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A stochastic prey-predator system in a polluted environment with Beddington-DeAngelis functional response is proposed and
analyzed. Firstly, for the system with white noise perturbation, by analyzing the limit system, the existence of boundary periodic
solutions and positive periodic solutions is proved and the sufficient conditions for the existence of boundary periodic solutions and
positive periodic solutions are derived. And then for the stochastic system, by introducing Markov regime switching, the sufficient
conditions for extinction or persistence of such system are obtained. Furthermore, we proved that the system is ergodic and has a
stationary distribution when the concentration of toxicant is a positive constant. Finally, two examples with numerical simulations
are carried out in order to illustrate the theoretical results.

1. Introduction and Model Formulation

The Lotka-Volterra model [1–3] is a classical model in the
study of biological mathematics, and the continuous Lotka-
Volterra model which is modeled by ordinary differential
equations and delay differential equations is widely used
to characterize the dynamics of biological systems [4–13].
The functional response functions are important in the
population ecological models [14]. In general, functional
responses fall into two categories: one depends only on the
density of the prey, such as Holling I–III [15–17]; the other
depends on the density of both the prey and the predator, such
as Beddington-DeAngelis type [18, 19]. Compared with the
Holling II functional response, the Beddington-DeAngelis
type functional response, 𝐹 = 𝑓12𝑥𝑦/(𝑏2 + 𝑦 +𝑊12𝑥), has an
additional term𝑦 in the denominatormodelingmutual inter-
ference among predators. In other words, this type of func-
tional response is affected by both predator and prey. Some
biologists believe that if the predators compete with each
other to obtain food, functional response should depend on
the density of both the prey and the predator. Arditi et al. [20]

and Jost et al. [21, 22] used the actual observation data to
verify this point. In particular, having collected observation
data from 19 predator-prey communities, Skalski and Gilliam
[23] found that predator-dependent functional responses
were in agreement with the observation data, and in many
instances, the Beddington-DeAngelis type looked better than
the others. The Beddington-DeAngelis functional response
has been widely used in the modeling of ecosystems in which
there is mutual interference among predators [24, 25]. In [19],
DeAngelis et al. have extensively investigated the dynamical
properties of the following prey-predator system:

𝑥̇ (𝑡)
= 𝑥 (𝑡) (𝑎1 − 𝑓12𝑦 (𝑡)𝑏2 + 𝑦 (𝑡) + 𝑊12𝑥 (𝑡) − 𝑑1 − 𝑔1𝑥 (𝑡)) ,

̇𝑦 (𝑡) = 𝑦 (𝑡) ( 𝑒12𝑓12𝑥 (𝑡)𝑏2 + 𝑦 (𝑡) + 𝑊12𝑥 (𝑡) − 𝑑2 − 𝑔2𝑦 (𝑡)) ,
(1)

where 𝑥(𝑡) and 𝑦(𝑡) represent the density of the prey and the
predator, respectively. 𝑎1 is the intrinsic growth rate of the
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prey,𝑓12, 𝑏2, and𝑊12 are the consumption rate, the saturation
constant, and the saturation constant for an alternative prey,
respectively. 𝑒12 is the conversion rate of nutrients into the
reproduction for the predator. The parameters 𝑑𝑖 and 𝑔𝑖 (𝑖 =1, 2) are the nonpredatory loss rate and the interspecific
competition rate. We refer the reader to [19] for more details.

In many ecosystems, predators tend to be omnivorous,
they have wide variety of food sources. For example, the giant
panda is omnivorous animal, since it can eat both meat and
plant such as bamboos. In the lake ecosystem, some fishes not
only prey on aquatic invertebrates, but also feed on algae and
other aquatic plants. Polis and Strong in [26] and McCann
and Hastings in [27] studied omnivorous nature of animals
in the food chain in 1996 and 1997, respectively. Based on the
above literature, we established a kind of omnivorous model
as follows:

𝑥̇ (𝑡) = 𝑥 (𝑡) (𝑟1 − 𝑏1𝑥 (𝑡) − 𝜆𝑦 (𝑡)𝑎 + 𝑚𝑦 (𝑡) + 𝑛𝑥 (𝑡)) ,
̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑟2 + 𝛾𝑥 (𝑡)𝑎 + 𝑚𝑦 (𝑡) + 𝑛𝑥 (𝑡) − 𝑏2𝑦 (𝑡)) ,

(2)

where 𝑟2 represents the growth rate of 𝑦 due to omnivorous
nature and 𝑏𝑖 (𝑖 = 1, 2) denote the density-dependent
coefficient of the prey and the predator, respectively. 𝜆, 𝑎, 𝑚,𝑛, and 𝛾 are the consumption rate, the saturation constant,
the predator interference, the saturation constant for an
alternative prey, and the conversion rate, respectively. All
parameters are positive in system (2).

It is well known that the biological population is
inevitably affected by environment perturbation while the
stochastic population model is more in line with the actual
situation. Recently, various models based on stochastic dif-
ferential equations (SDEs) have extensively been paid the
attention of the researchers (see, e.g., [28–37]). Parameter
perturbation induced by white noise is an important and
common form to describe the effect of stochasticity (see,
e.g., [37–48]). In this paper, we consider the white noise
perturbation for the intrinsic growth rates of the prey and
predator; that is, 𝑟1 → 𝑟1 + 𝜎1𝐵̇1(𝑡) and 𝑟2 → 𝑟2 +𝜎2𝐵̇2(𝑡), where 𝐵1(𝑡), 𝐵2(𝑡) are mutually independent Brow-
nian motions and 𝜎1, 𝜎2 denote the intensities of the white
noise. On the other hand, it can be seen from the recent
literature that the environmental pollution has an important
effect on the population systems [49–60]. In 1983, Hallam et
al. [61, 62] studied the influence of environmental pollution
on the population and established a relationship model
between environmental toxins and population. Subsequently,
Hallam et al. [63, 64] studied the persistence and extinction
of population in polluted environment. The mathematical
model established by Hallam et al. considered only the toxins
in the organism to cause a decrease in the birth rate or an
individual death, which is reasonable in the case of lower
concentration of the toxicant in the environment. When
pollution is serious, the emission of pollutants may directly
lead to the death of the species; see [65–69]. The authors
in [68] added the environmental toxic term directly to the
model; this is reasonable in the heavily polluted environment.
For example, in a lake ecosystem, the discharge of large

amounts of industrial waste water may directly lead to the
death of fish, aquatic invertebrates, and so on. Therefore, we
assume that the emission of pollutants to the environment is
impulsive and directly affects the survival of the species in
such an environment, so we get the following system:

d𝑥 (𝑡) = 𝑥 (𝑡)
⋅ (𝑟1 − 𝑏1𝑥 (𝑡) − 𝜆𝑦 (𝑡)𝑎 + 𝑚𝑦 (𝑡) + 𝑛𝑥 (𝑡) − 𝛽1𝑐𝑒 (𝑡)) d𝑡
+ 𝜎1 (𝑡) 𝑥 (𝑡) d𝐵1 (𝑡) ,

d𝑦 (𝑡) = 𝑦 (𝑡)
⋅ (𝑟2 + 𝛾𝑥 (𝑡)𝑎 + 𝑚𝑦 (𝑡) + 𝑛𝑥 (𝑡) − 𝑏2𝑦 (𝑡) − 𝛽2𝑐𝑒 (𝑡)) d𝑡
+ 𝜎2 (𝑡) 𝑦 (𝑡) d𝐵2 (𝑡) ,

d𝑐𝑒 (𝑡)
d𝑡 = −ℎ𝑐𝑒 (𝑡) ,

𝑡 ̸= 𝑘𝜏,
Δ𝑥 (𝑡) = 0,
Δ𝑦 (𝑡) = 0,
Δ𝑐𝑒 (𝑡) = 𝜇, 𝑡 = 𝑘𝜏,

(3)

where 𝜎1(𝑡), 𝜎2(𝑡) are positive, nonconstant, and continuous
functions of period 𝜏, 𝑐𝑒(𝑡) stands for the concentration of
the toxicant in the environment, ℎ denotes the loss rate of
toxicant at time 𝑡, 𝜏 is the impulsive input period and 𝜇 is
the impulsive input amount, and 𝛽1 and 𝛽2 represent the
dose-response of the prey and predator to the environmental
toxicant, respectively.

Furthermore, the prey-predator model may be perturbed
by telegraph noise which is distinguished by factors such as
rain falls and nutrition and can be represented by switching
among two or more regimes of environment [40, 60, 70–80].
For example, population growth rates in different seasons are
not the same. The intraspecific competition coefficient varies
according to the changes in nutrition and food resources.
Generally, the switching between different regimes is memo-
ryless and thewaiting time for the next switch is exponentially
distributed [81, 82]. Therefore, it can be described by a
continuous-time Markov chain 𝑟(𝑡) taking values in a finite
state space S = {1, 2, . . . , 𝑚}. Taking into account the
influences of white noise and telegraph noise, we propose
the following stochastic differential system with impulsive
toxicant input:

d𝑥 (𝑡) = 𝑥 (𝑡) (𝑟1 (𝑟 (𝑡))
− 𝜆 (𝑟 (𝑡)) 𝑦 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑚 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)
− 𝛽1 (𝑟 (𝑡)) 𝑐𝑒 (𝑡) − 𝑏1 (𝑟 (𝑡)) 𝑥 (𝑡)) d𝑡 + 𝜎1 (𝑟 (𝑡))
⋅ 𝑥 (𝑡) d𝐵1 (𝑡) ,
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d𝑦 (𝑡) = 𝑦 (𝑡) (𝑟2 (𝑟 (𝑡))
+ 𝛾 (𝑟 (𝑡)) 𝑥 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑚 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)
− 𝛽2 (𝑟 (𝑡)) 𝑐𝑒 (𝑡) − 𝑏2 (𝑟 (𝑡)) 𝑦 (𝑡)) d𝑡 + 𝜎2 (𝑟 (𝑡))
⋅ 𝑦 (𝑡) d𝐵2 (𝑡) ,

d𝑐𝑒 (𝑡)
d𝑡 = −ℎ𝑐𝑒 (𝑡) ,

𝑡 ̸= 𝑘𝜏,
Δ𝑥 (𝑡) = 0,
Δ𝑦 (𝑡) = 0,
Δ𝑐𝑒 (𝑡) = 𝜇,

𝑡 = 𝑘𝜏.
(4)

For any 𝑘 ∈ S, 𝑟𝑖(𝑘), 𝑏𝑖(𝑘), 𝛽𝑖(𝑘), 𝜎𝑖(𝑘) (𝑖 = 1, 2), 𝜆(𝑘),𝑎(𝑘),𝑚(𝑘), 𝑛(𝑘), and 𝛾(𝑘) are all positive constants. In model
(4), the population is inevitably affected by severe stochastic
interference such as drought; the parameter switches one state𝑟(𝑡) = 𝑖 into another state 𝑟(𝑡) = 𝑗 and it will switch into the
next regime until the next major environmental change.

