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Abstract. A joint degree matrix (JDM) specifies the number of connections between nodes
of given degrees in a graph, for all degree pairs and uniquely determines the degree sequence of
the graph. We consider the space of all balanced realizations of an arbitrary JDM, realizations in
which the links between any two, fixed-degree groups of nodes are placed as uniformly as possible.
We prove that a swap Markov Chain Monte Carlo (MCMC) algorithm in the space of all balanced
realizations of an arbitrary graphical JDM mixes rapidly, i.e., the relaxation time of the chain is
bounded from above by a polynomial in the number of nodes n. To prove fast mixing, we first prove
a general factorization theorem similar to the Martin-Randall method for disjoint decompositions
(partitions). This theorem can be used to bound from below the spectral gap with the help of fast
mixing subchains within every partition and a bound on an auxiliary Markov chain between the
partitions. Our proof of the general factorization theorem is direct and uses conductance based
methods (Cheeger inequality).
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1. Introduction. The sampling of simple graphs on fixed number of nodes and
with given degree sequence is a well studied problem both by the statistics commu-
nity (binary contingency tables [3], [5], [6], [8], [10], [14],) and the computer science
community. Lately the interest in this sampling problem has been widening with
applications ranging from social sciences, physics, biology to engineering. The sam-
pling approaches can be classified roughly into two types, one using Markov Chain
Monte Carlo (MCMC) algorithms [2], [4], [11], [18], [21], [22], [31] based on simple
moves such as edge swaps and the other using direct construction methods [13, 26]
and importance sampling [13, 23].

The MCMC approach, while conceptually simple, presents a notoriously difficult
question, namely proving (or disproving) the fast mixing nature of a proposed Markov
chain. A Markov chain mixes fast if its mixing time (expressed via the inverse of the
spectral gap; for a summary of other measures see [19]) has a polynomial upper
bound in the size of the problem, usually taken as the number of nodes n. In a
seminal paper Kannan, Tetali and Vempala [25] conjectured that the natural MCMC
algorithm based on edge swaps mixes rapidly for arbitrary graphical degree sequences
and they proved it for regular bipartite graphs. In 2007 Cooper, Dyer and Greenhill [9]
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proved fast mixing for regular degree sequences of undirected graphs and subsequently
Greenhill gave a proof for regular directed graphs [20]. Recently, Miklós, Erdős and
Soukup [29] proved fast mixing for half-regular bipartite graphs (nodes have to have
the same degree on only one side of the bipartition), using a modified version of
Sinclair’s multicommodity flow method [32]. In spite of these results on particular
degree sequences for simple graphs, the proof for the general case, however, remains
elusive. Recall that in a simple graph no multiple edges exist between any pairs of
nodes, and there are no self-loops either.

To gain a better understanding of the mixing problem for arbitrary degree se-
quences of simple graphs we may follow a different approach. In particular, we may
consider the sampling problem on a class of graphs obeying stronger constraints than
the degree sequence, however, constraints that can be used to implicitly define an
arbitrary degree sequence.

One such possibility is the joint degree matrix problem first introduced by Pa-
trinos and Hakimi [30] and subsequently studied by Amanatidis, Green and Mihail
[1], Stanton and Pinar [33] and then by Czabarka et al [12]. A joint degree matrix
(JDM) fixes the number of edges between nodes of given degrees, for all degree pairs.
This constraint is stronger than just fixing the degree sequence, however, it uniquely
defines the degree sequence (see the next section). Thus, we may study the MCMC
sampling problem and the associated mixing time question on the space of all the
graphical realizations of a given JDM. This means that we study the degree based
sampling problem on a subspace of it, restricted by the degree-degree correlations
imposed through the JDM. In a different context, Stanton and Pinar [33] propose
a restricted swap operation based Markov chain over the space of realizations of a
JDM, which was recently shown to be irreducible by Czabarka et.al [12], a necessary
condition of a MCMC sampling algorithm. Note that the JDM problem is interesting
in its own right, with applications in social sciences (the degree assortativity problem)
and data driven modeling of real-world networks [33].

However, proving that a suitable MCMC algorithm is fast mixing over the space
of all realizations of a JDM is also difficult. Here, instead, we prove fast mixing on
a subspace of realizations of an arbitrary JDM, namely the space of balanced real-
izations. As shown in [12] and [33], all graphical JDMs admit balanced realizations,
in which the partial degrees of nodes from a given degree class towards another de-
gree class are as uniformly distributed as possible. To prove fast mixing, we first
introduce a disjoint partition of the space of balanced realizations. The elements in
each partition can be expressed as the union of almost regular graphs and almost
semi-regular bipartite graphs (see Def 3.3), while the structure of the partitioning can
be also described through the collection of half-regular bipartite graphs (see Section
3 for definitions). We then develop a modified version of the factorization theorem
([28], Thm 3.2) in the disjoint decomposition method first introduced by Martin and
Randall [28] to provide a lower bound for the spectral gap that is more readily com-
putable. The factorization theorem of Martin and Randall for disjoint decompositions
is based on a result by Caracciolo, Pelissetto and Sokal originally introduced in the
framework of simulated tempering [7]. The case of non-disjoint, large-overlap decom-
positions has been treated earlier by Madras and Randall [27]. The Martin-Randall
method for disjoint decompositions introduces a projection Markov chain between the
partitions defined with the help of average probabilities. Unfortunately it is difficult
to estimate/bound the spectral gap in this chain, and they resort to a lower bound
defined via a Metropolis-Hastings chain [27]. Our main Theorem 4.3 also works with
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a lower bound, however, it is more general and we provide a direct and short proof
for it using conductance based arguments.

