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Abstract 
 

This paper deals with the qualitative analysis of a disease transmission delay induced prey preda-

tor system in which disease spreads among the predator species only. The growth of the preda-

tors’ susceptible and infected subpopulations is assumed as modified Leslie–Gower type. Suffi-

cient conditions for the persistence, permanence, existence and stability of equilibrium points are 

obtained. Global asymptotic stability of the system is investigated around the coexisting equilib-

rium using a geometric approach. The existence of Hopf bifurcation phenomenon is also exam-

ined with respect to some important parameters of the system. The criterion for disease  a trans-

mission delay the induced Hopf bifurcation phenomenon is obtained and subsequently, we use a 

normal form method and the center manifold theorem to examine the nature of the Hopf bifurca-

tion. It is clearly observed that competition among predators can drive the system to a stable 

from an unstable state. Also the infection and competition among predator population enhance 

the availability of prey for harvesting when their values are high. Finally, some numerical simu-

lations are carried out to illustrate the analytical results. 

 

Keywords:  Eco-epidemic; Leslie–Gower; permanence; persistence; Hopf bifurcation; 

harvesting 
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1. Introduction  
 

Two major fields of study, ecology and epidemiology, have some common features in  their own 

right. Eco-epidemiology is a branch in mathematical biology, which considers both the ecologi-

cal and epidemiological features simultaneously.  In the year 1986, Anderson and May merged 

these two fields and started an investigation of this field. During the last two decades, many re-

searchers developed several prey predator models in the presence of disease and analyzed the 

dynamics of the system. Many research articles have already appeared, but most of the studies 

mainly focused on parasite infection in prey population only, For examples see Hethcote et al. 

(2004), Li et al. (2014), Niu et al. (2011),  Sarwardi et al. (2014) and so on. However, there are 

some predators which are infected by different infectious diseases. Infection in predator can 

magnify the inter-specific and intra-specific interactions among all the species of a prey-predator 

system. Therefore, an infectious disease in predator biomass can be a factor to regulate the inter-

actions between prey predator species and their harvesting. 

 

Lotka (1925) shows that the consumption or feeding rate describes the transfer of biomass be-

tween trophic levels and, completely describes the dynamic coupling between predator abun-

dance and prey abundance. The mathematical form of different issues like the feeding or con-

sumption rate, infection rate, etc. can influence the distribution of the predator through the space 

discussed (Van der Meer and Ens (1997)). These also influence the stability of enriched preda-

tor–prey systems, correlations between nutrient enrichment and the biomass of lower or higher 

trophic levels studied by DeAngelis et al. (1975) and  Huisman and De Boer (1997), and also 

influence the length of food chains as discussed by Schmitz (1992). Thus the choice of a preda-

tor’s instantaneous per capita feeding or consumption rate is an important part in modeling and 

analysis of a prey-predator system. To describe the functional and numerical response of the prey 

and predator, it is essential to analyze the manner o the f interaction of the prey and predator spe-

cies with each other. We find several models in the literature where several functional response 

are analyzed. Yodzis (1994) investigated with Holling a type-I functional response, Kar and 

Matsuda (2006) studied with Holling a  type-II functional response, the ratio dependent function-

al response was studied by Arditi and Ginzburg (1989), the Hassel-Varley functional response, 

Beddington DeAngelis functional response are found in the work of Zhang et al. (2008), while 

the Crowley-Martin functional response  was introduced by Crowley and Martin (1989).  

 

An important aspect in the epidemiological system, which should be kept in mind that, it is often 

necessary to incorporate time delays into the system in order to reflect the dynamical behaviors 

of the system depending on the past history of the system. Delay induced epidemiological sys-

tems have been studied extensively. The predator prey epidemiological system with disease in 

predator has been proposed and discussed by Zhang et al. (2008). Stability and Hopf bifurcation 

of a three species system with Holling type II functional response and feedback delay has been 

investigated by Meng et al. (2011). Recently, Chakraborty et al. (2013) investigated the global 

stability and bifurcation of a delay induced prey predator fishery system with stage structure. 

Sawarbari et al. (2011) developed and analyzed an eco-epidemic model with disease in the pred-

ator.  

 

Renewable resource management is very complicated and constructing accurate mathematical 

models about the effect of harvesting on different biomass is even more complicated.  The effect 

of a constant rate harvesting on the dynamics of predator prey model has been investigated by 

many authors like Brauer and Saudack (1979), Xiao and Ruan (1999). They investigated very 
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rich and interesting dynamical behaviour as stability equilibrium, existence of Hopf bifurcation, 

limit cycles, Bogdanov-Takens bifurcations. Recently, Kar and Misra (2010) proposed and in-

vestigated a resource based stage structured fishery model with selective harvesting of mature 

species. Through harvesting, we can achieve monetary social benefit and can preserve different 

species from their extinction. Thus, harvesting is a very effective tool to protect and preserve re-

newable resources from the socio-economic and bio-economic viewpoints. Thus, to develop a 

complete eco-epidemic model an introduction of species harvesting is necessary.  

 

In this paper, we have studied the impact of infection of predator and the effect of inter and intra 

specific competition of the predators on the dynamics of an eco-epidemic model with a constant 

rate of prey harvesting. We want to investigate how the competition and infection among preda-

tors enhance the harvesting of prey. The assumptions towards the construction of the model are 

described in Section 2. In Section 3, some qualitative analysis of the positivity, persistence and 

permanence of the solution are established. In Section 4, the existence of equilibrium and local 

as well as global stability of the system in absence of delay are analyzed. Bifurcation analysis is 

also included there.  The delay-induced dynamics of the system like stability, bifurcation and di-

rection of that stability are analyzed in Section 5. Numerical simulations and result discussions 

are given in Section 6. Finally in Section 7, a brief conclusion of the biological significance of 

our findings is provided. 

 

2. Assumptions and model formulation  
 

In order to study the influence of the disease on the species in a homogeneous environment, we 

consider an eco-epidemiological model system consisting of two species, viz. prey and predator 

and their population size in time t  are )(tx and )(tP respectively.  

 

The ecological set up of the system is based on the following assumptions: 

 

A1:   The growth of prey population in absence of predator is assumed to be logistic with intrin-

sic growth rate r  ( > 0 ) and carrying capacity K ( > 0). 

 

A2:   The disease is only spread among the predator population and it is not genetically inherit-

ed. The disease infects some of the predator populations, and they are called infected pred-

ator. Predators, which are not infected, are termed as susceptible predator. Let )(ty  and 

)(tz  be the size of susceptible and infected predator populations in time t. Thus, in pres-

ence of disease or infection, we can write 

 

)(tP = )(ty  + )(tz . 

