345 research outputs found

    Theoretical Study of Pest Control Using Stage Structured Natural Enemies with Maturation Delay: A Crop-Pest-Natural Enemy Model

    Full text link
    In the natural world, there are many insect species whose individual members have a life history that takes them through two stages, immature and mature. Moreover, the rates of survival, development, and reproduction almost always depend on age, size, or development stage. Keeping this in mind, in this paper, a three species crop-pest-natural enemy food chain model with two stages for natural enemies is investigated. Using characteristic equations, a set of sufficient conditions for local asymptotic stability of all the feasible equilibria is obtained. Moreover, using approach as in (Beretta and Kuang, 2002), the possibility of the existence of a Hopf bifurcation for the interior equilibrium with respect to maturation delay is explored, which shows that the maturation delay plays an important role in the dynamical behavior of three species system. Also obtain some threshold values of maturation delay for the stability-switching of the particular system. In succession, using the normal form theory and center manifold argument, we derive the explicit formulas which determine the stability and direction of bifurcating periodic solutions. Finally, a numerical simulation for supporting the theoretical analysis is given.Comment: 28 pages, 9 figure

    A stage-structured predator-prey si model with disease in the prey and impulsive effects

    Get PDF
    This paper aims to develop a high-dimensional SI model with stage structure for both the prey (pest) and the predator, and then to investigate the dynamics of it. The model can be used for the study of Integrated Pest Management (IPM) which is a combination of constant pulse releasing of animal enemies and diseased pests at two different fixed moments. Firstly, we use analytical techniques for impulsive delay differential equations to obtain the conditions for global attractivity of the ‘pest-free’ periodic solution and permanence of the population model. It shows that the conditions strongly depend on time delay, impulsive release of animal enemies and infective pests. Secondly, we present a pest management strategy in which the pest population is kept under the economic threshold level (ETL) when the pest population is permanent. Finally, numerical analysis is presented to illustrate our main conclusion

    Modelling of a seasonally perturbed competitive three species impulsive system

    Get PDF
    The population of biological species in the ecosystem is known sensitive to the periodic fluctuations of seasonal change, food resources and climatic conditions. Research in the ecological management discipline conventionally models the behavior of such dynamic systems through specific impulsive response functions, but the results of such research are applicable only when the environments conform exactly to the conditions as defined by the specific response functions that have been implemented for specific scenarios. This means that the application of previous work may be somewhat limited. Moreover, the intra and inter competitions among species have been seldom studied for modelling the prey-predator ecosystem. To fill in the gaps this paper models the delicate balance of two-prey and one-predator system by addressing three main areas of: â…°) instead of using the specific impulse response this work models the ecosystem through a more general response function; â…±) to include the effects due to the competition between species and â…²) the system is subjected to the influences of seasonal factors. The seasonal factor has been implemented here in terms of periodic functions to represent the growth rates of predators. The sufficient condition for the local and global asymptotic stability of the prey-free periodic solution and the permanence of the system have been subsequently obtained by using the Comparison techniques and the Floquet theorems. Finally, the correctness of developed theories is verified by numerical simulation, and the corresponding biological explanation is given.2017005,2017019: Shanxi Agricultural University of Science and Technology Innovation Fund Projects

    Effect of Time-Delay on a Ratio-Dependent Food Chain Model

    Get PDF
    This paper aims to study the effect of time-delay on a tritrophic food chainmodel with Michaelis-Menten type ratio-dependent functional responses. Boundednessof the time-delayed system is established. A simple criterion for deterministic extinctionis derived. It has been shown that the time-delay may introduce instability in the systemthrough Hopf bifurcation. Computer simulations are carried out to explain the analyticalfindings. It is discussed how these ideas illuminate some of the observed properties ofreal populations in the field, and explores practical implications

    Application of Beddington DeAngelis Response Function in Ecological Mathematical System: Study Fish Endemic Oliv Predator Species in Merauke