The paper is organized as follows: after preliminaries related to JDMs we present
the main theorem (Thm 2.3) for fast mixing and our proof strategy. We then describe
in Section 3 the structure of the space of balanced realizations of a JDM and present
a disjoint partitioning of this space into subspaces whose elements are formed by
almost regular and almost semi-regular subgraphs. In Section 4 using conductance
based arguments, we prove our general theorem for fast mixing over state spaces
that can be disjointly partitioned as described in Section 3 . In Section 5 we briefly
recall earlier results on fast mixing over realizations of regular degree sequences and
half-regular bipartite degree sequences, then extend their proofs (in the Appendix) to
almost regular and almost half-regular cases. We then introduce our Markov chain
over the space of balanced realizations, and complete the proof of our main theorem.

2. Preliminaries. A symmetric matrix J with non-negative integer elements is
the joint degree matrix (JDM) of an undirected simple graph G iff the element Ji,j
gives the number of edges between the class Vi of vertices all having degree i > 0 and
the class Vj of vertices all with degree j > 0 in the graph. In this case we also say
that J is graphical and that G is a graphical realization of J . Note that there can be
many different graphical realizations of the same JDM.

Given a JDM, the number of vertices ni = |Vi| in class i is obtained from:

ni =
Ji,i +

∑k
j=1 Ji,j

i
,(2.1)

where k denotes the number of distinct degree classes. This implies that a JDM also
uniquely determines the degree sequence, since we have obtained the number of nodes
of given degrees for all possible degrees. Clearly k ≤ ∆, where ∆ is the maximum
degree. For sake of uniformity we consider all vertex classes Vk for k = 1, . . . ,∆;
therefore we consider empty classes with nk = 0 vertices as well. A necessary condition
for J to be graphical is that all the ni-s are integers. Let n denote the total number
of vertices. Naturally, n =

∑
i ni and it is uniquely determined via Eq (2.1) for a

given graphical JDM. The necessary and sufficient conditions for a given JDM to be
graphical are provided, e.g., in paper [12].

Let dj(v) denote the number of edges such that one end-vertex is v and the other
end-vertex belongs to Vj , i.e., dj(v) is the degree of v in Vj . The vector consisting
of the dj(v)-s for all j is called the degree spectrum of vertex v. We introduce the
notation

Θi,j =

{
0, if ni = 0 ,
Ji,j
ni
, otherwise,

which gives the average number of the neighbors of a degree-i vertex in vertex class
Vj . Then a realization of the JDM is balanced iff for every i and all v ∈ Vi and all j,
we have

|dj(v)−Θi,j | < 1 .

The following theorem is proven in paper [12] as Corollary 5:
Theorem 2.1. Every graphical JDM admits a balanced realization.
A restricted swap operation (RSO) takes two edges (x, y) and (u, v) with x and

u from the same vertex class and swaps them with two non-edges (x, v) and (u, y).
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The RSO preserves the JDM, and in fact forms an irreducible Markov chain over all
its realizations [12]. An RSO Markov chain restricted to balanced realizations can be
defined as follows:

Definition 2.2. Let J be a JDM. The state space of the RSO Markov chain
consists of all the balanced realizations of J . It was proved by Czabarka et al. [12]
that this state space is connected under restricted swap operations. The transitions of
the Markov chain are defined in the following way. With probability 1/2, the chain does
nothing, so it remains in the current state (we consider a lazy Markov chain). With
probability 1/2 the chain will chose four, pairwise disjoint vertices, v1, v2, v3, v4 from
the current realization (the possible choices are order dependent) and check whether
v1 and v2 are chosen from the same vertex class, furthermore whether the

E \ {(v1, v3), (v2, v4)} ∪ {(v1, v4), (v2, v3)}

swap operation is feasible. If this is the case then our Markov chain performs the
swap operation if it leads to another balanced JDM realization. Otherwise the Markov
chain remains in the same state. (Note that exactly two different orders of the se-
lected vertices will provide the same swap operation, since the roles of v1 and v2 are
symmetric.) Then there is a transition with probability

1

n(n− 1)(n− 2)(n− 3)

between two realizations iff there is a RSO transforming one into the other.
In this paper, we prove that such a Markov chain is rapidly mixing. The con-

vergence of a Markov chain is measured as a function of the input data size. Here
we note that the size of the data is the number of vertices (or number of edges, they
are polynomially bounded functions of each other) and not the number of digits to
describe the JDM. This distinction is important as, for example, one can create a
2× 2 JDM with values J2,2 = J3,3 = 0 and J2,3 = J3,2 = 6n, which has Ω(n) number
of vertices (or edges) but it needs only O(log(n)) number of digits to describe (except
in the unary number system). Alternatively, one might consider the input is given in
unary.

Formally, we state the rapid mixing property via the following theorem:
Theorem 2.3. The RSO Markov chain on balanced JDM realizations is a rapidly

mixing Markov chain, namely, for the second largest eigenvalue λ2 of this chain, it
holds that

1

1− λ2
= O(poly(n))

where n is the number of vertices in the realizations of the JDM. Note that the
expression on the LHS is called, with some abuse of notation, the relaxation time:
it is the time is needed for the Markov chain to reach its stationary distribution.
The proof is based on the special structure of the state space of the balanced JDM
realizations. This special structure allows the following proof strategy: if we can prove
that some auxiliary Markov chains are rapidly mixing on some sub-spaces obtained
from decomposing the above-mentioned specially structured state space, then the
Markov chain on the whole space is also rapidly mixing. We are going to prove
the rapid mixing of these auxiliary Markov chains, as well as give the proof of the
general theorem, that a Markov chain on this special structure is rapidly mixing,
hence proving our main Theorem 2.3.
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3. The structure of the space of balanced JDM realizations, and the
Markov chain over this space. In order to describe the structure of the space
of balanced JDM realizations, we first define the almost semi-regular bipartite and
almost regular graphs.

