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Abstract

Since 1997 a considerable effort has been spent to study the mixing time of swap
(switch) Markov chains on the realizations of graphic degree sequences of simple
graphs. Several results were proved on rapidly mixing Markov chains on uncon-
strained, bipartite, and directed sequences, using different mechanisms. The aim of
this paper is to unify these approaches. We will illustrate the strength of the unified
method by showing that on any P-stable family of unconstrained /bipartite/directed
degree sequences the swap Markov chain is rapidly mixing. This is a common gen-
eralization of every known result that shows the rapid mixing nature of the swap
Markov chain on a region of degree sequences. Two applications of this general
result will be presented. One is an almost uniform sampler for power-law degree
sequences with exponent v > 2. The other one shows that the swap Markov chain
on the degree sequence of an Erdés-Rényi random graph G(n,p) is asymptotically
almost surely rapidly mixing.

Keywords:  rapidly mixing MCMC, Sinclair’s multicommodity flow method, restricted
degree sequences

1. Introduction

An important problem in network science is to algorithmically construct typical
instances of networks with predefined properties. In particular, special attention has
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been devoted to sampling simple graphs with a given degree sequence. In this paper
only graphs without parallel edges and loops are considered and we restrict our
study to degree sequences which have at least one realization (graphic). We study
the three most common degree sequence types: bipartite degree sequences, directed
degree sequences and the usual degree sequences which we call unconstrained, or
UC degree sequence for short.

In 1997 Kannan, Tetali, and Vempala ([22]) proposed the use of the so-called
switch or swap Markov chain approach for uniformly sampling realizations of a
degree sequence. For all three degree sequence types, the swap Markov chain can be
thought of as the Markov chain of smallest possible modifications. To illustrate this,
we give an informal description of the swap Markov chain on UC degree sequences.
If G1, G2 are two realizations of the same UC degree sequence, it is easy to see that
the minimal size of the symmetric difference E(G1)AE(G2) is four. We say that Gy
and G differ by a swap if this symmetric difference is exactly four. The states of the
swap Markov chain are the realizations of the degree sequence and the probability
of going from realization (G1 to G2 is nonzero if and only if they differ by a swap
(and this nonzero quantity is independent of G; and G). For the precise definition
of this chain, and for the definition of the chains for other degree sequence types, we
refer the reader to Section [B] (unconstrained and bipartite) and Section [l (directed).

The following conjecture has been named after Kannan, Tetali, and Vempala, in
recognition of their pioneering work.

Conjecture 1.1 (the KTV conjecture). The swap Markov chain is rapidly mizing
for any bipartite, directed, or UC degree sequence.

To give some context to the Conjecture, we say that a Markov chain is rapidly
mixing if the distribution on the state space is close in #1 norm to the unique
stationary distribution after poly(log V) steps, where NN is the size of the state space.
This property means that sampling the state space with the stationary distribution
is a more or less tractable problem, even if the state space has exponential size.

It is not uncommon that uniformly randomly applied, small local modifications
of combinatorial objects result in rapid mixing. This is the case for solutions of the
0-1 knapsack problem [26], for the union of perfect and almost perfect matchings
of a graph [19], and two-rowed contingency tables [4], for example. In both of these
cases, applying the smallest possible modifications of the respective combinatorial
objects randomly, result in rapid mixing of the corresponding Markov chain.

Although Conjecture [Tl is still open, there is a series of results that prove the
rapid mixing of the swap Markov chain on various special degree sequence classes.
We summarize these results in a very compact way in Table [l without presenting
the sometimes lengthy definitions of the special classes, which can be found in the
references provided. Most rapid mixing results on directed degree sequences can be
reduced to the case of bipartite degree sequences, as shown in [7]. Since this is also



the case in the present paper, we will not discuss directed degree sequences until
Section

UC degree sequences bipartite deg. seq. directed deg. seq.

