11 research outputs found

    A decomposition based proof for fast mixing of a Markov chain over balanced realizations of a joint degree matrix

    Get PDF
    A joint degree matrix (JDM) specifies the number of connections between nodes of given degrees in a graph, for all degree pairs and uniquely determines the degree sequence of the graph. We consider the space of all balanced realizations of an arbitrary JDM, realizations in which the links between any two degree groups are placed as uniformly as possible. We prove that a swap Markov Chain Monte Carlo (MCMC) algorithm in the space of all balanced realizations of an {\em arbitrary} graphical JDM mixes rapidly, i.e., the relaxation time of the chain is bounded from above by a polynomial in the number of nodes nn. To prove fast mixing, we first prove a general factorization theorem similar to the Martin-Randall method for disjoint decompositions (partitions). This theorem can be used to bound from below the spectral gap with the help of fast mixing subchains within every partition and a bound on an auxiliary Markov chain between the partitions. Our proof of the general factorization theorem is direct and uses conductance based methods (Cheeger inequality).Comment: submitted, 18 pages, 4 figure

    Parallel enumeration of degree sequences of simple graphs. II.

    Get PDF
    Abstract In the paper we report on the parallel enumeration of the degree sequences (their number is denoted by G(n)) and zerofree degree sequences (their number is denoted by (Gz(n)) of simple graphs on n = 30 and n = 31 vertices. Among others we obtained that the number of zerofree degree sequences of graphs on n = 30 vertices is Gz(30) = 5 876 236 938 019 300 and on n = 31 vertices is Gz(31) = 22 974 847 474 172 374. Due to Corollary 21 in [52] these results give the number of degree sequences of simple graphs on 30 and 31 vertices.</jats:p

    The mixing time of the switch Markov chains: a unified approach

    Get PDF
    Since 1997 a considerable effort has been spent to study the mixing time of switch Markov chains on the realizations of graphic degree sequences of simple graphs. Several results were proved on rapidly mixing Markov chains on unconstrained, bipartite, and directed sequences, using different mechanisms. The aim of this paper is to unify these approaches. We will illustrate the strength of the unified method by showing that on any PP-stable family of unconstrained/bipartite/directed degree sequences the switch Markov chain is rapidly mixing. This is a common generalization of every known result that shows the rapid mixing nature of the switch Markov chain on a region of degree sequences. Two applications of this general result will be presented. One is an almost uniform sampler for power-law degree sequences with exponent γ>1+3\gamma>1+\sqrt{3}. The other one shows that the switch Markov chain on the degree sequence of an Erd\H{o}s-R\'enyi random graph G(n,p)G(n,p) is asymptotically almost surely rapidly mixing if pp is bounded away from 0 and 1 by at least 5lognn1\frac{5\log n}{n-1}.Comment: Clarification

    Foksorozatok párhuzamos leszámlálása

    Get PDF

    Rapid Mixing of the Switch Markov Chain for Strongly Stable Degree Sequences and 2-Class Joint Degree Matrices

    Get PDF
    The switch Markov chain has been extensively studied as the most natural Markov Chain Monte Carlo approach for sampling graphs with prescribed degree sequences. We use comparison arguments with other, less natural but simpler to analyze, Markov chains, to show that the switch chain mixes rapidly in two different settings. We first study the classic problem of uniformly sampling simple undirected, as well as bipartite, graphs with a given degree sequence. We apply an embedding argument, involving a Markov chain defined by Jerrum and Sinclair (TCS, 1990) for sampling graphs that almost have a given degree sequence, to show rapid mixing for degree sequences satisfying strong stability, a notion closely related to PP-stability. This results in a much shorter proof that unifies the currently known rapid mixing results of the switch chain and extends them up to sharp characterizations of PP-stability. In particular, our work resolves an open problem posed by Greenhill (SODA, 2015). Secondly, in order to illustrate the power of our approach, we study the problem of uniformly sampling graphs for which, in addition to the degree sequence, a joint degree distribution is given. Although the problem was formalized over a decade ago, and despite its practical significance in generating synthetic network topologies, small progress has been made on the random sampling of such graphs. The case of a single degree class reduces to sampling of regular graphs, but beyond this almost nothing is known. We fully resolve the case of two degree classes, by showing that the switch Markov chain is always rapidly mixing. Again, we first analyze an auxiliary chain for strongly stable instances on an augmented state space and then use an embedding argument.Comment: Accepted to SODA 201

    Algorithmic Problems Arising in Posets and Permutations

    Get PDF
    Partially ordered sets and permutations are combinatorial structures having vast applications in theoretical computer science. In this thesis, we study various computational and algorithmic problems related to these structures. The first chapter of the thesis contains discussion about randomized fully polynomial approximation schemes obtained by employing Markov chain Monte Carlo. In this chapter we study various Markov chains that we call: the gladiator chain, the interval chain, and cube shuffling. Our objective is to identify some conditions that assure rapid mixing; and we obtain partial results. The gladiator chain is a biased random walk on the set of permutations. This chain is related to self organizing lists, and various versions of it have been studied. The interval chain is a random walk on the set of points in Rn\mathbb{R}^n whose coordinates respect a partial order. Since the sample space of the interval chain is continuous, many mixing techniques for discrete chains are not applicable to it. The cube shuffle chain is a generalization of H\r{a}stad\u27s square shuffle. The importance of this chain is that it mixes in constant number of steps. In the second chapter, we are interested in calculating expected value of real valued function f:SRf:S\rightarrow \mathbb{R} on a set of combinatorial structures SS, given a probability distribution on it. We first suggest a Markov chain Monte Carlo approach to this problem. We identify the conditions under which our proposed solution will be efficient, and present examples where it fails. Then, we study homomesy. Homomesy is a phenomenon introduced by Jim Propp and Tom Roby. We say the triple S,τ,f\langle S, \tau,f\rangle (τ\tau is a permutation mapping SS to itself) exhibits homomesy, if the average of ff along all τ\tau-orbits of SS is a constant only depending on ff and SS. We study homomesy and obtain some results when SS is the set of ideals in a class of simply described lattices
    corecore