Definition 3.1. A bipartite graph G(U, V ;E) is almost semi-regular if for any
u1, u2 ∈ U and v1, v2 ∈ V

|d(u1)− d(u2)| ≤ 1

and

|d(v1)− d(v2)| ≤ 1.

Definition 3.2. A graph G(V,E) is almost regular, if for any v1, v2 ∈ V

|d(v1)− d(v2)| ≤ 1.

It is easy to see that the restriction of any graphical realization of the JDM to vertex
classes Vi, Vj , i 6= j can be considered as the coexistence of two almost regular graphs
(one on Vi and the other on Vj), and one almost semi-regular bipartite graph on the
vertex class pair Vi, Vj . More generally, the collection of these almost semi-regular
bipartite graphs and almost regular graphs completely determines the balanced JDM
realization. Formally:

Definition 3.3 (Labeled union). Any balanced JDM realization can be repre-
sented as a set of almost semi-regular bipartite graphs and almost regular graphs. The
realization then can be constructed from these factor graphs as their labeled union:
the vertices with the same labels are collapsed, and the edge set of the union is the
union of the edge sets of the factor graphs.

It is useful to construct the following auxiliary graphs. For each vertex class Vi,
we create an auxiliary bipartite graph, Gi(Vi, U ;E), where U is a set of “super-nodes”
representing all vertex classes Vj , including Vi. There is an edge between v ∈ Vi and
super-node uj representing vertex class Vj iff

dj(v) = dΘi,je ,

i.e., iff node v carries the ceiling of the average degree of its class i towards the other
class j. (For sake of uniformity we construct these auxiliary graphs for all i = 1, . . . ,∆,
even, if some of them have no edge at all. Similarly, all super-nodes are given, even
if some of them has no incident edge.) We claim that these ∆ auxiliary graphs are
half-regular, i.e., each vertex in Vi has the same degree (the degrees in the vertex class
U might be arbitrary). Indeed, the vertices in Vi all have the same degree in the JDM
realization, therefore, the number of times they have the ceiling of the average degree
towards a vertex class is constant in a balanced realization.

Let Y denote the space of all balanced realizations of a JDM and just as before,
let ∆ denote the number of the vertex classes (some of them can be empty). We will
represent the elements of Y via a vector y whose ∆(∆ + 1)/2 components are the ∆
almost regular graphs and the ∆(∆− 1)/2 almost regular bipartite graphs from their
labeled union decomposition, as described in definition 3.3 above. Given an element
y ∈ Y (i.e., a balanced graphical realization of the JDM) it has ∆ associated auxiliary
graphs Gi(Vi, U ;E), one for every vertex class Vi (some of them can be empty graphs).
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We will consider this collection of auxiliary graphs for a given y as a ∆-dimensional
vector x, where x = (G1, . . . ,G∆).

For any given y we can determine the corresponding x (so no particular y can
correspond to two different xs), however, for a given x there can be several y-s with
that same x. We will denote by Yx the subset of Y containing all the y-s with the
same (given) x and by X the set of all possible induced x vectors. Clearly, the x
vectors can be used to define a disjoint partition on Y : Y =

⋃
x∈X

Yx. For notational

convenience we will consider the space Y as pairs (x, y), indicating the x-partition to
which y belongs. This should not be confused with the notation for an edge, however,
this should be evident from the context. A restricted swap operation might fix x in
which case it will make a move only within Yx, but if it does not fix x then it will
change both x and y. For any x, the RSOs moving only within Yx form a Markov
chain. On the other hand, tracing only the xs from the pairs (x, y) is not a Markov
chain: the probability that an RSO changes x (and thus also y) depends also on the
current y not only on x. However, the following theorem holds:

Theorem 3.4. Let (x1, y1) be a balanced realization of a JDM in the above
mentioned representation.

(i) Assume that (x2, y2) balanced realization is derived from the first one with one
restricted swap operation. Then either x1 = x2 or they differ in exactly one
coordinate, and the two corresponding auxiliary graphs differ only in one swap
operation.

(ii) Let x2 be a vector differing only in one coordinate from x1, and furthermore,
only in one swap within this coordinate, namely, one swap within one coordinate
is sufficient to transform x1 into x2. Then there exists at least one y2 such
that (x2, y2) is a balanced JDM realization and (x1, y1) can be transformed into
(x2, y2) with a single RSO.

Proof. (i) This is just the reformulation of the definitions for the (x, y) pairs.
(ii) (See also Fig. 3.1) By definition there is a degree i, 1 ≤ i ≤ ∆ such that auxiliary
graphs x1(Gi) and x2(Gi) are different and one swap operation transforms the first one
into the second one. More precisely there are vertices v1, v2 ∈ Vi such that the swap
transforming x1(Gi) into x2(Gi) removes edges (v1, Uj) and (v2, Uk) (with j 6= k) and
adds edges (v1, Uk) and (v2, Uj). (The capital letters show that the second vertices
are super-vertices.) Since the edge (v1, Uj) exists in the graph x1(G1) and (v2, Uj)
does not belong to graph x1(Gi), therefore dj(v1) > dj(v2) in the realization (x1, y1).
This means that there is at least one vertex w ∈ Vj such that w is connected to v1

but not to v2 in the realization (x1, y1). Similarly, there is at least one vertex r ∈ Vk
such that r is connected to v2 but not to v1 (again, in realization (x1, y1)). Therefore,
we have a required RSO on nodes v1, v2, w, r.

