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Abstract

The switch Markov chain has been extensively studied as the most natural Markov Chain Monte Carlo

approach for sampling graphs with prescribed degree sequences. We use comparison arguments with

other—less natural but simpler to analyze—Markov chains, to show that the switch chain mixes rapidly

in two different settings. We first study the classic problem of uniformly sampling simple undirected, as

well as bipartite, graphs with a given degree sequence. We apply an embedding argument, involving a

Markov chain defined by Jerrum and Sinclair (TCS, 1990) for sampling graphs that almost have a given

degree sequence, to show rapid mixing for degree sequences satisfying strong stability, a notion closely

related to P-stability. This results in a much shorter proof that unifies the currently known rapid mixing

results of the switch chain and extends them up to sharp characterizations of P-stability. In particular,

our work resolves an open problem posed by Greenhill (SODA, 2015).

Secondly, in order to illustrate the power of our approach, we study the problem of uniformly sam-

pling graphs for which—in addition to the degree sequence—a joint degree distribution is given. Al-

though the problem was formalized over a decade ago, and despite its practical significance in generat-

ing synthetic network topologies, small progress has been made on the random sampling of such graphs.

The case of a single degree class reduces to sampling of regular graphs, but beyond this almost nothing

is known. We fully resolve the case of two degree classes, by showing that the switch Markov chain

is always rapidly mixing. Again, we first analyze an auxiliary chain for strongly stable instances on an

augmented state space and then use an embedding argument.
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1 Introduction

The problem of (approximately) uniform sampling of simple graphs with a given degree sequence has re-

ceived considerable attention, and has applications in domains as diverse as hypothesis testing in network

structures [35] and ecology, see, e.g., [37] and references therein. We refer the interested reader to [5] for

more pointers to possible applications.

Several variants of the problem have been studied, including sampling undirected, bipartite, connected,

or directed graphs. In particular, there is an extensive line of work on Markov Chain Monte Carlo (MCMC)

approaches, see, e.g., [29, 30, 20, 7, 25, 34, 19, 18, 9, 6]. In such an approach one studies a random walk

on the space of all graphical realizations.1 This random walk is induced by making small local changes to

a given realization using a probabilistic procedure that defines the Markov chain. The idea, roughly, is that

after a sufficient number of steps, the so-called mixing time, the resulting graph corresponds to a sample

from an almost uniform distribution over all graphical realizations of the given degree sequence. The goal

is to show that the chain mixes rapidly, meaning that one only needs to perform a polynomial (in the size of

the graph) number of transitions of the chain in order to obtain an approximately uniform sample. One of

the most well-known probabilistic procedures for making these small changes uses local operations called

switches (also known as swaps or transpositions); see, e.g., [37] and Figure 1 for an example. The resulting

switch Markov chain has been shown to be rapidly mixing for various degree sequences [7, 24, 25, 34, 19,

18], but it is still open whether it is rapidly mixing for all degree sequences.
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Figure 1: Example of a switch in which edges {v, w}, {x, y} are replaced by {v, y}, {x, w}. Note that the degree

sequence is preserved when applying a switch operation.

In this work, besides the problem of sampling undirected, as well as bipartite, simple graphs with a

given degree sequence, we also focus on the problem of sampling undirected simple graphs with a given

joint degree distribution. That is, in addition to the degrees, the number of edges between nodes of degree

i and degree j is also specified for every pair (i, j).2 The motivation for using such a metric is that this

extra information restricts the space of possible realizations to graphs with more desirable structure. This

was first observed by Mahadevan et al. [32] who argued that the joint degree distribution is a much more

reliable metric for a synthetic graph to resemble a real network topology, compared to just using the degree

sequence. The joint degree matrix model of Amanatidis, Green, and Mihail [1] formalizes this approach.

Although there are polynomial-time algorithms that produce a graphical realization of a given joint degree

distribution [1, 2, 41, 11, 22], it is not known how to uniformly sample such a realization efficiently. In

particular, bounding the mixing time of the natural restriction of the switch Markov chain for this setting

has been an open problem since the introduction of the model [1, 41, 19].

Our Contribution. The proofs of the results in [34, 24, 19, 18] for the analysis of the switch Markov chain

in undirected (or bipartite) graphs are all using conceptually similar ideas to the ones introduced by Cooper,

Dyer and Greenhill [7] for the analysis of the switch chain for regular undirected graphs, and are based on

the multicommodity flow method of Sinclair [39]. The individual parts of this template can become quite

technical and require long proofs. In this work we take a different approach for proving that the switch chain

1Sometimes the state space is augmented with a set of auxiliary states, as in [29].
2We refer the reader to Subsection 2.2 for an exact definition and also Appendix C for an example.
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is rapidly mixing. First we analyze some easier auxiliary Markov chain; such a chain can be used to sample

graphical realizations that almost have a given fixed degree sequence or joint degree distribution. We show

that there exists an efficient multicommodity flow for the auxiliary chain when the given instance is strongly

stable, 3 and then show how it can be transformed into an efficient multicommodity flow for the switch

chain. Note that this last step compares two Markov chains with different state spaces, as the auxiliary chain

samples from a strictly larger set of graphs than the switch chain. Thus, for the flow transformation we use

embedding arguments similar to those in Feder et al. [20].4

Using the aforementioned approach we obtain the following two main results:

1) We show rapid mixing of the switch chain for strongly stable families of degree sequences (Theorem 4),

thus providing a rather short proof that unifies and extends the results in [7, 24] (Corollaries 5 and 6).

We introduce strong stability as a stricter version of the notion of P-stability [29]. The strong stability

condition is satisfied by the degree sequences in the works [30, 7, 24, 34, 19, 18] and by characteriza-

tions of P-stability [27]. These characterizations are employed to get Corollaries 5 and 6. In particular,

investigating the mixing time for the degree sequences of Corollary 6 was posed as an open question by

Greenhill [24]; here we resolve it in the positive.

2) We show that the switch chain restricted on the space of the graphic realizations of a given joint degree

distribution with two degree classes is always rapidly mixing (Theorem 10).

Despite being for the case of two classes, this is the very first rapid mixing result for the problem. Estab-

lishing the rapid mixing of the auxiliary chain in this case presents significant challenges. To attack this

problem, we rely on ideas introduced by Bhatnagar, Randall, Vazirani and Vigoda [4]. At the core of this

approach lies the mountain-climbing problem [26, 43]. We should note that the auxiliary chain used here

is analyzed in a much more general model than the joint degree matrix model.

Besides the above results we also unify the results in [30, 34, 19, 18] for bipartite degree sequences and

extend them for the special case of an equally sized bipartition; see Corollaries 18 and 19 in Appendix B. We

should note that the unification of the existing results mentioned so far is qualitative rather than quantitative,

in the sense that our simpler, indirect approach provides weaker polynomial bounds for the mixing time. For

examples of explicit mixing time bounds we refer the reader to [7, 8, 25].

Finally, as a byproduct of our analysis for the auxiliary Markov chain used to prove Theorem 10, we

obtain the first fully polynomial almost uniform generator [40] for sampling graphical realizations of certain

sparse partition adjacency matrix instances with two partition classes [10, 15] (this is a generalization of the

joint degree distribution problem; see Appendix D for definitions). See Corollary 34 in Appendix E.

Related Work. Here the focus is on MCMC approaches. As such approaches have impractical mixing

times in general, we should note that there is a line of work on non-MCMC sampling algorithms which,

albeit having weaker properties, do have practical running times. See, e.g., [3, 21] and references therein.

Jerrum and Sinclair [29] give a fully polynomial almost uniform generator for generating graphical

realizations of degree sequences coming from any P-stable family of sequences (see preliminaries). The

auxiliary chain we use to prove Theorem 4, henceforth referred to as Jerrum-Sinclair (JS) chain, is presented

in [29] as a more straightforward implementation of this generator. One drawback is that the algorithms in

[29] work with auxiliary states. Kannan, Tetali and Vempala [30] introduce the switch chain as a simpler

and more direct generator that does not have to work with auxiliary states. They addressed the mixing time

3In the case of sampling graphs with a given degree sequence, the existence of such a flow for the auxiliary chain we use was

already claimed in [29], at least for the degree sequences satisfying a more restrictive analog of inequality (2). For completeness,

we give a detailed proof in Appendix A.2.
4We also refer the reader to the survey of Dyer et al. [13] for more on Markov chain comparison techniques.
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of such a switch-based Markov chain for the regular bipartite case. Cooper et al. [7] then gave a rapid

mixing proof for regular undirected graphs, and later Greenhill [24] extended this result to certain ranges of

irregular degree sequences (see also Greenhill and Sfragara [25]). Miklós, Erdős and Soukup [34] proved

rapid mixing for the half-regular bipartite case, and Erdős, Miklós and Toroczkai [19] for the almost half-

regular case. Very recently, Erdős et al. [18] presented a range of bipartite degree sequences unifying and

generalizing the results in [34, 19].

Switch-based Markov chain Monte Carlo approaches have also been studied for other graph sampling

problems. Feder et al. [20] as well as Cooper et al. [9] study the mixing time of a Markov chain using

a switch-like probabilistic procedure (called a flip) for sampling connected graphs. For sampling perfect

matchings, switch-based Markov chains have also been studied, see, e.g., the recent work of Dyer, Jerrum

and Müller [14] and references therein. It is interesting to note that Dyer et al. [14] also use a lemma on the

mountain-climbing problem that is very similar to Lemma 26.

The joint degree matrix model was first studied by Patrinos and Hakimi [36], albeit with a different

formulation and name, and was reintroduced in Amanatidis et al. [1]. While it has been shown that the

switch chain restricted on the space of the graphic realizations of any given joint degree distribution is

irreducible [1, 11], almost no progress has been made towards bounding its mixing time. Stanton and Pinar

[41] performed experiments based on the autocorrelation of each edge, suggesting that the switch chain

mixes quickly. The only relevant result is that of Erdős et al. [19] showing fast mixing for a related Markov

chain over the severely restricted subset of the so-called balanced joint degree matrix realizations; this

special case, however, lacks several of the technical challenges that arise in the original problem.

Outline. In Section 2 we give all the necessary preliminaries and we formally describe the JS chain, the

switch chain, and the restricted switch chain. Our first main result is Theorem 4 in Section 3, where we

show that the switch chain is rapidly mixing for families of strongly stable degree sequences. Given the

rapid mixing of the JS chain (Appendix A.2), the proof of Theorem 4 in Section 3 is self-contained. The

corresponding result for the bipartite case is completely analogous and is deferred to Appendix B. In Section

4 we state our second main result, Theorem 10. For the sake of presentation, we defer the proof of Theorem

10 to Appendices D, E and F, and we only include a short discussion of our approach in Section 4.

2 Preliminaries

We begin with the preliminaries regarding Markov chains and the multicommodity flow method of Sinclair

[39]. For Markov chain definitions not given here, see for example [31].

LetM = (Ω, P) be an ergodic, time-reversible Markov chain over state space Ω with transition matrix P

and stationary distribution π. We write Pt(x, ·) for the distribution over Ω at time step t given that the initial

state is x ∈ Ω. The total variation distance at time t with initial state x is

∆x(t) = max
S⊆Ω

∣

∣

∣Pt(x, S ) − π(S )
∣

∣

∣ =
1

2

∑

y∈Ω

∣

∣

∣Pt(x, y) − π(y)
∣

∣

∣ ,

and the mixing time τ(ǫ) is defined as τ(ǫ) = maxx∈Ω {min{t : ∆x(t′) ≤ ǫ for all t′ ≥ t}}. Informally, τ(ǫ) is

the number of steps until the Markov chain is ǫ-close to its stationary distribution. A Markov chain is said

to be rapidly mixing if the mixing time can be upper bounded by a function polynomial in ln(|Ω|/ǫ).
It is well-known that, since the Markov chain is time-reversible, the matrix P only has real eigenvalues

1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λ|Ω|−1 > −1. We may replace the transition matrix P of the Markov chain

by (P + I)/2, to make the chain lazy, and hence guarantee that all its eigenvalues are non-negative. It then

follows that the second-largest eigenvalue of P is λ1. In this work we always consider the lazy versions of the

Markov chains involved. It follows directly from Proposition 1 in [39] that τ(ǫ) ≤ 1
1−λ1

(

ln(1/π∗)+ ln(1/ǫ)
)

,
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where π∗ = minx∈Ω π(x). For the special case where π(·) is the uniform distribution, as is the case here, the

above bound becomes τ(ǫ) ≤ ln(|Ω|/ǫ)/(1 − λ1). The quantity (1 − λ1)−1 can be upper bounded using the

multicommodity flow method of Sinclair [39].

We define the state space graph of the chain M as the directed graph G with node set Ω that contains

exactly the arcs (x, y) ∈ Ω × Ω for which P(x, y) > 0 and x , y. Let P = ∪x,yPxy, where Pxy is the set of

simple paths between x and y in the state space graph G. A flow f in Ω is a function P → [0,∞) satisfying
∑

p∈Pxy
f (p) = π(x)π(y) for all x, y ∈ Ω, x , y. The flow f can be extended to a function on oriented

edges of G by setting f (e) =
∑

p∈P:e∈p f (p), so that f (e) is the total flow routed through e ∈ E(G). Let

ℓ( f ) = maxp∈P: f (p)>0 |p| be the length of a longest flow carrying path, and let ρ(e) = f (e)/Q(e) be the load of

the edge e, where Q(e) = π(x)P(x, y) for e = (x, y). The maximum load of the flow is ρ( f ) = maxe∈E(G) ρ(e).

Sinclair ([39], Corollary 6 ′) shows that (1 − λ1)−1 ≤ ρ( f )ℓ( f ).

We use the following standard technique for bounding the maximum load of a flow in case the chain

M has uniform stationary distribution π. Suppose θ is the smallest positive transition probability of the

Markov chain between two distinct states. If b is such that f (e) ≤ b/|Ω| for all e ∈ E(G), then it follows that

ρ( f ) ≤ b/θ. Thus, we have

τ(ǫ) ≤ ℓ( f ) · b
θ

ln(|Ω|/ǫ) .

Now, if ℓ( f ), b and 1/θ can be bounded by a function polynomial in log(|Ω|), it follows that the Markov

chain M is rapidly mixing. In this case, we say that f is an efficient flow. Note that in this approach the

transition probabilities do not play a role as long as 1/θ is polynomially bounded.

2.1 Graphical Degree Sequences

A sequence of non-negative integers d = (d1, . . . , dn) is called a graphical degree sequence if there exists a

simple, undirected, labeled graph on n nodes having degrees d1, . . . , dn; such a graph is called a graphical

realization of d. For a given degree sequence d, G(d) denotes the set of all graphical realizations of d.

Throughout this work we only consider sequences d with positive components, and for which G(d) , ∅. Let

G′(d) = ∪d′G(d′) with d′ ranging over the set
{

d′ : d′
j
≤ d j for all j, and

∑n
i=1 |di − d′

i
| ≤ 2

}

. That is, we have

(i) d′ = d, or (ii) there exist distinct κ, λ such that d′
i
= di − 1 if i ∈ {κ, λ} and d′

i
= di otherwise, or (iii) there

exists a κ so that d′
i
= di − 2 if i = κ and d′

i
= di otherwise. In the case (ii) we say that d′ has two nodes with

degree deficit one, and in the case (iii) we say that d′ has one node with degree deficit two. A family D of

graphical degree sequences is called P-stable [29], if there exists a polynomial q(n) such that for all d ∈ D
we have |G′(d)|/|G(d)| ≤ q(n), where n is the number of components of d.

Jerrum and Sinclair [29] define the following Markov chain on G′(d), which will henceforth be referred

to as the JS chain.5 Let G ∈ G′(d) be the current state of the chain:

• With probability 1/2, do nothing.

• Otherwise, select an ordered pair i, j of nodes uniformly at random and

– if G ∈ G(d) and (i, j) is an edge of G, then delete (i, j) from G,

– if G < G(d), the degree of i in G is less than di, and (i, j) is not an edge of G, then add (i, j) to G.

If the new degree of j exceeds d j, then select an edge ( j, k) uniformly at random and delete it.

The graphs G,G′ ∈ G′(d) are JS adjacent if G can be obtained from G′ with positive probability in one

transition of the JS chain and vice versa. The following properties of the JS chain are easy to check.