The rest of this paper is organized as follows. In Section 2,
we provide preliminaries which are used in the following
sections. In Section 3, we show that system (3) admits
a nontrivial positive 𝜏-periodic solution by constructing
Lyapunov function. In Section 4, we explore the sufficient
conditions for extinction and permanence in mean of system
(4). Finally, some examples with numerical simulations have
been given to illustrate our theoretical results.

2. Preliminaries

Throughout this paper, let (Ω,F,F𝑡≥0,P) be a complete
probability space with a filtration F𝑡≥0 satisfying the usual
conditions, 𝐵𝑖(𝑡) (𝑖 = 1, 2) is one-dimensional Brownian
motion on this space, and 𝑟(𝑡) is a right-continuous Markov
chain and independent of the Brownian motion 𝐵𝑖(𝑡). The
state space of this Markov chain is S = {1, 2, . . . , 𝑚}. Suppose
that the generator matrix of 𝑟(𝑡) is Γ = (𝑞𝑖𝑗)1≤𝑖,𝑗≤𝑚, where 𝑞𝑖𝑗
stands for the transition rate from state 𝑖 to 𝑗 and satisfies the
following conditions:

P (𝑟 (𝑡 + Δ𝑡) = 𝑗 | 𝑟 (𝑡) = 𝑖)
= {{{

𝑞𝑖𝑗Δ𝑡 + 𝑜 (Δ𝑡) , if 𝑖 ̸= 𝑗,
1 + 𝑞𝑖𝑗Δ𝑡 + 𝑜 (Δ𝑡) , if 𝑖 = 𝑗;

(5)

here, 𝑞𝑖𝑗 ≥ 0 if 𝑖 ̸= 𝑗, while 𝑞𝑖𝑖 = −∑𝑖 ̸=𝑗 𝑞𝑖𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑚.
As a standing hypothesis, we assume that the Markov chain𝑟(𝑡) is irreducible, which means that system (4) can switch
from one regime to another. Under this assumption, the

Markov chain has a unique stationary distribution 𝜋 =(𝜋1, 𝜋2, . . . , 𝜋𝑚) which is the solution of the system of linear
equations 𝜋Γ = 0 subject to ∑𝑚𝑗=1 𝜋𝑗 = 1 and 𝜋𝑗 > 0 for all
𝑗 ∈ S. Hence, for any vector 𝜛 = (𝜛(1), . . . , 𝜛(𝑚))𝑇, we have
that

lim
𝑡→∞

1𝑡 ∫
𝑡

0
𝜛 (𝑟 (𝑠)) 𝑑𝑠 = ∑

𝑘∈S

𝜋𝑘𝜛 (𝑘) . (6)

Let us consider the following stochastic differential equation
with Markov conversion.

d𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑟 (𝑡)) d𝑡 + 𝑔 (𝑥 (𝑡) , 𝑟 (𝑡)) d𝐵 (𝑡) ,
𝑥 (0) = 𝑥0,
𝑟 (0) = 𝑟0,

(7)

where 𝑥(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛(𝑡))𝑇 ∈ R𝑛, 𝑓 : R𝑛 × S → R𝑛,𝑔 : R𝑛 × S → R𝑛×𝑑, and 𝐵(𝑡) is a 𝑑-dimensional Brownian
motion defined on the underlying probability space.The 𝑛×𝑛
matrix

𝐺 (𝑥, 𝑘) = 𝑔 (𝑥, 𝑘) 𝑔𝑇 (𝑥, 𝑘) = (𝐺𝑖𝑗)𝑛×𝑛 (8)

is called the diffusion matrix. Let 𝑉 : R𝑛 × S → R𝑛 be twice
continuously differentiable andL𝑉(𝑥, 𝑘) which is defined as
follows be the diffusion operator about 𝑉(𝑥, 𝑘):

L𝑉 (𝑥, 𝑘) = 𝑛∑
𝑖=1

𝑓𝑖 (𝑥, 𝑘) 𝜕𝑉 (𝑥, 𝑘)𝜕𝑥𝑖
+ 12
𝑛∑
𝑖,𝑗=1

𝐺𝑖𝑗 𝜕2𝑉 (𝑥, 𝑘)𝜕𝑥𝑖𝜕𝑥𝑗
+ ∑
𝑖 ̸=𝑘∈S

𝑞𝑘𝑖 (𝑉 (𝑥, 𝑖) − 𝑉 (𝑥, 𝑘)) .
(9)

Particularly, for one-dimensional stochastic system

d𝑥 (𝑡) = 𝑥 (𝑡) [𝑎 (𝑟 (𝑡)) − 𝑏 (𝑟 (𝑡)) 𝑥 (𝑡)] d𝑡
+ 𝛼 (𝑟 (𝑡)) 𝑥 (𝑡) d𝐵 (𝑡) ,

𝑥 (0) = 𝑥0,
𝑟 (0) = 𝑟0;

(10)

the following two lemmas can be given from referring to the
articles [72, 77].

Lemma 1. System (10) has a unique continuous positive
solution 𝑥(𝑡). When it exists, the solution is global and
stochastically ultimately bounded.

Lemma 2. Suppose that 𝜒 = ∑𝑘∈S 𝜋𝑘[𝑎(𝑘)−(1/2)𝛼2(𝑘)] ̸= 0;
then

(i) system (10) is stochastic permanent if and only if 𝜒 > 0;
(ii) system (10) is extinct if and only if 𝜒 < 0;
(iii) when 𝜒 > 0, system (10) is ergodic and there exists a

unique stationary distribution V(⋅, ⋅), such that
𝜒 = ∑
𝑘∈S

𝑏 (𝑘) ∫
R+
𝑥V (d𝑥, 𝑘) . (11)
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Next, we consider the following stochastic differential
equation:

d𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) d𝑡 + 𝑔 (𝑡, 𝑦 (𝑡)) d𝐵 (𝑡) . (12)

Lemma 3 (see [78]). Suppose that the coefficients of (12) are𝜏-periodic in 𝑡 and there exists a function 𝑉(𝑡, 𝑦) ∈ 𝐶2 which
is 𝜏-periodic in 𝑡, and 𝑉(𝑡, 𝑦) satisfies the following conditions:

(i) inf |𝑦|>𝑅𝑉(𝑡, 𝑦) → ∞ as 𝑅 → ∞.
(ii) 𝐿𝑉(𝑡, 𝑦) ≤ −1 outside some compact set.
Then there exists a solution for (12) which is a 𝜏-periodic

Markov process.

Furthermore, we introduce some results from [80, 83] in
Lemmas 4 and 5, which will be used in next section.

Lemma 4 (see [80]). Let𝑋(𝑡) ∈ 𝐶[Ω × [0, +∞),R+]. Then
(i) if there are two positive constants 𝑇 and𝑚0 such that

ln𝑋 (𝑡) ≤ 𝑚𝑡 − 𝑚0 ∫𝑡
0
𝑋 (𝑠) d𝑠 + 𝑛∑

𝑘=1

𝜔𝑘𝐵𝑘 (𝑡) (13)

holds for all 𝑡 ≥ 𝑇 and constants 𝜔𝑘 (𝑘 = 1, 2, . . . , 𝑛), then
lim sup
𝑡→+∞

1𝑡 ∫
𝑡

0
𝑋 (𝑠) d𝑠 ≤ 𝑚𝑚0 , 𝑎.𝑠. if𝑚 > 0,

lim
𝑡→+∞

𝑋 (𝑡) = 0, 𝑎.𝑠. if𝑚 < 0,
(14)

(ii) if there are three positive constants 𝑇, 𝑚, and 𝑚0 such
that

ln𝑋 (𝑡) ≥ 𝑚𝑡 − 𝑚0 ∫𝑡
0
𝑋 (𝑠) d𝑠 + 𝑛∑

𝑘=1

𝜔𝑘𝐵𝑘 (𝑡) (15)

holds for any 𝑡 ≥ 𝑇, then
lim inf
𝑡→+∞

1𝑡 ∫
𝑡

0
𝑋 (𝑠) d𝑠 ≥ 𝑚𝑚0 𝑎.𝑠. (16)

Finally, we give some basic properties of the following
subsystem of system (3),

d𝑐𝑒 (𝑡)
d𝑡 = −ℎ𝑐𝑒 (𝑡) , 𝑡 ̸= 𝑘𝜏, 𝑘 ∈ 𝑍,

Δ𝑐𝑒 (𝑡) = 𝜇, 𝑡 = 𝑘𝜏, 𝑘 ∈ 𝑍.
(17)

Lemma 5 (see [83]). System (17) has a unique 𝜏-periodic
solution 𝑐∗𝑒 (𝑡) which is globally asymptotically stable. Here𝑐∗𝑒 (𝑡) = 𝜇𝑒−ℎ(𝑡−𝑘𝜏)/(1 − 𝑒−ℎ𝜏), 𝑡 ∈ [𝑘𝜏, (𝑘 + 1)𝜏), 𝑐max =𝜇/(1 − 𝑒−ℎ𝜏), and 𝑐min = 𝜇𝑒−ℎ𝜏/(1 − 𝑒−ℎ𝜏).

For convenience and simplicity, define 𝛼̂ = min𝑖∈S𝛼𝑖,𝛼̌ = max𝑖∈S𝛼𝑖, and ⟨𝜑⟩𝜃 = (1/𝜃) ∫𝜃
0
𝜑(𝑠)d𝑠, where 𝜑(𝑡) is an

integrable function on [0, +∞). If 𝑓 is a bounded function
on [0, +∞), define 𝑓𝑢 = sup𝑡∈[0,+∞)𝑓(𝑡).

3. Existence of Periodic Solutions of System (3)

In this section, we devote our attention to the investigation
of the existence of periodic solutions of system (3). From
Lemma 5, we know that system (17) has a globally asymptoti-
cally stable periodic solution 𝑐∗𝑒 (𝑡); therefore, the limit system
of (3) is

d𝑥 (𝑡) = 𝑥 (𝑡)
⋅ (𝑟1 − 𝑏1𝑥 (𝑡) − 𝜆𝑦 (𝑡)𝑎 + 𝑚𝑦 (𝑡) + 𝑛𝑥 (𝑡) − 𝛽1𝑐∗𝑒 (𝑡)) d𝑡
+ 𝜎1 (𝑡) 𝑥 (𝑡) d𝐵1 (𝑡) ,

d𝑦 (𝑡) = 𝑦 (𝑡)
⋅ (𝑟2 + 𝛾𝑥 (𝑡)𝑎 + 𝑚𝑦 (𝑡) + 𝑛𝑥 (𝑡) − 𝑏2𝑦 (𝑡) − 𝛽2𝑐∗𝑒 (𝑡)) d𝑡
+ 𝜎2 (𝑡) 𝑦 (𝑡) d𝐵2 (𝑡) ,

𝑥 (0) = 𝑥0,
𝑦 (0) = 𝑦0,

(18)

where 𝜎1(𝑡), 𝜎2(𝑡), and 𝑐∗𝑒 (𝑡) are all positive and continuous
functions of period 𝜏.

