process, typically 
consuming roughly half of the total costs involved 
in the software development process [1]. Locating 
suitable test data can be time consuming, difficult 
and expensive; automation of test data generation 
is, therefore, vital to advance the state-of-the-art in 
software testing. 
 Test data selection, generation and 
optimization deals with locating good test data for 
a particular test criterion. The assessment of the 
quality of a given set of test data can be achieved 
functionally (black-box testing) or structurally 
(white-box testing) [2].  
 Black-box testing is concerned with showing 
the conformity between the implementation and 
its functional specification; with white-box testing 
techniques, test case design is performed with 
basis on the program structure.  

 When white-box testing is performed, the 
metrics for measuring the thoroughness of a given 
test set can be extracted from the structure of the 
target object’s source code, or even from 
compiled code. Traditional white-box criteria 
include structural (e.g. statement, branch) 
coverage and data flow coverage [3]. The basic 
idea is to ensure that all of the control elements in 
a program are executed by a given test set, 
providing evidence of the quality of the testing 
activity; a test set that contains test cases that 
exercise all such elements is said to be adequate 
with respect to the corresponding criterion. 
 The evaluation of test data quality using 
white-box criteria generally requires the definition 
of an underlying model for program 
representation – usually a control-flow graph 
(CFG) [4]. The CFG is an abstract graph-based 
representation of a given method in a class – in 
the case of software testing, the test object. 
Evaluating the quality of a test set involves using 
CFGs to compute coverage metrics.  
 The observations needed to assemble the 
metrics required for the evaluation can be 
collected by abstracting and modelling the 
behaviours programs exhibit during execution [5], 
either by static or dynamic analysis techniques. 
 Static analysis involves the construction and 
analysis of an abstract mathematical model of the 
system (e.g. symbolic execution); testing is 
performed without executing the method under 
test, but rather this abstract model. This type of 
analysis is complex, and often incomplete due to 
the simplifications in the model. In contrast, 
dynamic analysis involves executing the actual 
test object and monitoring its behaviour; while it 
may not possible to draw general conclusions 
from dynamic analysis, it provides evidence of the 
successful operation of the software. 
 If dynamic analysis techniques are employed, 
the ability to observe program execution is 
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paramount. Events that need to be captured range 
from simple observations – such as execution of 
structural entities – to more complex examinations 
– such as thread and object creation, field 
manipulations, and object locking behaviour [4]. 
Dynamic monitoring of structural entities can be 
achieved by the instrumenting the test object, and 
dynamically tracing the execution of the structural 
entities transversed during execution. 
 Instrumentation in Java software is performed 
by inserting probes in the test object that log the 
entities exercised during execution. This operation 
can be performed either at the source-code level 
or at the Java bytecode level. 
 Java bytecode is an assembly-like language 
that retains much of the high-level information 
about the original source program [6]. Class files 
(i.e. compiled Java programs containing bytecode 
information) are a portable binary representation 
that contains class related data, such as the class’s 
name, its superclass’s name, information about the 
variables and constants, and the bytecode 
instructions of each method.  
 Given that the target object’s source code is 
often unavailable, performing instrumentation and 
CFG building with basis on bytecode allows 
broadening the scope of applicability of software 
testing tools. They can be used, for instance, to 
perform structural testing on third-party Java 
components. In addition, the bytecode can be seen 
as an intermediate language, so the analysis 
performed at this level can be mapped back to the 
original high-level language that generated the 
bytecode. 
 Evolutionary algorithms have been applied 
successfully to the search for quality test data in 
the field object-oriented unit-testing [7-11]. 
However, the application of search-based 
strategies in this area has not yet been investigated 
comprehensively; what’s more, existing 
approaches work at the test object’s source-code 
level. The evolutionary paradigm is expected to be 
equally suited if Java bytecode is employed as the 
basis for evolutionary search guidance and quality 
assessment. 

The application of evolutionary algorithms to 
test data generation is often referred to as 
Evolutionary Testing [12, 13]. In evolutionary 
testing, meta-heuristic search techniques are 
employed to select or generate test data. The 
search space is the input domain of the test object, 

and the problem is to find a (minimal) set of test 
cases that satisfies a certain test criterion.  

In the particular case of object-oriented 
programs, a sequence of method invocations is 
required to cover the test goal, and the sequence 
search space is an explosive space. Within the 
paradigm of object-orientation, the major concept 
is the object – which possesses attributes, 
constructors and methods. A test case for object-
oriented software does not comprise only 
numerical test data; a sequence of constructor and 
method calls is also necessary.  