5A slightly different definition of stability is given by Jerrum, McKay and Sinclair [27]. Based on this variant, one could

define the corresponding variant of the JS chain. Nevertheless, the definitions of stability in [27] and [29] (and their corresponding

definitions of strong stability) are equivalent. To avoid confusion, here we only use the definitions in [29].
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Theorem 1 (Follows by [29]). The JS chain is irreducible, aperiodic and symmetric, and, hence, has uni-

form stationary distribution over G′(d). Moreover, P(G,G′)−1 ≤ 2n3 for all JS adjacent G,G′ ∈ G′(d), and

also the maximum in- and out-degrees of the state space graph of the JS chain are bounded by n3.

We say that two graphs G,G′ are within distance r in the JS chain if there exists a path of at most length

r from G to G′ in the state space graph of the JS chain. By dist(G, d) we denote the minimum distance of G

from an element in G(d). The following parameter will play a central role in this work. Let

kJS (d) = max
G∈G′(d)

dist(G, d) . (1)

Based on the parameter kJS (d), we define the notion of strong stability. The simple observation in Propo-

sition 3 justifies the terminology. For the different settings studied in this work, i.e., for sampling bipartite

graphs or joint degree matrix realizations, the definition of kJS is adjusted accordingly (see Appendices B

and D).

Definition 2 (Strong stability). A family of graphical degree sequences D is called strongly stable if there

exists a constant ℓ such that kJS (d) ≤ ℓ for all d ∈ D.

Proposition 3. If D is strongly stable, then it is P-stable.

Proof. Suppose D is strongly stable with respect to the constant ℓ. Let d ∈ D be a degree sequence with

n components. For every G ∈ G′(d) G(d) choose some ϕ(G) ∈ G(d) within distance k = kJS (d) of G. As

the in-degree of any node in the state space graph of the JS chain is bounded by n3, the number of paths

with length at most k that end up at any particular graph in G(d) is upper bounded by (n3)k. Therefore,

|G′(d)|/|G(d)| ≤ n3k ≤ n3ℓ, meaning that D is stable, since ℓ is constant. �

Finally, the lazy version of the switch chain onG(d) is defined as follows (see, e.g., [30, 7]). Let G ∈ G(d)

be the current state of the chain:

• With probability 1/2, do nothing.

• Otherwise, select two edges {a, b} and {x, y} uniformly at random, and select a perfect matching M on

nodes {x, y, a, b} uniformly at random (there are three possible options). If M ∩ E(G) = ∅, then delete

{a, b}, {x, y} from E(G) and add the edges of M. This local operation is called a switch.

The graphs G,G′ ∈ G(d) are switch adjacent if G can be obtained from G′ with positive probability in

one transition of this chain and vice versa. It is well-known that the switch chain is irreducible, aperiodic

and symmetric (e.g., [25] and references therein), and, thus, has uniform stationary distribution over G(d).

Furthermore, is it a matter of simple counting that P(G,G′)−1 ≤ 6n4 for all switch adjacent G,G′ ∈ G(d),

and the maximum in- and out-degrees of the state space graph of the switch chain are bounded by n4.

2.2 Joint Degree Matrix Model

Here in addition to the degrees, we would also like to specify the number of edges between nodes of degree i

and nodes of degree j for every pair (i, j). Let V = {1, . . . , n} be a set of nodes. An instance of the joint degree

matrix (JDM) model is given by a partition V1 ∪ V2 ∪ · · · ∪ Vq of V into pairwise disjoint (degree) classes,

a symmetric joint degree matrix c = (ci j)i, j∈[q] of non-negative integers, and a sequence d = (d1, . . . , dq) of

non-negative integers.6 We say that the tuple ((Vi)i∈q, c, d) (or just (c, d) when it is clear what the partition

is) is graphical, if there exists a simple, undirected, labeled graph G = (V, E) on the nodes in V such that all

nodes in Vi have degree di and there are precisely ci j edges between nodes in Vi and V j. Such a G is called

6This is shorthand notation for the degree sequence. Alternatively, we could write d̂ =
(

d1
1
, . . . , d

|V1 |
1
, . . . , d1

q , . . . , d
|Vq |
q

)

corre-

sponding to the definition of a graphical degree sequence. In such a case, d
j

i
= di for i ∈ V and j ∈ {1, . . . , |Vi|}.
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a graphical realization of the tuple. We let G((Vi)i∈q, c, d) (or just G(c, d)) denote the set of all graphical

realizations of ((Vi)i∈q, c, d). We focus on the case of q = 2, i.e., when two degree classes are given.

While switches maintain the degree sequence, this is no longer true for the joint degree constraints.

However, some switches do respect these constraints as well, e.g., if w, y in Figure 1 are in the same degree

class. Thus, we are interested in the following (lazy) restricted switch Markov chain for sampling graphical

realizations of G(c, d). Let G ∈ G(c, d) be the current state of the chain:

• With probability 1/2, do nothing.

• Otherwise, try to perform a switch move: select two edges {a, b} and {x, y} uniformly at random,

and select a perfect matching M on nodes {x, y, a, b} uniformly at random. If M ∩ E(G) = ∅ and

G + M − ({a, b} ∪ {x, y}) ∈ G(c, d), then delete {a, b}, {x, y} from E(G) and add the edges of M.

This chain is irreducible, aperiodic and symmetric [1, 11]. Like the switch chain defined above, P(G,G′)−1 ≤
n4 for all adjacent G,G′ ∈ G′(c, d), and also the maximum in- and out-degrees of the state space graph are

less than n4. Since bounding the mixing time of this chain on G(c, d) has been elusive [1, 41, 19], we follow

a similar approach as in the case of the switch chain for undirected and bipartite graphs. In Appendix D the

simpler hinge flip Markov chain is defined on a strictly larger state space (and even for a more general model

than JDM). This also gives rise to the corresponding strong stability definition. As the whole analysis of this

auxiliary chain takes place in the appendix, we defer any further definitions there.

3 Sampling Undirected Graphs

The result in Theorem 4 below is our main result regarding the mixing time of the switch chain for strongly

stable degree sequences. Its proof is divided in two parts. First, in Section 3.1, by giving an efficient

multicommodity flow, we show that for any d in a family of strongly stable degree sequences the JS chain is

rapidly mixing on G′(d). Then, in Section 3.2, we show that such an efficient flow for the JS chain on G′(d)

can be transformed into an efficient flow for the switch chain on G(d). This yields the following theorem.

Theorem 4. Let D be a strongly stable family of degree sequences with respect to some constant k. Then

there exists a polynomial q(n) such that, for any 0 < ǫ < 1, the mixing time τsw of the switch chain for a

graphical sequence d = (d1, . . . , dn) ∈ D satisfies

τsw(ǫ) ≤ q(n)k ln(1/ǫ) .

We discuss two direct corollaries of Theorem 4. Both corollaries are consequences of the corresponding

results in [27], where it is shown that the families of sequences satisfying (2) and (3), respectively, are

(strongly) stable. We work with a slightly different definition of stability here than the one used in [27]. The

reason why the results from [27] carry over to the definition used here (which was introduced in [29]) is

explained in Appendix A.1. The equivalence of these definitions of P-stability is also claimed in [27].

Corollary 5 below extends the rapid mixing results in [7, 25]. In particular, the condition of [25] for

rapid mixing is δ ≥ 1 and 3 ≤ ∆ ≤ 1
3

√
2m, which is a special case of the condition (2) below.7

Corollary 5. LetD = D(δ,∆,m) be the set of all graphical degree sequences d = (d1, . . . , dn) satisfying

(2m − nδ)(n∆ − 2m) ≤ (∆ − δ)[(2m − nδ)(n − ∆ − 1) + (n∆ − 2m)δ
]

(2)

where δ and ∆ are the minimum and maximum component of d, respectively, and m = 1
2

∑n
i=1 di. For any

d ∈ D, we have kJS (d) ≤ 6. Hence, the switch chain is rapidly mixing for sequences inD.

7The condition in Theorem 1.1 in [25] is a special case of the condition of Theorem 3.1 in [29] which in turn is a special case of

the condition of Corollary 5. See also the remark after Theorem 8 in [27].
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The next corollary is a special case of the Corollary 5 and answers an open question posed in [25]. It is

a result of similar flavor, but the corresponding condition is stated only in terms of δ and ∆.

Corollary 6. LetD = D(δ,∆) be the set of all graphical degree sequences d = (d1, . . . , dn) satisfying

(∆ − δ + 1)2 ≤ 4δ(n − ∆ − 1) (3)

where δ and ∆ are the minimum and maximum component of d, respectively. For any d ∈ D, we have

kJS (d) ≤ 6. Hence, the switch chain is rapidly mixing for sequences in D.

Explicit families satisfying these conditions are given in [27]. For instance, all sequences d = (d1, . . . , dn)

with (i) δ(d) ≥ 1 and ∆(d) ≤ 2
√

n − 2, or (ii) δ(d) ≥ 1
4
n and ∆(d) ≤ 3

4
n − 1 satisfy (3) but not necessarily the

conditions in [25]. We refer the reader to [27, 38] for more examples. The bounds in Corollaries 5 and 6 are

in a sense best possible with respect to the graph parameters involved. Namely, there exist non-stable degree

sequence families the members of which only slightly violate (3); see the discussion in [27] for details.

3.1 Flow for the Jerrum-Sinclair Chain

Jerrum and Sinclair [29] claim, without proof, that the JS chain is rapidly mixing for (some) families of

stable degree sequences. For completeness, we prove in Theorem 7 that the chain is rapidly mixing for any

family of strongly stable degree sequences. For the proof of the theorem see Appendix A.2.

Theorem 7 ([29]). Let D be a strongly stable family of degree sequences with respect to some constant k.

Then there exist polynomials p(n) and r(n) such that for any d = (d1, . . . , dn) ∈ D there exists an efficient

multicommodity flow f for the JS chain on G′(d) satisfying maxe f (e) ≤ p(n)/|G′(d)| and ℓ( f ) ≤ r(n).

Our proof of Theorem 7 uses conceptually similar arguments to the ones used in [7] for the analysis

of the switch chain on regular undirected graphs. However, the analysis done here for the JS chain is,

in our opinion, easier and cleaner than the corresponding analysis for the switch chain. In particular, the

so-called circuit processing procedure is simpler in our setting, as it only involves altering edges in the

symmetric difference of two graphical realizations in a straightforward fashion. In the switch chain analyses

[7, 25, 34, 19, 18] one also has to temporarily alter edges that are not in the symmetric difference and this

significantly complicates things. Moreover, for the analysis of the JS chain, we can rely on arguments used

(in a somewhat different context) by Jerrum and Sinclair [28] for the analysis of a Markov chain for sampling

(near) perfect matchings of a given graph. This usage of arguments in [28] was suggested by Jerrum and

Sinclair [29] for showing that the JS chain is rapidly mixing for stable degree sequences.

3.2 Flow Transformation

Next we show that, when d comes from a family of strongly stable degree sequences, an efficient multi-

commodity flow for the JS chain on G′(d) can be transformed into an efficient multicommodity flow for

the switch chain on G(d). In combination with Theorem 7 this implies that if D is strongly stable, then for

any sequence in D there exists an efficient flow for the switch chain. For the sake of simplicity, we did not

attempt to optimize the bounds in the proof of Theorem 8.

Theorem 8. LetD be a strongly stable family of degree sequences with respect to some constant k, and let

p(n) and r(n) be polynomials such that for any d = (d1, . . . , dn) ∈ D there exists an efficient multicommodity

flow fd for the JS chain on G′(d) with the property that maxe f (e) ≤ p(n)/|G′(d)| and ℓ( f ) ≤ r(n).

Then there exists a polynomial t(n) such that for all d = (d1, . . . , dn) ∈ D there is a feasible multicom-

modity flow gd for the switch chain on G(d) with (i) ℓ(gd) ≤ 2k · ℓ( fd), and (ii) for every edge e of the state

space graph of the switch chain, we have

gd(e) ≤ t(n)k · p(n)

|G(d)| . (4)
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Proof. Let d ∈ D. For simplicity we will write f and g instead of fd and gd respectively. Since there are

two Markov chains involved in the proof, each with a different state space graph, we should clarify that Pxy

refers to the set of simple paths between x and y in the state space graph of the JS chain. We first introduce

some additional notation.

For every pair (x, y) ∈ G′(d) × G′(d) with x , y, and for any p ∈ Pxy, we write α(p) = f (p)|G′(d)|2.

Recall that since the stationary distribution of the JS chain is uniform on G′(d) we have
∑

p∈Pxy
f (p) =

|G′(d)|−2. Thus,
∑

p∈Pxy
α(p) = 1. Moreover, we define α(e) =

∑

p∈Pxy:e∈p α(p) = f (e)|G′(d)|2.

Now, for every G ∈ G′(d) G(d) choose some ϕ(G) ∈ G(d) that is within distance k of G in the JS chain,

and take ϕ(G) = G for G ∈ G(d). Based on the arguments in the proof of Proposition 3, it follows that for

any H ∈ G(d),

|ϕ−1(H)| ≤ n3k , (5)

using that the maximum in-degree of any element in the state space graph of the JS chain is upper bounded

by n3. In particular, this implies that
|G′(d)|
|G(d)| ≤ n3k . (6)

Let the flow h be defined as follows for any given pair (x, y). If (x, y) ∈ G(d)×G(d), take h(p) = α(p)/|G(d)|2
for all p ∈ Pxy. If either x or y is not contained in G(d), take h(p) = 0 for every p ∈ Pxy. Note that h is

a multicommodity flow that routes 1/|G(d)|2 units of flow between any pair (x, y) ∈ G(d) × G(d), and zero

units of flow between any other pair of states in G′(d).

Note that

h(e) ≤ |G
′(d)|2
|G(d)|2

· f (e) ≤ |G
′(d)|2
|G(d)|2

p(n)

|G′(d)| =
p(n)

|G(d)|
|G′(d)|
|G(d)| ≤ n3k · p(n)

|G(d)| , (7)

using the definition of h in the first inequality, the assumption on f in the second inequality, and the upper

bound of (6) in the last one.

Next, we merge the “auxiliary states” in G′(d) G(d), i.e., the states not reached by the switch chain,

with the elements of G(d). Informally speaking, for every H ∈ G(d) we merge all the nodes in ϕ−1(H) into a

supernode. Self-loops created in this process are removed, and parallel arcs between states are merged into

one arc that gets all the flow of the parallel arcs. Formally, we consider the graph Γ where V(Γ) = G(d) and

e = (H,H′) ∈ E(Γ) if and only if H and H′ are switch adjacent or if there exist G ∈ ϕ−1(H) and G′ ∈ ϕ−1(H′)
such that G and G′ are JS adjacent. Moreover, for a given h-flow carrying path (G1,G2, . . . ,Gq) = p ∈ Pxy,

let p′
Γ
= (ϕ(G1), ϕ(G2), . . . , ϕ(Gq)) be the corresponding (possibly non-simple) directed path in Γ. Any self-

loops and cycles can be removed from p′
Γ

and let pΓ be the resulting simple path in Γ. Over pΓ we route

hΓ(pΓ) = h(p) units of flow. Note that hΓ is a flow that routes 1/|G(d)|2 units of flow between any pair

of states (x, y) ∈ G(d) × G(d) in the graph Γ and that ℓ(hΓ) ≤ ℓ( f ). Furthermore, the flow hΓ on an edge

(H,H′) ∈ E(Γ) is then bounded by

hΓ(H,H
′) ≤

∑

(G,G′)∈ϕ−1(H)×ϕ−1(H′)
G and G′ are JS adjacent

h(G,G′) , (8)

where the inequality (instead of an equality) follows from the fact that when we map a path p ∈ Pxy to the

corresponding path pΓ, some edges of the intermediate path p′
Γ

may be deleted. Using (5), it follows that

|ϕ−1(H) × ϕ−1(H′)| ≤ n3k · n3k = n6k and therefore, in combination with (7) and (8), we have that

hΓ(e) ≤ n3k · n6k · p(n)

|G(d)| . (9)

Now recall how E(Γ) was defined. An edge (H,H′) might have been added because: (i) H and H′ are

switch adjacent (we call these edges of Γ legal), or (ii) H and H′ are not switch adjacent but there exist
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Figure 2: The dashed edge on the left represents an illegal edge, and the bold path represents a “short” detour.

The shortcutted path on the right is the result of removing any loops and cycles.

G ∈ ϕ−1(H) and G′ ∈ ϕ−1(H′) that are JS adjacent (we call these edges of Γ illegal). The final step of the

proof consists of showing that the flow on every illegal edge in E(Γ) can be rerouted over a “short” path

consisting only of legal edges. In particular, for every flow carrying path p using e, we are going to show

that the flow hΓ(p) is rerouted over some legal detour, the length of which is bounded by a multiple of k.