Now, we discuss the existence of periodic solutions of
system (18).

Define

ℎ𝑖 = 1𝜏 ∫
𝜏

0
(𝑟𝑖 − 𝛽𝑖𝑐∗𝑒 (𝑠) − 12𝜎2𝑖 (𝑠)) d𝑠, 𝑖 = 1, 2. (19)

Then,we have the following theorem about periodic solutions
of system (18).

Theorem6. If ℎ1 < 0 and ℎ2 > 0, there exists a prey extinction
periodic solution (0, 𝑦∗(𝑡)) of system (18).

Proof. From the first equation of system (18), it is easy to see

d𝑥 (𝑡) ≤ 𝑥 (𝑡) [𝑟1 − 𝑏1𝑥 (𝑡) − 𝛽1𝑐∗𝑒 (𝑡)] d𝑡
+ 𝜎1 (𝑡) 𝑥 (𝑡) d𝐵1 (𝑡) . (20)

Applying Itô’s formula and then integrating from 0 to 𝑡, we
obtain

ln𝑥 (𝑡) − ln𝑥 (0) ≤ ∫𝑡
0
(𝑟1 − 𝛽1𝑐∗𝑒 (𝑠) − 12𝜎21 (𝑠)) d𝑠

− ∫𝑡
0
𝑏1𝑥 (𝑠) d𝑠 + 𝑀 (𝑡) ,

(21)

where 𝑀(𝑡) = ∫𝑡
0
𝜎1(𝑠)d𝐵1(𝑠) is local martingale. From

strong law of large numbers for martingales (see [84]), we
have

lim
𝑡→∞

𝑀(𝑡)𝑡 = 0, a.s. (22)
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It then follows from (21) by dividing 𝑡onboth sides and letting𝑡 → ∞ that

lim sup
𝑡→∞

ln𝑥 (𝑡)𝑡 ≤ ⟨𝑟1 − 𝛽1𝑐∗𝑒 (𝑠) − 12𝜎21 (𝑠)⟩𝜏
= 𝑟1 − 𝜇𝛽1𝜏ℎ − 12 ⟨𝜎21 (𝑠)⟩𝜏 = ℎ1 < 0;

(23)

namely, 𝑥(𝑡) tends to zero exponentially almost surely.
Since lim𝑡→∞𝑥(𝑡) = 0, a.s., from the second equation of

system (18), its limit system is

d𝑦 (𝑡) = 𝑦 (𝑡) (𝑟2 − 𝛽2𝑐∗𝑒 (𝑡) − 𝑏2𝑦 (𝑡))
+ 𝜎2 (𝑡) 𝑦 (𝑡) d𝐵2 (𝑡) . (24)

According toTheorem 4.2 in [85], when 𝑟2 −𝛽2𝑐∗𝑒 (𝑡) > 0 and
⟨𝑟2 − 𝛽2𝑐∗𝑒 (𝑠) − 12𝜎22 (𝑠)⟩𝜏 = 𝑟2 −

𝜇𝛽2𝜏ℎ − 12 ⟨𝜎22 (𝑠)⟩𝜏
= ℎ2 > 0,

(25)

(24) has a unique positive 𝜏-periodic solution 𝑦∗(𝑡).
Overall, when ℎ1 < 0 and ℎ2 > 0, there exists a prey

extinction periodic solution (0, 𝑦∗(𝑡)) of system (18).
The proof of this theorem is completed.

In order to investigate the existence of a nontrivial
positive 𝜏-periodic solution for system (18), first of all, we
assume following conditions hold.

(𝐻1) ℎ𝑖 > 0, 𝑖 = 1, 2.(𝐻2) 𝜆1 = (𝑟1 − 𝛽1𝑐min + 𝑟1 − 𝛽1𝑐max)2 − 4(𝑟1 −𝛽1𝑐max)ℎ1 > 0 and 𝜉1 > (𝛾2/4𝑏1ℎ2)𝜆1.(𝐻3) 𝜉2 = 𝑎𝑏2ℎ1 − 𝜆(𝑟2 + 𝛾/𝑛 − 𝛽2𝑐min) > 0 and(𝜉2/𝑎𝑏1)(𝑟1 − 𝛽1𝑐max) > (𝑏2𝜉1/𝛾2)[−ℎ2 + (𝑟2 + 𝛾/𝑛 −𝛽2𝑐min)].
Theorem 7. Suppose that (𝐻1), (𝐻2), and (𝐻3) hold, then
there exists a positive 𝜏-periodic solution for system (18).

Proof. Obviously, the coefficients of system (18) are con-
tinuous bounded positive periodic functions in 𝑡. Now, we
show that conditions (i) and (ii) of Lemma 3 hold. Define a
nonnegative 𝐶2-function
𝑉 (𝑡, 𝑥, 𝑦) = 𝑥 − 𝑟1 − 𝛽1𝑐max𝑏1 ln𝑥 + 𝑟1 − 𝛽1𝑐max𝑏1 𝜔1 (𝑡)

− 𝜉1𝛾2 ln𝑦 + 𝜉1𝛾2𝜔2 (𝑡) + 𝑞𝑦
š 𝑉1 + 𝑉2 + 𝑉3,

(26)

where𝑉1 = 𝑥−((𝑟1−𝛽1𝑐max)/𝑏1) ln𝑥+((𝑟1−𝛽1𝑐max)/𝑏1)𝜔1(𝑡),𝑉2 = −(𝜉1/𝛾2) ln𝑦 + (𝜉1/𝛾2)𝜔2(𝑡), 𝑉3 = 𝑞𝑦, 𝑞 = 𝑏2(((𝑟1 −𝛽1𝑐max)/𝑏1)ℎ1 + (𝜉1/𝛾2)ℎ2)/(𝑟2 − 𝛽2𝑐min + 𝛾/𝑛)2, and 𝜔𝑖(𝑡) is a
function defined on [0,∞) satisfying𝜔󸀠𝑖 (𝑡) = 𝑟𝑖−(1/2)𝜎2𝑖 (𝑡)−𝛽𝑖𝑐∗𝑒 (𝑡) − ℎ𝑖 and 𝜔𝑖(0) = 0 (𝑖 = 1, 2). Obviously, 𝜔𝑖(𝑡)

is a 𝜏-periodic function on [0,∞). Therefore, the function𝑉(𝑡, 𝑥, 𝑦) is 𝜏-periodic in 𝑡 and satisfies

lim inf
𝑘→∞,(𝑥,𝑦)∈R2

+
\𝑈𝑘

𝑉 (𝑡, 𝑥, 𝑦) = ∞, (27)

where 𝑈𝑘 = (1/𝑘, 𝑘) × (1/𝑘, 𝑘). Therefore, condition (i) of
Lemma 3 holds. Next, we will prove that condition (ii) of
Lemma 3 also holds.

Applying Itô’s formula, one has

𝐿𝑉1 = 𝑥 [𝑟1 − 𝑏1𝑥 − 𝜆𝑦𝑎 + 𝑚𝑦 + 𝑛𝑥 − 𝛽1𝑐∗𝑒 (𝑡)]
− 𝑟1 − 𝛽1𝑐max𝑏1 [𝑟1 − 𝑏1𝑥 − 𝜆𝑦𝑎 + 𝑚𝑦 + 𝑛𝑥 − 𝛽1𝑐∗𝑒 (𝑡)
− 𝜎21 (𝑡)2 ] + 𝑟1 − 𝛽1𝑐max𝑏1 𝜔󸀠1 (𝑡) ≤ −𝑏1𝑥2

+ [(𝑟1 − 𝛽1𝑐min) + (𝑟1 − 𝛽1𝑐max)] 𝑥 + 𝜆𝑏1𝑎 (𝑟1
− 𝛽1𝑐max) 𝑦 − 𝑟1 − 𝛽1𝑐max𝑏1 ℎ1,

𝐿𝑉2 = − 𝜉1𝛾2 (𝑟2 + 𝛾𝑥𝑎 + 𝑚𝑦 + 𝑛𝑥 − 𝑏2𝑦 − 𝛽2𝑐∗𝑒 (𝑡)
− 𝜎22 (𝑡)2 ) + 𝜉1𝛾2𝜔󸀠2 (𝑡) ≤ 𝜉1𝑏2𝛾2 𝑦 − 𝜉1𝛾2 ℎ2,

𝐿𝑉3 = 𝑞𝑦 [𝑟2 + 𝛾𝑥𝑎 + 𝑚𝑦 + 𝑛𝑥 − 𝑏2𝑦 − 𝛽2𝑐∗𝑒 (𝑡)]
≤ 𝑞 (𝑟2 + 𝛾𝑛 − 𝛽2𝑐min)𝑦 − 𝑞𝑏2𝑦2.

(28)

Therefore,

𝐿𝑉 ≤ −𝑏1𝑥2 + [(𝑟1 − 𝛽1𝑐min) + (𝑟1 − 𝛽1𝑐max)] 𝑥
− 𝑟1 − 𝛽1𝑐max𝑏1 ℎ1 − 𝑞𝑏2𝑦2 + [𝜆 (𝑟1 − 𝛽1𝑐max)𝑏1𝑎
+ 𝑞 (𝑟2 + 𝛾𝑛 − 𝛽2𝑐min) + 𝜉1𝑏2𝛾2 ]𝑦 − 𝜉1𝛾2 ℎ2.