regular [3] (half-)regular [25] regular [14]

almost half regular [7]
A < 1v2m [16] A < Z5y/m [10] A < Z5v/m — 4 [10]
Power-law density-

bound, v > 2.5 [16]

(A-0+1)*< (A —6)*< similar to the bip. case
<4-5n—A-1) 1] < 6(2—A) [9, 10] [9, 10]
(or Corollary 18 in [1])

Bip. E.R. with edge prob. | similar to the bip. case
p,1—p>4y/20 9, 10] 9, 10]

strongly stable degree sequence classes [1]

Table 1: Some classes of degree sequences for which the swap Markov chain is rapidly mixing. Here
A and § denote the maximum and minimum degrees, respectively. Half of the sum of the degrees
is m, and n is the number of vertices. The notation is similar for bipartite and directed degree
sequences. Some technical conditions have been omitted.

Notice, that some, but not all of the results came in pairs for unconstrained and
bipartite (directed) degree sequences. The reason for this discrepancy is the follow-
ing: while both set of results are based on Sinclair’s multicommodity flow method,
one of them has to deal with special circuits (one of the vertices may be visited
at most twice) instead of just cycles in the decomposition of symmetric differences
of two realizations of a degree sequence. The main goal of this paper to remedy
this discrepancy between the machineries used for the bipartite and unconstrained
degree sequences by decomposing into circuits where each vertex is visited at most
twice. Along the line we also give new, much more transparent proofs for the main
results in [25].

Greenhill and Sfragara suggested exploring the connection between the mixing
rate of the swap Markov chain and stable degree sequences [16, Subsection 1.1]. The
first such result is due to Amanatidis and Kleer [1], who showed rapid mixing of the
swap Markov chain on strongly stable unconstrained and bipartite degree sequences.
We will return to this notion at the beginning of Section 8l

Let us now give an informal definition of the notion of stability that we study in



this paper: P-stability. We will only focus on UC degree degree sequences here, for a
complete formal definition, see Section[7l We say that a class of UC degree sequences
is P-stable if there is a fixed polynomial p(z) and the number of realizations of any
degree sequence in the class can not grow by more than a p(n) factor (where n is
the number of vertices) by moving to another degree sequence within ¢; distance
at most 2. An even more informal description is that when we slightly perturb the
degree sequence from a P-stable class, the number of realization can not grow too
much.

To the best of our knowledge, all of the previously known cases where Conjec-
ture[[. I holds are P-stable classes. The main contribution of the paper is developing
a unified machinery that proves all of the previous results as a special case.

Theorem 1.2 (proved in Section [M)). The swap Markov chain is rapidly mizing on
P-stable unconstrained, bipartite, and directed degree sequence classes.

The unified framework in which we prove Conjecture [T for P-stable uncon-
strained, bipartite, and directed degree sequences allows us to prove Theorem
with minimal branching.

There are two interesting direct consequences of Theorem concerning pop-
ular unconstrained random graph models. It turns out that asymptotically almost
surely, the degree sequence of an Erdds-Rényi random graph G(n, p) is P-stable, see
Corollary

In [13], the authors claim that every power-law distribution-bounded degree
sequence with parameter v > 2 is P-stable. Consequently, Theorem [[.2]implies that
the swap Markov chain is rapidly mixing on all real world power-law like degree
sequences, solving a decades old open problem (see Section [8.2]).

The proof of Theorem [[L2] relies on Sinclair’s multicommodity flow method (Sec-
tion [B]), which can be described informally in the case of the swap Markov chain as
follows. Suppose that the chain has N states, and let G be the graph on them as ver-
tices where two states are adjacent in G if the transition probability between them
is non-zero in the chain. Sinclair’s multicommodity flow method ensures the rapid
mixing of the chain if we can design a multicommodity flow on G which transfers
a unit amount of commodities between each pair of vertices (different commodities
for different pairs), and no more than N - poly(log(N)) amount of commodities go
through every vertex (no vertex is overloaded). Hence most of the present paper is
devoted to the design of a flow and the proof that it does not overload any vertex.