Thus any RSO on a balanced realization yielding another balanced realization
either does not change x or changes x exactly on one coordinate (one auxiliary graph),
and this change can be described with a swap, taking one auxiliary graph into the
other.

4. Proving rapid mixing of Markov chains over factorized state spaces.
In this section we will prove a general factorization theorem (Thm 4.3) on fast con-
vergence of a Markov chain. The proof of this theorem will lead to the proof of our
main result, Theorem 2.3. Our theorem is similar to a theorem by Martin-Randall
and the comparison between the theorems is given at the end of this section. In the
following we will need the Cheeger inequality and a slight modification of it.
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Vi v1 v2 v1 v2

w

r

Vj

Vk

Vi

Uj

Uk

Fig. 3.1. Construction of the auxiliary bipartite graph Gi and a RSO {(v1, w), (v2, r)} 7→
{(v1, r), (v2, w)} taking (x1, y1) into (x2, y2).

Let M be a discrete time, discrete space, reversible Markov chain over set I with
stationary distribution π and transition probabilities from a to b denoted by T (b|a),
where a, b ∈ I. The probability of a subset is denoted by

π(S) :=
∑
a∈S

π(a)

The conditional flow out of a subset of the state space S ⊂ I is defined by

Ψ(S) :=

∑
a∈S,b∈S̄

π(a)T (b|a)

π(S)
,(4.1)

where S̄ denotes the complementary set of S in I. The conductance of the state space
is defined as

Φ := min
S

{
Ψ(S)

∣∣∣∣ S ⊂ I and 0 < π(S) ≤ 1

2

}
.

The Cheeger inequality quoted in Theorem 4.1 gives lower and upper bounds on the
second largest eigenvalue of the Markov chain, see for example the paper of Diaconis
and Stroock [16] for a proof.

Theorem 4.1 (Cheeger inequality).

1− 2Φ ≤ λ2 ≤ 1− Φ2

2
.

Here we prove a variant of the left Cheeger inequality (the lower-bound).
Lemma 4.2. For any reversible Markov chain, and any subset S of its state space,

1− λ2

2
min{π(S), π(S̄)} ≤

∑
a∈S,b∈S̄

π(a)T (b|a) .(4.2)

Proof. The right hand side of Equation 4.2 is symmetric due to the reversibility
of the chain. Thus, if π(S) > 1

2 , then S and S̄ can be switched. If π(S) ≤ 1
2 , the
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inequality is simply a rearrangement of the Cheeger inequality (the left inequality in
Theorem 4.1.).

Now we are ready to state and prove a general theorem on rapidly mixing Markov
chains.

Theorem 4.3. Let M be a class of irreducible, aperiodic, reversible Markov
chains whose state space Y can be partitioned into disjoint classes Y = ∪x∈XYx by
the elements of some set X. For notational convenience we also denote the element
y ∈ Yx via the pair (x, y) to indicate the partition it belongs to. The problem size of
a particular chain is denoted by n. Let T be the transition matrix of M ∈ M, and
let π denote the stationary distribution of M. Moreover, let πX denote the marginal
of π on the first coordinate that is, πX(x) = π(Yx) for all x. Also, for arbitrary but
fixed x let us denote by πYx

the stationary probability distribution restricted to Yx,
i.e., π(y)/π(Yx), ∀y ∈ Yx. Assume that the following properties hold:

(i) For all x, the transitions with x fixed form an aperiodic, irreducible and reversible
Markov chain denoted by Mx with stationary distribution πYx . This Markov
chain Mx has transition probabilities as Markov chain M for all transitions
fixing x, except loops, which have increased probabilities such that the transition
probabilities sum up to 1. All transitions that would change x have 0 probabilities.
Furthermore, this Markov chain is rapidly mixing, i.e., for its second largest
eigenvalue λMx,2 it holds that

1

1− λMx,2
≤ poly1(n).

(ii) There exists a Markov chain M ′ with state space X and with transition matrix
T ′ which is aperiodic, irreducible and reversible w.r.t. πX , and for all x1, y1, x2

it holds that ∑
y2∈Yx2

T ((x2, y2)|(x1, y1)) ≥ T ′(x2|x1).(4.3)

Furthermore, this Markov chain is rapidly mixing, namely, for its second largest
eigenvalue λM ′,2 it holds that

1

1− λM ′,2
≤ poly2(n).

Then M is also rapidly mixing as its second largest eigenvalue obeys:

1

1− λM,2
≤ 256poly2

1(n)poly2
2(n)(

1− 1√
2

)4

Proof. For any non-empty subset S of the state space Y =
⋃
x
Yx of M we define

X(S) := {x ∈ X | ∃y, (x, y) ∈ S}

and for any given x ∈ X we have

Yx(S) := {(x, y) ∈ Y | (x, y) ∈ S} = Yx ∩ S.

We are going to prove that the conditional flow Ψ(S) (see equation (4.1)) from any S ⊂
Y with 0 < π(S) ≤ 1/2 cannot be too small and therefore, neither the conductance of
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the Markov chain will be small. We cut the state space into two parts Y = Y l ∪ Y u,
namely the lower and upper parts using the following definitions (see also Fig. 4.1):
the partition X = L ∪ U is defined as

L :=

{
x ∈ X

∣∣∣∣π(Yx(S))

π(Yx)
≤ 1/

√
2

}
,

U :=

{
x ∈ X

∣∣∣∣π(Yx(S))

π(Yx)
> 1/

√
2

}
.