    Get PDF
    Predator-prey type fishery models Oliv fish is a trans-endemic predator species that inhabits freshwater swamps and brackish water in Merauke, Papua. Maintaining the survival of the Oliv fish species is the main reason for compiling a mathematical model, so that it can be considered by local governments in making ecological policies. Method on model discussed is assembled with the growth of predator-prey populations following the growth of logistics. The response or predatory function corresponding to the behavior of endemic Oliv fish is the Beddington DeAngelis type. The growth of predatory species uses the concept of growth with stage structure, are divided into mature and immature. Research results show there are four equilibrium points of the mathematical model, but only one point becomes the asymptotic stable equilibrium point without harvesting W_4 (x^*,y^*,z^* )=92.823,1311.489,525.957 and equilibrium point with harvesting W_4 (x^*,y^*,z^* )=95.062,92.639,160.466 . Harvesting exploitation efforts are carried out by the community so that the harvesting variables are added with a proportional concept. Simulation of the results of the study shows a stable scheme and harvesting conducted can maintain the number of populations that continue.

    Dynamics of a Predator-Prey System with Beddington-DeAngelis Functional Response and Delays

    Get PDF
    We consider a predator-prey system with Beddington-DeAngelis functional response and delays, in which not only the stage structure on prey but also the delay due to digestion is considered. First, we give a sufficient and necessary condition for the existence of a unique positive equilibrium by analyzing the corresponding locations of a hyperbolic curve and a line. Then, by constructing an appropriate Lyapunov function, we prove that the positive equilibrium is locally asymptotically stable under a sufficient condition. Finally, by using comparison theorem and the ω-limit set theory, we study the global asymptotic stability of the boundary equilibrium and the positive equilibrium, respectively. Also, we obtain a sufficient condition to assure the global asymptotic stability

    Controllability of an eco-epidemiological system with disease transmission delay: A theoretical study

    Get PDF
    This paper deals with the qualitative analysis of a disease transmission delay induced prey preda-tor system in which disease spreads among the predator species only. The growth of the preda-tors’ susceptible and infected subpopulations is assumed as modified Leslie–Gower type. Suffi-cient conditions for the persistence, permanence, existence and stability of equilibrium points are obtained. Global asymptotic stability of the system is investigated around the coexisting equilib-rium using a geometric approach. The existence of Hopf bifurcation phenomenon is also exam-ined with respect to some important parameters of the system. The criterion for disease a trans-mission delay the induced Hopf bifurcation phenomenon is obtained and subsequently, we use a normal form method and the center manifold theorem to examine the nature of the Hopf bifurca-tion. It is clearly observed that competition among predators can drive the system to a stable from an unstable state. Also the infection and competition among predator population enhance the availability of prey for harvesting when their values are high. Finally, some numerical simu-lations are carried out to illustrate the analytical results

    Extinction and permanence of the predator-prey system with general functional response and impulsive control

    Get PDF
    Traditional approach for modelling the evolution of populations in the predator-prey ecosystem has commonly been undertaken using specific impulsive response function, and this kind of modelling is applicable only for a specific ecosystem under certain environ- mental situations only. This paper attempts to fill the gap by modelling the predator-prey ecosystem using a ‘generalized’ impulsive response function for the first time. Different from previous research, the present work develops the modelling for an integrated pest management (IPM) especially when the stocking of predator (natural enemy) and the har- vesting of prey (pest) occur impulsively and at different instances of time. The paper firstly establishes the sufficient conditions for the local and the global stabilities of prey eradica- tion periodic solution by applying the Floquet theorem of the Impulsive different equation and small amplitude perturbation under a ‘generalized’ impulsive response function. Sub- sequently the sufficient condition for the permanence of the system is given through the comparison techniques. The corollaries of the theorems that are established by using the ‘general impulsive response function’ under the locally asymptotically stable condition are found to be in excellent agreement with those reported previously. Theoretical results that are obtained in this work is then validated by using a typical impulsive response func- tion (Holling type-II) as an example, and the outcome is shown to be consistent with the previously reported results. Finally, the implication of the developed theories for practical pest management is illustrated through numerical simulation. It is shown that the elim- ination of either the preys or the pest can be effectively deployed by making use of the theoretical model established in this work. The developed model is capable to predict the population evolutions of the predator-prey ecosystem to accommodate requirements such as: the combinations of the biological control, chemical control, any functional response function, the moderate impulsive period, the harvest rate for the prey and predator pa- rameter and the incremental stocking of the predator paramete
    • …
    corecore