The paper is structured as follows. In Section 2] we give a slightly more detailed
description of the flow and we present the necessary graph theoretic tools with which
we will use to construct paths that will form the flow. In Section Blwe give the formal
definition of Sinclair’s multicommodity flow method and its simplified version that
is tailored to our needs. In Section M we finally describe the mulicommodity flow.
In Section Bl we define the swap Markov chain for directed degree sequences. Before



turning into the home straight, an auxiliary structure that tracks the defined flow is
analyzed in Section [0 In Section [ we finally prove Theorem [[.2] and we also provide
the necessary modifications to deal with bipartite and directed degree sequences.
Lastly, we describe the known P-stable regions of degree sequences in Section [§]
and present the connections between Theorem and the aforementioned popular
graph models.

2. Definitions and preliminaries, the structure of the sets of realizations.

Let us recall some well known notions and notations. Let d = (d(v1),...,d(v,))
denote a UC degree sequence and let

D = (d(U),d(V)) = ((d(ul), .. ,d(un)), (d(vl), .. ,d(vm)))

denote a bipartite degree sequence on the bipartition (U,V'). (For convenience we
assume that n > m.) As it was mentioned earlier we assume that all degree sequences
are graphic. We will use the notations G(d) and G(D) for the sets of all realizations
of the corresponding degree sequences.

The swap operation exchanges two disjoint edges ac and bd in the realization
G with ad and be if the resulting configuration G’ is again a simple graph (we denote
the operation by ac, bd = ad, bc). In our terminology, a switch is a matrix operation,
which will be introduced in Section [Gl

For an ac, bd = ad, bc swap operation to be valid, it is necessary but not always
sufficient that both ac,bd € E(G) and ad,bc ¢ E(G) hold. We will use the name
chord for any vertex pair u,v where uv is allowed to be an edge in a realization of
some degree sequences (even when we do not know or do not care whether it is an
edge or a non-edge in the current realization). Consequently, if a pair of vertices
is not a chord, which we call a non-chord, then the two vertices are forbidden to
form an edge. We emphasize that whether or not a pair of vertices form a chord is
entirely arbitrary in the sense that it only depends on the class of graphs to which
the model should be restricted to.

We reformulate the definition of the swap operation to avoid touching non-
chords: an ac,bd = ad,bc swap operation can be applied if ac,bd € E(G), ad,bc ¢
E(G), and ad, bc are both chords. We now define the set of chords and non-chords
in the case of unconstrained and bipartite graph models.

Definition 2.1. For simple graphs, the non-chords are exactly the pairs of the form
(v,v), as loops are forbidden. Because no further constraints have to be set, we call
their degree sequences unconstrained. In bipartite graphs, (u,v) is a chord if
and only if u and v are in different vertex classes.

In the case of directed graphs (Section [B)), we further restrict the set of chords.

It is a well-known fact that the set of all possible realizations of a graphic UC
degree sequence is connected under the swap operation. See for example [18] or [17].



It is interesting to know, however, that the first known proof is from 1891 [27].
For bipartite graphs the equivalent results were proved in 1957 in [11] and [28].
The “classical” proofs work through so called “canonical” realizations. However,
the paths between different realizations, created in this way, are often very far
from shortest possible. Therefore in this paper we will use another way to design
these paths. To that end, let us consider two realizations of the same (bipartite
or UC degree) degree sequence. To any alternating circuit decomposition of the
symmetric difference of the realizations, we are going to assign a sequence of swaps
that transform the first realization into the second (this is described right after the
proof of Lemma [2.5)). If the given decomposition contains a maximum number of
elementary circuits, then the sequence of swaps will be the shortest possible, see |3,
Theorem 3.6].

A graph H, with edges colored by either red or blue, will be called a red-blue
graph. For vertex v let d,.(v) and dp(v) be the degree of vertex v in red and blue
edges, respectively. This red-blue graph is balanced if for each v € V(H) equality
d,(v) = dp(v) holds.