 

A3:   It is assumed that both predator classes consumes prey population. In order to incorporate 

the fact that the rate of consumption of prey population by susceptible predator population 

is more than that of the infected predator population, we have consider the  Holling type-I 

functional form of response viz. mxy  for the susceptible predator but for the infected pred-

ator population it is considered as Holling type-II functional form of response viz. 

)/( xaxz   where m and   are respectively the rate of consumption of the susceptible and 

infected predator to the prey population and a is the half capturing saturation constant.  
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A4:   The growth of the predator is assumed to be of the modified Leslie–Gower type which was 

also studied by Aziz-Alaoui and Daher Okiye (2003). In this regard, it is to be noted that 

the Leslie–Gower formulation is based on the assumption that a reduction in the predator 

population has a reciprocal relationship with per capita availability of its preferred food 

(prey). Indeed, Leslie introduced a predator prey model where the carrying capacity of the 

predator environment is proportional to the number of prey. He stresses the fact that there 

are upper limits to the rates of increase of both prey and predator, which are not recognized 

in the Lotka–Volterra model. However, In the case of severe scarcity, the predator can 

switch over to other population, but its growth will be limited by the fact that its most fa-

vourite food, the prey, is not available in abundance. The situation can be taken care of by 

adding a positive constant to the denominator, hence the growth function is considered to 

be of the modified Leslie–Gower type. Let us also introduce an intra-specific competition 

among the predators’ susceptible and infected subpopulations, with parameters   and  , 

where    as studied by Sarwardi et al. (2011). 

  

 Therefore, the system becomes 

 

        ,1 mxy
xa

xz

K

x
rx

dt

dx















 

        
Lux

zyy
sy

dt

dy






)(
,  

        
Nvx

zyz
z

dt

dz






)(
 ,     

                                               

  where s and   ( s ) are respectively the intrinsic growth rate of susceptible and infected 

predator population, u  and v  are the prey predators’ conversion factor, L and N respec-

tively represent the residual loss in species y and z due to severe scarcity of its favourite x. 

 

A5:   It is usual that a mass action incidence is considered in epidemic models, where yz  is the 

infection term,   being the infection rate. In this paper, we have replaced the infection 

term, yz  by )/( Mzyyz  , where  M  is the half saturation type constant. For large 

populations, an individual’s finite and often slow movement prevents it from making con-

tact with a large number of individuals in a unit time. Such a mechanism is better described 

by zMzyy )]/([   than yz . Pathak et al. (2011) shows that the encounter infection 

rate makes sense only when the total population is small and steady.  

 

Further, let the parameter   represent the disease transmission delay, i.e., the time   is re-

quired to become infected after contamination from susceptible predator. Therefore, the 

term ))()(/()()( Mtztytztye    denotes the conversion of susceptible preda-

tors to infected predators with exponential decay rate  . The infected prey populations re-

cover and become immune at the rate of  . However, in the presence of a disease they are 

also removed from the system at the rate of  .  

 

A6:   Harvesting has generally a strong impact on the dynamics of the system. The severity of 

this impact depends on the harvesting strategy implemented which in turn may range from 

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 10 [2015], Iss. 1, Art. 24

https://digitalcommons.pvamu.edu/aam/vol10/iss1/24



386                                                                                                                                            Samadyuti Haldar et al. 

 

 

the rapid depletion to the complete preservation of a population. Problems related to the 

exploitation of multi-species systems are interesting and difficult both theoretically and 

practically. It is assumed that only the prey population is harvested and the catch per unit 

effort (CPUE) is proportional to the stock level as introduced by Clerk (1990). Thus the 

harvesting function )(th can be written as )()( tqExth  , where q is the catchability coeffi-

cient for the prey populations.  

 

Keeping these aspects in view, the dynamics of the system may be governed by the follow-

ing system of differential equations: 

 

        ,1 qExmxy
xa

xz

K

x
rx

dt

dx














                                                   (2.1a) 

        z
Mzy

yz

Lux

zyy
sy

dt

dy













)(
,                                               (2.1b)                 

        
   

   
zz

Mtzty

tzty
e

Nvx

zyz
z

dt

dz





  









 )(

.              (2.1c) 

 

The initial conditions for the system (2.1) take the form 

 

        )()( 1  x , )()( 2  y , 

        )()( 3  z , ,0)( i  ),0,[    3,2,1,0)0(  ii ,            (2.2) 

where  

 

),],0,([))(),(),(( 3

321  RC    

 

the Banach space of continuous functions mapping in the interval  0,  into 
3

R , where 

 

}0,0,0;),,{( 33  zyxRzyxR .  

 

3. Qualitative properties of the system  
 

Discussion and analysis of a system is fundamentally centered on its solution. So it is extremely 

important to know the nature of the solutions of the system. Here, we discuss the qualitative na-

ture of the solution of the system like positivity, persistence and permanence of the system.   

 

3.1. Positivity 

 

Here, we now discuss the positivity of the solution, which confirms that the solutions of the sys-

tem (2.1) are all positive. Let us denote  

 

 int }0,0,0;),,{()( 33  zyxRzyxR ,  

 

the positive octant of 
3R . Then positivity of the solution of the system is confirmed by the fol-

lowing theorem. 
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Theorem 3.1.   

 

All the solutions of the system of equations (2.1) are positive and belong to positive octant 

int  3

R .  

 

Proof: 

 

The proof is given in Appendix A. 

 

3.2. Uniform strong Persistence  
 

Persistence in biological systems is the property which determine whether a population will con-

tinue to exist or will be annihilated. It is closely related to the stability of some equilibrium solu-

tions of the dynamical system. Thus the persistence results make the formulation of the model 

stronger.  In this section, we present the conditions for the uniform strong persistence of the sys-

tem.   

 

Let us consider  

 

rqErKM )(1  ,  ))()(( 12 LMusM  ,                                                      (3.1a) 

     NvMeMM  

1

)(

23 ,                                                                      (3.1b) 

      







 qEmM

a

M
r

r

K
N 2

3
1


 ,                                                   (3.1c)               

     









M

M

L

M
s

L
N 23

2




 ,                                                 (3.1d) 

 23 )(
1

MNN 


 .                                              (3.1e) 

 

Then, we can write the following proposition. 

 

Proposition 3.1.   
 

For the system (2.1) all the biomass has its limit supremum as well as limit infimum as t , 

i.e., 

 

  1suplim Mtx
t




,   2suplim Mty
t




,   3suplim Mtz
t




,  

  1inflim Ntx
t




,   2inflim Nty
t




 and   3inflim Ntz
t




.              

 

The proof is given in Appendix B. 
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Using the above proposition we obtain the criterion for uniform persistence. The following theo-

rem gives the result.  

 

Theorem 3.2.  
 

If  

 

(i) qEmM
a

M
r  2

3
,   

(ii)
M

M

L

M
s 23 

  and  

(iii)
N

M 2)(


  ,  

 

 then the system (2.1) is uniformly strong persistent, where ,,, 321 MMM 21, NN and 3N are as 

given above.  