(29)

Define a bounded closed set

D = {(𝑥, 𝑦) ∈ R
2
+ : 𝜀 ≤ 𝑥 ≤ 1𝜀 , 𝜀 ≤ 𝑦 ≤ 1𝜀 } , (30)

where 0 < 𝜀 < 1 is a sufficiently small number such that

[(𝑟1 − 𝛽1𝑐min) + (𝑟1 − 𝛽1𝑐max)] 𝜀 ≤ 12 𝑟1 − 𝛽1𝑐max𝑏1 ℎ1 + 12 𝜉1𝛾2 ℎ2
− 12
⋅ [(𝜆/𝑏1𝑎) (𝑟1 − 𝛽1𝑐max) + 𝜉1𝑏2/𝛾2 + 𝑞 (𝑟2 − 𝛽2𝑐min + 𝛾/𝑛)]24𝑞𝑏2 ,

(31)
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[𝜆 (𝑟1 − 𝛽1𝑐max)𝑏1𝑎 + 𝑞 (𝑟2 + 𝛾𝑛 − 𝛽2𝑐min) + 𝜉1𝑏2𝛾2 ] 𝜀
< − 18𝑏1 [(𝑟1 − 𝛽1𝑐min + 𝑟1 − 𝛽1𝑐max)2 − 4 (𝑟1 − 𝛽1𝑐max) ℎ1
− 4𝑏1ℎ2𝛾2 𝜉1] ,

(32)

− 𝑏12𝜀2 + 𝐾3 ≤ −1, (33)

− 𝑏2𝑞2𝜀2 + 𝐾4 ≤ −1, (34)

and 𝐾3, 𝐾4 are quantities to be determined in the rest of the
proof.

Denote

D
1
𝜀 = {(𝑥, 𝑦) ∈ R

2
+ : 0 < 𝑥 < 𝜀} ,

D
2
𝜀 = {(𝑥, 𝑦) ∈ R

2
+ : 0 < 𝑦 < 𝜀} ,

D
3
𝜀 = {(𝑥, 𝑦) ∈ R

2
+ : 𝑥 > 1𝜀 } ,

D
4
𝜀 = {(𝑥, 𝑦) ∈ R

2
+ : 𝑦 > 1𝜀 } .

(35)

Note that R2+ \ D = D1𝜀 ∪ D2𝜀 ∪ D3𝜀 ∪ D4𝜀 . Now, we prove𝐿𝑉(𝑡, 𝑥, 𝑦) ≤ −1, (𝑥, 𝑦) ∈ R2+ \D.

Case 1. If (𝑥, 𝑦) ∈ D1𝜀 , from (29), it implies that

𝐿𝑉 ≤ −𝑞𝑏2 (𝑦

− (𝜆/𝑏1𝑎) (𝑟1 − 𝛽1𝑐max) + 𝜉1𝑏2/𝛾2 + 𝑞 (𝑟2 − 𝛽2𝑐min + 𝛾/𝑛)2𝑞𝑏2 )2

+ [(𝜆/𝑏1𝑎) (𝑟1 − 𝛽1𝑐max) + 𝜉1𝑏2/𝛾2 + 𝑞 (𝑟2 − 𝛽2𝑐min + 𝛾/𝑛)]24𝑞𝑏2
− 𝑟1 − 𝛽1𝑐max𝑏1 ℎ1 − 𝜉1𝛾2 ℎ2 + [(𝑟1 − 𝛽1𝑐min) + (𝑟1 − 𝛽1𝑐max)] 𝜀
≤ 𝐾1,

(36)

where 𝐾1 = (1/2){[(𝜆/𝑏1𝑎)(𝑟1 − 𝛽1𝑐max) + 𝜉1𝑏2/𝛾2 + 𝑞(𝑟2 −𝛽2𝑐min + 𝛾/𝑛)]2/4𝑞𝑏2 − ((𝑟1 − 𝛽1𝑐max)/𝑏1)ℎ1 − (𝜉1/𝛾2)ℎ2} < 0.
In fact, from condition (𝐻3), one can get

𝜆𝑏1𝑎 (𝑟1 − 𝛽1𝑐max) + 𝜉1𝑏2𝛾2 + 𝑞 (𝑟2 − 𝛽2𝑐min + 𝛾𝑛) − 2√𝑞√𝑏2√𝑟1 − 𝛽1𝑐max𝑏1 ℎ1 + 𝜉1𝛾2 ℎ2
= (𝜉1𝑏2/𝛾2) [−ℎ2 + (𝑟2 + 𝛾/𝑛 − 𝛽2𝑐min)] − (𝜉2/𝑎𝑏1) (𝑟1 − 𝛽1𝑐max)𝑟2 + 𝛾/𝑛 − 𝛽2𝑐min

< 0;
(37)

that is to say, 𝐾1 < 0.
Case 2. If (𝑥, 𝑦) ∈ D2𝜀 , from (29) and (32), we can get

𝐿𝑉 ≤ −𝑏1 [𝑥 − (𝑟1 − 𝛽1𝑐min) + (𝑟1 − 𝛽1𝑐max)2𝑏1 ]2

+ 14𝑏1 {[(𝑟1 − 𝛽1𝑐min) + (𝑟1 − 𝛽1𝑐max)]2

− 4 (𝑟1 − 𝛽1𝑐max) ℎ1} − 𝜉1𝛾2 ℎ2 + [
𝜆 (𝑟1 − 𝛽1𝑐max)𝑏1𝑎

+ 𝑞 (𝑟2 + 𝛾𝑛 − 𝛽2𝑐min) + 𝜉1𝑏2𝛾2 ] 𝜀
≤ 14𝑏1 {[(𝑟1 − 𝛽1𝑐min) + (𝑟1 − 𝛽1𝑐max)]2
− 4 (𝑟1 − 𝛽1𝑐max) ℎ1 − 4𝑏1𝜉1𝛾2 ℎ2}
+ [𝜆 (𝑟1 − 𝛽1𝑐max)𝑏1𝑎 + 𝑞 (𝑟2 + 𝛾𝑛 − 𝛽2𝑐min)
+ 𝜉1𝑏2𝛾2 ] 𝜀 ≤ 𝐾2,

(38)

where 𝐾2 = (1/8𝑏1)[(𝑟1 − 𝛽1𝑐min + 𝑟1 − 𝛽1𝑐max)2 − 4(𝑟1 −𝛽1𝑐max)ℎ1 − (4𝑏1ℎ2/𝛾2)𝜉1]. Using condition (𝐻2), one can get𝐾2 < 0.
Case 3. If (𝑥, 𝑦) ∈ D3𝜀 , then

𝐿𝑉 ≤ −𝑏12 𝑥2 − 𝑏12 𝑥2 + [(𝑟1 − 𝛽1𝑐min) + (𝑟1 − 𝛽1𝑐max)]
⋅ 𝑥 − 𝑟1 − 𝛽1𝑐max𝑏1 ℎ1 − 𝑏2𝑞𝑦2 + [𝜆 (𝑟1 − 𝛽1𝑐max)𝑎𝑏1
+ 𝜉1𝑏2𝛾2 + 𝑞 (𝑟2 − 𝛽2𝑐min + 𝛾𝑛)]𝑦 − 𝜉1𝛾2 ℎ2 ≤ −

𝑏12𝜀2
+ 𝐾3,

(39)

where

𝐾3 = sup
(𝑥,𝑦)∈R2

+

{−𝑏12 𝑥2 + [(𝑟1 − 𝛽1𝑐min)

+ (𝑟1 − 𝛽1𝑐max)] 𝑥 − 𝑟1 − 𝛽1𝑐max𝑏1 ℎ1 − 𝑏2𝑞𝑦2
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+ [𝜆 (𝑟1 − 𝛽1𝑐max)𝑎𝑏1 + 𝜉1𝑏2𝛾2
+ 𝑞 (𝑟2 − 𝛽2𝑐min + 𝛾𝑛)]𝑦 − 𝜉1𝛾2 ℎ2} .

(40)

By (33), we have 𝐿𝑉 ≤ −1.
Case 4. If (𝑥, 𝑦) ∈ D4𝜀 , then

𝐿𝑉 ≤ −𝑏2𝑞2 𝑦2 − 𝑏1𝑥2
+ [(𝑟1 − 𝛽1𝑐min) + (𝑟1 − 𝛽1𝑐max)] 𝑥 − 𝑟1 − 𝛽1𝑐max𝑏1 ℎ1
− 𝑏2𝑞2 𝑦2

+ [𝜆 (𝑟1 − 𝛽1𝑐max)𝑎𝑏1 + 𝜉1𝑏2𝛾2 + 𝑞 (𝑟2 − 𝛽2𝑐min + 𝛾𝑛)]
⋅ 𝑦 − 𝜉1𝛾2 ℎ2 ≤ −𝑞𝑏22𝜀2 + 𝐾4,

(41)

where

𝐾4 = sup
(𝑥,𝑦)∈R2

+

{−𝑏1𝑥2 + [(𝑟1 − 𝛽1𝑐min)

+ (𝑟1 − 𝛽1𝑐max)] 𝑥 − 𝑟1 − 𝛽1𝑐max𝑏1 ℎ1 − 𝑞𝑏22 𝑦2

+ [𝜆 (𝑟1 − 𝛽1𝑐max)𝑎𝑏1 + 𝜉1𝑏2𝛾2
+ 𝑞 (𝑟2 − 𝛽2𝑐min + 𝛾𝑛)]𝑦 − 𝜉1𝛾2 ℎ2} .

(42)

By (34), we obtain 𝐿𝑉 ≤ −1.
Thus,

𝐿𝑉 ≤ min {𝐾1, 𝐾2, −1} ,
(𝑥, 𝑦) ∈ R

2
+ \D. (43)

Therefore, the proof of Theorem 7 is completed.

4. Extinction and Persistence in
Mean of System (4)

In this section, we investigate the long-term dynamic behav-
iors of the prey-predator system (4) with white noise and

telegraph noise in a polluted environment and then discuss
the extinction and average persistence of prey and predator.
According to Lemma 5, the periodic solution 𝑐∗𝑒 (𝑡) of the
toxicant input is globally asymptotically stable, so the limit
system of (4) is

d𝑥 (𝑡) = 𝑥 (𝑡) (𝑟1 (𝑟 (𝑡)) − 𝑏1 (𝑟 (𝑡)) 𝑥 (𝑡)
− 𝜆 (𝑟 (𝑡)) 𝑦 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑚 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)
− 𝛽1 (𝑟 (𝑡)) 𝑐∗𝑒 (𝑡)) d𝑡 + 𝜎1 (𝑟 (𝑡)) 𝑥 (𝑡) d𝐵1 (𝑡) ,

d𝑦 (𝑡) = 𝑦 (𝑡) (𝑟2 (𝑟 (𝑡))
+ 𝛾 (𝑟 (𝑡)) 𝑥 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑚 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)
− 𝑏2 (𝑟 (𝑡)) 𝑦 (𝑡) − 𝛽2 (𝑟 (𝑡)) 𝑐∗𝑒 (𝑡)) d𝑡 + 𝜎2 (𝑟 (𝑡))
⋅ 𝑦 (𝑡) d𝐵2 (𝑡) ,

𝑥 (0) = 𝑥0,
𝑦 (0) = 𝑦0,
𝑟 (0) = 𝑟0.