Doing this iteratively for every remaining illegal edge on p, we obtain a directed path p′′ only using legal

edges, i.e., edges of the state space graph of the switch chain. Of course, p′′ might not be simple, so any

self-loops and cycles can be removed, as before, to obtain the simple legal path p′. Figure 2 illustrates this

procedure for a path with a single illegal edge. Note that deleting self-loops and cycles only decreases the

amount of flow on an edge.

The crucial observation here is that if (H,H′) ∈ E(Γ), then |E(H)△E(H′)| ≤ 4k. That is, even though

H and H′ might not be switch adjacent, they are not too far apart. To see this, first note that the symmetric

difference of any two JS adjacent graphs has size at most 2. Moreover, if one of any two JS adjacent

graphs is in G(d), then their symmetric difference has size 1. In particular, for any G∗ ∈ G′(d), we have

|E(G∗)△E(ϕ(G∗))| ≤ 2k − 1.

Clearly, if (H,H′) ∈ E(Γ) is legal, then |E(H)△E(H′)| = 4 ≤ 4k. Assume (H,H′) ∈ E(Γ) is illegal. Then

there exist JS adjacent G ∈ ϕ−1(H) and G′ ∈ ϕ−1(H′) and according to the above we have

|E(H)△E(H′)| ≤ |E(H)△E(G)| + |E(G)△E(G′)| + |E(G′)△E(H′)|
≤ 2k − 1 + 2 + 2k − 1 ≤ 4k .

Moreover, this implies that we can go from H to H′ in a “small” number of moves in the switch chain. This

easily follows from most results showing that the state space of the switch chain is connected, e.g., from

[42].8 Specifically, here we use the following result of Erdős, Király, and Miklós [16] which implies that we

can go from H to H′ in 2k switches.

Theorem 9 (follows from Theorem 3.6 in [16]). Let d = (d1, . . . , dn) be a degree sequence. For any two

graphs H,H′ ∈ G(d), H can be transformed into H′ using at most 1
2
|E(H)△E(H′)| switches.

For every illegal edge e ∈ E(Γ), we choose such a (simple) path from H to H′ with at most 2k transitions

and reroute the flow of e over this path. Note that for any legal edge e ∈ E(Γ), the number of illegal edge

detours that use e for this rerouting procedure, is at most (n4)2k · (n4)2k = n16k, using the fact that in the

state space graph of the switch chain the maximum degree of an element is at most n4 and any illegal edge

using e in its rerouting procedure must lie within distance 2k of e. Combining this with (9), we see that the

resulting flow, g, satisfies

g(e) ≤ p(n) · n9k + p(n) · n16k

|G(d)| .

8To be precise, we can focus on the subgraph induced by the nodes with positive degree in the symmetric difference. Taylor’s

proof on the connectivity of the state space of the switch chain [42] implies that we can find O(k2) switches to get from H to H′,

only using edges in this induced subgraph.
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Note that the ℓ(g) ≤ 2kℓ(hΓ). This holds because every illegal edge on a flow-carrying path gives rise

to at most 2k additional edges as a result of rerouting the flow over legal edges, and the removal of loops

and cycles from any resulting non-simple path can only decrease its length. Combining this inequality with

ℓ(hΓ) ≤ ℓ( f ) (as we noted above), we get ℓ(g) ≤ 2k · ℓ( f ). This completes the proof of (4), as we have now

constructed a feasible multicommodity flow g in the state space graph of the switch chain with the desired

properties. �

4 Sampling Graphs with a Given JDM

We may use a similar high level approach to that in Section 3 to show that the (restricted) switch chain

defined in Subsection 2.2 is always rapidly mixing for JDM instances with two degree classes.

Theorem 10. Let D be the family of instances of the joint degree matrix model with two degree classes.

Then the switch chain is rapidly mixing for instances inD.

In analogy to the JS chain we first analyze a simpler Markov chain, called the hinge flip chain, that

adds and removes (at most) one edge at a time. Very much like the JS chain, the hinge flip chain might

slightly violate the degree constraints. Now, however, the joint degree constraints might be violated as well.

The definition of strong stability is appropriately adjusted to account for both deviations from the original

requirements. Finally, we use a similar embedding argument as in Theorem 8. The relevant definitions, as

well as the analysis of this auxiliary chain are deferred to Appendix D due to space constraints. Here we

present a high level outline of the proof of Theorem 10.

Rapid Mixing of the Hinge Flip Chain. The first step of the proof is to show that the hinge flip chain

defined on a strict superset of the target state space mixes rapidly for strongly stable instances. Appendix D

is dedicated to this step. The fact that we do not want to deviate by more than a constant from the joint degree

constraints makes the analysis much more challenging than the one for the JS chain presented in Appendix

A.2. In order to overcome the difficulties that arise due to this fact, we rely on ideas introduced by Bhatnagar

et al. [4] for uniformly sampling bichromatic matchings. In particular, in the circuit processing part of the

proof, we process a circuit at multiple places simultaneously in case there is only one circuit in the canonical

decomposition of a pairing, or we process multiple circuits simultaneously in case the decomposition yields

multiple circuits. At the core of this approach lies a variant of the mountain-climbing problem [26, 43]. In

our case the analysis is more involved than that of [4], and we therefore use different arguments in various

parts of the proof.

It is interesting to note that the analysis of the hinge flip chain is not carried out in the JDM model

but in the more general Partition Adjacency Matrix (PAM) model [10, 15]. The difference from the JDM

model is that in each class Vi the nodes need not have the same constant degree but rather follow a given

degree sequence of size |Vi|. Given that small deviations from the prescribed degrees cannot be directly

handled—by definition—by the JDM model, the PAM model is indeed a more natural choice for this step.

Strong Stability of JDM Instances. Next we show that for any JDM instance, any graph in the state

space of the hinge flip chain (i.e., graphs that satisfy or almost satisfy the joint degree requirements) can be

transformed to a graphical realization of the original instance within 6 hinge flips at most. That is, the set of

JDM instances is a strongly stable family of instances of the PAM model and thus the hinge flip chain mixes

rapidly for JDM instances. See Theorem 31 in Appendix E.
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Flow Transformation. The final step is an embedding argument, along the lines of the argument of Sub-

section 3.2, for transforming the efficient flow for the hinge flip chain to an efficient flow for the switch

chain. As an intermediate step we need an analog of Theorem 9, but this directly follows from the proof of

irreducibility of the switch chain in [1]. See Appendix F.

5 Discussion

We believe that our ideas can be also used to simplify the switch chain analyses in settings where there is

some given forbidden edge set, the elements of which cannot be used in any (bipartite) graphical realization

[23, 25, 17, 18]. This is an interesting direction for future work, as it captures the case of sampling directed

graphs.

Moreover, we suspect it can be shown that the condition in (17) is essentially best possible in terms

of δr and ∆r in a similar sense as described in [27] for the results in Corollaries 5 and 6.9 While this is

an interesting question, our goal here is not to give a full bipartite analogue of [27]. Even so, a deeper

understanding of when a family of bipartite degree sequences is strongly stable is missing. In particular, is

it possible to unify the results of Corollaries 18 and 19 under a single condition similar to (2)?

Further, it is not clear whether there exist degree sequence families—bipartite or not—that are P-stable

but not strongly stable. For instance, in a recent work by Gao and Wormald [21], who provide a very efficient

non-MCMC approximate sampler for certain power-law degree sequences, it is argued that these power-law

degree sequences are P-stable. Is it the case these sequences are strongly stable as well? Theorem 4 would

then directly imply that the switch chain is rapidly mixing for this family.

A central open question is how to go beyond (strong) stability. We suspect that the proof template of

[7] cannot be used for proving rapid mixing of the switch chain for general families of degree sequences.

The intuition is that it relies on the fact that there is a set of auxiliary states that is not much larger than the

set of actual graphical realizations for a given degree sequence; this property seems very closely related to

P-stability, and also arises explicitly in the analysis of the bipartite case in [30]. This observation suggests

the need for a novel approach for studying the mixing of the switch chain on non-stable degree families.

Finally, the problem of sampling graphic realizations of a given joint degree distribution with three or

more degree classes is also open. Although our proof breaks down for more than two classes, we hope that

our high level approach can facilitate progress on the problem.
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A Missing Material from Section 3

A.1 On the Proofs of Corollaries 5 and 6

Since a slightly different notion of stability (used in [27]) is defined below, to avoid confusion, we should

clarify that whenever strong stability is mentioned it is meant in the sense of Definition 2.

We first introduce some notation, using the same terminology as in [27]. Let G = (V, E) be an undirected

graph. For distinct u, v ∈ V we say that u, v are co-adjacent if {u, v} < E, and {u, v} is called a co-edge. An

alternating path of length q in G is a sequence of nodes v0, v1, . . . , vq such that (i) {vi, vi+1} is an edge when

i is even, and a co-edge if i is odd, or (ii) {vi, vi+1} is a co-edge when i is even, and an edge if i is odd. The

path is called a cycle if v0 = vq. We will always specify if a path is of type (i) or (ii).

The definition of P-stability in [27]—which we here call ±P-stability—is based on the following defini-

tion. Let G′′(d) = ∪d′G(d′) with d′ ranging over the set

{d} ∪
{

d′ :

n
∑

i=1

di =

n
∑

i=1

d′i and

n
∑

i=1

|di − d′i | = 2

}

.

That is, either d = d′, or d′ has one node with deficit one and one node with surplus one. A family

of sequences is ±P-stable if there exists a polynomial p such that |G′′(d)|/|G(d)| ≤ p(n) for every d =

(d1, . . . , dn) in the family. In order to show in [27] that the families corresponding to the conditions in

Corollaries 5 and 6 are ±P-stable, it is shown that for any G ∈ G′′(d) there always exists a short alternating

path of even length, starting with an edge and ending with a co-edge, connecting the node with surplus one

to the node with deficit one. The connection with our definition of strong stability is as follows.

Lemma 11. Let D be a family of sequences, and assume that there exists a constant k0 such that for all

d ∈ D and any G ∈ G′′(d) \ G(d), there exists an alternating path of length at most k0, starting with an

edge and ending with a co-edge, connecting the node with surplus one to the node with deficit one. Then the

family D is strongly stable with respect to k0/2 + 1.

Proof. Let H ∈ G′(d) be such that there are two nodes u , v with deficit one (the case of one node with

deficit two is very similar). Since u has deficit one, there is some x so that {u, x} is a co-edge. Then the graph

H + {u, x} ∈ G′′(d) as now x has surplus one, and v still has deficit one (note that if x = v we are immediately

done).

The assumption now implies that there is an alternating path of length at most k0 starting at x with an

edge, and ending at v with a co-edge. But this implies that in H, there exists an alternating path starting at

u and ending at v of length at most k0 + 1, where both the first and last edge on this path are co-edges. This

certainly implies that kJS (d) ≤ k0/2 + 1 by using a sequence of (see beginning of Appendix A.2 below for

definitions) Type 1 transitions, and finally a Type 2 transition. �

The following two corollaries now explain why the families presented in Corollaries 5 and 6 are strongly

stable. The value of k0 = 10 used below follows directly from the proofs of Theorems 8 and 2 in [27].

Corollary 12. LetD = D(δ,∆,m) be the set of all graphical degree sequences d = (d1, . . . , dn) satisfying

(2m − nδ)(n∆ − 2m) ≤ (∆ − δ)[(2m − nδ)(n − ∆ − 1) + (n∆ − 2m)δ
]

(2)

where δ and ∆ are the minimum and maximum component of d, respectively, and m = 1
2

∑n
i=1 di. For all

d ∈ D and any G ∈ G′′(d) \G(d), there exists an alternating path of length at most 10, starting with an edge

and ending with a co-edge, connecting the node with surplus one to the node with deficit one. Hence, D is

strongly stable.
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Corollary 13. LetD = D(δ,∆) be the set of all graphical degree sequences d = (d1, . . . , dn) satisfying

(δmax − δmin + 1)2 ≤ 4δmin(n − δmax − 1) (3)

where δ and ∆ are the minimum and maximum component of d, respectively. For all d ∈ D and any

G ∈ G′′(d) \ G(d), there exists an alternating path of length at most 10, starting with an edge and ending

with a co-edge, connecting the node with surplus one to the node with deficit one. Hence, D is strongly

stable.

A.2 Proof of Theorem 7

For the reader’s convenience, we repeat the description of the JS chain [29] here (ignoring the lazy part).

We also introduce some shorthand terminology for the type of moves defining the chain: in state G ∈ G′(d),

select an ordered pair i, j of nodes uniformly at random and then

(i) if G ∈ G(d) and (i, j) is an edge of G, delete (i, j) from G (Type 0 transition),

(ii) if G < G(d) and the degree of i in G is less than di, and (i, j) is not an edge of G, add (i, j) to G; if

this causes the degree of j to exceed d j, select an edge ( j, k) uniformly at random and delete it (Type

1 transition).

In case the degree of j does not exceed d j in (ii), we call this a Type 2 transition.

Theorem 7. Let D be a strongly stable family of degree sequences with respect to some constant k. Then

there exist polynomials p(n) and r(n) such that for any d = (d1, . . . , dn) ∈ D there exists an efficient multi-

commodity flow f for the JS chain on G′(d) satisfying maxe f (e) ≤ p(n)/|G′(d)| and ℓ( f ) ≤ r(n).

We will use the following idea from [28]—used in a different setting—in order to restrict ourselves to

establishing flow between states in G(d), rather than between all states in G′(d). Assume that d is is a degree

sequence with n components that is a member of a strongly stable family of degree sequences (with respect

to some k).

Lemma 14. Let f ′ be a flow that routes 1/|G′(d)|2 units of flow between any pair of states in G(d) in the JS

chain, so that f ′(e) ≤ b/|G′(d)| for all e in the state space graph of the JS chain. Then f ′ can be extended to

a flow f that routes 1/|G′(d)|2 units of flow between any pair of states in G′(d) with the property that for all

e in the state space graph of the JS chain

f (e) ≤ q(n)
b

|G′(d)| ,

where q(·) is a polynomial whose degree only depends on kJS (d). Moreover, ℓ( f ) ≤ ℓ( f ′) + 2kJS (d).10

We now continue with the proof of Theorem 7. It consists of four parts following, in a conceptual sense,

the proof template in [7] developed for proving rapid mixing of the switch chain for regular graphs. Certain

parts use similar ideas as in [28] where a Markov chain for sampling (near)-perfect matchings is studied.

Whenever we refer to [28], the reader is referred to Section 3 of [28].

10We omit the proof of Lemma 14 as the lemma is actually not needed for proving Theorem 4. Careful consideration of the proof

of Theorem 8 shows that we can only focus on flow between states in G(d), since the flow h given in the proof of Theorem 8 only

has positive flow between states corresponding to elements in G(d). That is, when defining the flow h, we essentially forget about

all flow in f between any pair of states where at least one state is an auxiliary state, i.e., an element of G′(d) G(d). Said differently,

in Theorem 8 we could start with the assumption that f routes 1/|G′(d)|2 units of flow between any pair of states in G(d) in the

state space graph of the JS chain, and then the transformation still works. However, the formulations of Theorems 7 and 8 are more

natural describing a comparison between the JS and switch chains.
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Proof of Theorem 7. We only need to define a flow f ′ as in Lemma 14 so that b ≤ p1(n) and ℓ( f ′) ≤ p2(n)

for some polynomials p1(·), p2(·) whose degrees may only depend on k = kJS (d). Actually, we are going

to show that we may use p1(n) = p2(n) = n2. Then the theorem follows from the lemma and the fact that

ln(|G′(d)|) is upper bounded by a polynomial in n. The latter follows from Equation (1) of McKay and

Wormald [33] that implies that

|G(d′)| ≤ nn2

for any degree sequence d′ with n components (see also [25]). So, by the definition of |G′(d)| we have

|G′(d)| ≤
(

n(n − 1)

2
+ n + 1

)

nn2

,

and thus ln(|G′(d)|) ≤ 3n3.

Before we define f ′, we first introduce some basic terminology similar to that in [7]. Let V be a set of

labeled vertices, let ≺E be a fixed total order on the set {{v, w} : v, w ∈ V} of edges, and let ≺C be a total order

on all circuits on the complete graph KV , i.e., ≺C is a total order on the closed walks in KV that visit every

edge at most once. We fix for every circuit one of its vertices where the walk begins and ends.

For given G,G ∈ G(d), let H = G△G′ be their symmetric difference. We refer to the edges in G G′ as

blue, and the edges in G′ G as red. A pairing of red and blue edges in H is a bijective mapping that, for

each node v ∈ V , maps every red edge adjacent to v, to a blue edge adjacent to v. The set of all pairings is

denoted by Ψ(G,G′), and, with θv the number of red edges adjacent to v (which is the same as the number

of blue edges adjacent to v), we have |Ψ(G,G′)| = Πv∈Vθv!.