 

Proof: 

 

The proof is given in Appendix C. 

 

3.3. Permanence  

  
Definition:  
 

Any eco-epidemiological system is said to be permanent (Gopalswamy, 1992), if there exists 

R,  and 0  independent of the initial condition, such that for all solution of the 

system,  

 

     











tztytx
ttt

inflim,inflim,inflimmin ,     

                                    










tztytx
ttt

suplim,suplim,suplimmax . 

 

According to this definition, it is easy to establish that our system is permanent and we can write 

the following theorem. 

 

Theorem 3.3.   
 

The system (2.1) is permanent, if it is persistent.  

 

Proof: 

 

The proof is given in Appendix D. 
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4.  Analysis of the model in absence of delay 
 

Here, we analyze the system (2.1) without delay.  At first we want to investigate the biologically 

important points of equilibrium and their stability. 

 
4.1. Equilibria analysis   
 

Our objective in this section is to investigate the equilibrium points and their stability. The sys-

tem of equation has the following equilibrium: 

 

i) The trivial equilibrium ),0,0,0(0E  

 

ii) The predator free axial equilibrium )0,0,/)((1 rqErKE  , provided Eqr / , i.e., the  bio  

technical productivity (BTP) of prey is greater than the combined harvesting effort.  

 

iii)  The disease free equilibrium  0,, 222 yxE : Solving the system of equations (2.1) assuming 

0z , we find that the disease free equilibrium  0,, 222 yxE  is given by 

 

Kmsur

KmLsEqr
x








 ))((
2  and  

Kmsur

rLsEqrsuK
y








)(
2 , provided  

)( Eqr

Lsm


  and Eqr / . 

 

iv)   The positive interior equilibrium  *** ,, zyxE : It is quite difficult to calculate explicitly the   

interior equilibrium point theoretically due to the complexity of the model. Here we only 

give the way of finding the interior equilibrium point  *** ,, zyxE  as follows:  

 

 *x  and *y  are given by the positive solutions of  simultaneous equations 

 0),( **

2  yx  and  

 0),( **

3  yx ,  

where 2  and 3  are given by  

 
yMyLxu

y
syx 1

1

11**

2

)(
),(















, 

 
*

1

1

*

1

*

1

*
**

3

)(
),(

yMyNxv

y
yx















 , 

  and  

   










 Eqym

K

x
r

xa
yx *

**
**

1 )1(),(


. 
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After obtaining *x  and *y , we can get *z  from the relation ),( **

1

* yxz  .  

 

For biological importance, we are interested about the two equilibrium points viz. the dis-

ease free equilibrium and the interior equilibrium. 

 

4.2. Stability analysis 

 

Here we discuss the local stability at different equilibrium point as well as the global stability of 

the solution of the system. After the theoretical investigation we obtain the following results. 

 

Theorem 4.1.  
 

Trivial equilibrium 0E  is always unstable.  

 

Proof:   
 

The characteristic equation of the given system around equilibrium 0E  is 

  

   .0))(()(   qErs                                                                            (4.1) 

 

Since the roots of the characteristic equation (4.1) at 0E  are  

 

,)0(

1 s ,)0(

2 Eqr    )0(

3 ,  

 

which are all positive because of the construction of the model qEr   and     always. 

Thus, the trivial equilibrium is always unstable. This completes the proof of the theorem. 

 

Theorem 4.2.  
 

The predator free axial equilibrium 1E  is an unstable saddle point with x -axis as its stable mani-

fold and the z axis as its unstable manifold but the y axis as its stable manifold, if    and  

unstable manifold, if     .  

 

Proof:   
 

The characteristic equation of the given system at the equilibrium 1E  is  

 

    .0))(()(  sqEr                                                                             (4.2) 

 

Since roots of the characteristic equation (4.2) at 1E  are  

 

sqEr  )1(

3

)1(

2

)1(

1 ,),(  ,  

 

the first eigenvalue is negative when  
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E
q

r
 ,  

 

i.e., the BTP of the prey is greater than the harvesting effort and it is quite natural. When 1E  ex-

ists, then the above condition is satisfied. The third eigenvalue is positive. The second eigenvalue 

is negative, if   and positive, if    . So this axial equilibrium 1E  is unstable sad-

dle point with x -axis as its stable manifold and z axis as its unstable manifold, but y axis as its 

stable manifold, if    and unstable manifold, if     . This completes the proof of 

the theorem. 

 

Theorem 4.3.   

 

Suppose the disease free equilibrium )0,,( 222 yxE  exist. Then,  

 

(i)  if 0 and 0 , the disease free equilibrium is always stable,  

(ii)  if 0 and 0 , the disease free equilibrium is stable for    and the system un-

dergoes through a Hopf bifurcation at   ,  

(iii) if 0 and 0 , the disease free equilibrium is stable for   ,  

(iv)  if 0 and 0 , the system is stable for    and   . Also the system under-

goes through a Hopf bifurcation at   ,  

 

where  

 

        



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2

2
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2

2

2

y

Lxu
my

K

xr
qEsr ,  2x and 2y  are given above. 

Proof:   
 

The characteristic equation of the given system at the equilibrium 2E  is  

 





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
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                                             0
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
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
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y
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. 

 

The eigenvalues are  

 

My

y

Nxv

y







2

2

2

2)2(

1


 , )2(

2  and )2(

3   

 

that are the roots of the quadratic equation  
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
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2E  will be locally asymptotically stable, if  0)2(

1   and 0)(Re )2(

3,2  . Clearly, 0)2(

1  , if         

       

0
2

2

2

2 






My
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Nxv

y 
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and for  
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22

2

2
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2 

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Lux

y
my

K

xr
qEsr


 or,   ,  

 

the real part of 0)2(

3,2  . But, when   , then the real part of  )2(

3,2  are zero. Moreover, in this 

case, the transversality condition for Hopf bifurcation  

 

0
)()2(

3,2







d

d
 

 

holds. Remember that  and   are positive quantity. Thus, (i) when  and   are negative, the 

conditions   and  for    holds automatically.  So the system is locally stable always.    

(ii) If 0 and 0 , then obviously   . So the system is locally stable for    and 

the system undergoes through a Hopf bifurcation at   . (iii) If 0 and 0 , the disease 

free equilibrium is stable for    as   holds normally.  (iv) If 0 and 0 , the sys-

tem is stable for    and   . Also the system undergoes through a Hopf bifurcation at 

  .  

 

This completes the proof of the theorem. 

 

Remarks:  
 

The intra-specific competition coefficients among the predators’ susceptible and infected sub-

populations plays a role to destabilize the system from stable situation.       