Usually, multiple objects are involved in one 
single test case [11]:  

at least, an instance of the Class Under Test 
(CUT) is needed;  
additional objects, which are required (as 
parameters) for the instantiation of the CUT 
and for the invocation of the method under 
test (MUT), must be available, and for the 
creation of these additional objects more 
objects may be required;  
the participating objects may have to be put 
into particular states in order for the test 
scenario to be processed in the desired way 
and, consequently, method calls must be 
issued for these objects. 

 A fitness function for object-oriented 
evolutionary testing should evaluate test cases 
according to their ability to meet a given test goal. 
Fitness evaluation is, however hindered by the 
State Problem. The State Problem occurs with 
methods that exhibit state-like qualities by storing 
information in internal variables [14]; such 
variables are hidden from the optimization 
process, because they are protected from external 
manipulation using access modifiers (most 
notably “getter” and “setter” methods). The only 
way to change their values is through execution of 
statements that perform assignments to them. 

In this paper, we present a prototypical tool –
eCrash – that  aims to provide a means to perform 
structural unit-testing on object-oriented software, 
using evolutionary techniques and with basis on 
the test object’s bytecode. Firstly, in the following 
section, related work is reviewed. In section 3, the 
framework of our tool is outlined, and a case 
study that illustrates the methodology is described 
in chapter 4. The concluding section resumes the 
key ideas of this paper and presents some topics 
for future research. 



  

 
2. Related Work 

A first approach to the field of evolutionary 
testing of object-oriented software was presented 
in [10]; in this work, input sequences are 
generated using evolutionary algorithms for the 
white-box testing of classes. Genetic algorithms 
are the evolutionary approach employed, with 
potential solutions (test cases) being represented 
as chromosomes. A source-code representation is 
used, and an original evolutionary algorithm, with 
special evolutionary operators for recombination 
and mutation on a statement level (i.e. mutation 
operators insert or remove methods from a test 
program), is defined. A population of individuals, 
representing the test cases, is evolved in order to 
increase a measure of fitness, accounting for the 
ability of the test cases to satisfy a coverage 
criterion of choice. New test cases are generated 
as long as there are targets to be covered or a 
maximum execution time were reached.  
 However, the encapsulation problem was not 
addressed, and this proposal only dealt with a 
simple state problem. Additionally, with this 
approach, Universal Evolutionary Algorithms (i.e. 
evolutionary algorithms, provided by popular 
toolboxes, which are independent from the 
application domain and offer a variety of 
predefined, probabilistically well-proven 
evolutionary operators) could not be applied due 
to the usage of custom-made operators and 
original evolutionary algorithms. 
 An approach which employed an Ant Colony 
Optimization algorithm was presented in [9]. The 
focus is on the generation of the shortest method 
call sequence for a given test goal, under the 
constraint of state dependent behaviour and 
without violating encapsulation. Ant PathFinder, 
hybridizing Ant Colony Optimization and 
Multiagent Genetic Algorithms are employed. To 
cover those branches enclosed in private/protected 
methods without violating encapsulation, call 
chain analysis on class call graphs was introduced. 
 In [11] the focus was on the usage of 
Universal Evolutionary Algorithms. An encoding 
is proposed that represents object-oriented test 
cases as basic type value structures, allowing for 
the application of various search-based 
optimization techniques such as Hill Climbing or 
Simulated Annealing. The generated test cases can 
be transformed into test classes according to 

popular testing frameworks. Still, the suggested 
encoding did not prevent the generation of 
individuals which could not be decoded into test 
programs without errors; the fitness function used 
different penalty mechanisms in order to penalize 
invalid sequences and to guide the search towards 
regions that contained valid sequences. Due to the 
generation of infeasible sequences, the approach 
lacked efficiency for more complicated cases. 
 In [7] an approach in which potential solutions 
were encoded using a Strongly-Typed Genetic 
Programming (STGP) methodology was 
presented, with method call sequences being 
represented by method call trees; these trees are 
able to express the call dependences of the 
methods that are relevant for a given test object. 
To account for polymorphic relationships which 
exist due to inheritance relations, the STGP types 
used by the function set are specified in 
correspondence to the type hierarchy of the test 
cluster classes. The emphasis of this work is on 
sequence feasibility; the usage of STGP preserves 
feasibility throughout the entire search process. 
The fitness function does need, however, to 
incorporate a penalty mechanism for test cases 
which include method call sequences that generate 
runtime exceptions. The issue of runtime 
exceptions was precisely the main topic in [8].  
 The methodology proposed in [7, 8] yielded 
very encouraging results. For a simple custom-
tailored test cluster, the set of generated test cases 
achieved 100% branch coverage; in a more 
complex scenario, four classes where tested and 
full coverage was achieved for all of the test 
objects. 
 In all of the abovementioned approaches, the 
underlying model for program representation (i.e. 
CFG) is built with basis on the test object’s 
source-code; moreover, instrumentation of the test 
object for extracting tracing information is also 
performed at the source-code level. To the best of 
our knowledge, there are no evolutionary 
approaches to the unit-testing of object-oriented 
software that employ dynamic bytecode analysis 
to derive structural testing criteria. 
 The application of evolutionary algorithms 
and bytecode analysis for test automation was, 
nonetheless, studied in different scenarios. A 
black-box approach using program specifications 
written in JML was employed in [15], and [16] 
describes a methodology based on static analysis 
techniques. 