Canonical Path Description [7]. Similar to the approach in [7], the goal is to construct for each pairing

ψ ∈ Ψ(G,G′) a canonical path from G to G′ that carries a |Ψ(G,G′)|−1 fraction of the total flow from G to G′

in f ′. For notational convenience, for the remaining of the proof we write uv instead of {u, v} to denote an

edge. For a given pairing ψ and the total order ≺E given above, we first decompose H into the edge-disjoint

union of circuits in a canonical way. We start with the lexicographically smallest edge w0w1 in EH and

follow the pairing ψ until we reach the edge wkw0 that was paired with w0w1. This defines the circuit C1. If

C1 = EH , we are done. Otherwise, we pick the lexicographically smallest edge in H C1 and repeat this

procedure. We continue generating circuits until EH = C1 ∪ · · · ∪Cs. Note that all circuits have even length

and alternate between red and blue edges, and that they are pairwise edge-disjoint. We form a path

G = Z0, Z1, . . . , ZM = G′

from G to G′ in the state space graph of the JS chain, by processing the circuits Ci in turn according to the

total order ≺C. The processing of a circuit C is the procedure during which all blue edges on C are deleted,

and all red edges of C are added to the current graphical realization, using the three types of transitions in

the JS chain mentioned at the beginning of this section. All other edges of the current graphical realization

remain unchanged. In general, this can be done similarly to the circuit processing procedure in [28].11

Circuit Processing [28]. Let C = vx1x2 . . . xqv be a circuit with start node v. We may assume, without loss

of generality, that vx1 is the lexicographically smallest blue edge adjacent to the starting node v. We first

perform a type 0 transition in which we remove the blue edge vx1. Then we perform a sequence of
q−1

2
type

1 transitions in which we add the red edge xixi+1 and remove the blue edge xi−1xi for i = 1, 3, . . . , q. Finally

we perform a type 2 transition in which we add the red edge vxq. In particular, this means that the elements

on the canonical path right before and after the processing of a circuit belong to G(d). It is easy to see that

11This is the main difference between the switch chain analyses [7, 25, 34, 17, 19, 18] and our analysis. The processing of a

circuit is much more complicated if performed directly in the switch chain.
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all the intermediate elements that we visit during the processing of the circuit C belong to G′(d) G(d), i.e.,

every element has either precisely two nodes with degree deficit one, or one node with degree deficit two.

This is illustrated in Figures 4, 5 and 6 for the circuit in Figure 3.

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

Figure 3: The circuit C = vx1x2x3x4x5x6x7x8x9v with v = x3 and x5 = x8. The blue edges are represented

by the solid edges, and the red edges by the dashed edges.

v/x3

x1

x2 x4

x5/x8

x6

x7
x9−1

−1 v/x3

x1

x2 x4

x5/x8

x6

x7
x9

−2

Figure 4: The edge vx1 is removed using a Type 0 transition (left). The edge x1x2 is added and x2x3 = x2v

is removed using a Type 1 transition (right). We have also indicated the non-zero degree deficits.

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

−1 −1 v/x3

x1

x2 x4

x5/x8

x6

x7
x9

−1

−1

Figure 5: The edge x3x4 is added and x4x5 is removed using a Type 1 transition (left). The edge x5x6 is

added and x6x7 is removed using a Type 1 transition (right).

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

−1

−1

v/x3

x1

x2 x4

x5/x8

x6

x7
x9

Figure 6: The edge x7x8 = x5x8 is added and x5x9 = x8x9 is removed using a Type 1 transition (left). The

edge vx9 is added using a Type 2 transition (right).

15



For the next part, we define the notion of an encoding that can be used to bound the congestion of an

edge in the state space graph of the JS chain using an injective mapping argument.

Encoding [28]. Let t = (Z, Z′) be a given transition of the Markov chain. Suppose two graphs G and G′

use the transition t over some canonical path for some pairing ψ ∈ Ψ(G,G′). Let H = G△G′. We define the

encoding

Lt(G,G
′) =

{

(H△(Z ∪ Z′)) − eH,t if t is a Type 1 transition,

H△(Z ∪ Z′) otherwise,

where eH,t is the first blue edge on the circuit that is currently being processed on the canonical path from

G to G′ (for the given pairing ψ). This encoding is of a similar nature as the encoding used in [28]. An

example is given in Figures 7, 8 and 9. We also refer the reader to Figure 1 in [28] for a detailed example.12

The following lemma is crucial for the analysis.

Lemma 15. Given t = (Z, Z′), L, and ψ, we can uniquely recover G and G′. That is, if L is such that

Lt = Lt(G,G
′) for some pair (G,G′), then (G,G′) is the unique pair for which this is the case, given t, L, ψ.

Proof. We give the proof for when t is a Type 1 transition. The cases of the two other types are similar,

and arguably somewhat easier. The proof uses the arguments in [28] interpreted in our setting. First note

that L△(Z ∪ Z′) is a graph in which there are precisely two nodes with odd degree. In particular, the edge

eH,t is the unique edge (having as endpoints these odd degree nodes) that has to be added to L△(Z ∪ Z′) to

obtain H = G△G′. That is, we have (L△(Z ∪ Z′)) + eH,t = H. The pairing ψ then yields a unique circuit

decomposition of E(H) as explained at the beginning of the proof. From the transition t it can be inferred

which circuit is currently being processed, and, moreover, we can infer which edges of that circuit belong

to G and which to G′. Furthermore, the global ordering ≺C on all circuits can then be used to determine for

every other circuit whether it has been processed already or not. For every such circuit, we can then infer

which edges on it belong to G and which to G′ by comparing with Z (or Z′). Therefore, G and G′ can be

uniquely recovered from t, L and ψ. �

a1

a2 a3

a4 x1

v/x3

x2 x4

x5/x8

x6

x7
x9 b1

b2 b3

b4

Figure 7: Symmetric difference H = G△G′ where the solid edges represent the edges G and the dashed

edges the edges of G′. From left to right the circuit are numbered C1,C2 and C3, and assume that this is also

the order in which they are processed.

12Although the perfect matching setting might seem different at first glance, it is actually closely related to our setting, with the

only difference that the symmetric difference of two perfect matchings is the union of node-disjoint cycles, whereas in our setting

the symmetric difference of two graphical realizations is the union of edge-disjoint circuits. This is roughly why the notion of

pairings is needed, as they allow us to uniquely determine the circuits. That is, the edge-disjoint circuits determined by the pairing

are the analogue of the node-disjoint cycles in the perfect matching setting in [28].
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a1

a2 a3

a4 x1

v/x3

x2 x4

x5/x8

x6

x7
x9 b1

b2 b3

b4

a1

a2 a3

a4 x1

v/x3

x2 x4

x5/x8

x6

x7
x9 b1

b2 b3

b4

Figure 8: The transition t = (Z, Z′) that removes the edge x6x7 and adds the edge x5x6 as part of the

processing of C2. Note that C1 has already been processed. The edges in (E(G)∪ E(G′)) \ E(H) are left out.

a1

a2 a3

a4 x1

v/x3

x2 x4

x5/x8

x6

x7
x9 b1

b2 b3

b4

Figure 9: The encoding L = Lt(G,G
′), where again the edges in (E(G) ∪ E(G′)) \ E(H) are left out. Note

that in this case eH,t = vx1 and that L is itself an element of G′(d).

Injective Mapping Argument [7, 28]. We complete the proof by using an injective mapping argument to

bound the congestion of the flow f ′ on the edges of the state space graph of the JS chain. The arguments

used are a combination of ideas from [28] and the proof of Lemma 2.5 in [7] (see also Lemma 1 in [8]).13

We again focus on Type 1 transitions t as the proofs for the other two types are similar but simpler.

For a tuple (G,G′, ψ), let pψ(G,G′) denote the canonical path from G to G′ for pairing ψ. Let

Lt = {Lt(G,G
′) | (G,G′, ψ) ∈ Ft}

be the set of all (distinct) encodings Lt, where

Ft =
{

(G,G′, ψ) : t ∈ pψ(G,G′)
}

is the set of all tuples (G,G′, ψ) such that the canonical path from G to G′ under pairing ψ uses the transition

t. A crucial observation is that every encoding Lt(G,G
′) itself is an element of G′(d) (see Figure 9 for an

13Lemma 2.5 in [7] contained a flaw for which the corrigendum [8] was published.
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example). This implies that

|Lt | ≤ |G′(d)|. (10)

Moreover, with H = G△G′ and L = Lt(G,G
′), the pairing ψ has the property that it pairs up the edges of

E(H) E(L) and E(H) ∩ E(L) in such a way that for every node v (with the exception of at most two nodes)

each edge in E(H) E(L) that is incident to v is paired up with an edge in E(H) ∩ E(L) that is incident to v.

However, there are either two nodes for which the incident edges in E(H) E(L) exceed by 2 the incident

edges in E(H)∩E(L), or one node for which the incident edges in E(H) E(L) exceed by 4 the incident edges

in E(H) ∩ E(L). These are exactly the two nodes with degree deficit 1 or the one node with degree deficit 2

in L; for the example in Figure 9 these are nodes x1 and x6. There ψ pairs up each edge of E(H) ∩ E(L) to

an edge of E(H) E(L) but also two edges of E(H) E(L) with each other; or in the case of one node with

degree deficit 2 ψ pairs up each edge of E(H)∩ E(L) to an edge of E(H) E(L) but also makes two pairs out

of the remaining 4 edges in E(H) E(L). Let Ψ′(L) be the set of all pairings with this property.14 Note that

not every such pairing has to correspond to a tuple (G,G′, ψ) for which t ∈ pψ(G,G′).
By simply counting, we can upper bound |Ψ′(L)| in terms of |Ψ(H)|. We show the calculation for the

case where L has two nodes with degree deficit 1. The case of one node with degree deficit 2 is very similar

and the same upper bound works there as well. Suppose that u, w are the two nodes of L with degree deficit

1. Then

|Ψ′(L)| = (

Πv∈V {u,w}θv!
) · (θu + 1)!

2
· (θw + 1)!

2
= |Ψ(H)| · (θu + 1)(θw + 1)

4
≤ n2 · |Ψ(H)| . (11)

Putting everything together, we have

|G′(d)|2 f ′(e) =
∑

(G,G′)

∑

ψ∈Ψ(G,G′)

1(e ∈ pψ(H))|Ψ(H)|−1

≤
∑

L∈Lt

∑

ψ′∈Ψ′(L)

|Ψ(H)|−1 (using Lemma 15)

≤ n2
∑

L∈Lt

1 (using (11))

≤ n2 · |G′(d)| (using (10))

The usage of Lemma 15 for the first inequality works as follows. Every tuple (G,G′, ψ) ∈ Ft with encoding

Lt(G,G
′) generates a unique tuple in {Lt(G,G

′)} ×Ψ′(Lt(G,G
′)). But since, by Lemma 15, we can uniquely

recover G and G′ from L, t and ψ, we have that
∑

L∈Lt
|{L} × Ψ′(L)| = ∑

L∈Lt

∑

ψ′∈Ψ′(L) 1 is an upper bound

on the number of canonical paths that use t.

By rearranging (11) we get the upper bound for f ′ required in Lemma 14. What is left to show is that

ℓ( f ′) is not too large. This, however, is determined by the way we defined the canonical paths. It is easy to

see that for any canonical path between any two graphs G,G′ ∈ G(d) has length at most 3
4
|E(G△G′)| and,

therefore, ℓ( f ′) ≤ n2. �

Remark 16 (Bipartite case). The proof for the bipartite case is very similar. The only difference is that in

the circuit processing procedure there will never be an auxiliary state where one node has degree deficit two.

For this to occur there necessarily has to be a simple cycle of odd length in a circuit, see, e.g., Figure 4. This

explains the adjusted definition of G′(r, c) used in the definition of (strong) stability for the bipartite case in

Appendix B. Moreover, the exact same encoding and injective mapping arguments can be used.

14Remember that we do not need to know G and G′ in order to determine the set H. It can be found based on L and the transition

t = (Z,Z′), as described in the proof of Lemma 15.
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B Sampling Bipartite Graphs

A similar analysis as in Appendix A.2 holds for the bipartite case, under some slightly adjusted definitions.

Throughout this section, we use m and n to denote the number of vertices in the two independent sets of a

given bipartition.

For a given tuple (r, c) with r = (r1, . . . , rm) and c = (c1, . . . , cn), we define G(r, c) as the set of all

bipartite graphs G = (V ∪ U, E) with V = {1, . . . ,m} and U = {1, . . . , n}, where the nodes in V have degree

sequence r, and the nodes in U degree sequence c. The set G′(r, c) is defined as ∪(r′,c′)G(r′, c′) where we

either have (r′, c′) = (r, c), or, there exist x ∈ {1, . . . ,m} and y ∈ {1, . . . , n} such that

r′i =

{

ri − 1 if i = x,

ri otherwise,
and c′j =

{

c j − 1 if j = y,

c j otherwise.

Note that the case in which there is one node with degree deficit two cannot occur here. The definitions of

the JS and switch chain, as well as that of the parameter in (1), denoted by kJS (r, c) here, and the notions of

stability and strong stability, are very similar. In particular, in the JS chain the only difference is that we now

pick i ∈ U and j ∈ V uniformly at random instead of picking i, j ∈ U ∪ V uniformly at random.

Crucially, as is stated in Theorem 17 below, the result in Theorem 4 carries over. The flow transformation

in Theorem 8 is completely analogous for the bipartite case. The merging and rerouting procedures can be

carried out in exactly the same fashion, and instead of Theorem 9 one can use the corresponding result for

the bipartite case, see, e.g., [37, 16]. Theorem 7 is also true for the bipartite case; this is discussed in Remark

16 in Appendix A.2.

Theorem 17 (Bipartite case). Let D be a strongly stable family of bipartite degree sequences with respect

to some constant k. Then there exists a polynomial q(n,m) such that, for any 0 < ǫ < 1, the mixing time τsw

of the switch chain for a graphical sequence (r, c) ∈ D, with r = (r1, . . . , rm) and c = (c1, . . . , cn), satisfies

τsw(ǫ) ≤ q(n,m)k ln(1/ǫ) .

Similarly, we can obtain a constant upper bound on kJS (r, c) for certain degree families. We first present

a range of sequences that can be considered a bipartite counterpart of Corollary 6.

Corollary 18. Let D = D(δr ,∆r, δc,∆c) be the set of all graphical bipartite degree sequences (r, c) on m

and n nodes respectively, satisfying

(∆r − δc)2 ≤ 4δc(n − ∆r) and (∆c − δr)
2 ≤ 4δr(m − ∆c) (12)

where δr,∆r are the minimum and maximum component of r, and δc,∆c the minimum and maximum compo-

nent of c respectively. For any (r, c) ∈ D, we have kJS (r, c) ≤ 8. Hence the switch chain is rapidly mixing

for sequences in D.

The proof is a bipartite analogue of Lemma 1 in [27]. In particular, we use the notions of co-edges and

alternating paths as defined in Appendix A.1.

Proof. Suppose that (r′, c′) is such that there exist precisely one s ∈ V and t ∈ U with degree deficit one,

and all other nodes have no deficit. Let G be a realization for the sequence (r′, c′) if G(r′, c′) , ∅.
As both s and t have a deficit, there exist a ∈ U and b ∈ V such that {s, a} and {t, b} are co-edges in G. If

either a = t or b = s, we are done. Therefore, we may assume that {a, b} is a co-edge in G. Now consider

the graph G′ = G + {s, a} + {t, b}. Let

X1 = {v | {a, v} ∈ G′} ⊆ V
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be the set of all neighbors of a, and similarly X2 the set of all neighbors of b in U. We may assume that the

sets X1 and X2 form a complete bipartite graph in G′, otherwise there is an alternating path of length 3 and

we are done. Define Yi as the set of nodes with at least one co-edge in Xi+1. We may assume that the sets

Y1 and Y2 form an independent set in G′, otherwise there is an alternating path of length 5 and we are done.

Furthermore, let Zi be the set of nodes not in Xi with a neighbor in Yi+1. Also here, it must be the case that

Z1 and Z2 form a complete bipartite graph, otherwise there is an alternating path of length 7 and we are done.

Moreover, by definition of Yi, all nodes in Zi are connected to all nodes in Xi+1, and so the sets K1 = X1 ∪ Z1

and K2 = X2 ∪Z2 form a complete bipartite graph. Finally, we let R1 = V (K1 ∪Y1) and R2 = U (K2 ∪Y2).