         

We shall now examine the local stability of the system at the point of interior equilibrium 

 **** ,, zyxE . The Jacobian of the system is   ,33x

ij RJ   where                                                              

  

 

 

 

              

(4.3) 
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The characteristic equation at the interior equilibrium point  **** ,, zyxE  is  

 

032

2

1

3  aaa                                                                                                      (4.4) 

 

where  

 

22212 aaa  , 32313 aaa    
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)( xa

z

K
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


 ,  

then 01 a . Also, if 3231 aa   then 03 a . 

 

According to Routh-Hurwitz criterion, we obtain the following theorem for local stability of the 

system (2.1) at the interior equilibrium point  **** ,, zyxE . 
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Theorem 4.4.   

 

The model system (2.1) is locally asymptotically stable at the interior equilibrium point  

 **** ,, zyxE , if  
2*

*

)(
)

xa

z

K

r
i




 , 3231) aaii   and  321) aaaiii   holds. 

4.3. Global stability  
 

In the case of bi-dimensional epidemic systems, Perko (1996) states that the global stability of 
*E may be obtained by using the Dulac criterion and Poincar´e–Bendixson theorem. But, for 

higher dimensional systems, the geometrical approach is a more powerful technique that has 

been extensively applied to study the global behavior of many epidemic models, as for example 

see Sun et al. (2007). Following the geometric approach introduced and described by Li and 

Muldowney (1996), we have obtained the following result which ensures the global stability of 

the system (2.1) at the interior equilibrium point  **** ,, zyxE . 

 

Theorem 4.5.   

 

 If the endemic equilibrium of the system (2.1) exists then the sufficient condition for global sta-

bility of the system (2.1) at that endemic equilibrium point is  0 , where  

 

 210 ,max   , 12111   , 2221202   , ij   

 

are given in the Appendix D. 

 

Proof: 

 

The proof is given in Appendix D. 

 

4.4. Bifurcation due to competition 

 

When a stable steady state goes through a bifurcation, it will lose its stability or may perish. 

Even, if the system ends up in another steady state, the transition to that state will often involve 

the extinction of one or more level of food chain. The entire system may survive in a non-

stationary state, but another bifurcation may lead to local extinction of every population. To pre-

serve the system in its natural state, cross bifurcation should be avoided. Thus the estimation of 

critical values of the bifurcation parameter is a crucial part of the analysis of a system. 

 

Bifurcation may occur for more than one variable. Liu (1994) derived a criterion of Hopf bifur-

cation without using the eigenvalues of the variational matrix of the interior equilibrium point.  

 

Let  or( ) be the bifurcation parameter.  

 

Liu’s criterion:   

 

If the characteristic equation at the interior equilibrium point  **** ,, zyxE  is given by  
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0)()()( 32

2

1

3   aaa ,  

 

where  

 

)(),()()()(,)( 33211  aaaaa    

 

are smooth functions of   in an open interval about *  such that  

      

 i) * *

1 3( ) 0, ( ) 0a a     

 

and  

  

ii) *( ) 0  ,  

 

but  

 

iii) 
*

0
d

d
 




 
 

 
 then a simple Hopf bifurcation occur at *  .  

 

We investigate the bifurcation of the model for   (the intra-specific competition factor of 

sound predator to the whole predator subpopulation) and   (the intra-specific competition 

factor of infected predator to the whole predator subpopulation) separately. Due to complexity of 

the model, we are unable to find theoretically the specific criterion of bifurcation for  and  , 

but numerically we are able to find * and * . 

 

Remarks:  

 

For or   , since  

 

0)( *   and 0
*








 


d

d
, 0)(   , for *  , 

 

and according to the Routh-Hurwitz criterion, ),,(*  zyxE  is locally asymptotically stable for 
*  (i.e., *   or *  ) and for *0   (i.e. *0    or *0   ), it approaches 

a periodic solution that implies that the system is unstable. So the system where only prey popu-

lation are harvested, the competition among predators subpopulation for existence of life (spe-

cially, for food) bifurcate the system from stable situation to unstable. In other words, to obtain 

sustainable yield from this system, higher rate of competition is desirable.  

 

5.  Dynamics of the delay system 
 

We shall now investigate the dynamics of the delay system (2.1) at the interior point.  
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5.1. Delay-induced Bifurcation  

 

To study the behavior of the system at the interior equilibrium point  **** ,, zyxE  we use the 

transformation  
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Then, the linear system is given by  
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The characteristic equation of the system (5.1) at  **** ,, zyxE  is  

        ,0),(),(   eQP                                                                                                    (5.2) 

where  
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                      2231133321123123123322113 )( mmmmmmmmmmmma  , 331 )( nb  ,              

                      32233322112 )()( nmnmmb  , 3221133321123223113322113 )( nmmnmmnmmnmmb  . 

 

The necessary condition of delay-induced instability of the system (5.1) at  **** ,, zyxE  is that 

the delay induced characteristic equation (5.2) has a purely imaginary solution. One thing to be 

noticed here is that ),( P  and ),( Q  are delay dependent. The main complication arises when 
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we proceed to investigate the existence of purely imaginary root, 1 i  of the characteristic 

equation (5.2) of the system (5.1). Here we follow the approach developed by Beretta and Kuang 

(1998). 

 

Let max  be the maximum value of   for which  **** ,, zyxE  exists.  For ],,0[ max   we as-

sume the following: 

 

         (i) ,0)()(),0(),0( 33   baQP  

         (ii)     0)()()()()()(),(),( 2121

3

111

2

13311   baibabaiQiP . 

 

We further noticed that 

 

         (iii) 10
)()()(

)()()(lim

),(

),(lim

32

2

1

3

32

2

1 















 







 aaa

bbb

P

Q
 . 

 

Now, 
2

1

2

11 ),(),(),(  iQiPF  is a polynomial of degree 6. Therefore,  

         (iv) ),( 1 F  has infinite number of zeroes.  

By the implicit function theorem, we have 

 (v) every positive simple root )(1   of 0),( 1 F  is continuous and differentiable in   

whenever it exists. 

 

Let )()()( 11  i  be an eigen value of the system. It is assumed that the change of sta-

bility will occur for 0)Re(  . Therefore, we substitute 1 i  in (5.2) and separating the real 

and imaginary parts, we get      

 

         )sin()cos()( 1213

2

113

2

11  bbbaa  ,                                                                                      

         )sin()()cos( 13

2

1111212

3

1  bbba  ,       

                                                                          

which gives  

 

         
22

113

2

1

2

2

12

3

13

2

113

2

1112

1
)(

))(()(
)sin(






bbb

abbaab




                                                     (5.3) 

and 

         
22

113

2

1

2

2

2

113

2

11312

3

112

1
)(

))(()(
)cos(






bbb

bbaaab




 ,                                                  (5.4) 

 

where we notice that  
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0),()(
2

1

22

113

2

1

2

2   iQbbb  

 

(because 0),( 1 iQ  would imply 0),( 1 iP , a contradiction to (ii) above). 