(44)

In order to obtain the threshold conditions of persistence and
extinction of system (44), we assume that

(𝐴1): 𝜂1 = ∑𝑚𝑘=1 𝜋𝑘(𝑟1(𝑘)−(1/2)𝜎21(𝑘)−𝑐min𝛽1(𝑘)) < 0,
(𝐴2): 𝜂2 = ∑𝑚𝑘=1 𝜋𝑘(𝑟2(𝑘) + 𝛾(𝑘)/𝑛(𝑘) − (1/2)𝜎22(𝑘) −𝑐min𝛽2(𝑘)) < 0,
(𝐴3): 𝜂3 = ∑𝑚𝑘=1 𝜋𝑘(𝑟2(𝑘)−(1/2)𝜎22(𝑘)−𝑐min𝛽2(𝑘)) < 0,
(𝐴4): 𝜂4 = ∑𝑚𝑘=1 𝜋𝑘(𝑟1(𝑘) − 𝜆(𝑘)/𝑚(𝑘) − (1/2)𝜎21(𝑘) −𝑐max𝛽1(𝑘)) > 0,
(𝐴5): 𝜂5 = ∑𝑚𝑘=1 𝜋𝑘(𝑟1(𝑘) − (1/2)𝜎21(𝑘) − 𝑐max𝛽1(𝑘)) >0.

Theorem 8. Given initial value (𝑥(0), 𝑦(0), 𝑟(0)) ∈ R2+ ×S for
system (44), then

(i) if (𝐴1) is established, the prey population will be extinct,
(ii) if (𝐴2) is established, the predator population will be

extinct,
(iii) if (𝐴1) and (𝐴3) are established, both the prey and the

predator will die out.
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Proof. (i) By Itô’s formula, we get

d ln𝑥 (𝑡) = (𝑟1 (𝑟 (𝑡)) − 𝑏1 (𝑟 (𝑡)) 𝑥 (𝑡)
− 𝜆 (𝑟 (𝑡)) 𝑦 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑚 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)
− 𝜎21 (𝑟 (𝑡))2 − 𝛽1 (𝑟 (𝑡)) 𝑐∗𝑒 (𝑡)) d𝑡
+ 𝜎1 (𝑟 (𝑡)) d𝐵1 (𝑡) ≤ (𝑟1 (𝑟 (𝑡)) − 𝜎21 (𝑟 (𝑡))2
− 𝛽1 (𝑟 (𝑡)) 𝑐min) d𝑡 + 𝜎1 (𝑟 (𝑡)) d𝐵1 (𝑡) ;

(45)

then,

ln𝑥 (𝑡) − ln𝑥 (0)𝑡
≤ 1𝑡 ∫

𝑡

0
(𝑟1 (𝑟 (𝑡)) − 𝜎21 (𝑟 (𝑡))2 − 𝛽1 (𝑟 (𝑡)) 𝑐min) d𝑡

+ 1𝑡 ∫
𝑡

0
𝜎1 (𝑟 (𝑡)) d𝐵1 (𝑡) .

(46)

By the ergodic theory of theMarkov chain and the strong law
of large number, we have

lim sup
𝑡→∞

ln𝑥 (𝑡)𝑡
≤ 𝑚∑
𝑘=1

𝜋𝑘 (𝑟1 (𝑘) − 12𝜎21 (𝑘) − 𝑐min𝛽1 (𝑘)) = 𝜂1,
a.s.;

(47)

from (𝐴1), we know
lim
𝑡→∞

𝑥 (𝑡) = 0. a.s. (48)

(ii) Similarly, from the second equation of system (44), we
have

d ln𝑦 (𝑡) = (𝑟2 (𝑟 (𝑡)) − 𝑏2 (𝑟 (𝑡)) 𝑦 (𝑡)
+ 𝛾 (𝑟 (𝑡)) 𝑥 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑚 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)
− 𝜎22 (𝑟 (𝑡))2 − 𝛽2 (𝑟 (𝑡)) 𝑐∗𝑒 (𝑡)) d𝑡
+ 𝜎2 (𝑟 (𝑡)) d𝐵2 (𝑡) ;

(49)

then,

ln𝑦 (𝑡) − ln𝑦 (0)𝑡 ≤ 1𝑡 ∫
𝑡

0
(𝑟2 (𝑟 (𝑡)) + 𝛾 (𝑟 (𝑡))𝑛 (𝑟 (𝑡))

− 𝜎22 (𝑟 (𝑡))2 − 𝛽2 (𝑟 (𝑡)) 𝑐min) d𝑡 + 1𝑡
⋅ ∫𝑡
0
𝜎2 (𝑟 (𝑡)) d𝐵2 (𝑡) ;

(50)

further,

lim sup
𝑡→∞

ln𝑦 (𝑡)𝑡
≤ 𝑚∑
𝑘=1

𝜋𝑘 (𝑟2 (𝑘) + 𝛾 (𝑘)𝑛 (𝑘) − 12𝜎22 (𝑘) − 𝑐min𝛽2 (𝑘))
= 𝜂2, a.s.;

(51)

from (𝐴2), we know
lim
𝑡→∞

𝑦 (𝑡) = 0. a.s. (52)

(iii) By the condition (𝐴1), one can get lim𝑡→∞𝑥(𝑡) = 0
a.s., so that the limit system of the second equation of system
(44) is

d𝑦 (𝑡) = 𝑦 (𝑡)
⋅ (𝑟2 (𝑟 (𝑡)) − 𝑏2 (𝑟 (𝑡)) 𝑦 (𝑡) − 𝛽2 (𝑟 (𝑡)) 𝑐∗𝑒 (𝑡)) d𝑡
+ 𝜎2 (𝑟 (𝑡)) 𝑦 (𝑡) d𝐵2 (𝑡) ≤ 𝑦 (𝑡)
⋅ (𝑟2 (𝑟 (𝑡)) − 𝑏2 (𝑟 (𝑡)) 𝑦 (𝑡) − 𝛽2 (𝑟 (𝑡)) 𝑐min) d𝑡
+ 𝜎2 (𝑟 (𝑡)) 𝑦 (𝑡) d𝐵2 (𝑡) .

(53)

Through Lemma 2, if (𝐴3) holds, we obtain
lim
𝑡→∞

𝑦 (𝑡) = 0. a.s. (54)

This completes the proof of the theorem.

Remark 9. If 𝑟𝑖(𝑘) (𝑖 = 1, 2) remains unchanged and𝜎𝑖(𝑘) (𝑖 = 1, 2) or 𝑐min increases so that 𝜂1 < 0 or 𝜂2 < 0,
then condition (𝐴1) or (𝐴2) is established.That is to say, if the
intrinsic growth rate and the predation intensity are relatively
fixation, the increase of white noise intensity or pollutant
concentration will lead to the extinction of the biological
population.

Next, we will discuss the persistence of system (44).
Applying Itô’s formula to the first equation of system (44),
one can get

d ln𝑥 (𝑡) ≥ (𝑟1 (𝑟 (𝑡)) − 𝑏1 (𝑟 (𝑡)) 𝑥 (𝑡) − 𝜆 (𝑟 (𝑡))𝑚 (𝑟 (𝑡))
− 𝜎21 (𝑟 (𝑡))2 − 𝛽1 (𝑟 (𝑡)) 𝑐max) d𝑡
+ 𝜎1 (𝑟 (𝑡)) d𝐵1 (𝑡) ;

(55)
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then,

ln𝑥 (𝑡) − ln𝑥 (0)𝑡 ≥ 1𝑡 ∫
𝑡

0
(𝑟1 (𝑟 (𝑡)) − 𝑏1 (𝑟 (𝑡)) 𝑥 (𝑡)

− 𝜆 (𝑟 (𝑡))𝑚 (𝑟 (𝑡)) −
𝜎21 (𝑟 (𝑡))2 − 𝛽1 (𝑟 (𝑡)) 𝑐max) d𝑡

+ 1𝑡 ∫
𝑡

0
𝜎1 (𝑟 (𝑡)) d𝐵1 (𝑡) ,

(56)

when 𝑡 is large enough, we derive
ln𝑥 (𝑡)𝑡
≥ 𝑚∑
𝑘=1

𝜋𝑘 (𝑟1 (𝑘) − 𝜆 (𝑘)𝑚 (𝑘) − 12𝜎21 (𝑘) − 𝑐max𝛽1 (𝑘))

− 𝑏̌1𝑡 ∫
𝑡

0
𝑥 (𝑡) d𝑡 − 𝜀,

(57)

where 𝜀 is a sufficiently small positive number. In view of (𝐴4)
and Lemma 4, we deduce

lim inf
𝑡→∞

1𝑡 ∫
𝑡

0
𝑥 (𝑡) d𝑡 ≥ 𝜂4𝑏̌1 , a.s. (58)

That is, the prey population of system (44) will be persistence
in mean under condition (𝐴4).

Furthermore, the persistent property of the predator
species of system (44) can be investigated as follows.

From the first equation of system (44), we have

d𝑥 (𝑡) ≤ 𝑥 (𝑡)
⋅ (𝑟1 (𝑟 (𝑡)) − 𝑏1 (𝑟 (𝑡)) 𝑥 (𝑡) − 𝛽1 (𝑟 (𝑡)) 𝑐∗𝑒 (𝑡)) d𝑡
+ 𝜎1 (𝑟 (𝑡)) 𝑥 (𝑡) d𝐵1 (𝑡) .

(59)

Consider the following stochastic differential equations:

d𝜙 (𝑡) = 𝜙 (𝑡)
⋅ (𝑟1 (𝑟 (𝑡)) − 𝑏1 (𝑟 (𝑡)) 𝜙 (𝑡) − 𝛽1 (𝑟 (𝑡)) 𝑐∗𝑒 (𝑡)) d𝑡
+ 𝜎1 (𝑟 (𝑡)) 𝜙 (𝑡) d𝐵1 (𝑡) ,

𝜙 (0) = 𝑥 (0) ,
(60)

d𝜓 (𝑡) = 𝜓 (𝑡)
⋅ (𝑟1 (𝑟 (𝑡)) − 𝑏1 (𝑟 (𝑡)) 𝜓 (𝑡) − 𝛽1 (𝑟 (𝑡)) 𝑐max) d𝑡
+ 𝜎1 (𝑟 (𝑡)) 𝜓 (𝑡) d𝐵1 (𝑡) ,

𝜓 (0) = 𝑥 (0) .
(61)

Obviously, 𝑥(𝑡) ≤ 𝜙(𝑡), 𝜓(𝑡) ≤ 𝜙(𝑡). Using Lemma 2, if 𝜂5 >0, system (61) is ergodic and there exists a unique stationary
distribution 𝜇𝜓, such that

𝑚∑
𝑘=1

𝑏1 (𝑘) ∫
R+
𝑥𝜇𝜓 (d𝑥, 𝑘)

= 𝑚∑
𝑘=1

𝜋𝑘 (𝑟1 (𝑘) − 12𝜎21 (𝑘) − 𝑐max𝛽1 (𝑘)) .
(62)

Applying Itô’s formula to (60) and then integrating from 0 to𝑡, we get
ln𝜙 (𝑡) − ln𝜙 (0)𝑡 = 1𝑡 ∫

𝑡

0
(𝑟1 (𝑟 (𝑡)) − 𝜎21 (𝑟 (𝑡))2

− 𝛽1 (𝑟 (𝑡)) 𝑐∗𝑒 (𝑡) − 𝑏1 (𝑟 (𝑡)) 𝜙 (𝑡)) d𝑡 + 1𝑡
⋅ ∫𝑡
0
𝜎1 (𝑟 (𝑡)) d𝐵1 (𝑡) .