Before we continue, let us introduce some additional notation. For subsets A ⊆ V and B ⊆ U we write

E(A, B) for the set of edges with one endpoint in A and one endpoint in B. Moreover, for all sets that were

introduced, lower case letters are used to represent the cardinalities of these sets, e.g., y1 = |Y1|. We will

upper and lower bound the quantity |E(K1,R2 ∪ Y2)|.
Now, by definition all neighbors of nodes in Y2 are part of K1, so that

|E(K1, Y2)| ≥ δc · y2 .

Also, by definition all nodes in R1 are adjacent to all nodes in X1, and, in combination with the fact that

|X1| ≥ δc + 1 (as t has a degree surplus of one), this implies that

|E(K1,R2)| ≥ |E(X1,R2)| ≥ (δc + 1) · r2 .

Combining these results, we find that

|E(K1,R2 ∪ Y2)| > δc(r2 + y2) = δc(n − k2) . (13)

We now continue with an upper bound. As K1 and K2 form a complete bipartite graph, we have

|E(K1,R2 ∪ Y2)| ≤ k1(∆r − k2) . (14)

Combining (13) and (14) we find

δc(n − k2) < k1(∆r − k2) . (15)

Similarly, by interchanging the roles of U and V , we find

δr(m − k1) < k2(∆c − k1) . (16)

We now make a case distinction depending on the sizes of k1 and k2.

Case 1: k1 ≤ k2. Then (15) implies that

δc(n − k2) < k2(∆r − k2),

which can be rewritten as

f (k2) := k2
2 − (∆r + δc)k2 + δcn < 0.

This implies that the function f (k) has two null points, and therefore its discriminant must be strictly greater

than zero. However, its discriminant is equal to (∆r + δc)2 − 4δcn = (∆r − δc)2 − 4δc(n − ∆r) ≤ 0 which is a

contradiction. Recall that the last inequality holds by assumption.

Case 2: k2 ≤ k1. We can repeat the analysis of Case 1 but based on (16) instead of (15). �

If ∆r = ∆c, δr = δc and m = n, the condition in (12) reduces to

(∆r − δr)
2 ≤ 4δr(m − ∆r). (17)
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In particular, condition (17) is satisfied if δr ≥ m/4 and ∆r ≤ 3m/4 − 1. This strictly improves the range of

δr ≥ m/3 and ∆r ≤ 2m/3 for the biparte case recently obtained in [18]. It should be noted that Corollary 18

does not capture the (almost) half-regular case [34, 19].15 Those cases can be captured by the next result. In

[18] it was recently shown that the switch chain is rapidly mixing for the condition in (18). We now provide

an alternative proof for this fact by showing that these bipartite degree sequences are strongly stable.

Corollary 19. Let D = D(δr ,∆r, δc,∆c) be the set of all graphical bipartite degree sequences (r, c) on m

and n nodes respectively, satisfying

(∆c − δc − 1)(∆r − δr − 1) < 1 +max
{

δc(n − ∆r), δr(m − ∆c)
}

(18)

where δr,∆r are the minimum and maximum component of r, and δc,∆c the minimum and maximum compo-

nent of c respectively. For any (r, c) ∈ D, we have kJS (r, c) ≤ 8. Hence the switch chain is rapidly mixing

for sequences in D.

Proof. The proof bears similarities with the the proof of Corollary 18, especially in the beginning. In fact,

let s, t,G, a, b,G′, X1, X2, Y1 and Y2 be exactly as in the proof of Corollary 18. Also, let R1 = V (X1∪Y1∪{b})
and R2 = U (X2∪Y2∪{a}) and note that, by the definition of Y1, R1 and X2 form a complete bipartite graph

in G′; the same is true for X1 and R2.

Before we continue, we introduce some additional notation. For subsets A ⊆ V and B ⊆ U we write

Ē(A, B) for the set of co-edges in G′ with one endpoint in A and one endpoint in B. Like in the proof of

Corollary 18, for all sets that were introduced, lower case letters are used to represent the cardinalities of

these sets, e.g., y1 = |Y1|.
We will upper and lower bound the quantity |Ē(Y1,U)|. The fact that the degree of each node in Y1 is at

least δr, gives us an obvious upper bound:

|Ē(Y1,U)| ≤ y1(n − δr) . (19)

Since Y1 and Y2 form an independent set and, by definition, no node in Y1 is adjacent to a, we have

|Ē(Y1,U)| = y1(y2 + 1) + |Ē(Y1,U − Y2 − {a})| . (20)

So, we need to lower bound the quantity |Ē(Y1,U − Y2 − {a})| = |Ē(Y1, X2 ∪ R2)|. Using straightforward

upper and lower bounds and the fact that |Ē(X1,R2)| = |Ē(X1 ∪ R1 ∪ {b}, X2)| = 0,16 we have

|Ē(Y1, X2 ∪ R2)| = |Ē(V, X2 ∪ R2)| − |Ē(X1 ∪ R1 ∪ {b}, X2 ∪ R2)|
≥ (m − ∆c)(n − y2 − 1) − |Ē(X1 ∪ R1 ∪ {b}, X2)| − |Ē(X1,R2)| − |Ē(R1 ∪ {b},R2)|
≥ (m − ∆c)(n − y2 − 1) − (r1 + 1)r2 . (21)

Now we may combine (19), (20) and (21) to get

y1(n − δr) ≥ y1(y2 + 1) + (m − ∆c)(n − y2 − 1) − (r1 + 1)r2 ,

and by rearranging terms

(r1 + 1)r2 ≥ (y2 + 1 − n)(y1 − m + ∆c) + δry1 . (22)

Next we derive bounds on the sizes of the different sets involved in the proof so far. First note that a has

at least δc + 1 neighbors as it has degree surplus of one. Thus, x1 ≥ δc + 1. Similarly, x2 ≥ δr + 1. To bound

y1, notice that a node in X2 has at least m − ∆c non-neighbors in V and all of them must be in Y1. Thus,

15A pair (r, c) is half-regular if either r of c is regular, and almost half-regular if either ∆r ≤ δr + 1 or ∆c ≤ δc + 1.
16This follows from the definitions of the sets X,Y and R, and the fact that X1 and X2 form a complete bipartite graph.
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y1 ≥ m − ∆c. On the other hand, Y1 ∪ R1 contains the non-neighbors of a (except from b) and these can be

at most m − δc − 2. Thus, y1 ≤ m − δc − r1 − 2. Similarly, n − ∆r ≤ y2 ≤ n − δr − r2 − 2.

We are going to combine the latter bounds with (22):

(n − δr − 2 − y2)(m − δc − 1 − y1) ≥ (y2 + 1 − n)(y1 − m + ∆c) + δry1 .

By multiplying everything out and canceling several terms, we get

−nδc − n − mδr + δrδc + δr − m + 2δc + 2 + y1 + δcy2 + y2 ≥ ∆c(y2 + 1 − n) ,

and by rearranging

(n − y2 − 1)(∆c − δc − 1) + (y1 − m + δc + 1) ≥ δr(m − δc − 1) .

Next we may use y2 ≥ n − ∆r and y1 ≤ m − δc − 2 to finally get

(∆r − 1)(∆c − δc − 1) − 1 ≥ δr(m − ∆c) + δr(∆c − δc − 1) ,

which is equivalent to

(∆r − δr − 1)(∆c − δc − 1) ≥ 1 + δr(m − ∆c) .

Using the exact same arguments, we can work with |Ē(V, Y2)| to get

(∆c − δc − 1)(∆r − δr − 1) ≥ 1 + δc(n − ∆r) .

The last two inequalities contradict the choice of (r, c). �

C The JDM Model: An Example

In this section we provide an example of the joint degree matrix model with two degree classes. We let

V = {1, . . . , 11} and consider the partition given by V1 = {1, . . . , 6} and V2 = {7, . . . , 11}, i.e., q = 2. We let

c =

(

7 4

4 8

)

and d = (3, 4).

This means that the nodes in V1 have degree three, the nodes in V2 degree four, and there are in total four

edges between the nodes of V1 and V2. In Figure 10 below we give a possible graphical realization of this

tuple (c, d).

V1 V2

Figure 10: An example of a graphical realization for c and d as given above.
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D The PAM Model and the Hinge Flip Markov Chain

We start with a general description of the Partition Adjacency Matrix (PAM) model as a generalization of the

JDM model. Let V = {1, . . . , n} be a given set. An instance of the partition adjacency matrix model is given

by a partition V1 ∪ V2 ∪ · · · ∪ Vq of V into pairwise disjoint classes. Moreover, we are given a symmetric

partition adjacency matrix c = (ci j)i, j∈[q] of non-negative integers, and a sequence d = (d1, . . . , dn) of

non-negative integers. We say that the tuple ((Vi)i∈q, c, d) is graphical if there exists a simple, undirected,

labelled graph G = (V, E) on the nodes in V with node i ∈ V having degree di, and so that there are precisely

ci j edges between endpoints in Vi and V j. This is denoted by E[Vi,V j] = ci j. The graph G is called a

graphical realization of the tuple. We let G((Vi)i∈q, c, d) denote the set of all graphical realizations of the

tuple ((Vi)i∈q, c, d). We often write G(c, d) instead of G((Vi)i∈[q], c, d) when it is clear what the partition is.

In this work we focus on the case of a partition into two classes V1 and V2, and, without loss of generality,

assume that 1 ≤ c12 ≤ |V1| · |V2| − 1.17 For the case of two classes an initial state can be computed in

polynomial time [15].18 We let G′(c, d) = ∪(c′,d′)G′(c′, d′) with (c′, d′) ranging over tuples satisfying

(i)
∑n

i=1 di − d′
i
= 0,

(ii)
∑n

i=1 |di − d′
i
| ∈ {0, 2, 4},

(iii) c′
12
∈ {c12 − 1, c12, c12 + 1}.

We call elements in G′(c, d) \ G(c, d) perturbed (auxiliary) states. For any G ∈ G′(c, d) the perturbation

at node v ∈ V is defined as αv = dv − d′v where d′ is the degree sequence of G. We say that the node v has

a degree surplus if αv > 0 and a degree deficit if αv < 0. Moreover, the total degree surplus is defined as
∑

v:αv>0 αv, and the total degree deficit as −∑

v:αv<0 αv. Note that

∑

v:αv>0

αv −
∑

v:αv<0

αv =

n
∑

i=1

|di − d′i |.

Finally, we say that a tuple (c′, d′) is edge-balanced if c′ = c (but possibly d′ , d). From the conditions

defining G′(c, d), we may infer the following properties.

Proposition 20. For any G ∈ G′(c, d), for some tuple (c′, d′), it holds that

(a) the perturbation at node v satisfies αv ∈ {−2,−1, 0, 1, 2} for any v ∈ V,

(b) maxi, j=1,2 |ci j − c′
i j
| ≤ 1, and

∑

1≤i< j≤2 |ci j − c′
i j
| ∈ {0, 2}.

Proof. If there is some node with degree surplus greater or equal than three, then the total degree deficit is

also at least three, which follows from the first condition defining G′(γ, d). This means that
∑n

i=1 |di−d′
i
| ≥ 6,

which violates the second condition defining G′(c, d). A similar argument holds in case there is some node

with degree deficit greater or equal than three. To see that the second property is true, assume without

loss of generality that c′
11
≥ c11 + 2 (similar arguments hold for c′

22
). Because of the fact that c′

12
∈

{c12 − 1, c12, c12 + 1}, by the third condition defining G′(c, d), it must be that the total degree surplus of the

nodes in V1 is at least three. This gives a contradiction for similar reasons as before. An analogous argument

holds in case c′
11
≤ c11 − 2. Finally, the last property is a direct consequence of maxi, j=1,2 |ci j − c′

i j
| ≤ 1 and

the fact that
∑

i, j=1,2 |ci j − c′
i j
| is an even number, because of the first property defining G′(c, d). �

17It is not hard to see that the cases c12 ∈ {0, |V1| · |V2|} reduce to the single class case.
18For general instances, it is not known if an initial state can be computed in time polynomial in n. It is conjectured to be NP-hard

in general [15], see also [12].
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Remark 21. As we focus on the case in which V is partitioned into two classes V1 and V2 here, we will use

some shorthand notation in this section.19 Given a sequence d the number γ = c12 uniquely determines the

matrix c, and the set G(c, d) is then denoted by G(V1,V2, γ, d). As before, we often leave out V1 and V2 from

the tuple (for sake of readability). That is, we then write G′(γ, d) instead of G′(V1,V2, c, d). We do this in

order to emphasize that the derived results only hold for two classes.

We define the hinge flip Markov chain20 M(γ, d) on G′(γ, d) as follows. Suppose the current state of the

chain is G ∈ G′(γ, d):

• With probability 1/2, do nothing.

• Otherwise, perform a hinge flip operation: select an ordered triple i, j, k of nodes uniformly at random.

If {i, j} ∈ E(G), { j, k} < E(G), and G − {i, j} + { j, k} ∈ G′(γ, d), then delete {i, j} and add { j, k}.

Note that we can check if G − {i, j} + { j, k} ∈ G′(γ, d) in time polynomial in n based on the state G.

i

j

k i

j

k

Figure 11: Example of a hinge flip operation for the ordered triple i, j, k.

Graphs G,G′ ∈ G′(γ, d) are said to be adjacent in M if G can be obtained from G′ with positive

probability in one transition of the chain M. We say that two graphs G,G′ are within distance r in M if

there exists a path of at most length r from G to G′ in the state space graph ofM. By dist(G, γ, d) we denote

the minimum distance of G from an element in G(γ, d). The following parameter is the analog of (1) for the

current setting and will be used in a similar manner to define the appropriate variant of strong stability. We

define

k(γ, d) = max
G∈G′(γ,d)

dist(G, γ, d). (23)

In the PAM model with two degree classes, a family D of graphical tuples (γ, d) is called if there exists a

constant k such that k(γ, d) ≤ k for all (γ, d) ∈ D.

Theorem 22. Let D be a family of graphical tuples that is strongly stable with respect to some constant

k. Then for every (γ, d) ∈ D, the chain M(γ, d) is irreducible, aperiodic and symmetric, and, hence, has

uniform stationary distribution over G′(γ, d). Moreover, P(G,G′)−1 ≤ n3 for all adjacent G,G′ ∈ G′(γ, d),

and also the maximum in- and out-degrees of the state space graph of the chain M(γ, d) are bounded by

n3.21

Proof. The only claim that requires a detailed argument, and uses the assumption of strong stability, is that

of the irreducibility of the chain. By definition of strong stability, we always know that every perturbed

state is connected to some element in G(γ, d) so it suffices to show that there is a path between any two

states in G(γ, d). This follows from the analysis in the remainder of this section. Aperiodicity follows from

the holding probability in the description of the chainM, and symmetry is straightforward. The bound on

P(G,G−1) follows directly from the description of the chain, as well as the bound on the in- and out-degrees

of the state space graph. �

19Still, the notation in Proposition 20 is more convenient in Appendix E.
20One could also choose a natural generalization of the JS chain here. Similarly, for the PAM model with one class as studied

in Section 3, one could also use a hinge flip based Markov chain. We choose to work with the JS chain in Section 3 as this is the

formulation introduced in [29] (and already claimed to be rapidly mixing for various degree sequences).
21It might be the case that the chain is always irreducible, even if D is not strongly stable, but this is not relevant at this point.

The assumption of strong stability allows for a shortcut in the proof of irreducibility.
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The remainder of this section is devoted to proving Theorem 23 based on ideas introduced in [4].

Throughout this section we always consider tuples (γ, d) coming from strongly stable families.

Theorem 23. Let D be a strongly stable family of tuples (γ, d) with respect to some constant k. Then there

exist polynomials p(n), r(n) such that for any (γ, d) ∈ D, with d = (d1, . . . , dn), there exists an efficient

multicommodity flow f for the auxiliary chain M(γ, d) on G′(γ, d) satisfying maxe f (e) ≤ p(n)/|G′(γ, d)|
and ℓ( f ) ≤ r(n). Hence, the chainM(γ, d) is rapidly mixing for families of strongly stable tuples.

We will use the following lemma in order to simplify the proof of Theorem 23. It is the analog of Lemma

14 in Subsection A.2.