 

Squaring and adding (5.3) and (5.4), we get  

 

        0),( 3

2

12

4

11

6

11  dddF  ,                                                                           (5.5) 

 

where  

 
2

12

2

11 2 baad  ,  2

23131

2

22 22 bbbaaad  , 3

3

2

33 bad  .  

 

Thus, 1  in terms of  can be obtained from equation (5.5). For each  ,  equation (5.5) has at 

most  a finite number of roots, and ensures that only a finite number of ‘gates’ for the roots to 

cross the imaginary axis. Let us define  

 

0:{  J , where )(1   is a positive root of (5.5)}.  

 

Thus, if cJ then there is no positive solution of (5.5), and thus no stability switches occur. 

Now, for any J , we can define )2,0()(    as the solution of (5.2). Therefore, 

 

        
),()(

))(()(
))(sin(

1
22

113

2

1

2

2

12

3

13

2

113

2

1112






iQbbb

abbaab 





 ,                               (5.6) 

        
),()(

))(()(
))(cos(

1
22

113

2

1

2

2

2

113

2

11312

3

112






iQbbb

bbaaab 





 ,                             (5.7) 

 

where   and  are continuous and differentiable functions of   such that 

 

         
4

1

22 ),( iP  and  .),(),(
2

1

2

1  iPiQ    

Putting )(11    in (5.6) and (5.7), )2,0()(    can be determined as follows: 

 

        

arctan ,   if sin( ( )) 0, cos( ( )) 0,   

 , if sin( ( )) 1, cos( ( )) 0,
2

arctan ,  if cos( ( )) 0,  ( )

3
, if sin( ( )) 1, cos( ( )) 0,  

2

2 arctan ,  if sin( ( )) 0, cos( ( )) 0. 

   


   

   


   

    


  


  




  




  



   

                                      (5.8)                
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We noticed that for )(,  J  defined as above, is continuous at  and, if J  ),2,0()( , 

then )( is also differentiable at  .  

 

Now from equations (5.3), (5.4) and (5.8), we have  nJn ,,2)()(1  N0. 

 

Let us define the maps Jn : R+0 given by   

         nnn ),2)((
)(

1
)(

1




 N0, ,J  )(1   

 is a positive simple root of  

        0),( 1 F . 

 

We now introduce the function  

 

        JSn : R by  nJS nn ,),()(  N0,                             (5.9)                                                                   

 

which are continuous and differentiable at  .  We notice that, the values of  )( J  at which 

stability switches may occur, are the solutions of 0)( nS  for some n N0, provided the corre-

sponding transversality condition is satisfied. To find out the transversality condition, we differ-

entiate the characteristic equation (5.2) with respect to  , which gives us  

 

        
iLK

iHG

d

d

i





















1

,                                                            (5.10) 

 

where the values of LKHG ,,,   are given in the Appendix F. Therefore, 

 

        
22

1

Re
LK

HLGK

d

d

i



































. 

 

Now we assume  

 

        )( sign































i
d

d
1

Re . 

 

Then, we have the following theorem: 

 

Theorem 5.1.   

 

Let )(1  be the positive root of equation (5.5) for J  and for some J* and n N0, 

.0)( * nS  Then a pair of simple conjugate pure imaginary roots )()( *

1

*  i , 

18

Applications and Applied Mathematics: An International Journal (AAM), Vol. 10 [2015], Iss. 1, Art. 24

https://digitalcommons.pvamu.edu/aam/vol10/iss1/24



400                                                                                                                                            Samadyuti Haldar et al. 

 

 

)()( *

1

*  i  of (5.2) exists at *  , which crosses the imaginary axis from left to right, if 

0)( *  and crosses the imaginary axis from right to left, if 0)( *  . 

 

Now subsequently, using the stability criterion of the interior equilibrium,  **** ,, zyxE  of sys-

tem (2.1) in the absence of delay (Theorem 4.4) and the Hopf bifurcation theorem, we can have 

the following theorem for the existence of Hopf bifurcation near  **** ,, zyxE . 

 

Theorem 5.2.   

 

Let 0,0 31  aa  and 0)( 321  aaa . Again, let )(1   be a positive root of (5.5) defined 

for J and at some J* , 0)( * nS  for some n N0. Then the system (2.1) exhibits a Hopf 

bifurcation near *E , provided that 0)( *  . As   increases from zero upward the first such 

Hopf bifurcation will be from stable to unstable, the second from unstable to stable, and the third 

from stable to unstable and so on. 

 

5.2.  Direction of the Hopf-bifurcation 

 

In this section we shall study the direction of the Hopf-bifurcation and the stability of the bifur-

cating periodic solutions. In the previous section we obtain the conditions under which a family 

of periodic solutions bifurcates from the positive equilibrium *E at the critical value * . Assume 

that the system (2.1) under goes a Hopf bifurcation at the positive equilibrium *E for  *  , 

i.e., the Theorem 5.1 hold. Following the ideas of Hasserd et al. (1981), here we derive the ex-

plicit formula for determining the properties of Hopf Bifurcation at *  by using the normal form  

and centre manifold theory.  

 

Let  
*

2

*

1 , yyxxxx  , *

3 zzx  ,    txtx ii  , 3,2,1i   

 

(rescale the time by )( tt  to normalize the delay) and   *  (here   is the bifurcation 

parameter). Leaving the bars for the simplifications of notations, the system (2.1) becomes a 

functional differential equation in   3,0,1 RCC   as 

 

        ),()( tt XfXL
dt

dX
  ,                                                                                                (5.11) 

where  

 
3

321 ))(),(),(( RtxtxtxX T

t   and ,: 3RCL    3: RCRf    

 

are, respectively, the linear and nonlinear term of the Tailor series expansion of the right hand 

side of the system (2.1). 

 

By the Riesz representation theorem described by Hale and Verduyn (1993),   a function 

  , of bounded variation for  0,1  such that      




0

1

,, CfordL  . 
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Let us define  

 

                     

 
 

   





















0

1

0,,

0,1,










ssd

d

d

A      and      
 

 

0, 1,0

, , 0,
R

f


 

  

 
 



    

for   3,0,1 RC  .  Then, the system (5.11) is equivalent to  

        tt XRXA
dt

dX
)()(      

where 

     tXX t , for  0,1 .       