Furthermore, we introduce:

Y l :=
⋃
x∈L

Yx and Y u :=
⋃
x∈U

Yx ,

and finally let

Sl := S ∩ Y l and Su := S ∩ Y u.

Yl Yu

Fig. 4.1. The structure of Y = Y l ∪ Y u. A non-filled ellipse (with a simple line boundary)
represents the space Yx for a given x. The solid black ellipses represent the set S with some of them
(the Sl) belonging to the lower part Y l, and the rest (the Su) belonging to the upper part (Y u).

Since M ′ is rapidly mixing we can write (based on Theorem 4.1):

1− 2ΦM ′ ≤ λM ′,2 ≤ 1− 1

poly2(n)
,

or

ΦM ′ ≥ 1

2poly2(n)
.

We use this lower bound of conductance to define two cases regarding the lower and
upper part of S. Without loss of generality, we can assume that poly2(n) > 1 for all
positive n, a condition that we need later on for technical reasons.
Case 1 We say that the lower part Sl is not a negligible part of S when

π(Sl)

π(Su)
≥ 1

4
√

2poly2(n)

(
1− 1√

2

)
.(4.4)
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Case 2 We say that the lower part Sl is a negligible part of S when

π(Sl)

π(Su)
<

1

4
√

2poly2(n)

(
1− 1√

2

)
.(4.5)

Our plan is the following: the conditional flow Ψ(S) is positive on any non-empty
subset and it obeys:

Ψ(S) = Ψ′(Sl)
π(Sl)

π(S)
+ Ψ′(Su)

π(Su)

π(S)
,

where

Ψ′(Sl) :=
1

π(Sl)

∑
x∈Sl,y∈S̄

π(x)T (y|x) and Ψ′(Su) :=
1

π(Su)

∑
x∈Su,y∈S̄

π(x)T (y|x).

In other words, Ψ′(Sl) and Ψ′(Su) are defined as the flow going from Sl and Su and
leaving S.

The value Ψ(S) cannot be too small, if at least one of Ψ′(Sl) or Ψ′(Su) is big
enough (and the associated fraction π(Sl)/π(S) or π(Su)/π(S)). In Case 1 we will
show that Ψ′(Sl) itself is big enough. To that end it will be sufficient to consider
the part which leaves Sl but not Y l (this guarantees that it goes out of S, see also
Fig. 4.2). For Case 2 we will consider Ψ′(Su), particularly that part of it which goes
from Su to Y l \ Sl (and then going out of S, not only Su, see also Fig. 4.3).

Yl Yu

Fig. 4.2. When Sl is not a negligible part of S, there is a considerable flow going out from
Sl to within Y l, implying that the conditional flow going out from S cannot be small. See text for
details and rigorous calculations.

In Case 1, the flow going out from Sl within Y l is sufficient to prove that the con-
ditional flow going out from S is not negligible. We know that for any particular x,
we have a rapidly mixing Markov chain Mx over the second coordinate y. Let their
smallest conductance be denoted by ΦX . Since all these Markov chains are rapidly
mixing, we have that

max
x

λMx,2 ≤ 1− 1

poly1(n)
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or, equivalently:

ΦX ≥
1

2poly1(n)
.

However, in the lower part, for any particular x one has:

πYx(Yx(S)) =
π(Yx(S))

π(Yx)
≤ 1√

2

so for any fixed x belonging to L it holds that

1

2poly1(n)
min

{
πYx

(Yx(S)),

(
1− 1√

2

)}
≤

≤
∑

(x,y)∈S,(x,y′)∈S̄

πYx((x, y))T ((x, y′)|(x, y))

using the modified Cheeger inequality (Lemma 4.2). Observing that

πYx
((x, y)) =

π((x, y))

π(Yx)
,

we obtain:

1

2poly1(n)
π(Yx(S))

(
1− 1√

2

)
≤ 1

2poly1(n)
min

{
π(Yx(S)), π(Yx)

(
1− 1√

2

)}
≤

≤
∑

(x,y)∈S,(x,y′)∈S̄

π((x, y))T ((x, y′)|(x, y)) .

Summing this for all the xs belonging to L, we deduce that

π(Sl)
1

2poly1(n)

(
1− 1√

2

)
≤

∑
x|Yx(S)⊆Sl

 ∑
(x,y)∈S,(x,y′)∈S̄

π((x, y))T ((x, y′)|(x, y))

 .

Note that the flow on the right hand side of Equation 4.6 is not only going out from
Sl but also from the entire S. Therefore, we have that

Ψ(S) ≥ π(Sl)

π(S)
× 1

2poly1(n)

(
1− 1√

2

)
.

Either π(Sl) ≤ π(Su), which then yields

π(Sl)

π(S)
=

π(Sl)

π(Sl) + π(Su)
≥ π(Sl)

2π(Su)
≥ 1

8
√

2poly2(n)

(
1− 1√

2

)
after using Equation 4.4, or π(Sl) > π(Su), in which case we have

π(Sl)

π(S)
>

1

2
≥ 1

8
√

2poly2(n)

(
1− 1√

2

)
.
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Yl Yu

Fig. 4.3. When Sl is a negligible part of S, there is a considerable flow going out from Su into
Y l \ Sl. See text for details and rigorous calculations.

(Note that poly2(n) > 1.) Thus in both cases the following inequality holds:

Ψ(S) ≥ 1

8
√

2poly2(n)

(
1− 1√

2

)
× 1

2poly1(n)

(
1− 1√

2

)
.