(63)

From the first equation of system (44), it yields that

ln𝑥 (𝑡) − ln𝑥 (0)𝑡
= 1𝑡 ∫

𝑡

0
(𝑟1 (𝑟 (𝑡)) − 𝜎21 (𝑟 (𝑡))2 − 𝛽1 (𝑟 (𝑡)) 𝑐∗𝑒 (𝑡)) d𝑡

− 1𝑡 ∫
𝑡

0

𝜆 (𝑟 (𝑡)) 𝑦 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑚 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)d𝑡
− 1𝑡 ∫

𝑡

0
𝑏1 (𝑟 (𝑡)) 𝑥 (𝑡) d𝑡 + 1𝑡 ∫

𝑡

0
𝜎1 (𝑟 (𝑡)) d𝐵1 (𝑡) .

(64)

Due to 𝑥(𝑡) ≤ 𝜙(𝑡), one can get

1𝑡 ∫
𝑡

0
(𝜙 (𝑡) − 𝑥 (𝑡)) d𝑡 ≤ 1𝑡 ∫

𝑡

0

𝜆̌
𝑎𝑏̂1𝑦 (𝑡) d𝑡. a.s. (65)

From the second equation of system (44) we have

ln𝑦 (𝑡)𝑡 = ln𝑦 (0)𝑡 + 1𝑡 ∫
𝑡

0
(𝑟2 (𝑟 (𝑡)) − 𝜎22 (𝑟 (𝑡))2

− 𝛽2 (𝑟 (𝑡)) 𝑐∗𝑒 (𝑡)) d𝑡 − 1𝑡 ∫
𝑡

0
𝑏2 (𝑟 (𝑡)) 𝑦 (𝑡) d𝑡

+ 1𝑡 ∫
𝑡

0

𝛾 (𝑟 (𝑡)) 𝜙 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑛 (𝑟 (𝑡)) 𝜙 (𝑡)d𝑡 − 1𝑡
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⋅ ∫𝑡
0
( 𝛾 (𝑟 (𝑡)) 𝜙 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑛 (𝑟 (𝑡)) 𝜙 (𝑡)

− 𝛾 (𝑟 (𝑡)) 𝑥 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)) d𝑡 − 1𝑡
⋅ ∫𝑡
0
( 𝛾 (𝑟 (𝑡)) 𝑥 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)

− 𝛾 (𝑟 (𝑡)) 𝑥 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑚 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)) d𝑡
+ 1𝑡 ∫

𝑡

0
𝜎2 (𝑟 (𝑡)) d𝐵2 (𝑡) ≥ ln𝑦 (0)𝑡 + 1𝑡

⋅ ∫𝑡
0
(𝑟2 (𝑟 (𝑡)) − 𝜎22 (𝑟 (𝑡))2 − 𝛽2 (𝑟 (𝑡)) 𝑐max) d𝑡

+ 1𝑡 ∫
𝑡

0

𝛾 (𝑟 (𝑡)) 𝜓 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑛 (𝑟 (𝑡)) 𝜓 (𝑡)d𝑡 − (𝑏̌2 +
̌𝛾𝜆̌

𝑎2𝑏̂1
+ ̌𝛾𝑚̂̌𝑎𝑛 ) 1𝑡 ∫

𝑡

0
𝑦 (𝑡) d𝑡 + 1𝑡 ∫

𝑡

0
𝜎2 (𝑟 (𝑡)) d𝐵2 (𝑡) .

(66)

By Lemma 4, if

(𝐴6): 𝜂6 = ∑𝑚𝑘=1 𝜋𝑘(𝑟2(𝑘) − (1/2)𝜎22(𝑘) − 𝑐max𝛽2(𝑘)) +∑𝑚𝑘=1 𝜋𝑘 ∫R+(𝛾(𝑘)𝑥/(𝑎(𝑘) + 𝑛(𝑘)𝑥))𝜇𝜓(d𝑥, 𝑘) > 0
holds, then

lim inf
𝑡→∞

1𝑡 ∫
𝑡

0
𝑦 (𝑡) d𝑡 ≥ 𝜂6𝑏̌2 + ̌𝛾𝜆̌/𝑎2𝑏̂1 + ̌𝛾𝑚̌/𝑎𝑛 a.s. (67)

In summary, one gets the following.

Theorem 10. Given initial value (𝑥(0), 𝑦(0), 𝑟(0)) ∈ R2+ × S

for system (44), then
(i) if (𝐴4) is established, the prey population will be

persistent in mean,
(ii) if conditions (𝐴5) and (𝐴6) are satisfied, the predator

population will be persistent in mean.

Remark 11. (i) It can be seen from 𝜂4, in the case where the
intrinsic growth rate and the predation intensity are relatively
constant, only by reducing the intensity of white noise or
pollutant concentration, so that (𝐴4) can be established to
ensure the lasting survival of the prey population.

(ii) Obviously, 𝜂4 < 𝜂5; if the prey population is persistent,
the predator population is persistent as long as the white
noise interference intensity or the toxin concentration is small
enough, such that (𝐴6) is established. As can be seen from
condition (𝐴6), the omnivorous nature of 𝑦 contributes to its
permanence.

In system (4), if the concentration of the toxicant in the
environment remains unchanged, that is, 𝑐𝑒(𝑡) = 𝑐 is a positive

constant, then the system can be converted into the following
system:

d𝑥 (𝑡) = 𝑥 (𝑡) (𝑟1 (𝑟 (𝑡)) − 𝑏1 (𝑟 (𝑡)) 𝑥 (𝑡)
− 𝜆 (𝑟 (𝑡)) 𝑦 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑚 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)
− 𝑐𝛽1 (𝑟 (𝑡))) d𝑡 + 𝜎1 (𝑟 (𝑡)) 𝑥 (𝑡) d𝐵1 (𝑡) ,

d𝑦 (𝑡) = 𝑦 (𝑡) (𝑟2 (𝑟 (𝑡))
+ 𝛾 (𝑟 (𝑡)) 𝑥 (𝑡)𝑎 (𝑟 (𝑡)) + 𝑚 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑛 (𝑟 (𝑡)) 𝑥 (𝑡)
− 𝑏2 (𝑟 (𝑡)) 𝑦 (𝑡) − 𝑐𝛽2 (𝑟 (𝑡))) d𝑡 + 𝜎2 (𝑟 (𝑡))
⋅ 𝑦 (𝑡) d𝐵2 (𝑡) ,

𝑥 (0) = 𝑥0,
𝑦 (0) = 𝑦0,
𝑟 (0) = 𝑟0.

(68)

Lemma 12 (see [77]). System (7) is ergodic and positive
recurrent if the following conditions are satisfied:

(i) For 𝑖 ̸= 𝑗, 𝑞𝑖𝑗 > 0.
(ii) For each 𝑘 ∈ S,

𝜎 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩2 ≤ 𝜉𝑇𝐺 (𝑥, 𝑘) 𝜉 ≤ 𝜎−1 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩2 (69)

for all 𝜉 ∈ R𝑛, with some constant 𝜎 ∈ (0, 1] for all 𝑥 ∈ R𝑛.
(iii) There exists a bounded open set D ⊂ R𝑛 with a

smooth boundary satisfying that, for each 𝑘 ∈ S, there is a
twice continuously differentiable nonnegative function 𝑉(⋅, ⋅) :
D𝑐 → R and that for some 𝜁 > 0, L𝑉(𝑥, 𝑘) ≤ −𝜁, for any(𝑥, 𝑘) ∈ D𝑐 × S.

Moreover, the Markov process (𝑥(𝑡), 𝑟(𝑡)) has a unique
ergodic stationary distribution 𝜇(⋅, ⋅). Hence, for any Borel
measurable function 𝐻(⋅, ⋅) : R𝑛 × S → R, if∑𝑘∈S ∫R𝑛 |𝐻(𝑥, 𝑘)|𝜇(𝑥, 𝑘)d𝑥 < ∞, then

𝑃( lim
𝑡→∞

1𝑡 ∫
𝑡

0
𝐻(𝑥 (𝑠) , 𝑟 (𝑠)) d𝑠

= ∑
𝑘∈S

∫
R𝑛
𝐻(𝑥, 𝑘) 𝜇 (𝑥, 𝑘) d𝑥) = 1.

(70)

Recently, the ergodicity and stationary distribution have
been explored bymany authors. In the following, we give suf-
ficient conditions for the existence of stationary distribution
of system (68) and prove the following theorem by showing
that system (68) satisfies the three conditions in Lemma 12.
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Theorem 13. Assume that for 𝑖 ̸= 𝑗, 𝑞𝑖𝑗 > 0 and
(𝐵1): ∑𝑘∈S 𝜋𝑘(𝑟1(𝑘)−𝜆(𝑘)/𝑚(𝑘) −𝜎21(𝑘)/2−𝑐𝛽1(𝑘)) >0,
(𝐵2): ∑𝑘∈S 𝜋𝑘(𝑟2(𝑘) − 𝜎22(𝑘)/2 − 𝑐𝛽2(𝑘)) > 0

hold; then the stochastic process (𝑥(𝑡), 𝑦(𝑡), 𝑟(𝑡)) of system (68)
is ergodic and has a unique stationary distribution in R2+ × S.