Lemma 24. Let f ′ be a flow that routes 1/|G′(γ, d)|2 units of flow between any pair of states in G(γ, d) in

the chain M(γ, d), so that f ′(e) ≤ b/|G′(γ, d)| for all e in the state space graph of M(γ, d). Then f ′ can

be extended to a flow f that routes 1/|G′(γ, d)|2 units of flow between any pair of states in G′(γ, d) with the

property that for all e

f (e) ≤ q(n)
b

|G′(γ, d)| , (24)

where q(·) is a polynomial whose degree only depends on k(γ, d) (≤ k). Moreover, ℓ( f ) ≤ ℓ( f ′) + 2k(γ, d).

Proof (sketch). We extend the flow f ′ to f as follows. For any G ∈ G′(γ, d)\G(γ, d) fix some φ(G) ∈ G(γ, d)

within distance k of G (which exists by assumption of strong stability), and fix some path in the state space

graph from G to φ(G). Moreover, define φ(H) = H for all H ∈ G(γ, d). The flow between G and any given

G′ ∈ G′(γ, d) is now send as follows.

First route 1/|G′(γ, d)|2 units of flow from G to φ(G) over the fixed path from G to φ(G). Then use the

flow-carrying paths used to send 1/|G′(γ, d)|2 units of flow between φ(G) and φ(G′) as in the flow f ′ (note

that in general multiple paths might be used for this in the flow f ′). Finally, use the reverse of the fixed path

from G′ to φ(G′) to route 1/|G′(γ, d)|2 from φ(G′) to G′. For any H ∈ G(γ, d), we have |φ−1(H)| ≤ poly(nk),

as the in- and out-degrees of the nodes in the state space graph ofM(γ, d) are polynomially bounded. It can

then be shown (left to the reader) that this extension of f ′, yielding the flow f , only gives an additional term

of at most poly(nk) b
|G′(γ,d)| to the congestion of every arc in the state space graph of the chainM(γ, d) in the

flow f ′. Hence, the extended flow f satisfies (24) for some appropriately chosen polynomial q(n). �

D.1 Proof of Theorem 23

Because of Lemma 24 it now suffices to show that there exists a flow f ′ that routes 1/|G′(γ, d)|2 units of flow

between any two pair of states in G(γ, d), in the state space graph of the chainM(γ, d), with the property that

f ′(e) ≤ p(n)/|G′(γ, d)|, and ℓ( f ′) ≤ q(n) for some polynomials p(·), q(·) whose degrees may only depend

on k(γ, d). Note that f ′ is not a feasible multi-commodity flow as defined in Section 2, but should rather

be interpreted as an intermediate auxiliary flow. The proof of Theorem 23 will consist of multiple parts

following, conceptually, the proof template in [7] developed for proving rapid mixing of the switch chain

for regular graphs. The main difference is that for the so-called canonical paths between states we rely on

ideas introduced in [4].

D.1.1 Canonical Paths

We first introduce some basic terminology similar to that in [7]. Let V be a set of labeled vertices, let ≺E

be a fixed total order on the set {{v, w} : v, w ∈ V} of edges, and let ≺C be a total order on all circuits on the

complete graph KV , i.e., ≺C is a total order on the closed walks in KV that visit every edge at most once. We

fix for every circuit one of its vertices where the walk begins and ends.
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For given G,G ∈ G(γ, d), let H = G△G′ be their symmetric difference. We refer to the edges in G G′

as blue, and the edges in G′ G as red. A pairing of red and blue edges in H is a bijective mapping that, for

each node v ∈ V , maps every red edge adjacent to v, to a blue edge adjacent to v. The set of all pairings is

denoted by Ψ(G,G′), and, with θv the number of red edges adjacent to v (which is the same as the number

of blue edges adjacent to v), we have |Ψ(G,G′)| = Πv∈Vθv!.
Remember that we are considering an instance of the PAM problem with two classes V1 and V2. For a

given graphical realization G ∈ G(γ, d) we say that e ∈ E(G) is a cut edge if it has an endpoint in both V1

and V2. Otherwise we say that e is an internal edge, as both endpoints either lie both in the class V1 or both

in class V2.

Similar to the approach in [7], the goal is to construct for each pairing ψ ∈ Ψ(G,G′) a canonical path

from G to G′ that carries a fraction |Ψ(G,G′)|−1 of the total flow from G to G′ in f ′. For a given pairing

ψ and the total order ≺E given above, we first decompose H into the edge-disjoint union of circuits in a

canonical way. We start with the lexicographically least edge w0w1 in EH and follow the pairing ψ until we

reach the edge wkw0 that was paired with w0w1. This defines the circuit C1 (which is indeed a closed walk).

If C1 = EH , we are done. Otherwise, we pick the lexicographically least edge in H C1 and repeat this

procedure. We continue generating circuits until EH = C1 ∪ · · · ∪Cs. Note that all circuits have even length

and alternate between red and blue edges, and that they are pairwise edge-disjoint.

We form a path from G to G′ in the state space graph of the chainM(γ, d) by changing the blue edges

of G into the red edges of G′ using hinge flip operations. For certain parings this can be done in a straight-

forward way, but in general this is not the case. As a warm-up, we first consider a simple case (this case

essentially describes how we would process the circuits in case there is only one class).

Warm-up Example. If for every i, the circuit Ci exclusively consist of internal edges, only within V1 or

only within V2, or exclusively of cut edges, circuits can be processed according to the ordering ≺C as follows.

Let C = x0x1x2 . . . xqx0 be a circuit, and assume w.l.o.g. that x0x1 is the lexicographically smallest blue edge

adjacent to the starting node x0 of the circuit. The processing of C now consists of performing a sequence

of hinge flips on the ordered pairs (xi−1, xi, xi+1) for i = 1, . . . , q with the convention that xq+1 = x0. This is

illustrated in Figures 12, 13 and 14 for an example of C as illustrated in Figure 12 on the left.22 We have also

indicated the degree surplus and deficit at every step. By assumption, the edges of C either are all internal

edges, or all cut edges. Therefore, throughout the processing of C, we never violate the constraint that there

should be γ edges between the classes V1 and V2, and, in particular, this implies that every intermediate state

is an element of G′(γ, d).

x0/x3

x1

x2 x4

x5/x8

x6

x7x9

x0/x3

x1

x2 x4

x5/x8

x6

x7x9

+1

−1

Figure 12: The circuit C = x0x1x2x3x4x5x6x7x8x9x0 with x0 = x3 and x5 = x8. The blue edges are

represented by the solid edges, and the red edges by the dashed edges (left). The edge x0x1 is removed and

x1x2 is added (right).

22This is similar to the procedure described in Figures 4, 5 and 6 for the JS chain (we give an example here as well for the sake

of completeness).
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x0/x3

x1

x2 x4

x5/x8

x6

x7x9

−1

+1

x0/x3

x1

x2 x4

x5/x8

x6

x7x9

−1

+1

Figure 13: The edge x2x3 is removed and x3x4 is added (left). The edge x4x5 is removed and x5x6 is added

(right).

x0/x3

x1

x2 x4

x5/x8

x6

x7x9

−1 +1 x0/x3

x1

x2 x4

x5/x8

x6

x7x9

Figure 14: The edge x6x7 is removed and x7x8 is added (left). The edge x8x9 is removed and x9x0 is added

(right).

In general, however, it might happen that circuits contain both cut and internal edges, in which case

we cannot use the circuit processing procedure explained above, as the processing of a circuit might result

in a graphical realization for which the number of edges between the classes V1 and V2 lies outside the

set {γ − 1, γ, γ + 1}. The latter condition is necessary for the intermediate states in the circuit processing

procedure to be elements of G′(γ, d), by definition of that set. In order to overcome the issue described

above, we will use the ideas in [4], and process a circuit at multiple places simultaneously in case there is

only one circuit in the canonical decomposition of a pairing, or, process multiple circuits simultaneously

in case the decomposition yields multiple circuits. At the core of this approach lies (a variation of) the

mountain-climbing problem [26, 43]. We begin with introducing this problem, and afterwards continue with

the description of the circuit processing procedure, based on the solution to the mountain climbing problem.

Intermezzo: mountain climbing problem. We first introduce some notation and terminology. For non-

negative integers a + 1 < b we define an {a, b}-mountain as a function P : {a, a + 1, . . . , b} → Z≥0 with the

properties that (i) P(a) = P(b) = 0; (ii) P(i) > 0 for all i ∈ {a+ 1, . . . , b− 1}; and (iii) |P(i+ 1)− P(i)| = 1 for

all i ∈ {a, . . . , b − 1}. A function P : {a, a + 1, . . . , b} → Z≤0 is called an {a, b}-valley if the function −P is

an {a, b}-mountain. We subdivide a mountain into a left side {a, . . . , t} and right side {t, . . . , b} where t is the

smallest integer maximizing the function P. For a valley function P, the left and right side are determined

by the smallest integer t minimizing the function P.

Definition 25. A traversal of the mountain P on {a, . . . , b} is a sequence (0, t) = (i1, j1), . . . , (ik, jk) = (t, b)

with the properties

(a) |ir − ir+1| = | jr − jr+1| = 1,

(b) P(ir) + P( jr) = P(t),

(c) a ≤ ir ≤ t and t ≤ jr ≤ b,
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for all 1 ≤ r ≤ k− 1. We always assume that a traversal is minimal, in the sense that there is no subsequence

of (0, t) = (i1, j1), . . . , (ik, jk) = (t, b) which is also a traversal.

Roughly speaking, we place one person at the far left end of the mountain, and one at the first top. These

persons now simultaneously traverse the mountain in such a way that the sum of their heights is always

equal, and they always stay on their respective sides of the mountain that they started. The goal of the

person on the left it to ascend to the top, whereas the goal of the player at the top is to descend to the far

right of the mountain.

Lemma 26 ([4]). For any mountain or valley function P on {a, . . . , b} with first top t, there exists a traversal

of P of length at most O((t − a)(b − t)), that can be found in time O((t − a)(b − t)).

Figure 15: Example of a mountain function P on the integers in {0, . . . , 14} with the first top at t = 6. The

left side of the mountain is given by {0, . . . , 6} and the right side by {6, . . . , 14}. A traversal of P is given by

the sequence (0, 6), (1, 7), (0, 8), (1, 9), (2, 10), (3, 11), (4, 12), (5, 13), (6, 14).

We finish this part with some additional notation that will be used later on. Let P j : {a j, . . . , b j} → Z for

j = 1, . . . , p be a collection of mountain and valley functions such that a1 = 0, a j = b j+1 for j = 1, . . . , p−1,

and every P j is either a mountain or a valley. We define the landscape Q of the functions P1, . . . , Pl as

the function Q : {0, 1, . . . , bl} → Z given by Q(i) = P j(i) where j = j(i) is such that i ∈ {a j, . . . , b j}.
Note that Q(0) = Q(bl) = 0, and |Q(i + 1) − Q(i)| = 1 for all i ∈ {0, . . . , b j − 1}. Moreover, for any

function R : {0, . . . , r} → Z satisfying the latter two conditions, there is a unique collection of mountain and

valley functions so that R is the landscape of those functions. We call functions satisfying these conditions

landscape functions.

General Case. We first partition every circuit into a collection of so-called sections, which in turn will be

grouped into so-called segments. Let C1, . . . ,Cs be the canonical circuit decomposition of the symmetric

difference G△G′ for some pairing ψ, and assume w.l.o.g. that Ci ≺C C j whenever i < j. We write Ci =

xi
0
xi

1
. . . xi

qi
xi

0
where xi

0
xi

1
is the lexicographically smallest blue edge adjacent to the starting point xi

0
of the

circuit Ci that contains qi + 1 edges (and where x0 = xqi+1). For any i, we define the function

li (r) =



















−1 if {xi
r−2
, xi

r−1
} is cut edge and {xi

r−1
, xi

r} is internal edge,

1 if {xi
r−2
, xi

r−1
} is internal edge and {xi

r−1
xi

r} is cut edge,

0 otherwise,

for r = 2, 4, . . . , qi+1. The function li indicate what happens to number of cut edges of a graphical realization

when we perform a hinge flip on a pair of consecutive edges {xi
r−2
, xi

r−1
} and {xi

r−1
, xi

r} on the circuit Ci.

Decomposition into segments. We subdivide every circuit Ci into a sequence of (not necessarily closed)

walks of even length, called sections. Let Zi = {r : li(r) , 0} = {z1, . . . , zui
} ⊆ {2, 4, . . . , qi + 1} be the set of

indices that represent a change in cut edges along the circuit, where we assume that z1 ≤ z2 ≤ · · · ≤ zui
. We

define C1
i
= xi

0
xi

1
. . . xi

z1
and C

j

i
= xi

z j
. . . xi

z j+1
for j = 2, . . . , ui − 1. If li(qi + 1) , 0 this procedure partitions

the circuit Ci completely, with C
ui

i
being the last section. Otherwise, we define C

u1+1
i
= xi

zui
. . . xi

0
as the
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final section, which is the remainder of the circuit Ci. We define Ui as the total number of obtained sections,

which is either ui or ui + 1. Note that when Zi = ∅, the whole circuit will form one section Ci = C1
i
. Also

note that a section always starts with a blue edge. We extend the function li to sections in the following way:

li
(

C
j

i

)

=
∑

r=2,4,...,z j

li(r) =



















−1 if li(z j) = −1,

1 if li(z j) = 1,

0 otherwise,

for j = 1, . . . ,Ui. Note that l(C
j

i
) ∈ {−1, 1} for j = 1, . . . , ui, and zero for j = ui + 1 if this term is present.

An example is given in Figure 16.

x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15

c

c c c

c

c

Figure 16: The circuit C1 = x0x1 . . . x15x0 with q1 = 15. The blue edges are represented by the solid

edges, and the red edges by the dashed edges. A label c on an edge indicates that it is a cut edge (all

others are internal edges). We have C1
1
= x0x1x2 with l1(C1

1
) = −1; C2

1
= x2x3x4x5x6 with l1(C2

1
) = 1;

C3
1
= x6x7x8x9x10 with l1(C3

1
) = −1; C4

1
= x10x11x12x13x14 with l1(C4

1
) = −1; and C5

1
= x14x15x0 with

l1(C5
1
) = 0 (note that U1 = 5 in this example).

We now continue by grouping the union of all sections into segments in a similar flavor. For sake of

readability, we rename the sections C1
1
, . . . ,C

U1

1
,C1

2
, . . . ,C

U2

2
, . . . ,C1

s , . . . ,C
Us
s as D1, . . . ,DU in the obvious

way, where U =
∑s

i=1 Ui, and we define l(Dk) = li(C
j

i
) if C

j

i
was renamed Dk. We define W = {k :

l(Dk) , 0} = {w1, . . . , wB} as the set of sections representing a change in cut edges along a circuit, where

we assume that w1 ≤ · · · ≤ wB. We define the segment S 1 = (D1, . . . ,Dw1
), and S i = (Dwi−1+1, . . . ,Dwi

)

for i = 2, . . . , wB − 1. If l(DU) , 0, i.e., when wB = U, this procedure completely groups the collection of

sections into segments. Otherwise, we redefine the last segment as S B = (DwB−1+1, . . . ,DU). We can extend

the function l to segments in the following way:

l (S i) =

wi
∑

j=wi−1+1

l(D j) =

{

−1 if l(Dwi
) = −1,

1 if l(Dwi
) = 1,

for i = 1, . . . , B − 1, and l (S B) =
∑U

j=wB−1+1 l(D j). Note that

l(S i) ∈ {−1, 1} for i = 1, . . . , B.23 (25)

An example of a decomposition into segments is given in Figures 19 and 20 later on. Roughly speaking,

a segment is a maximal collection of edges that could be processed, using hinge flips operations as in

the warm-up example, until the number of cut-edges changes. In particular, the first segment represents

precisely the point up to where we could carry out the same processing steps as in the warm-up example

until the number of cut edges will have changed for the first time. Note that a segment might contain sections

23Unless in the special case that there is only one segment S 1 covering all circuits, then l(S 1) = 0. This happens, e.g., in the

situation of the warm-up example.
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from multiple circuits, in particular, it might consist of a final section of a circuit J1, then some full circuits

J2, . . . , Jh (which all form a section on their own) and then the first section of some circuit Jh+1. The function

l is then zero on the last section of J1 and all circuits (sections) J2, . . . , Jh, and non-zero on the section of

Jh+1.

Unwinding/rewinding of a segment. The unwinding of a section D = x f . . . xg consists of performing

a number of hinge flip operations, that represent transitions in the Markov chain M′(γ, d). That is we

perform a sequence of hinge flip operations replacing the (blue) edges {xr−2, xr−1} by (red) edges {xr−1, xr}
for r = f + 2, . . . , g, in increasing order of r. Sometimes, we need to temporarily undo the unwinding of

a section, in which case we perform a sequence of hinge flip operations replacing the (red) edges {xr−1, xr}
by (blue) edges {xr−2, xr−1} for r = f + 2, . . . , g, in decreasing order of r this time. That is, we reverse the

operations done during the unwinding. This is called rewinding a section. We say that a circuit is (currently)

processed if all its sections have been unwound, and it is (currently) unprocessed if at least one section has

not been unwound.