In Case 2, the lower part of S is a negligible part of S. We have that

πX(X(Su)) ≤ 1√
2

otherwise π(Su) > 1/2 would happen (due to the definition of the upper part), and
then π(S) > 1/2, a contradiction.

Hence in the Markov chain M ′, based on the Lemma 4.2, we obtain for X(Su)
that

1

2poly2(n)
min

{
πX(X(Su)),

(
1− 1√

2

)}
≤

∑
x′∈X(Su)
x∈X(Su)

πX(x)T ′(x′|x).(4.6)

For all y for which (x, y) ∈ Su, due to Equation (4.3), we can write:

T ′(x′|x) ≤
∑
y′

T ((x′, y′)|(x, y)) .

Multiplying this with π((x, y)) then summing for all suitable y:

π(Yx(S))T ′(x′|x) ≤
∑

y|(x,y)∈Su

∑
y′

π((x, y))T ((x′, y′)|(x, y))

(note that x ∈ U and thus Yx(S) = Yx(Su)) and thus

T ′(x′|x) ≤
∑
y|(x,y)∈Su

∑
y′ π((x, y))T ((x′, y′)|(x, y))

π(Yx(S))
.
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Inserting this into Equation 4.6, we find that

1

2poly2(n)
min

{
πX(X(Su)),

(
1− 1√

2

)}
≤

≤
∑

x∈X(Su),x′∈X(Su)

πX(x)

π(Yx(S))

∑
y|(x,y)∈Su

∑
y′

π((x, y))T ((x′, y′)|(x, y)).

Recall, that πX(x) = π(Yx), and thus πX(x)
π(Yx(S)) ≤

√
2 for all x ∈ X(Su). Therefore we

can write that

1

2poly2(n)
min

{
πX(X(Su)),

(
1− 1√

2

)}
≤

√
2
∑

(x,y)∈Su

 ∑
(x′,y′)|x′∈X(Su)

π((x, y))T ((x′, y′)|(x, y))

 .

Note that π(Su) ≤ πX(X(Su)) < 1, and since both items in the minimum taken in
the LHS are smaller than 1, their product will be smaller than any of them. Therefore
we have

1

2
√

2poly2(n)
π(Su)

(
1− 1√

2

)
≤

≤
∑

(x,y)∈Su

 ∑
(x′,y′)|x′∈X(Su)

π((x, y))T ((x′, y′)|(x, y))

 .

This flow is going out from Su, and it is so large that at most half of it can be picked
up by the lower part of S (due to reversibility and due to Equation 4.5), and thus the
remaining part, i.e., at least half of the flow must go out of S. Therefore:

π(Su)

π(S)
× 1

4
√

2poly2(n)

(
1− 1√

2

)
≤ Ψ(S) .

However, since Su dominates S, namely, π(Su) > π(S)
2 , we have that

1

8
√

2poly2(n)

(
1− 1√

2

)
≤ Ψ(S).

Comparing the bounds from Case 1 and Case 2, for all S satisfying 0 < π(S) ≤ 1
2 , we

can write:

1

16
√

2poly2(n)poly1(n)

(
1− 1√

2

)2

≤ Ψ(S).

And thus, for the conductance of the Markov chain M (which is the minimum over
all possible S)

1

16
√

2poly2(n)poly1(n)

(
1− 1√

2

)2

≤ ΦM .
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Applying this to the Cheeger inequality, one obtains

λM,2 ≤ 1−

(
1

16
√

2poly2(n)poly1(n)

(
1− 1√

2

)2
)2

2

and thus

1

1− λM,2
≤ 256poly2

1(n)poly2
2(n)(

1− 1√
2

)4

which is what we wanted to prove.
Martin and Randall [28] have developed a similar theorem. They assume a disjoint

decomposition of the state space Ω of an irreducible and reversible Markov chain
defined via the transition probabilities P (y|x). They require that the Markov chain
be rapidly mixing when restricted onto each partition Ωi (Ω = ∪iΩi) and furthermore,
another Markov chain, the so-called projection Markov chain P (i|j) defined over the
indices of the partitions be also rapidly mixing. If all these hold, then the original
Markov chain is also rapidly mixing. For the projection Markov chain they use the
normalized conditional flow

P (j|i) =
1

π(Ωi)

∑
x∈Ωi,y∈Ωj

π(x)P (y|x)(4.7)

as transition probabilities. This can be interpreted as a weighted average transition
probability between two partitions, while in our case, Equation (4.3) requires only
that the transition probability of the lower bounding Markov chain is not more than
the minimum of the sum of the transition probabilities going out from one member of
the partition (subset Yx1

) to the other member of the partition (subset Yx2
) with the

minimum taken over all the elements of Yx1
. Obviously, it is a stronger condition that

our Markov chain must be rapidly mixing, since a Markov chain is mixing slower when
each transition probability between any two states is smaller. (The latter statement
is based on a comparison theorem by Diaconis and Saloff-Coste [15].) Therefore, from
that point of view, our theorem is weaker. On the other hand, the average transition
probability (Equation (4.7)) is usually hard to calculate, and in this sense our theorem
is more applicable. Note that Martin and Randall have also resorted in the end to
using chain comparison techniques (Sections 2.2 and 3 in their paper) employing a
Metropolis-Hastings chain as a lower bounding chain instead of the projection chain
above. Our theorem, however, provides a direct proof of a similar statement.