Proof. By the assumption 𝑞𝑖𝑗 > 0 for 𝑖 ̸= 𝑗 in Theorem 13,
condition (i) in Lemma 12 is satisfied. Let 𝑔(𝑥, 𝑦, 𝑘) =
diag(𝜎1(𝑘)𝑥, 𝜎2(𝑘)𝑦); then

𝐺 (𝑥, 𝑦, 𝑘) = 𝑔 (𝑥, 𝑦, 𝑘) 𝑔𝑇 (𝑥, 𝑦, 𝑘)
= diag (𝜎21 (𝑘) 𝑥2, 𝜎22 (𝑘) 𝑦2) . (71)

Define a bounded open subset as follows:

𝑈 = (𝜀, 1𝜀 ) × (𝜀, 1𝜀 ) ⊂ R
2
+, (72)

where 0 < 𝜀 < 1 is a constant. Let 𝜎 = min{1,𝑀1, 1/𝑀2};
here 𝑀1 = min(𝑥,𝑦,𝑘)∈𝑈×S{𝜎21(𝑘)𝑥2 + 𝜎22(𝑘)𝑦2} and 𝑀2 =
max(𝑥,𝑦,𝑘)∈𝑈×S{𝜎21(𝑘)𝑥2 + 𝜎22(𝑘)𝑦2}. For (𝑥, 𝑦, 𝑘) ∈ 𝑈 × S, we
have

𝜎 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩2 ≤ 𝜉𝑇𝐺 (𝑥, 𝑦, 𝑘) 𝜉 = 𝜎21 (𝑘) 𝑥2𝜉21 + 𝜎22 (𝑘) 𝑦2𝜉22
≤ 𝜎−1 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩2

(73)

for all 𝜉 ∈ R2. Thus condition (ii) in Lemma 12 holds.
Therefore, it remains for us to verify condition (iii) in
Lemma 12.

Define a 𝐶2-function on R2+ × S,

𝑉 (𝑥, 𝑦, 𝑘) = (1 − 𝜐𝜂𝑘) 𝑥−𝜐 + (1 − 𝜐𝛿𝑘) 𝑦−𝜐
+ (𝑥 + 2) (𝑦 +𝑀) š 𝑉4 + 𝑉5, (74)

where 𝑉4 = (1 − 𝜐𝜂𝑘)𝑥−𝜐 + (1 − 𝜐𝛿𝑘)𝑦−𝜐, 𝑉5 = (𝑥 + 2)(𝑦 +𝑀), 𝜐 is a sufficiently small positive constant satisfying 𝜐 <
min(1/𝜂𝑘, 1/𝛿𝑘), and𝑀 ≥ 1 + (1/4𝑏̂1𝑏̂2)( ̌𝑟1 − 𝑐𝛽1 + ̌𝑟2 − 𝑐𝛽2 +̌𝛾/𝑛)2. 𝜂𝑘, 𝛿𝑘 are quantities to be determined below.

An application of the operatorL to 𝑉4 yields
L𝑉4 (𝑥, 𝑦, 𝑘) = −𝜐 (1 − 𝜐𝜂𝑘) 𝑥−𝜐 (𝑟1 (𝑘) − 𝑏1 (𝑘) 𝑥
− 𝜆 (𝑘) 𝑦𝑎 (𝑘) + 𝑚 (𝑘) 𝑦 + 𝑛 (𝑘) 𝑥 − 𝑐𝛽1 (𝑘)) + 12𝜐 (1
+ 𝜐) (1 − 𝜐𝜂𝑘) 𝜎21 (𝑘) 𝑥−𝜐 − 𝜐∑

𝑖 ̸=𝑘

𝑞𝑘𝑖 (𝜂𝑖 − 𝜂𝑘) 𝑥−𝜐

− 𝜐 (1 − 𝜐𝛿𝑘) 𝑦−𝜐 (𝑟2 (𝑘)

+ 𝛾 (𝑘) 𝑥𝑎 (𝑘) + 𝑚 (𝑘) 𝑦 + 𝑛 (𝑘) 𝑥 − 𝑏2 (𝑘) 𝑦 − 𝑐𝛽2 (𝑘))
+ 12𝜐 (1 + 𝜐) (1 − 𝜐𝛿𝑘) 𝜎22 (𝑘) 𝑦−𝜐
− 𝜐∑
𝑖 ̸=𝑘

𝑞𝑘𝑖 (𝛿𝑖 − 𝛿𝑘) 𝑦−𝜐 ≤ 𝜐 (1 − 𝜐𝜂𝑘)

⋅ [−(𝑟1 (𝑘) − 𝜆 (𝑘)𝑚 (𝑘) − 𝑐𝛽1 (𝑘) −
𝜎21 (𝑘)2 )

−∑
𝑖 ̸=𝑘

𝑞𝑘𝑖 (𝜂𝑖 − 𝜂𝑘) + 12𝜐𝜎21 (𝑘)

− 𝜐𝜂𝑘1 − 𝜐𝜂𝑘∑𝑖 ̸=𝑘𝑞𝑘𝑖 (𝜂𝑖 − 𝜂𝑘)] 𝑥
−𝜐 + 𝜐 (1 − 𝜐𝛿𝑘)

⋅ [− (𝑟2 (𝑘) − 𝑐𝛽2 (𝑘) − 12𝜎22 (𝑘)) −∑
𝑖 ̸=𝑘

𝑞𝑘𝑖 (𝛿𝑖 − 𝛿𝑘)

+ 12𝜐𝜎22 (𝑘) − 𝜐𝛿𝑘1 − 𝜐𝛿𝑘∑𝑖 ̸=𝑘𝑞𝑘𝑖 (𝛿𝑖 − 𝛿𝑘)] 𝑦
−𝜐 + 𝜐 (1

− 𝜐𝜂𝑘) 𝑏1 (𝑘) 𝑥1−𝜐 + 𝜐 (1 − 𝜐𝛿𝑘) 𝑏2 (𝑘) 𝑦1−𝜐.
(75)

Define the vectors 𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑚)𝑇 and 𝜗 = (𝜗1,𝜗2, . . . , 𝜗𝑚)𝑇 with 𝜉𝑘 = −(𝑟1(𝑘) − 𝜆(𝑘)/𝑚(𝑘) − 𝑐𝛽1(𝑘) −(𝜎21/2)(𝑘)), 𝜗𝑘 = −(𝑟2(𝑘) − 𝑐𝛽2(𝑘) − (1/2)𝜎22(𝑘)). As the
generator matrix Γ is irreducible, for each 𝜉𝑘 and 𝜗𝑘, there
exists 𝜂 = (𝜂1, 𝜂2, . . . , 𝜂𝑚)𝑇 and 𝛿 = (𝛿1, 𝛿2, . . . , 𝛿𝑚)𝑇,
respectively, which is a solution of the Poisson system [78]

(Γ𝜂)𝑘 − 𝜉𝑘 = −
𝑚∑
𝑗=1

𝜋𝑗𝜉𝑗,

(Γ𝛿)𝑘 − 𝜗𝑘 = − 𝑚∑
𝑗=1

𝜋𝑗𝜗𝑗.
(76)

Therefore we have

− (𝑟1 (𝑘) − 𝜆 (𝑘)𝑚 (𝑘) − 𝑐𝛽1 (𝑘) −
𝜎212 (𝑘))

−∑
𝑖 ̸=𝑘

𝑞𝑘𝑖 (𝜂𝑖 − 𝜂𝑘)

= −∑
𝑘∈S

𝜋𝑘 (𝑟1 (𝑘) − 𝜆 (𝑘)𝑚 (𝑘) −
𝜎21 (𝑘)2 − 𝑐𝛽1 (𝑘)) ,

(77)

− (𝑟2 (𝑘) − 𝑐𝛽2 (𝑘) − 12𝜎22 (𝑘)) −∑
𝑖 ̸=𝑘

𝑞𝑘𝑖 (𝛿𝑖 − 𝛿𝑘)

= −∑
𝑘∈S

𝜋𝑘 (𝑟2 (𝑘) − 𝜎22 (𝑘)2 − 𝑐𝛽2 (𝑘)) .
(78)
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Combining (75), (77), and (78), we obtain

L𝑉4 (𝑥, 𝑦, 𝑘) ≤ 𝜐 (1 − 𝜐𝜂𝑘)
⋅ [−∑
𝑘∈S

𝜋𝑘 (𝑟1 (𝑘) − 𝜆 (𝑘)𝑚 (𝑘) −
𝜎21 (𝑘)2 − 𝑐𝛽1 (𝑘))

+ 12𝜐𝜎21 (𝑘) − 𝜐𝜂𝑘1 − 𝜐𝜂𝑘∑𝑖 ̸=𝑘𝑞𝑘𝑖 (𝜂𝑖 − 𝜂𝑘)] 𝑥
−𝜐 + 𝜐 (1

− 𝜐𝛿𝑘) [−∑
𝑘∈S

𝜋𝑘 (𝑟2 (𝑘) − 𝜎22 (𝑘)2 − 𝑐𝛽2 (𝑘))

+ 12𝜐𝜎22 (𝑘) − 𝜐𝛿𝑘1 − 𝜐𝛿𝑘∑𝑖 ̸=𝑘𝑞𝑘𝑖 (𝛿𝑖 − 𝛿𝑘)] 𝑦
−𝜐 + 𝜐 (1

− 𝜐𝜂𝑘) 𝑏1 (𝑘) 𝑥1−𝜐 + 𝜐 (1 − 𝜐𝛿𝑘) 𝑏2 (𝑘) 𝑦1−𝜐.

(79)

Similarly, for 𝑉5(𝑥, 𝑦), we calculate
L𝑉5 = (𝑦 +𝑀)𝑥(𝑟1 (𝑘) − 𝑏1 (𝑘) 𝑥
− 𝜆 (𝑘) 𝑦𝑎 (𝑘) + 𝑚 (𝑘) 𝑦 + 𝑛 (𝑘) 𝑥 − 𝑐𝛽1 (𝑘)) + (𝑥 + 2)
⋅ 𝑦 (𝑟2 (𝑘) + 𝛾 (𝑘) 𝑥𝑎 (𝑘) + 𝑚 (𝑘) 𝑦 + 𝑛 (𝑘) 𝑥 − 𝑏2 (𝑘) 𝑦
− 𝑐𝛽2 (𝑘)) ≤ −𝑏̂1𝑥2 +𝑀( ̌𝑟1 − 𝑐𝛽1) 𝑥 − 𝑏̂2𝑦2

+ 2( ̌𝑟2 − 𝑐𝛽2 + ̌𝛾𝑛) 𝑦.

(80)

From conditions (𝐵1) and (𝐵2), we can choose 𝜐 sufficiently
small such that

− ∑
𝑘∈S

𝜋𝑘 (𝑟1 (𝑘) − 𝜆 (𝑘)𝑚 (𝑘) −
𝜎21 (𝑘)2 − 𝑐𝛽1 (𝑘))

+ 12𝜐𝜎21 (𝑘) − 𝜐𝜂𝑘1 − 𝜐𝜂𝑘∑𝑖 ̸=𝑘𝑞𝑘𝑖 (𝜂𝑖 − 𝜂𝑘) < 0,

− ∑
𝑘∈S

𝜋𝑘 (𝑟2 (𝑘) − 𝜎22 (𝑘)2 − 𝑐𝛽2 (𝑘)) + 12𝜐𝜎22 (𝑘)
− 𝜐𝛿𝑘1 − 𝜐𝛿𝑘∑𝑖 ̸=𝑘𝑞𝑘𝑖 (𝛿𝑖 − 𝛿𝑘) < 0.