Let G, G both be realizations (on the same vertex set) of an unconstrained degree
sequence d or a bipartite degree sequence D. Let the symmetric difference of the
edges be

V = E(G)AE(G").

Color the edges of V according to which graph they come from: the E(G) edges are
colored red and the E(G’) edges are colored blue. Equipped with this coloring, V is
a balanced red-blue graph.

A circuit in a graph H is a closed trail (also known as closed walk). As the
graph is simple, a circuit is determined by the sequence of the vertices vy, ..., v,
where vg = v;. Note that there can also be other indices ¢ < j such that v; = v;. A
circuit is called a cycle, if its simple, i.e., for any ¢ < j, v; = v; only if i = 0 and
j=t.

A circuit (or, in particular, a cycle) in a balanced red-blue graph is called al-
ternating, if the color of its edges alternates. In other words, the color of the edge
from v; to v;41 differs from the color of the edge from v; 41 to v;49, and also edges
vov1 and v;_qv; have different colors. Consequently, alternating circuits have even
length. The following observations are easy to see.

Lemma 2.2 (adapted from [5]).

(i) If H is a balanced red-blue graph then the edge set can be decomposed into
alternating circuits.

ii) Le = vp,v1,...,V = vy be an alternating circuit in a balanced red-blue

ii) Let C b It ti reutt | bal d red-bl
graph H, in which for some ¢ < j < 2t, j —1i is even and v; = vj. Then the
circuit can be decomposed into two shorter alternating circuits.



(iii) If B is a bipartite balanced red-blue graph then the edge set can be decomposed
into alternating cycles.

It is clearly possible that a vertex occurs twice in an alternating circuit without
the possibility to divide it into two, smaller alternating circuits. The smallest exam-
ple is a “bow-tie” circuit: vy, ve,v3, V1,04, v5,v1 With an alternating edge coloring.
(The very first and very last occurrences of v1 shows the closing of the alternating
circuit.) Recalling our earlier discussion, these two copies of the vertex v; form a
non-chord.

Definition 2.3. An alternating circuit is elementary, if it cannot be decomposed
into shorter alternating circuits.

From Lemma 2.1 it follows, that in an elementary alternating circuit, no vertex
can appear more than twice, moreover, the distance of two copies of the same vertex
must be odd. This definition is slightly weaker than the original one in |3].

Lemma 2.4. Let C be an alternating circuit of length 6 in V. If loops are non-
chords, then there is at most one vertex which is visited more than once by C.

Proof. 1f v is a vertex that is visited at least twice by C, it has at least four other
neighbors that are pairwise distinct from each other and v. Since v is counted twice
in the length of C, every visit of C' is accounted for, and the claim holds (and C is
a bow-tie). O

We will use Sinclair’s multi-commodity flow method (Theorem B.2]) to bound
the mixing time of the swap Markov chain. The multi-commodity flow is given by
a set of swap sequences between any two realizations of the degree sequence. The
main idea behind the definition of the flow can be described roughly as follows:

We will decompose V into alternating circuits in every possible way, and sub-
sequently each decomposition is further refined into elementary alternating circuits
in a canonical way (Section []). The flow is built by concatenating the paths that
we obtain for the elementary alternating circuits via Algorithm as described in
Lemma This way we obtain a path for each alternating circuit decomposition,
and we spread out the flow of the commodity evenly over them.

The SWEEP procedure in Algorithm will be used to construct the swap sequence
between two realizations whose symmetric difference cannot be decomposed any
further. It calls two subroutines, SWAP and DOUBLE STEP, which are described by
Algorithm 2Tl Addition and subtraction of edges naturally means that we add the
edge to or remove the edge from the edge set of the first operand.

Lemma 2.5. Suppose that E(V) is an elementary alternating circuit C of length
20, and (x1,x2,...,x9) is a list of its vertices such that x1xe ¢ E(G). Then Algo-
rithm[2.2 provides a valid swap sequence of length £ —1 between G and G’ in the case
of unconstrained and bipartite graph models. In the bipartite case, DOUBLE STEP is
never called.