5. The RSO Markov chain on balanced realizations. In this section we
will apply Theorem 4.3 to prove that the RSO Markov chain is rapidly mixing on the
balanced JDM realizations. We partition its state space according to the vectors x of
the auxiliary graph collections (see Definition 3.3 and its explanations). The following
result will be used to prove that all derived (marginal) Markov chains Mx are rapidly
mixing.

Theorem 5.1. Let M be a class of Markov chains whose state space is a K
dimensional direct product of spaces, and the problem size of a particular chain is
denoted by n (where we assume that K = O(poly1(n))).

Any transition of the Markov chain M ∈ M changes only one coordinate (each
coordinate with equal probability), and the transition probabilities do not depend on
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the other coordinates. The transitions on each coordinate form irreducible, aperiodic
Markov chains (denoted by M1,M2, . . .MK), which are reversible with respect to a
distribution πi. Furthermore, each of M1, . . .MK are rapidly mixing, i.e., with the
relaxation time 1

1−λ2,i
being bounded by a O(poly2(n)) for all i. Then the Markov

chain M converges rapidly to the direct product of the πi distributions, and the second
largest eigenvalue of M is

λ2,M =
K − 1 + maxi {λ2,i}

K

and thus the relaxation time of M is also polynomially bounded:

1

1− λ2,M
= O(poly1(n)poly2(n)).

Proof. The transition matrix of M can be described as∑K
i=1

[⊗i−1
j=1 Ij

]
⊗Mi ⊗

⊗K
j=i+1 Ij

K

where ⊗ denotes usual tensor product from linear algebra, Mi denotes the transition
matrix of the Markov chain on the ith coordinate, Ij denotes the identical matrix
with the same size as Mj . Since all pairs of terms in the sum above commute, the
eigenvalues of M are {

1

K

K∑
i=1

λji,i : 1 ≤ ji ≤ |Ωi|

}

where Ωi is the state space of the Markov chain Mi on the ith coordinate. The
second largest eigenvalue of M is then obtained from combining the maximal second
largest eigenvalue (maximal among all the second largest eigenvalues of the component
transition matrices) with the other largest eigenvalues, i.e., with all others being 1s:

K − 1 + maxi {λ2,i}
K

.

If g denotes the smallest spectral gap, ie. g = 1 −maxi {λ2,i}, then from above the
second largest eigenvalue of M is

K − g
K

= 1− g

K

namely, the second largest eigenvalue of M is only K times closer to 1 than the
maximal second largest eigenvalue of the individual Markov chains.

Next, we announce two theorems that are direct extensions of statements for fast
mixing swap Markov chains for regular degree sequences (Cooper, Dyer and Greenhill
[9]) and for half-regular bipartite degree sequences (Erdős, Kiss, Miklós and Soukup
[17]).

Theorem 5.2. The swap Markov chain on the realizations of almost regular
degree sequences is rapidly mixing.

Theorem 5.3. The swap Markov chain on the realizations of almost half-regular
bipartite degree sequences is rapidly mixing.
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The proofs of these results are not directly relevant to this paper. They are based
on slight extensions of similar theorems presented in papers [9] and [17] with very
long proofs. Here we only provide brief sketches for the proofs, in the Appendix.

We are now ready to prove the main theorem.
Proof. (Theorem 2.3) We show that the RSO Markov chain on balanced real-

izations fulfills the conditions in Theorem 4.3. First we show that condition (i) of
Theorem 4.3 holds. When restricted to the partition Yx (that is with x fixed), the
RSO Markov chain over the balanced realizations walks on the union of almost semi-
regular and almost regular graphs. By restriction here we mean that all probabilities
which would (in the original chain) leave Yx are put onto the shelf-loop probabilities.
Since an RSO changes only one coordinate at a time, independently of other coordi-
nates, all the conditions in Theorem 5.1 are fulfilled. Thus the relaxation time of the
RSO Markov chain restricted onto Yx is bounded from above by the relaxation time
of the chain restricted onto that coordinate (either an almost semi-regular bipartite
or an almost regular graph) on which this restricted chain is the slowest (the smallest
gap). However, based on Theorems 5.2 and 5.3, all these restrictions are fast mixing,

and thus by Theorem 5.1 the polynomial bound in (i) holds. (Here K = k(k+1)
2 , see

Definition 3.3 and note that an almost semi-regular bipartite graph is also an almost
half-regular bipartite graph.)

Next we show that condition (ii) of Theorem 4.3 also holds. The first coordinate is
the union of auxiliary bipartite graphs, all of which are half-regular. The M ′ Markov
chain corresponding to Theorem 4.3 is the swap Markov chain on these auxiliary
graphs. Here each possible swap has a probability

1

n(n− 1)(n− 2)(n− 3)

and by Theorem 3.4 it is guaranteed that condition 4.3 is fulfilled. Since, again
all conditions of Theorem 5.1 are fulfilled (mixing is fast within any coordinate due
to Theorems 5.2 and 5.3), the M ′ Markov chain is also fast mixing. Condition in
Equation (4.3) holds due to Theorem 3.4. Since all conditions in Theorem 4.3 hold,
the RSO swap Markov chain on balanced realizations is also rapidly mixing.

6. Conclusions. We have introduced a swap Markov chain over the space of
balanced realizations of an arbitrary JDM, and therefore of arbitrary degree sequences,
and proved that it is fast mixing. Our proof is based on the following observations
and intermediate results. Any balanced realization can be represented as the labeled
union of almost regular and almost semi-regular bipartite graphs. Every balanced
realization induces a collection of auxiliary bipartite graphs that are all half-regular
and which can be naturally used to generate a disjoint partition of the state space
of all balanced realizations. Using conductance methods we then directly proved a
general theorem for fast mixing of Markov chains over such structured state spaces,
which is similar to an earlier result by Martin and Randall [28]. We have also provided
extensions to the existing proofs for MCMC fast mixing in the spaces of almost regular
graphs based on results of Cooper, Dyer and Greenhill, [9], and of almost half-regular
bipartite graphs based on results of Erdős, Kiss, Miklós and Soukup [17] and on results
of Miklós, Erdős and Soukup [29].