The unwinding of a segment S i = (Dai
, . . . ,Dai+1) consists of unwinding the sections Dai

, . . . ,Dai+1 in

increasing order. The rewinding of S i consists of rewinding the section Dai
, . . . ,Dai+1 in decreasing order.

x0 x1 x2 x3 x4 x5 x6

x0 x1 x2 x3 x4 x5 x6

unwinding rewinding

Figure 17: A section D = x0x1 . . . x6. The blue edges are represented by the solid edges. The unwinding

consists of performing first a hinge flip with {x0, x1} to {x1, x2}; then {x2, x3} to {x3, x4}; and finally {x4, x5}
to {x5, x6}. The rewinding consist of first a hinge flip with {x5, x6} to {x4, x5}; then {x3, x4} to {x2, x3}; and

finally {x1, x2} to {x0, x1}

Landscape processing. Remember that B is the number of segments obtained from the decomposition

of circuits into segments. We define the function P : {0, 1, . . . , B} → Z by P(0) = 0 and P(i) =
∑i

j=1 l(S j)

for i = 1, . . . , B.

Lemma 27. The function P is a landscape function.

Proof. We have to check that P(0) = P(B) = 0 and that |P(i + 1) − P(i)| = 1 for all i = 0, . . . , B − 1, see the

description of the mountain climbing problem. We have P(0) by definition. Moreover, since both graphical

realizations G and G′ contain γ cut edges, it holds that P(B) =
∑B

i=1 l(S i) = 0. Finally, using (25) and the

definition of P, it follows that

|P(i + 1) − P(i)| =
∣

∣

∣

∣

∣

∣

i+1
∑

j=1

l(S j) −
i

∑

j=1

l(S j)

∣

∣

∣

∣

∣

∣

= |l(S i)| = 1

for all i = 1, . . . , B − 1. �

Based on the segments S 1, . . . , S B, we define the canonical path from G to G′ in the state space graph

of the chain G′(γ, d) that replaces all the blue edges in G△G′ with the red edges in G△G′. By Lemma 27

we know P is a landscape function and therefore there is a unique decomposition into mountain and valley

functions P1, . . . , Pp so that P is the landscape function for this collection, where every function is of the
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form P j : {a j, . . . , b j} → Z with a1 = 0, b j = a j+1 for j = 1, . . . , p − 1, and bp = B.24 The processing of

a mountain/valley P j means that all segments S a j+1, . . . , S b j
will be unwound (it might be that during this

procedure segments are temporarily rewound). This processing will rely on a traversal of the mountain, see

Definition 25. We say that the segments S a j+1, . . . , S c j
are on the left side of the mountain, and the segments

S c j+1, . . . , S b j
on the right side. Let P = P j for some j and assume that P is a mountain function. For sake

of notation, we write a = a j and b = b j, and t = t j where t j is the first top of the mountain.

Now, fix some traversal (a, t) = (r1, s1), . . . , (rk, sk) = (t, b) of P. For c = 1, . . . , k − 1 in increasing order,

do the following:

• if rc+1 > rc and sc+1 > sc: first unwind segment S rc+1
, then unwind segment S sc+1

;

• if rc+1 > rc and sc+1 < sc: first unwind segment S rc+1
, then rewind segment S sc

;

• if rc+1 < rc and sc+1 > sc: first rewind segment S rc
, then unwind segment S sc+1

;

• if rc+1 < rc and sc+1 < sc: first rewind segment S rc
, then rewind segment S sc

.

This describes the processing of a mountain based on a traversal. Note that after the processing of a mountain,

indeed all its segments have been unwound. If P is a valley function, we can use essentially the same

procedure performed on −P. The processing of a landscape is done by processing the mountains/valleys

P1, . . . , Pp in increasing order.

This procedure generates a sequence G = Z1, Z2, . . . , Zl = G′ of graphical realizations transforming G

into G′ where any two consecutive realizations differ by a hinge flip operation. The following lemma shows

that this sequence indeed defines a (canonical) path from G to G′ in the state space graph ofM(γ, d), for a

given pairing ψ. This lemma is essentially the motivation for the definition of G′(γ, d).

Lemma 28. Let Z = Zi be a graphical realization on the constructed path from G to G′ for pairing ψ, with

degree sequence d′ and γ′ cut edges. Then properties (i), (ii) and (iii) defining G′(γ, d) are satisfied.

Moreover, there exists a polynomial r(·) such that the length of any constructed (canonical) path carrying

flow is at most r(n).

Proof (sketch). Since hinge flip operations never add or remove edges, property (i) is clearly satisfied. Since

the operations (1) − (4) given above unwind and rewind at most two segments, and by construction of

the trajectories describing the traversal, the property (ii) is also satisfied. Finally, the cases (1) − (4), in

combination with the second property of a traversal as in Definition 25, guarantee that property (iii) is

satisfied. To see that all canonical paths have polynomial length, note that the traversal has polynomial

length, and also every individual segment has polynomial length. �

D.1.2 Encoding

We continue with defining the notion of an encoding that will be used in the next section to bound the

congestion of an edge in the state space graph of M(γ, d). Let τ = (Z, Z′) be a given transition of the

Markov chain. Suppose that a canonical path from G to G′ for some pairing ψ ∈ Ψ(G,G′), with canonical

circuit decomposition {C1, . . . ,Cs}, uses the transition τ. We define Lτ(G,G) = (G△G′)△Z. An example is

given in Figures 19, 20, 21 and 22.

Lemma 29. Given τ = (Z, Z′), ψ, L, if there is some pair (G,G′) so that L = Lτ(G,G
′), then there are at

most 1
8
n4 such pairs.

24The function P1 can be found by determining the first j > 0 so that P( j) = 0. The sign of P(1) determines if it is a mountain or

a valley. The remaining mountains and valleys can be found similarly.
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Proof. For any pair (G,G′), let P be the landscape function of this canonical path between G and G′ using

the transition τ, and P1, . . . , Pp its decomposition into mountain and valley functions. Let Tτ,ψ(G,G′) ∈
{C1, . . . ,Cs} be the circuit containing the first node of the first segment of the right part of the mountain/valley

P j containing the transition τ. Moreover, if τ is used in the processing of a segment on the left side of the

mountain P j containing τ, let σψ(G,G′) be the circuit containing the last node of the segment with highest

index on the right side of the mountain that is currently unwound. If τ lies on the right side of the mountain,

we let σψ(G,G′) be the circuit containing the last node of the segment with highest index on the left side of

the mountain that is currently unwound.

TψΓ σψ
processed unprocessed processed unprocessed

Figure 18: The dashed vertical lines sketch the ranges of the circuits Tψ, σψ and Γ. For every other circuit,

contained in one of the four regions represented below the landscape, we know whether it has currently been

processed or not.

We claim that, given Tψ, σψ ∈ {C1, . . . ,Cs}, it can be argued that there are at most 8 pairs (G,G′) so

that Tψ = Tψ(G,G′), σψ = σψ(G,G′). This can be seen as follows. Note that we can infer for all other

circuits in {C1, . . . ,Cs} \ {Tψ, σψ, Γ} which edges belong to G and which to G′ using the (global) circuit

ordering. To see this, assume that Γ �C Tψ �C σψ (the only other case σψ �C Tψ �C Γ is similar). Because

the landscapes of the canonical paths always respect the circuit ordering, we know that all circuits in the

canonical decomposition of ψ appearing before Γ have been unwound at this point. All circuits lying strictly

between Γ and Tψ are not unwound. The circuits strictly between Tψ and σψ again have been unwound,

and finally, all circuits appearing after σψ have not been unwound. By comparison with Z, it is uniquely

determined with edges on these circuits belong to G and which to G′. For the remaining three circuits Tψ,

σψ and γ there are for every circuit two possible configurations of the edges of G and G′, since every circuit

alternates between edges of G and G′.25 Hence, there are at most 23 = 8 possible pairs (G,G′) with the

desired properties given Tψ and σψ.

Finally, note that for any pairing ψ, there are at most 1
4

(

n
2

)

circuits in the canonical circuit decomposition

{C1, . . . ,Cs} of the pairing ψ, as every circuit has length at least four. Hence, for both Tψ and σψ there are at

most 1
4

(

n
2

)

possible choices. Since Γ is uniquely determined by the transition τ, this implies that there are at

most

8 · 1

4

(

n

2

)

· 1

4

(

n

2

)

≤ n4

8

possible pairs (G,G′) with L = Lτ(G,G
′).26

�

25Note that we cannot use the transition τ to infer which edges belong to G and G′ on the circuit Γ, as we do not know (i.e., we

do not encode) whether we are unwinding or rewinding the segment containing τ.
26A canonical path uses every transition at most once, which follows from the fact that we assumed that a traversal is always

minimal, see Definition 25.

32



a1

a2 a3

a4 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b1

b2 b3

b4

c

c c c

c

c

c

c

Figure 19: Symmetric difference H = G△G′ where the solid edges represent the (blue) edges G and the

dashed edges the (red) edges of G′. From left to right the circuit are numbered C1 = a1a2a3a4a1, C2 =

x0 · · · x15x0 and C3 = b1b2b3b4b1, and assume that this is also the order in which they are processed. Cut

edges are indicated with the label c.

S
1 S 2

S
3

S
4 S 5

S 6

Figure 20: The landscape, consisting of two valleys, corresponding to the symmetric difference in Figure

19. The segments are given by S 1 = (a1a2a3a4a1, x0x1x2), S 2 = (x2x3x4x5x6), S 3 = (x6x7x8x9x10), S 4 =

(x10x11x12x13x14), S 5 = (x14x15x16, b1b2), and S 6 = (b3b4b1).

a1

a2 a3

a4 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b1

b2 b3

b4

a1

a2 a3

a4 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b1

b2 b3

b4

Figure 21: The transition τ = (Z, Z′) that is the hinge flip operation that removes the edge {x10, x11} and adds

the edge {x11, x12} as part of the unwinding of S 4. Note that the segments S 1 and as S 2, forming the first

valley, have been processed already. Also, the first segment S 3 of the left part of the second valley, as well

as the segment S 5 being the first segment of the right part of the second valley, have been processed already.

The edges in (E(G) ∪ E(G′)) \ E(H) are left out.
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a1

a2 a3

a4 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b1

b2 b3

b4

Figure 22: The encoding L = Lt(G,G
′) = (G△G′)△Z for the symmetric difference in Figure 19 and transition

as in Figure 21, where again the edges in (E(G) ∪ E(G′)) \ E(H) are left out.

D.1.3 Bounding the Congestion

For a tuple (G,G′, ψ), let pψ(G,G′) denote the canonical path from G to G′ for pairing ψ. Let

Lτ = ∪(G,G′,ψ)∈FτLτ(G,G
′)

be the union of all (distinct) encodings Lτ, where Fτ = {(G,G′, ψ) : τ ∈ pψ(G,G′)} is the set of all tu-

ples (G,G′, ψ) such that the canonical path from G to G′ under pairing ψ uses the transition τ. A crucial

observation is the following.

Lemma 30. If Lτ(G,G
′) = (G△G′)△Z for transition τ = (Z, Z′) used by a canonical path between G and

G′, then L ∈ G′(γ, d). This implies that

|Lτ| ≤ |G′(γ, d)|. (26)

Proof (sketch). We check that the properties (i), (ii) and (iii) defining the set G′(γ, d) are satisfied by L. Note

that L△Z = G△G. As every individual hinge flip operations adds and removes an arc from the symmetric

difference, it follows that L and Z have the same number of edges. This proves property (i). Also, if Z has

a perturbation of αv ∈ {−2,−1, 0,−1,−2} (see Proposition 20) at node v, then L has a perturbation of −αv
at node v, which shows that property (ii) is satisfied for L. Finally, with β ∈ {−1, 0, 1}, if Z contains γ − β
cut edges, then L contains γ + β cut edges (using implicitly that G and G′ contain the same number of cut

edges). This implies that property (iii) is satisfied. �

Moreover, with H = G△G′ and L = Lt(G,G
′), the pairing ψ has the property that it pairs up the edges of

E(H) E(L) and E(H) ∩ E(L) in such a way that for every node v each edge in E(H) E(L) that is incident

to v is paired up with an edge in E(H) ∩ E(L) that is incident to v, except for at most four pairs.27 Let Ψ′(L)

be the set of all pairings with this property. Remember that we do not need to know G and G′ in order

to determine the set H = Lτ△Z. Note that not every such pairing has to correspond to a tuple (G,G′, ψ)

for which t ∈ pψ(G,G′). Using a counting argument,28 we can upper bound |Ψ′(L)| in terms of |Ψ(H)|. In

particular, there exists a polynomial q(n) such that

|Ψ′(L)| ≤ q(n) · Ψ(H)|.29 (27)

27These are the nodes x0, x12, b1 and b3 in Figure 22.
28This can be done similarly as the argument used towards the end of Appendix A.2.
29A very rough choice is q(n) = n20.
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Putting everything together, we have

|G′(γ, d)|2 f ′(τ) =
∑

(G,G′)

∑

ψ∈Ψ(G,G′)

1(e ∈ pψ(H))|Ψ(H)|−1

≤ 1

8
n4

∑

L∈Lτ

∑

ψ′∈Ψ′(L)

|Ψ(H)|−1 (using Lemma 15)

≤ 1

8
n4 · q(n)

∑

L∈Lτ
1 (using (27))

≤ 1

8
n4 · q(n) · |G′(γ, d)| (using (26)) (28)

The usage of Lemma 29 for the first inequality works as follows. Every tuple (G,G′, ψ) ∈ Ft with encoding

Lt(G,G
′) generates a unique tuple in {Lt(G,G

′)} × Ψ′(Lt(G,G
′)). But since, by Lemma 29, there are at

most 1
8
n4 pairs (G,G′) with L = Lτ(G,G

′) for given L, τ and ψ, we have that 1
8
n4 ∑

L∈Lτ |{L} × Ψ′(L)| =
1
8
n4 ∑

L∈Lτ
∑

ψ′∈Ψ′(L) 1 is an upper bound on the number of canonical paths that use τ.

By rearranging (28) we get the upper bound for f ′ required in Lemma 24. We already observed that the

length of any canonical path is polynomially bounded as well. This then completes the proof of Theorem

23.

E Strongly Stable Families for the PAM Model

In Appendix D we have shown that the hinge flip Markov chain for PAM instances with two classes is

rapidly mixing on G′(γ, d) in case (γ, d) comes from a family of strongly stable tuples. In this section we

give two explicit families of sequences that are strongly stable. When dealing with a family of instances,

even when this is not explicitly mentioned, we only consider the tuples (c, d) for which there is at least one

graphical realization.

Theorem 31 (Regular classes). LetD be the family of instances of the joint degree matrix model, i.e., where

for every tuple (V1,V2, γ, d) it holds that 1 ≤ β1, β2 ≤ |V | − 1, and 1 ≤ γ ≤ |V1||V2| − 1, where β1 and β2 are

the common degrees in the classes V1 and V2, respectively. The family D is strongly stable for k = 6, and,

hence, the hinge flip chain is rapidly mixing for all tuples in D.

Proof. We first show that this family is strongly stable for k = 6. For convenience, we will work with the

notation G′(c, d) instead of G′(γ, d). Remember that

cii =



















∑

j∈Vi

d j



















− γ

for i = 1, 2 is the number of internal edges that Vi has in any graphical realization in G(γ, d), and that

γ = c12 = c21. For sake of readability, we define the notion of a cancellation hinge flip. For either i = 1 or

i = 2, suppose nodes v, w ∈ Vi, are such that v has a degree deficit of at least one, and w a degree surplus of

at least one. Then w has a neighbor z ∈ V that is not a neighbor of v (using that v and w have the same degree

βi). The hinge flip operation that removes the edge {z, w} and adds the edge {z, v} is called a cancellation

flip on v and w. Note that the number of internal edges in V1 and V2 as well as the number of cut edges

does not change with such an operation.30 Moreover, we say that an edge {a, b} is a non-edge of a graphical

realization G if {a, b} < E(G).