If q is the eigen vectors and  
*q  is the adjoint eigen vector of   0A  corresponding to the eigen-

value **

1 i  of  0A , then due to Kuznetsov (1997), we can write the following expression: 

        ,2,)(,

0

* 









srqzzqFq
zz

g

z

sr

sr

rs     , 0,1,2, ... ,r s   

where  ,  is the standard bilinear scalar product in nR  and z  and z  are local co-ordinates for 

the center manifold 0C  in the direction of q and *q . We have calculated thoroughly and ob-

tained the expressions of rsg , which are not given here. One can follow Chakraborty et al. (2013) 

for obtaining those terms and techniques. According to that, we can easily compute the following 

values: 

         
23

2
2

0 21

2

022

111120**

1

1

gg
ggg

i
c 

















,   

        
  
  *

1
2

Re

0Re







c
,                                                                                                           (5.12) 

          0Re2 12 c ,            

        
     

**

1

*

21
2

Im0Im



 


c
T ,   ....,2,1,0 k  

 

Now, we state the following theorem: 

Theorem 5.3.  

 

(i)  The sign of 2  determined the direction of  Hopf bifurcation, i.e., if  00 22    then the 

Hopf bifurcation is super critical (sub critical) and the bifurcating periodic solution exist for 

 **   .  
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 (ii)  The sign of 2  determines the stability of the bifurcating periodic solution i.e. the bifurcat-

ing periodic solution is stable (unstable), if  00 22   .  

(iii) The sign of 2T  determines the period of the bifurcating periodic solution i.e.  the period in-

crease or decrease according as 02 T  or 02 T .  

 

6. Numerical simulations and result discussions 
 

It is quite difficult to have numerical value of the parameters of the system based on real world 

observations. As our present work is not a case study no real world data is available. Hence for 

the purpose of simulation we have used a simulated set of parameters in appropriate units. On the 

other hand, it is necessary to have some idea regarding the sensitivity of the parameters in con-

nection to the observed real system. Therefore, the major results described by the simulations 

presented should be considered from a qualitative, rather than a quantitative point of view. Even 

in absence of real world data, our simulation covering the breath of the biological feasible pa-

rameter space makes some sense from all the scenarios tested. For the purpose of simulations, we 

consider the following set of simulated parameters:       

                                                                    

 ,9.0,1.0,5.0,4.1,8.1,71.0,3.0,70,8.6{1  EqaMLNmKrP              

}23.0,12.0,316.0,45.0,25.0,7.0,6.1,6.2,15.3,2.0,5.4   usv . 

 

MATLAB 7.10 and Mathematica 9.0 are the main software used for the purpose of simulation 

experiments.   

 

6.1.  Stability and bifurcation due to competition  
 

For the above set of parameters, the infection free planer boundary equilibrium is 

0) 2.215, (0.655,2E , the stability of  which is  confirmed by the phase plane diagram in Fig.1. So 

without infection prey and predator drive the system in equilibrium.  The interior coexistence 

equilibrium with respect to this parameter set is )882.3872,16.81.36733,14 (*E  which is asymp-

totically stable. The stability confirms by the time plot and the phase plot for 316.0  in Fig-

ure 2.a where there is no limit cycle. Next we try to establish bifurcation of the system (2.1) in 

absence of delay for the parameter  and . 

 

At first, we consider the parameter  . We decrease the value of   keeping other parameters 

same and observed that the system becomes unstable for 315.0 . Figure 2.b shows the oscil-

latory solution with a limit cycle in phase plot. Here the critical value of   is 3158.0*  . 

Since the system becomes unstable as it passes through * ,  there arises a Hopf bifurcation at 
* . Hence, the parameter   has a property of stabilization when *   as shown in Table 1.  

The Table 1 depicts the changes of nature of the  point of interior equilibrium from unstable to 

stable as we increase   through .*  We see that *x and *z  i.e. equilibrium prey and infected 

predator are increasing but *y  i.e., susceptible predators are decreasing. 
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           Figure 1. Phase plot of infection free equilibrium 

 

 

 

Figure 2.a. Time and phase plot of populations 

without delay  with parameter set 1P  

for 
*316.0    

Figure 2.b. Time and phase plot of populations 

without delay with parameter set 1P  

for *315.0    
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   Table 1.  Point of equilibrium with different sigma around critical value * 0.3158   
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Now, we want to investigate the stabilizing effect of  . For that we consider 2.0  and 

2836.0  with the same value of other parameters in the parameter set 1P . The time plot in 

Figure 3.a reveals that the system is unstable and there is a limit cycle in the corresponding phase 

plot. But, if we gradually increase the value of  , then the similar figure in Figure 3.b for 

2842.0  shows that the system  becomes asymptotically stable which confirms by the ab-

sence of limit cycle in the corresponding phase plot. Thus there arises a Hopf bifurcation when 
*  , where 2841.0*   is the critical value of  . Therefore, the parameter   has a proper-

ty of stabilization when it is increasing through it’s critical value * .  Table 2 also shows the 

nature of the system with the change of    through * . It is a natural phenomenon in a prey 

predator model that several species when coexists, must compete with each other for their food 

and shelter i.e. for their existence. This competition reduces them in general. Here this competi-

tion plays among predator subpopulations only. 

Observations 

No. 

Value of 

  
Interior equilibrium *E  Nature of the 

system *x  *y  *z  

1 0.310 1.35521 14.4569 16.6322 Unstable 

2 0.315 1.36531 14.3987 16.8456 Unstable 

3 0.316 1.36733 14.3872 16.8882 Stable 

4 0.320 1.37539 14.3416 17.0579 Stable 

Figure 3.a.  Time and phase plot of popula-

tions without delay with parame-

ter set P1 for 
*2836.0    

Figure 3.b. Time and phase plot of populations 

without delay with Parameter set P1 

for 
*2842.0    
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            Table 2.  Point of equilibrium with different sigma around critical value * 0.2841   

 

 

 

     

 

 

 

 

 

 

In our model, we consider two separate competition rate. One is among the susceptible with the 

whole predator biomass and the other, is among the infected with whole predator biomass. We 

have separately investigated their influence on every species. But species are interacting among 

themselves under the simultaneous influence of both the parameters   and  . Here we have 

depicted three different figures which reveal the quantitative change of  three population with 

respect to   and  . 

             
Figure 4.a. Variation of x(t) w.r.t.  and      Figure 4.b. Variation of y(t) w.r.t.  and        

 

              
 

Observations 

No. 

Value of 

  
Interior  equilibrium *E  Nature of the 

system *x  *y  *z  

1 0.2836 1.41807 17.3043 10.5952 Unstable 

2 0.2838 1.41910 17.3080 10.5915 Unstable 

3 0.2840 1.42014 17.3117 10.5878 Unstable 

4 0.2842 1.42117 17.3155 10.5841 Stable 

5 0.2844 1.42220 17.3192 10.5804 Stable 

      Figure 4.c. Variation of z(t) w.r.t.  and                 
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Figure 4.a clearly shows that prey population )(tx  is increasing with the increase of both the pa-

rameters   and  . Figure 4.b reveals that at low   and   susceptible predator )(ty  increases, 

but at their high value, )(ty decreases finally. In figure 4.c we see that for increase of  , )(tz  

increase rapidly at  low value of  , but at high value of  , )(tz increases moderately. However, 

)(tz increases for increase of . On the other hand for increase of  , )(tz decreases slowly at 

low  , but it decreases rapidly at high  . In any ways, )(tz decreases for increase of  . The 

above phenomena are summaries in the following Table 3 and Table 4.                 