The obvious open question is the existence of a fast mixing Markov chain for
sampling from the full space of simple graphs realizing a given JDM. Since a given
JDM also uniquely determines the degree sequence, this could provide an important
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Fig. A.1. 5 possible “bad” configurations. The edge with a “?” might get a value of either −1
or 2. See text for details.

insight towards proving fast mixing for the degree based MCMC problem, which
currently is still open.
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Appendix. Sketches of proofs for Theorems 5.2 and 5.3 . The proofs
below are direct continuations of the proofs in papers [9] and [17]. They can be
followed within the language and the context of those two papers, which, however, we
do not reproduce here, for reasons of brevity.

Sketch the proof of Theorem 5.2 : The proof is based on [9]. In that paper,
the authors, Cooper, Dyer and Greenhill, prove the rapid mixing nature of the swap
Markov chain in case of regular graphs. The only lemma where they use regularity is
Lemma 3, which claims the following: consider a graph in which at most 4 edges are
“bad”, meaning that they have an assigned value −1 or 2, and they form a subgraph
of one of the following 5 configurations shown on Figure A.1. All other edges get a
value 1, and for each vertex, the sum of the assigned values of its edges is a constant
d ≤ n/2, where n is the number of vertices of the graph. Then at most 3 switches are
sufficient to transform this graph into a graph that does not contain any bad edges.
A switch operates on 4 vertices v1, v2, v3, v4, and increases by 1 the assigned value
of edges (v1, v2) and (v3, v4) (if the edge is not present, then an edge is added with
value 1, if the assigned value was −1, the edge is deleted) and decreases by 1 the
assigned values of edges (v2, v3) and (v4, v1) (if the modified value is 0, then the edge
is deleted).

We prove that a similar lemma holds in the situation when the degrees are both
d ≥ 0 and d+ 1 ≤ n, in which case at most 4 switches are necessary. The 4 switches
instead of 3 causes a higher order, but still polynomial upper bound on the relaxation
time.

The first observation is that the graphs with bad edges are obtained by a matrix
G + G′ − Z, where all G, G′ and Z are adjacency matrices of graphs with the same
degree sequence. What follows is that whenever a vertex has a bad valued edge, the
degree of the edge can be neither 0 nor n.
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If there is vertex v1 which has both a 2 and a −1 edge, then let denote v2 and v3

the corresponding neighbor vertices, respectively. There is a vertex v4 such that v2

is not connected to v4, and v3 might or might not be connected to v4. We apply a
switch on v1, v2, v3 and v4, which removes two bad edges and creates at most 1 new
bad edge, thus decreasing the number of bad edges by at least 1.

If there is no vertex incident with different types of bad edges, then consider any
bad edge (v1, v2). If the assigned value is −1, then we have to find a v3 which is
connected to v2. If there is a −1 valued edge (v3, v4), then we apply a switch on v1,
v2, v3 and v4, which removes two bad edges and creates at most 1 new bad edge, thus
decreasing the number of bad edges by at least 1. Otherwise, there must be a vertex
v4 which is not connected to v3 but connected to v1, since d(v1) ≥ d(v3)− 1, and the
difference on the sum of bad values for v1 and v3 is at least 2. We apply a switch on
v1, v2, v3 and v4, which removes the 1 bad edge, (v1, v2).

Finally, if the assigned bad value to edge (v1, v2) is 2, then there must be a vertex
v3 such that v2 is not connected to v3. If there is a 2 valued edge (v3, v4), then we
apply a switch on v1, v2, v3 and v4, which removes two bad edges and creates at most
1 new bad edge, thus decreasing the number of bad edges by at least 1. Otherwise,
there must be a vertex v4 which is connected to v3 but not connected to v1, since
d(v1)−1 ≤ d(v3), and the difference on the sum of bad values for v1 and v3 is at least
2. We apply a switch on v1, v2, v3 and v4, which removes the 1 bad edge (v1, v2).

Hence, while there are bad value edges, we can apply a switch that decreases the
number of bad edges at least by 1. Since there are at most 4 bad edges, the number
of necessary switches is at most 4.

Sketch the proof of Theorem 5.3 : The proof is based on [17]. In that paper,
the authors prove the rapid mixing nature of a Markov chain on half-regular degree
sequence realizations with a forbidden (possibly empty) star and (also possibly empty)
one factor. The only place where they use half-regularity is their Lemma 4.6. In that
lemma, the authors prove that a certain 0-1 matrix with at most 3 possible “bad”
values, at most two −1 values and at most one 2 value in the same column can be
transformed into a 0 − 1 matrix using at most 3 switches. Here we prove if there is
no forbidden sub-graph, and the degree sequence is almost half-regular (instead of
half-regular), then the same lemma holds.

Indeed, in that case, the difference in the row sums can be also at most 1. Consider
the row i containing a bad value 2 in column j. There must be a row l containing 0 in
column j. The difference between 2 and 0 is 2, while the difference between the sums
of rows i and l can be at most 1, therefore, we have to find another column m, where
the corresponding values are 0 and 1, and a switch on these 4 values eliminates the
bad value 2 without creating a new bad value. Similar reasoning holds for the bad
value −1.
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