  
 
3. Framework Overview 

This focus of this paper is on presenting the 
framework of a tool (which we named “eCrash”) 
for evolving test sets for structural unit-testing of 
third-party object-oriented software.  
 The ideas that lead to this approach were 
greatly inspired by the previous works of [6-8, 11, 
17]. Test cases are evolved using a STGP 
mechanism, with the metrics required to evaluate 
their quality being collected at the bytecode level. 
The framework of our tool  is outlined in Figure 1. 

 

 
Figure 1. Framework overview 

 For evolving the set of test cases, the 
Evolutionary Computation in Java (ECJ) package 
[18] is used. ECJ is a research package that 
incorporates several Universal Evolutionary 
Algorithms, and includes built-in support for Set-
Based STGP. It is highly flexible, having nearly 
all classes and their settings being dynamically 
determined at runtime by user provided Parameter 
files and Function Set files. 

The process of CFG building, bytecode 
instrumentation and event tracing is achieved with 
the aid of Sofya [4], a dynamic Java bytecode 
analysis framework. The Sofya package provides 
implementations and tools for the construction of 
various kinds of graphs – most notably CFGs – 
and native capabilities for dispatching event 
streams of specified program observations, which 
include instrumentators, event dispatchers, and 
event selection filters for semantic and structural 
event streams. Additionally, it contains tools to 
perform various analyses using the outputs 

generated by its components (statistics, coverage 
reports, …) and to visualize the trace information 
produced by the executions of instrumented 
programs. 
 The test cluster analysis phase is performed by 
the “Automatic Test Object Analyser” (ATOA) 
module of the eCrash tool. It’s main task is that of 
generating Parameter Files containing the 
constraints needed for the STGP system. 

4. Case Study 

In this experiment, the simple test cluster defined 
in [8] is used for demonstration purposes. The 
Controller.reconfigure(Config) public method was used 
as the method under test (MUT); its source code is 
depicted in Figure 2. 

 

 

public void reconfigure(Config cfg) throws Exception { 
   if( cfg.getSignalCount() > MAX_SIGNALS ) 
 throw new Exception("Too many signals."); 
   if(cfg.getPort()<MIN_PORT||cfg.getPort()>MAX_PORT) 
 throw new Exception("Invalid port."); 
   this.cfg = cfg; 
   signals = new int[cfg.getSignalCount()]; 
} 

Figure 2. Method Under Test’s source code [8] 

4.1. Test Cluster Analysis 

The test cluster’s Java bytecode analysis is 
performed by the ATOA module of the eCrash 
framework; it is at this step that the Function and 
Terminal sets are defined, and hence it must 
precede the test set evolving and evaluation 
phases. 
 The first task is that of extracting the list of 
public methods from the test object’s bytecode by 
means of the Java Reflection API; this list 
comprises the set of MUTs that are to be the 
subject of the unit-testing process. Secondly, the 
Extended Method Call Dependence Graph 
(EMCDG) is determined; this structure describes 
the method call dependences involved in the test 
case construction [7].  
 Function and Terminal sets are then computed 
for each of the MUTs by evaluating the EMCDG. 
These sets define the restrictions that must be 
imposed to STGP tree nodes; specifically, they 
identify the children and return types of each 



  

 
node. This information is used to generate ECJ 
Parameter files that contain the constraints of the 
STGP system, and assures that the test cases’ call 
dependences are taken into account. 

 

 
Figure 3. Method Under Test’s bytecode instructions 

For this case study’s MUT, the EMCDG 
analysis yielded the Function Set depicted in [7], 
which includes both the terminal and non-terminal 
STGP nodes involved in the method call sequence 
construction. A distinct approach was, however, 
employed for the definition of terminal nodes 
representing numerical values – the Ballista fault 
injection methodology [2].  

With the Ballista methodology, testing is 
performed by passing combinations of acceptable, 
boundary and exceptional inputs as parameters to 
the test object via an ordinary method call. 