 

     

 Table 3. Tendency of biomasses with increase of   

 

          Table 4. Tendency of biomasses with increase of   

 

One thing to remember is that,   should be greater than  , otherwise the system may be unsta-

ble due to extinction of one or more species (Sarwardi et al., 2011). We observed in our previous 

discussion that under the considered parameter set P1, the system becomes stable with respect to 

the two competition rate   and   at their critical values 3158.0*  and 2841.0*   where 
**   also.  

 

The obtained results can be described ecologically.  Note that   and   must reduce infected 

predator as well as susceptible predator and that also reduce the consumption of prey.  As a result 

prey population increases. When both   and   are small, competition among predator is very 

low. Naturally, susceptible predator consumes more prey and increase themselves. But when   

increases, susceptible predator will reduce more than infected class. Not only that when   is 

low, reduction of infected predator is low than that at high value of  . So the existing infected 

class will get more food than before and increase them. Simultaneously, infection among suscep-

tible predator increases the infected class also.  These combined effects finally cause an increase 

in )(tz .  But with the increase of  , competition of infected class with the whole predator bio-

mass becomes high which in turn reduce the increment rate of  )(tz  and )(tz  increases moder-

ately at high  . Thus to increase prey abundance for the interest of harvesting in this eco-

epidemic system, higher value of   is desirable with the higher value of  .   

 

6.2.2.  Effect of varying infection rate  

 

The rate of infection (  ) has a great importance in this eco-epidemic system. In Figure 5, we see 

that infected predator populations are increasing (Figure 5.a) noticeably but susceptible predators  

are decreasing (Figure 5.b) with increasing infection rate. This is obvious because increase of 

   As  increase At low   At high   

x(t)  (Figure 4.a)                                        Increases 

y(t)  (Figure 4.b) Initially increases and then decreases Decreases 

z(t)  (Figure 4.c) Decreases with low rate Decreases with high rate 

As  increase At low   At high   

x(t)  (Figure 4.a) Increases 

y(t)  (Figure 4.b) Initially increases and then decreases decreases 

z(t)  (Figure 4.c) Increase with high rate Increase moderately 
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infection in susceptible predator reduce them and increase the infected class. Since   infected 

predator consumes less number of prey than susceptible predator due to their physical weakness 

as described in (A3) of section 2, total predation by the predators (both susceptible and infected) 

reduces. This is shown in Figure 5.c. and it’s inset figure. On the other hand, decrease of preda-

tion  increase the prey population which is shown in Figure 5.d. (clearly shown at the inset fig-

ure). This is desired and achieved. Therefore, infection rate among predators should increase the 

harvesting of prey, and more infection among predator is desirable for obtaining MSY(maximum 

sustainable yield) in this prey harvested system. So infection rate can be a regulatory parameter 

in our system. 
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 Figure 5.  Variation of infected predator (a), susceptible predator (b), total predation and prey(a)  for 

different values of  . 

 

 

6.3. Delay-induced bifurcation: switching stability 

 

In this section, we present some numerical results of the delayed system with graphical illustra-

tions to establish the theoretical results derived earlier. For this purpose, we shall use the parame-

ter set mentioned above. We have numerically studied delay induced stability of the system. It is 

to be noted that the critical value of delay is 378.2
*

1   which satisfies the conditions, 2  < 0, 

2 > 0, 2T  > 0. Therefore, according to Theorem 5.2, we can state that the system is locally as-

ymptotically stable around ),,( **** zyxE  when 
*

1   and unstable when
*

1  . The time se-

ries solution curves and phase space trajectories of the system (2.1) for )(37.2 *

1  in Fig-
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ure 6.a shows that system is stable. But for *

138.2   , the system is unstable which is con-

firmed by the Figure 6.b with limit cycle in the corresponding phase plot. 
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Moreover, Theorem 5.2 states that, if the necessary conditions, for the existence of Hopf bifurca-

tion, are satisfied and τ increases from zero upward then first such Hopf bifurcation would be 

stable to unstable, the second from unstable back to stable, the third from stable to unstable and 

so on.  In order to validate the theorem, if we gradually increase the value of τ, we obtain another 

critical value 75.9
*

2  , and for *

268.9    the system remains unstable around ),,( **** zyxE .  

This is shown in Figure 8.a, where we see a limit cycle around *E .  Further we increase  and 

for  *

276.9   , it is clearly observed from Figure 8.b that  the positive equilibrium 

),,( **** zyxE  become stable and the periodic orbit near ),,( **** zyxE  disappears.  

 

7. Conclusion 

In this paper, we have analyzed the dynamical behavior of a prey-predator type system with dis-

ease in the predator population. The growth of the predators’ susceptible and infected subpopula-

tions is assumed as the modified the Leslie–Gower type. In addition to the inter-specific compe-

tition among the predators’ subpopulations, we have incorporated the intra-specific competition 

among the predators’ susceptible and infected subpopulations. Existence and stability criterion of 

different equilibrium points and the criterion for uniform strong persistence of the system are de-

rived. In this regard, it is observed that a structured population is permanent, if it is uniformly 

(strongly) persistent. We have derived the existence and stability criterion of the different equi-
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Figure 6.a. Time and phase plot of  popula-

tions  for parameter set P1 with 

time delay 2.37   

Figure 6.b. Time and phase plot of  popu-

lations  for parameter set P1 

with time delay 38.2  
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Figure 7.a. Time and phase plot of  populations  for 

parameter set P1 except ,2.0  

23.0  with time delay 

.68.9 *   

librium points. The equilibrium system without predator exists only when the BTP of the prey is 

greater than the harvesting effort, but this equilibrium is unstable. Disease free equilibrium exists 

under certain conditions.  The stability criteria of disease free equilibrium points are discussed. 

The system is also locally, as well as, globally stable at the interior equilibrium point under cer-

tain conditions. 
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It is well accepted that the competition among the predators is influencing the interaction of the 

species of a prey-predator system. It is evident from the obtained results that the (inter specific 

and intra specific) competition among predator species can cause an unstable system to become 

stable equilibrium and even a simple Hopf bifurcation can occur when it passes through its criti-

cal value. Not only that, the high competition among predators increase prey biomass and de-

crease the predator biomass. As a result, total harvest increases by the increase of prey abun-

dance. Hence to obtain maximum sustainable yield (MSY) for long time prey harvesting, compe-

tition among predators can enhance the harvesting.   