Algorithm 2.1 Swap and Double step (which is composed of two swaps)

function SWAP(G, X1, [1’215, Tot+1, $2t+2])
return G + (2129 — 2122112) + ( — TouZor11 + Tor412242)
end function

Ensure: xo;_oxo1y1 is a chord
function DOUBLE STEP(G(), Xy, [1’215_2, Tot—15 L2ty LT2t+1, l’2t+2])
if Tot—2Tot+1 € E(G) then
G1 <+ Go+ (= mor—2@op41 + Torp1 %2142 — T1T2042 + T1T24—2)
Ga < G+ (4 To—2Tor41 — To—2T2—1 + Tor—1T2¢ — Topdoe41)
else if L2t—2X2t+1 ¢ E(G) then
G+ Go+ (4 or—2Tot11 — To—2To—1 + To— 1T — TouTop41)
Go <+ G+ ( — T2t—2T2t+1 + T24+1T2t4+2 — T1T2¢42 + $1£L"2t—2)
end if
return G, Gy
end function

Algorithm 2.2 Sweeping an elementary circuit

Ensure: 129 ¢ E(G) and x1,x9,...,2q is an alternating elementary circuit
procedure SWEEP(G, [z1, 22, ... ,x9]) = [Z1,Z2, ..., Z4_1]
Zo +— G
g+ 1

endChord <+ 2
while endChord < 2¢ do
startChord < min {Qi € 2N : 2¢ > endChord and z1x9; € E(G)}
2t < startChord — 2
while 2t > endChord do
if x129; is a chord then
Zq — SWAP(Zq_l7 X1, [I‘Qt, Tot41, x2t+2])

qg+—q-+1
2t + 2t — 2
else if z1x9; is a non-chord then
Zg, Zgt1 < DOUBLE STEP(Z,_1, 21, [T2t—2, - . ., T2t42])
q+—q+2
2t + 2t — 4
end if
end while
endChord <+ startChord
end while

end procedure




Proof. The processing done by Algorithm is governed by two nested loops. The
outer loop iterates the variable startChord through {2i : 4 < 2i < 20, x129; € E(G)}
in increasing order. Since z12z9¢ € E(G), the set is not empty. In the first iteration,
endChord = 2, and in the successive iterations endChord takes the value taken by
startChord in the previous iteration.

The inner loop performs a series of swaps that changes the status of the edges
and non-edges induced by consecutive vertices in the interval of vertices between
T startChords - - - » LendChord- As a side effect, it also changes chords induced by x; and
one of the vertices from the list. We have to check that each time the functions
Swap and DOUBLE STEP (both are in Algorithm 2.1]) are called by SWEEP, they
indeed perform one and two valid swaps, respectively.

Because C' is alternating, in the bipartite case, x1 and x9; are in different vertex
classes, so DOUBLE STEP is never called. In the case of unconstrained degree se-
quences, Lemma2.4limplies that DOUBLE STEP does not use a non-chord: xo;_2%2:11
must be a chord when x1x9; is a non-chord.

We now make two important observations.
(1) If 2; = xj, then either ¢ = j or i # j (mod 2), because of Lemma 2.2(ii)

(2) If xjz; € V such that i # j (mod 2) and ¢ # j = 1 (mod 2¢), then there is
a shorter alternating cycle through z;z;, because x; and x; cuts the original
circuit into two alternating paths of odd length.

Notice, that SWAP and DOUBLE STEP only add or remove chords whose endpoints
have indices of different parity. The two observations guarantee that if both x9;x2;11
and xzopxo 11 takes part in a swap during SWEEP, then the two chords are only
equal if 4 = k and j = [ (this is not trivial, because a vertex may have two copies
X9; = Tguy1 in the circuit). Therefore elements of E(C) only take part in exactly
one swap during a SWEEP operation, while other chords take part in exactly zero or
two swaps. The rest of the proof that Algorithm provides a valid swap sequence
1S Nnow an easy exercise. ]



non-chord unknown

Figure 1: Sweeping a cycle

We will demonstrate the algorithm on Figure[ll In the first iteration of the outer
loop, startChord takes 10 as its value. We call x1x1¢9 the start-chord and xiz9 the
end-chord. The algorithm sweeps the alternating chords along the circuit between
9 and z19, and vertex x1 will be the cornerstone of this procedure.