30That is, either z lies in the other class, in which case the cancellation flip removes and adds a cut edge, or, z lies in the same

class as v and w in which case an internal edge in Vi is removed and added.
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Let G ∈ G′(c, d) for some tuple (c′, d′) as in the definition of G′(c, d) at the start of Section D. We first

show that with at most four hinge flip operations, we can obtain a perturbed auxiliary state G∗ ∈ G′(c, d) for

which its tuple (c∗, d∗) is edge-balanced. That is, it satisfies c∗ = c. Remember that the value c′
12

uniquely

determines the matrix c′, and, by assumption of G′(c, d), we have c′
12
∈ {c12 − 1, c12, c12 + 1}. We can

therefore distinguish the following cases.

• Case 1: c′
12
= c12 + 1. Then, by Proposition 20, either c′

11
= c11 − 1 and c′

22
= c22, or, c′

22
= c22 − 1

and c′
11
= c11. Assume without loss of generality that we are in the first case. Then it holds that

∑

j∈V1

d′j =



















∑

j∈V1

d j



















− 1 and
∑

j∈V2

d′j =



















∑

j∈V2

d j



















+ 1. (29)

Moreover, there must be at least one node v2 ∈ V2 with a degree surplus (of either one or two), and

there is at least one non-edge {a, b} with both endpoints in V1. If v2 is adjacent to either a or b, we

can perform a hinge flip to make the realization G edge-balanced, so assume this is not the case. Also,

if the total deficit of a and b is −2, there must be a node in V1 with degree surplus, otherwise (29) is

violated. Then we can perform a cancellation flip in V1 to remove the deficit at either a or b. Hence,

we may assume without loss of generality that a does not have a degree deficit.

– Case A: v2 has a neighbor v1 ∈ V1. If v1 has a degree surplus we can perform a cancellation

flip in V1 to remove it, which must exist by (29). So assume v1 has no degree surplus. As node

a has no deficit, and is not connected to v2, whereas v1 is, there must be some neighbor p of a

which is not a neighbor of v1. This holds since v1 and b have the same degree β1 in the sequence

d. Then the path v2 − v1 − p − a − b alternates between edges and non-edges of G, and with two

hinge flips we can obtain an edge-balanced realization in G′(γ, d).

b a
p

v1

v2

V1 V2

Figure 23: Sketch of first case with subcase A.

– Case B: v2 has no neighbors in V1. We know that there is at least one cut edge {q, r} in the

realization G, since c′
12
= c12 + 1. If q has a degree surplus, we are in the situation of Case A.

Otherwise v2 has a neighbor u which is not a neighbor of q, since q and v2 have the same degree

β2 in the sequence d. We can then perform the hinge flip that removes {v2, u} and adds {u, q}. If

q now has a degree surplus, we are in Case A. Otherwise, in case this hinge flip cancelled out a

degree deficit at q, there must be at least one other node in V2 with a degree surplus, because of

(29). We can then perform the same step again, which will now result in a degree surplus at q.

This is true since the node q cannot have a deficit of −2, since (29) would then imply that the the

total degree surplus of nodes in V2 is at least three, which violates the second property defining

G′(c, d). That is, we can always reduce to the situation in Case A.

Summarizing, we can always find an edge-balanced realization G∗ using at most four hinge flip oper-

ations in case c′
12
= c12 + 1.
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• Case 2: c′
12
= c12 − 1. Using complementation, it can be seen that this case is similar to Case 1. That

is, we consider the tuple (c̄, d̄) in which all nodes in V1 have degree |V | − β1, all nodes in V2 have

degree |V | − β2, and where all feasible graphical realizations have c̄12 = |V1||V2| − c12 cut edges. The

case c12 = c12 − 1 then corresponds to the case c̄′
12
= c̄12 + 1.

• Case 3: c′
12
= c12. If also c11 = c′

11
we are done. Otherwise, suppose that c11 = c′

11
+ 1. Then it must

be that c22 = c′
22
− 1, as c′

12
= c12, and it holds that

∑

j∈V1

d′j =



















∑

j∈V1

d j



















+ 2 and
∑

j∈V2

d′j =



















∑

j∈V2

d j



















− 2. (30)

Then there is at least one edge {a, b} in the graphical realization with a, b ∈ V1. Moreover, we may

assume that a has a degree surplus. If not, then there is at least one other node u with a degree surplus

because of (30). Performing a cancellation flip then gives the node a a degree surplus (it could not be

that a had a degree deficit, as this would imply, in combination with (30), that the total degree surplus

of nodes in V1 is at least three).

aw

r
p

q

V1 V2

Figure 24: Sketch of last situation in Case 3.

Now, if there is a non-edge of the form {b, v2} for some v2 ∈ V2, we can perform a hinge flip operation

removing {a, b} and adding {b, v2} in order to end up in Case 1. Otherwise, assume that b is adjacent

to all v2 ∈ V2. As b is also adjacent to a, and a has a degree surplus of at least one,31 it follows

that β1 ≥ |V2|. Now, by the assumption that c12 ≤ |V1||V2| − 1, there is at least one non-edge {p, q}
with p ∈ V1 and q ∈ V2. As p is not adjacent to q, but has degree at least β1 ≥ |V2|, it must

be that p is adjacent to some r ∈ V1. If r has a degree surplus, then we can perform a hinge flip

that removes {p, r} and adds {p, q} in order to end up in the situation of Case 1. Otherwise, node a,

which has a degree surplus, has some neighbor w which is not a neighbor of r. This implies the path

a−w− r− p−q alternates between edges and non-edges of G. Performing two hinge flips then brings

us in the situation of Case 1.

We have shown that with at most four hinge flips we can always obtain some G∗ ∈ G′(c, d) that is

edge-balanced. This implies that
∑

j∈V1

d∗j =
∑

j∈V1

d j and
∑

j∈V2

d∗j =
∑

j∈V2

d j. (31)

Now, if v ∈ V1 has a degree surplus, there must be some w ∈ V1 that has a degree deficit, because of (31).

We can then perform a cancellation flip to decrease the sum of the total degree deficit and degree surplus. A

similar statement is true if v ∈ V2 has a degree surplus. By performing this step at most twice, we obtain

a realization H ∈ G(c, d). That is, with at most six hinge flip operations in total we can transform G into a

graphical realization in G(c, d). This shows that D is strongly stable for k = 6. �

31That is, b can have a degree surplus of at most one. A degree surplus of two at b would only give a bound of β1 ≥ |V2| − 1.
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We next show that certain families of sparse instances are strongly stable as well. Sparsity here refers to

the fact that the maximum degree in a class in significantly smaller than the size of the class, as well as the

fact that the number of cut edges is (much) smaller than the total number of edges in a graphical realization.

Theorem 32 (Sparse irregular families). Let 0 < α < 1/2 be fixed, and let Dα be the family of tuples

(V1,V2, c, d) for which

(i) |V1|, |V2| ≥ αn,

(ii) 2 ≤ di ≤
√

αn
4

for i ∈ V1 ∪ V2, and,

(iii) 1 ≤ c12 ≤ αn
2

.

The class Dα is strongly stable for k = 9, and, hence, the hinge flip chain is rapidly mixing for all tuples in

Dα.

Proof. We proceed in a similar fashion as the proof of Corollary 31. We will use the notion of an alternating

path. For a given graph H = (W, E), an alternating path (x1, . . . , xq) is an odd sequence of nodes so that

{xi, xi+1} ∈ E for i even, and {xi, xi+1} < E for i odd.

Lemma 33 (following from [28]). Let δ = (δ1, . . . , δr) be a degree sequence with 1 ≤ δi ≤
√

r/2 for all

i = 1, . . . , r. Fix x, y ∈ [r] and let H = ([r], E) be a graphical realization of the degree sequence δ′ where

δ′x = δx + 1, δ′y = δy − 1 and δ′
i
= δi for all i ∈ [r] \ {x, y}. Then there exists an alternating path of length at

most four starting at x and ending at y.

Now, let G ∈ G′(c, d) for some tuple (c′, d′) as in the definition of G′(c, d) at the start of Section D.

We show that with at most four hinge flip operations, we can transform G into a perturbed auxiliary state

G∗ ∈ G′(c, d) for which its tuple (c∗, d∗) is edge-balanced.

• Case 1: c′
12
= c12 + 1. Then, by Proposition 20, either c′

11
= c11 − 1 and c′

22
= c22, or, c′

22
= c22 − 1

and c′
11
= c11. Assume without loss of generality that we are in the first case. Then it holds that

∑

j∈V1

d′j =



















∑

j∈V1

d j



















− 1 and
∑

j∈V2

d′j =



















∑

j∈V2

d j



















+ 1. (32)

Moreover, there must be at least one node v2 ∈ V2 with a degree surplus (of either one or two).

– Case A: v2 has a neighbor v1 ∈ V1. By assumptions i) and ii) it must be that there is some

b ∈ V1 so that v1 is not a neighbor of b. Then we can perform the hinge flip that removes {v2, v1}
and adds {v1, b}, resulting in an edge-balanced realization.

– Case B: v2 has no neighbors in V1. Since c12 ≥ 1 by assumption iii), there is some edge {a, b}
in G with a ∈ V1 and b ∈ V2 \ {v2}. We consider the induced subgraph H on the nodes in V2 and

use δ′ to denote its degree sequence. We next apply Lemma 33 with v2 = x and b = y. To see

that this is possible, note that c12 ≤ αn/2 by assumption iii). This implies, in combination with

assumption i) that at least αn/2 nodes in V1 have degree at least one in H. Thus, we may apply

Lemma 33 with r = |V(H)| ≥ αn/2, since di ≤
√
αn/4 by assumption ii) (which is less or equal

than
√

r/2 if r ≥ αn/2) . Hence, there exists an alternating path of length at most four starting at

v2 and ending at b. Then by performing two hinge flips, resulting in the removal of {v2, f }, {g, h}
and addition of { f , g}, {h, b}, we are in the situation of Case A where b now plays the role of v2.
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v2

V1 V2

Figure 25: Sketch of subcase B in Case 1.

• Case 2: c′
12
= c12 − 1. Suppose without loss of generality that c′

11
= c11 + 1 and c′

22
= c22, and note

that there must be at least one node v1 ∈ V1 with a degree surplus. If v1 has a neighor in V1 we can

perform a hinge flip operation to obtain an edge-balanced realization as desired (as this neighbor has

at least one non-neighbor in V2 by assumptions i) and ii)). Therefore, assume that all neighbors of

v1 lie in V2. Pick some neighbor b ∈ V2 of v1. Since all nodes in V1 have degree at least one, and

c12 ≤ αn/2, it must be that b is not adjacent to some node a ∈ V1 that has degree at least one in the

induced subgraph H on the nodes of V1, as db ≤
√
αn/4 and |V(H)| ≥ αn/2. Let c be some neighbor

of a in V1 that exists by assumption that a has degree at least one in H. Also, c is not adjacent to

some d ∈ V2 for similar reasons as that b was not adjacent to a. This means that with two hinge flip

operations we can obtain an edge-balanced realization.

v1

a

b

c
d

V1 V2

Figure 26: Sketch of Case 2.

• Case 3: c′
12
= c12. If also c11 = c′

11
we are done. Otherwise, suppose that c11 = c′

11
+ 1. Then it must

be that c22 = c′
22
− 1, as c′

12
= c12, and it holds that

∑

j∈V1

d′j =



















∑

j∈V1

d j



















+ 2 and
∑

j∈V2

d′j =



















∑

j∈V2

d j



















− 2. (33)

There is at least one node v1 ∈ V1 with a degree surplus. If v1 has a neighbor a ∈ V1, which in turn

has a non-neighbor b ∈ V2 by assumptions i) and ii), then we can reduce to the situation of Case 1

by performing a hinge flip removing {v1, a} and adding {a, b}. Therefore, assume that all neighbors

of v1 are in V2. We can then pick some neighbor b ∈ V2 and perform a similar step as in Case 2 to

find an alternating path (v1, b, a, c) with v1, a, c ∈ V1 and b ∈ V2. Then we can perform two hinge flip

operations to reduce to Case 1 again.

We have shown that with at most three hinge flips we can always obtain some G∗ ∈ G′(c, d) that is

edge-balanced. This implies that

∑

j∈V1

d∗j =
∑

j∈V1

d j and
∑

j∈V2

d∗j =
∑

j∈V2

d j. (34)

Now, if v ∈ V1 has a degree surplus, there must be some w ∈ V1 that has a degree deficit, because of (34).

Moreover, if all neighbors in of v are in V2, we can transfer the degree deficit to some node with degree at
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least one in the subgraph induced on V1 at the cost of one hinge flip operation (similar as the analysis in

Case 2). That is, we may assume that v has a neighbor in V1. Then, using similar arguments as in Case

1.B, it follows that there exists an alternating path from v to w in V1, which allows us to decrease the total

degree surplus/deficit using two hinge flip operations. This can be repeated to obtain a feasible realization

H ∈ G(γ, d).

Overall, this can be done using at most nine hinge flip operations. �

In particular, Theorem 32 directly implies the following which, to the best of our knowledge, is the first

result of its kind for the PAM model.

Corollary 34. LetDα be as in Theorem 32. Then there is an fully polynomial almost uniform generator for

tuples in the family Dα.

F Switch Markov Chain for Two Regular Degree Classes

In this section we will use an embedding argument similar to that in the proof of Theorem 8 to show

the switch chain is rapidly mixing in case both classes are regular, i.e., for instances that are essentially

JDM instances with two degree classes. Recall the restricted switch Markov chain for sampling graphical

realizations of G(c, d) defined in Section 2: Let G be the current state of the switch chain.

• With probability 1/2, do nothing.

• Otherwise, perform a switch move: select two edges {a, b} and {x, y} uniformly at random, and select

a perfect matching M on nodes {x, y, a, b} uniformly at random (there are three possible options). If

M ∩ E(G) = ∅ and G + M − {a, b} ∪ {x, y} ∈ G(c, d), then delete {a, b}, {x, y} from E(G) and add the

edges of M. This local operation is called a switch.

As usual, graphs G,G′ ∈ G(c, d) are said to be switch adjacent if G can be obtained from G′ with positive

probability in one transition of this chain. The switch-distance distG(c,d)(G,G
′) is the length of a shortest

path between G and G′ in the state space graph of the switch chain. Also recall, P(G,G′)−1 ≤ n4 for all

adjacent G,G′ ∈ G′(c, d), and also the maximum in- and out-degrees of the state space graph of the switch

chain are bounded by n4.

While this chain is known to be irreducible for the instances of the JDM model [1, 11], in general this

is not true [15]. To the best of our knowledge, there is no clear understanding for which pairs c and d it is

irreducible in general. Nevertheless, we present the following meta-result for the rapid mixing of the switch

chain, which in particular applies in case the degrees are component-wise regular (Theorem 10).

Theorem 35. LetD be a strongly stable family of tuples (γ, d) with respect to some constant k, and suppose

there exists a function p0 : N → N with the property that, for any fixed x ∈ N: if (γ, d) ∈ D, and

G,G′ ∈ G(γ, d) so that |E(G)△E(G′)| ≤ x, the switch-distance satisfies distG(γ,d)(G,G
′) ≤ p0(x). Then the

switch chain is rapidly mixing for all tuples in the familyDwith respect to the uniform stationary distribution

over G(γ, d).

Proof (sketch). First note that by definition of the function p0 the switch chain is irreducible. Moreover, it

is not hard to see that the switch chain is aperiodic and symmetric as well. This implies that it has a unique

stationary distribution which is the uniform distribution over G(γ, d). Moreover, by assumption of strong

stability, we know that the auxiliary chain M(γ, d) is rapidly mixing. In particular, from Theorem 23, we

know there exists a flow f that routes 1/|G′(γ, d)|2 units of flow between any pair of states in G(γ, d) in the
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state space graph of the chain M(γ, d), with the property that f (e) ≤ p(n)/|G′(γ, d)|, and ℓ( f ) ≤ r(n), for

some polynomials p(·), r(·) whose degrees may only depend on k(γ, d).

One can then use exactly the same embedding argument as in the proof of Theorem 8. The existence

of the function p0, together with the notion of strong stability as defined in Appendix D, are sufficient for

reproducing all the arguments. �

Theorem 10. Let D be the family of instances of the joint degree matrix model with two degree classes.

Then the switch chain is rapidly mixing for instances inD.

Proof. Strong stability was shown in the previous section in Theorem 31. Moreover, from the proof of

Lemma 7 in [1] it follows that for any two graphs H,H′ ∈ G(γ, d), H can be transformed into H′ using at

most 3
2
|E(H)△E(H′)| switches of the restricted switch chain. That is, we may take p0(x) = 3

2
x. Then the

statement follows from Theorem 35. �
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