(81)

SoL𝑉 =L𝑉4 +L𝑉5 can be estimated as follows:

L𝑉 ≤ 𝜐 (1 − 𝜐𝜂𝑘)
⋅ [−∑
𝑘∈S

𝜋𝑘 (𝑟1 (𝑘) − 𝜆 (𝑘)𝑚 (𝑘) −
𝜎21 (𝑘)2 − 𝑐𝛽1 (𝑘))

+ 12𝜐𝜎21 (𝑘) − 𝜐𝜂𝑘1 − 𝜐𝜂𝑘∑𝑖 ̸=𝑘𝑞𝑘𝑖 (𝜂𝑖 − 𝜂𝑘)] 𝑥
−𝜐 + 𝜐 (1

− 𝜐𝜂𝑘) 𝑏1 (𝑘) 𝑥1−𝜐 − 𝑏̂1𝑥2 +𝑀( ̌𝑟1 − 𝑐𝛽1) 𝑥 + 𝜐 (1
− 𝜐𝛿𝑘) [−∑

𝑘∈S

𝜋𝑘 (𝑟2 (𝑘) − 𝜎22 (𝑘)2 − 𝑐𝛽2 (𝑘))

+ 12𝜐𝜎22 (𝑘) − 𝜐𝛿𝑘1 − 𝜐𝛿𝑘∑𝑖 ̸=𝑘𝑞𝑘𝑖 (𝛿𝑖 − 𝛿𝑘)] 𝑦
−𝜐 + 𝜐 (1

− 𝜐𝛿𝑘) 𝑏2 (𝑘) 𝑦1−𝜐 − 𝑏̂2𝑦2 + 2( ̌𝑟2 − 𝑐𝛽2 + ̌𝛾𝑛) 𝑦
= 𝑓1 (𝑥) + 𝑓2 (𝑦) .

(82)

It is easy to see that

L𝑉 ≤ 𝑓1 (𝑥) + 𝑓2 (𝑦)
≤ {{{

𝑓1 (𝑥) + 𝑓𝑢2 (𝑦) 󳨀→ −∞, if 𝑥 󳨀→ 0 or 𝑥 󳨀→ +∞,
𝑓𝑢1 (𝑥) + 𝑓2 (𝑦) 󳨀→ −∞, if 𝑦 󳨀→ 0 or 𝑦 󳨀→ +∞.

(83)

Consequently, we derive that, for a sufficiently small 𝜀,
L𝑉 (𝑥, 𝑦, 𝑘) ≤ −1, ∀ (𝑥, 𝑦, 𝑘) ∈ 𝑈𝑐 × S. (84)

Using Lemma 12, we obtain the conclusion that (𝑥(𝑡), 𝑦(𝑡),𝑟(𝑡)) is ergodic and positive recurrent; that is, system (68) is
positive recurrent and has a unique stationary distribution.

This completes the proof of Theorem 13.

5. Conclusions and Numerical Simulations

In this article, we discussed the dynamics of stochastic prey-
predator models with Beddington-DeAngelis functional
response in polluted environment.

Firstly, for system (3), there are the following properties:(1) If ℎ1 < 0 and ℎ2 > 0, the limit system of (3) has a prey
extinction periodic solution (0, 𝑦∗(𝑡)).(2) If conditions (𝐻1), (𝐻2), and (𝐻3) are established, the
limit system of (3) has a positive periodic solution.

Secondly, system (4) possesses the following properties:(1) If 𝜂1 < 0, the prey population 𝑥(𝑡) will be extinct.(2) If 𝜂2 < 0, the predator population 𝑦(𝑡) will be extinct.(3) If 𝜂1 < 0 and 𝜂3 < 0, then prey population and
predator population will die out.(4) If 𝜂4 > 0, the prey population 𝑥(𝑡)will be persistent in
mean.(5) If 𝜂5 > 0 and 𝜂6 > 0, the predator population 𝑦(𝑡) will
be persistent in mean.

To verify the correctness of the theoretical analysis,
numerical simulations are employed in the following exam-
ples.
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Figure 1: Sample paths of 𝑥(𝑡) and 𝑦(𝑡) with initial conditions 𝑥(0) = 2.5 and 𝑦(0) = 0.8.

Assume that the Markov chain 𝑟(𝑡) take values in S ={1, 2} with the generator

Γ = (−1 1
2 −2) . (85)

By the linear equations 𝜋Γ = 0, we can see (𝜋1, 𝜋2) =(2/3, 1/3)which is the stationary distribution of 𝑟(𝑡). Further-
more, in the following examples, we suppose 𝜏 = 0.5 andℎ = 0.1, consistently.
5.1. The Existence of Periodic Solutions of System (3)

Example 14. Assume 𝑟1 = 1.2, 𝑟2 = 2.3, 𝛽1 = 0.18, 𝛽2 = 0.22,𝑏1 = 0.5, 𝑏2 = 0.8, 𝜆 = 0.3, 𝛾 = 0.5, 𝑎 = 1.4, 𝑚 = 0.8, and𝑛 = 1.8.
Case 1. We choose the density of white noise as the following:𝜎1(𝑡) = 0.09+0.8 sin((2𝜋/𝜏)𝑡), 𝜎2(𝑡) = 0.1+0.01 sin((2𝜋/𝜏)𝑡),
and let 𝜇 = 0.45.

Note that ℎ1 = −0.5841 < 0, ℎ2 = 0.3150 > 0. The
conditions of Theorem 6 hold, so there exists a boundary
periodic solution (0, 𝑦∗(𝑡)) of system (3) (see Figure 1).

Case 2. We change the density of the white noise to 𝜎1(𝑡) =0.02 + 0.2 sin((2𝜋/𝜏)𝑡), 𝜎2(𝑡) = 0.07 + 0.1 sin((2𝜋/𝜏)𝑡), and𝜇 = 0.13. This gives ℎ1 = 0.7218 > 0, ℎ2 = 1.7230 > 0, 𝜆1 =0.0634 > 0, and 𝜉2 = 0.2024 > 0; choose 𝜉1 = 0.1 according
to 𝜉1 > (𝛾2/4𝑏1ℎ1)𝜆1 and (𝑏2𝜉1/𝛾2)[−ℎ2+(𝑟2+𝛾/𝑛−𝛽2𝑐min)] <(𝜉2/𝑎𝑏1)(𝑟1 − 𝛽1𝑐max).

From Theorem 7, we know that there exists a positive 𝜏-
periodic solution of system (3) (see Figure 2).
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Figure 2: Sample paths of 𝑥(𝑡) and 𝑦(𝑡) with initial conditions𝑥(0) = 0.8 and 𝑦(0) = 2.5.

5.2. The Extinction and Persistence of System (4)

Example 15. Choose parameters (𝑟1(1), 𝑟2(1)) = (2.3, 1.5),𝜆(1) = 0.06, 𝛾(1) = 0.3, (𝑏1(1), 𝑏2(1)) = (1.8, 1.6), 𝑎(1) = 0.4,𝑚(1) = 0.6, 𝑛(1) = 0.3, and (𝛽1(1), 𝛽2(1)) = (0.4, 0.2), if𝑘 = 1, and (𝑟1(2), 𝑟2(2)) = (2.5, 1.3), 𝜆(2) = 0.08, 𝛾(2) = 0.2,(𝑏1(2), 𝑏2(2)) = (1.8, 1.6), 𝑎(2) = 0.4, 𝑚(2) = 0.8, 𝑛(2) = 0.4,
and (𝛽1(2), 𝛽2(2)) = (0.5, 0.3), if 𝑘 = 2.
Case 1. Let 𝜇 = 0.15, (𝜎1(1), 𝜎2(1)) = (1.7, 2.1), and(𝜎1(2), 𝜎2(2)) = (1.4, 0.9); we note 𝜂1 = −0.1911 < 0,
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Figure 3: Sample paths of 𝑥(𝑡), 𝑦(𝑡) with initial value 𝑥(0) = 2.8 and 𝑦(0) = 2.2.
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(b) 𝑘 = 2

Figure 4: Sample paths of 𝑥(𝑡), 𝑦(𝑡) with initial value 𝑥(0) = 0.4 and 𝑦(0) = 0.3.

𝜂2 = −0.0210 < 0, and 𝜂3 = −0.8543 < 0. The conditions
of Theorem 8 are satisfied, so the prey and predator are both
extinct (see Figure 3).

Next we only change the density of the white noise to(𝜎1(1), 𝜎2(1)) = (0.3, 0.2) and (𝜎1(2), 𝜎2(2)) = (0.5, 0.4) and
keep 𝜇 = 0.15. Simple calculation shows that 𝜂4 = 0.8622 > 0,𝜂5 = 0.9622 > 0, and 𝜂6 > 0.6757 > 0. The conditions
of Theorem 10 are satisfied, so the prey and predator are
persistent (see Figure 4).

It is easy to see from Figures 3 and 4 that the increase of
the intensity of white noise can result in the extinction of prey
and predator.

Case 2. Let 𝜇 = 0.55, (𝜎1(1), 𝜎2(1)) = (0.6, 0.5), and(𝜎1(2), 𝜎2(2)) = (0.45, 0.55), which gives 𝜂1 = −2.4356 < 0,𝜂2 = −0.3701 < 0, and 𝜂3 = −1.2035 < 0. 𝑥(𝑡) and 𝑦(𝑡) are
extinct (see Figure 5).

Next we only change the amount of toxicant to 𝜇 = 0.12
and keep (𝜎1(1), 𝜎2(1)) = (0.6, 0.5) and (𝜎1(2), 𝜎2(2)) =(0.45, 0.55), We note 𝜂4 = 1.0467 > 0, 𝜂5 = 1.1467 > 0, and𝜂6 > 0.7255 > 0. Thus 𝑥(𝑡) and 𝑦(𝑡) are persistent in mean
(see Figure 6).

Figures 5 and 6 show that the increase of the amount
of toxicant can also result in the extinction of the prey and
predator.
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Figure 5: Sample paths of 𝑥(𝑡), 𝑦(𝑡) with initial value 𝑥(0) = 6 and 𝑦(0) = 4.
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Figure 6: Sample paths of 𝑥(𝑡), 𝑦(𝑡) with initial value 𝑥(0) = 1.6 and 𝑦(0) = 1.4.
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