With this in mind, 9 additional terminal nodes 
were defined for this MUT, containing the 
following constant values: 4, 5, 6; 7999, 8000, 
8001; 8004, 8005, 8006. The analysis that lead to 

the definition of this sub-set of terminal nodes 
follows. 

Bytecode instructions (Figure 3) at positions 
4, 22 and 32 (iconst_5; sipush 8000; sipush 8005) push 
the integer values 5, 8000 and 8005 onto the top 
of the operand stack, for usage in posterior 
instructions of type “if”. These constant values 
are, therefore,  potential boundaries for numerical 
condition evaluation; the rationale for this 
inference is the perception that this constitutes a 
common programming pattern. This approach 
allows us to emulate the behaviour proposed by 
Ballista, as it is a step towards the definition of 
valid, invalid and boundary test cases – if integers 
5, 8000 and 8005 are indeed boundaries in 
decision structures. 

public void reconfigure(Config cfg) 
0:    aload_1 
1:    invokevirtual cfg.Config.getSignalCount ()I (6) 
4:    iconst_5 
5:    if_icmple #18 
8:    new <java.lang.Exception> (7) 
11:   dup 
12:   ldc "Too many signals." (8) 
14:   invokespecial java.lang.Exception (java.lang.String) 
17:   athrow 
18:   aload_1 
19:   invokevirtual cfg.Config.getPort ()I (10) 
22:   sipush 8000 
25:   if_icmplt #38 
28:   aload_1 
29:   invokevirtual cfg.Config.getPort ()I (10) 
32:   sipush 8005 
35:   if_icmple #48 
38:   new <java.lang.Exception> (7) 
41:   dup 
42:   ldc "Invalid port." (11) 
44:   invokespecial java.lang.Exception (java.lang.String) 
47:   athrow 
48:   aload_0 
49:   aload_1 
50:   putfield cfg.Controller.cfg Lcfg/Config; (2) 
53:   aload_0 
54:   aload_1 
55:   invokevirtual cfg.Config.getSignalCount ()I (6) 
58:   newarray <int> 
60:   putfield cfg.Controller.signals [I (3) 
63:   return 

4.2. Test Set Representation and Generation 

Test cases are represented as GP trees; test sets 
correspond to GP individuals, each containing a 
pre-defined number of GP trees. Individuals and 
trees are generated automatically by the ECJ tool, 
in conformity with the constraints imposed in the 
Parameter files. 

 

 
Figure 4. Example GP tree 

The task of defining the number of GP trees 
(test cases) involves identifying all the problem 
blocks in the CFG – i.e. nodes at which execution 
takes a critical branch, making it impossible to 
reach a certain target node once the control flow 
has diverged. The minimum number of test cases 
is equal to the number of distinct control flow 
paths. 

For the abovementioned MUT, the set of 
problem blocks includes blocks 4, 8 and 11 of the 



  
 
CFG depicted in Figure 6 (Basic Instruction 
blocks of subtype “if”) and hence the number of 
GP trees was set as 3 per GP individual. CFG 
definition and interpretation will be described in 
further detail in the next subchapter. 
 The first step involved in the generation of the 
test cases’ source-code is the linearization of the 
GP trees using a depth-first transversal algorithm. 
The tree linearization process yields the ordered 
method call sequence; source-code generation is 
performed by translating the method call sequence 
into test cases using the information encoded into 
each node. The STGP mechanism assures that 
only valid GP trees – i.e. that can be transformed 
into compilable test cases – were generated. 
 Figure 4 contain the an example GP tree 
generated by ECJ for this case study’s MUT, and 
Figure 5 depicts the corresponding test case’s 
source-code. 

 

 
Figure 5. Example test case 

4.3. Test Set Evaluation and Fitness Definition 

The main objective of this case study was that of 
conducting a successful evolutionary search for a 
test set that achieved full structural coverage – i.e. 
a test set that yields the transversal of all the Java 
bytecode instructions of the MUT. 
 Control-Flow Graphs are used as the 
underlying model for program representation, and 
are built solely with basis on the information 

extracted from the Java bytecode of the test 
object. The evaluation of the quality of a given 
 

 
 

package testCases; 
import testObject.*; 
 
public class MainG0I2T2 { 
        public static void main(String[] args) { 
                try { 
                        Controller controller0 = new Controller(); 
                        Controller controller1 = new Controller(); 
                        Config config2 = controller1.getConfig(); 
                        controller0.reconfigure(config2); 
                        Controller controller3 = new Controller(); 
                        Config config4 = controller3.getConfig(); 
                        int int5 = 4; 
                        config4.setPort(int5); 
                        int int6 = 7999; 
                        config4.addSignal(int6); 
                        controller0.reconfigure(config4); 
                } catch (Exception e) { 
                         System.err.println("MainG0I2T2: " + e); 
}       }       } Initial 
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Figure 6. Method Under Test’s Control-Flow Graph; 
mapping between bytecode instructions, basic 

instruction blocks, basic instruction block subtypes, and 
node numbers in MUT’s CFG 