 

Again, the consideration of a disease in predator population makes the system extremely com-

plex. It is reasonable that the increase of disease transmission rate in predator population reduce 

them. But here increase of this infection rate increase the prey population with the reduction of 

predator which in turn increase the maximum sustainable yield (MSY). Thus to control an ex-

Figure 7.b. Time and phase plot of  popula-

tions  for parameter set P1 except ,2.0  

23.0   with time delay .76.9 *   
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ploited prey predator eco-epidemic system leading to increase harvesting, diseases transmission 

rate in predator is a controlling parameter and it is desirable. However, the consequent results are 

important towards the conservation of the species and the sustainability of the system.  

 

The dynamic behavior of the system with diseases transmission delay is examined in the second 

part of the paper. In order to prove that delay differential equations exhibit much more compli-

cated dynamics compared to ordinary differential equations, we have rigorously studied the ef-

fects of delay on the dynamics of a prey-predator system. It is clearly observed from the obtained 

results that the time delay can cause a stable equilibrium to become unstable, and even a simple 

Hopf bifurcation may occur when the time delay passes through its critical value. Subsequently, 

the system may exhibit cycle behavior and due to this cyclic nature some population exhibit pe-

riodic fluctuation in abundance. It is also clear that, when the time delay is small, both the prey 

and predator populations reach periodic oscillations around the equilibrium in finite time and 

then converge to their equilibrium values. As the diseases transmission delay increases, the oscil-

lations also increases.  

 

But, when the diseases transmission delay is too long, the positive steady state disappears. How-

ever, if we continuously increase the value of diseases transmission delay then the stability of the 

system may be resumed due to the conversion efficiency of predator (susceptible and infected) 

into new predators. Therefore, we can conclude that diseases transmission delay of certain di-

mensions can induce instability oscillation via Hopf bifurcation due to some impulsive phenom-

enon, consequently, switching stability behavior may be incurred to the system. The conditions 

to determine the direction of Hopf bifurcation are obtained. However, the model and its dynam-

ical behavior are studied mainly on the deterministic framework. In this regard, we can say that it 

will be more realistic to consider the model in a stochastic environment due to ecological fluc-

tuations. This needs further future work in this context. 
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APPENDICES 

 

Appendix A: Positivity  (Proof of  Theorem 3.1) 

 

From the first equation of the system (2.1), we get 
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Taking integration over  t,0 , we get     0exp0
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where  
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Similarly, from second and third equations of the system (2.1), with ,0)0( y  and ,0)0( z   

we can write   
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Thus, all the solutions of the system of equation (2.1) are positive. Hence the desired result is 

obtained. 

 

 

Appendix B  (Proof of  Proposition 3.1) 

 

For this we shall first state a result according to Chen (2005) as follows: 

 

Lemma 1.  
 

If 0,0  ba  and         taSbtStS  , where   is a positive constant, when 0t  and  

 

  00 S , we have    
  






11

1
0

1
































 tbe

a

bS

a

b
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Now, from the first equation of the system (2.1)  we have for all 0t , 

 

           
 










K

trx
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According to the Lemma 1, we have   

 

            1suplim MrqErKtx
t




 (say).                                                                               (B.1) 

                                                                               

Now, we can say that, for any 0  there exists 01 T  such that, 

          11 , TtMtx   .         
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From the second equation of the system (2.1) we have for all  Ht ,0 , 
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Then we can say that, for any 0  there exists 012  TT  such that, 
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Then, we can say that, for any 0  there exists 023  TT  such that, 

          33 , TtMtz   . 

Further, from the first equation of the system (2.1)  we have,   
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By the above lemma 1, we can conclude that, 
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Then, we can say that, for any 0  there exists 034 TT  such that,     
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From the second equation of the system (2.1) we have, 
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By the above lemma 1, we can write that, 
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Then, we can say that, for any 0  there exists 045  TT  such that,  
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Finally from the third equation of the system (2.1) we have, 
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By the Lemma 1, we can write 
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This completes the proof of the theorem. 

 

 

Appendix C: Persistence ( Proof of Theorem 3.2) 

 

From the Proposition 3.1, it is observed that the system (2.1) has limit supremum and limit infi-

mum as t . For the persistence all constants 21321 ,,,, NNMMM and 3N  defined by the 

equations (B.1)-(B.6) (in Appendix B) respectively must be greater than zero, i.e. 0,0  ii NM  

for  i=1,2,3. 

 

Now 01 M  qrE / , the BTP of the prey species. It is easy to state that for the existence of 

positive boundary equilibrium )0,0),(( tx , qrE /  always true and we can take      

         0/ Eqr .  

Again  0,0 32  MM ,  without confusion by their expression. 

 

Also  
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M
r  2

3
  

and    

02 N    
M

M

L

M
s 23 

  . 

Further, 03 N   NM /)( 2  . Hence, the required results are obtained. 

 
Appendix D: Permanence (Proof of Theorem 3.3)  

 

When the system (2.1) is persistent, all constants 21321 ,,,, NNMMM  and 3N  are greater than 

zero. So, 

 

  0,,min 321 NNN and   0,,max 321 MMM .  

 

Also it is obvious that, supliminflim  .  So,    suplimmaxinflimmin  . Thus, there exists 

,  defined by  321 ,,min NNN and   321 ,,max MMM  then    0 . Hence, by the 

definition, the system is permanent. 

 

Appendix-E: Global stability (Proof of Theorem 4.5.) 

 

Here we will use geometric approach described by Li and Muldowney (1996) to show an  

n-dimensional autonomous dynamical system  
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        )(Xf
dt

dX
  ,                                                                                                                     (E.1) 

 

where nn RDRDf  .:  an open and simply connected set and )(1 DCf   is globally stable 

under certain parametric conditions. For details see Buonomo et al., 2008, Chakraborty et al., 

2013.  

 

A steady-state  X of (E.1) is said to be globally stable in  D , if it is locally stable and all trajec-

tories in D  converge to X . Let ),( 0XtX denote the solution of (E.1) satisfying 

00 ),0( XXX  and Df  the Jacobian matrix of f at X. Assume that (E.1) satisfies the following 

two conditions: 

 

         (H1) System (E.1) has a unique steady-state X in D . 
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The variational matrix of the system can be written a   
ijJ

X

f
V 




 .  If  2V  be the second addi-
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Let us now define the following vector norm in 3R as: 

 

 ),,( wvu max },{ wvu  ,  

where ),,( wvu  is the vector in 3R  and denote by M , the 1 is the Lozinskii measure with re-

spect to this norm. Therefore, 
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Now from the third equation of the system (2.1) we can write 
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Hence, from (E.2) )()( 01  
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Along each solution ),( 0XtX  to (D.2) such that 0X , we have  
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Therefore,  02 q  provided  0 . Hence, we can conclude that the system is globally 

stable and the  Theorem 4.5  thus verified. 
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(dash denotes the derivative with respect to  ) 
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