  

 
 

test set is, therefore, performed by comparing the 
trace information collected by the dynamic 
execution of the MUT against its CFG, with the 
purpose of verifying the coverage thoroughness 
achieved by that test set. The tasks of building the 
CFGs and of instrumenting the MUT’s bytecode 
for basic block tracing and structural event 
dispatch both precede that of evolving test sets, 
and are performed with the aid of the Sofya tool. 
 The CFG building procedure involves 
grouping bytecode instructions into a smaller set 
of Basic Instruction and Call blocks, with the 
intention of easing the representation of the test 
object’s control flow. Additionally, other types of 
blocks which represent virtual operations are 
defined: Entry blocks, Exit blocks, and Return 
blocks. These Virtual blocks encompass no 
bytecode instructions; they are used to represent 
certain control flow hypothesis. For this case 
study’s MUT, Basic Instruction blocks (4, 5, 8, 
11, 12, 15) and all the Call blocks (2, 6, 9, 13) of 
the CFG depicted in Figure 6 must be transversed 
in order to attain full structural coverage. 
 Instrumentation of the MUT’s classes for 
basic block analysis and structural event dispatch 
enables the observation of the blocks transversed 
during a given program execution; event tracing is 
then performed by automatically executing the 
instrumented MUT using each generated test case 
as an “input”, with the intention of collecting trace 
information with which to derive coverage 
metrics. Relevant trace information includes the 
list of blocks transversed (Hit List) in the MUT’s 
CFG by the execution of each individual test case. 
 In our current approach, the Hit List is 
computed individually for each test case; the GP 
individual’s overall fitness is calculated as the 
percentage of bytecode instructions exercised by 
the whole test set – i.e. the percentage of blocks 
transversed by the execution of all the test cases in 
the test set.  

4.4. Experimental Observations 

 In this experiment, ECJ was configured using 
a single subpopulation of 5 GP individuals, with 
each individual containing 3 GP trees; each run 
stopped if an ideal individual was found or after 
300 generations. The remaining parameters used 
were the Koza-style [19] definitions used in ECJ 

by default: Tournament Selection for 
Reproduction, One-Point Mutation and Sub-Tree 
Crossover, and Half/Full Tree Initialization. 

The best run successfully achieved full 
structural coverage with 11 generations. The 
definition of Ballista-based terminal nodes proved 
to be valuable; in control runs, numerical values 
were generated randomly, and only 80% code 
coverage was achieved after 300 generations. For 
comparison purposes, ECJ was also parameterized 
using random mutation, reproduction, and 
crossover operators. 100% structural coverage 
was also achieved; however, the minimum 
number of generations required to do so was 78. 
 Still, some problems persist. In this 
experiment, it was possible to observe that if full 
structural coverage is not achieved in the initial 
generations, it’s unlikely that it is achieved in that 
run – i.e. as generations evolve, the evolutionary 
search is steered towards a local maximum that 
hinders the possibility of achieving 100% code 
coverage. 
 This behaviour can be explained by the State 
Problem; the CFG’s problem block 5 is 
paradigmatic. The transversal of this block 
accounts only for 10% of the fitness, and the 
branch that leads to it must be taken at Basic 
Instruction block 4 (sub-type “if”); however, a test 
case requires 5 calls to the Config.addSignal(int signal) 
method of the Config object that will be used as a 
parameter in the MUT for this condition to be 
evaluated favourably. The fitness function 
currently employed provides no guidance for this 
particular class of problems. 

5. Conclusions and Future Work 

This paper presents an evolutionary approach for 
the structural unit-testing of third-party object-
oriented software. Preliminary experiments have 
been carried out and quality solutions have been 
found, proving the pertinence of the approach. 

Future work involves addressing the State 
Problem, by implementing adequate fitness 
functions that can steer the evolutionary search 
towards individual test goals on the test object. 
This can be achieved by the definition of distance-
based metrics [17], which can express how close 
the execution of a test case over the test object is 
to reaching a given test goal.  



  
 

Further research must also be made on the 
topics of easing the user’s task of defining 
assertions for the generated test cases (e.g. by 
minimizing the length of method call sequences), 
and on the usage of a set-typing mechanism for 
mimicking the polymorphic relations that exist 
amongst the test cluster’s classes. 
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