The inner loop works from the start-chord z1z1o (edge) towards the end-chord
x129 (non-edge). The first value taken by 2¢ is 8. Since xjxg is a chord, Z; is
obtained by swapping along 1, xg, x9, x19. In the next step, 2t = 6. However, x1x¢
is a non-chord, therefore SWEEP calls DOUBLE STEP instead of SWAP. Because x427
is not an edge, Z5 is obtained by swapping along x4, x7, xg, T5, and subsequently Z3
is obtained by swapping along z1,x4,x7,x3. The last iteration of the inner loop
swaps along x1,x9,r3, x4 and produces Z4. Notice, that all of the chords on the
circuit from z9 to x19 changed their status and z;x19 is no longer an edge (that is,
in Zy), but the rest of the chords have the same status in Z4 as they had in G.

For the second iteration of the outer loop, endChord = 10 and startChord is as-
signed a new value too. Eventually, startChord = 2¢, which marks the last iteration
of the outer loop, at the end of the algorithm produces Z,_; = GAV = G'.

The demonstration shows that some chords that are not in V change from being
an edge to a non-edge and vica versa during this procedure. However, there are
strict patterns that these irregularities must abide, as shown by the next lemma.

Lemma 2.6. Suppose Z, is an intermediate realization produced by Algorithm
on the swap-sequence between G and G', when V = E(G)AE(G') = (z1,22,. .., %)

10



1s an elementary alternating circuit. Let
R=(Z,AG)\ V. (2.1)
The following statements hold at the moment when Z, is assigned a graph in SWEEP.
(a) R is a set of chords induced by vertices of V,
(b) R=0 for Zy and Z;_1,
(¢) R = {21ZstartChord> T1T endChord } N{ 122t} when Z, gets its value from SWAP,

(d) R = {Z1ZstartChords 1% endChord } D{T122t—2} when Z, is the second graph re-
turned by DOUBLE STEP and x1To: 1S a non-chord,

(e) R = {T1ZstartChord> T1T endChord } DX 1024—2, Tor—2T2i41} if Zy is the first graph
returned by DOUBLE STEP, xot_2%ot+1 € F(G), and x1x9 is a non-chord.

(f) R = {x1%startChords T1% endChord } DN{T 122112, Tar—2T2i11} if Zg is the first graph
returned by DOUBLE STEP, xo;_2%ot+1 € F(G), and x1x9 is a non-chord.

(9) (ZAR)AG is a subset of V, composed of walks (of at most 3 for unconstrained,
and at most 2 for bipartite graphs) starting and ending at endpoints of chords
mn R.

Proof. Each statement is easy to show via induction over the iterations of the outer
and inner loops of SWEEP. d

Let G and G’ be two realizations and assume that we can decompose the symmetric
difference V into k elementary circuits (cycles). Then SWEEP can process all ele-
mentary alternating circuits one by one, therefore it can transform G into G’ with
@ — k swap operations. The process only changes the status of a chord induced by
vertices of the current circuit.

Here we reached a very important point: Algorithm does not require an order
for processing the elementary circuits; in principle it can be done arbitrarily. One of
the novelties of this paper leading to the unified proof is constructing a very delicate
order of processing the circuits. We will return to this point in Section [l

3. Sinclair’s multicommodity flow method

For UC degree sequences we define our Markov chain (Gq, Pq) as follows: in the
Markov graph G4q(Vgq,Eq) the pair (G,G’) is an edge if these two realizations differ
in exactly one swap. To make a move, choose an unordered pair of two distinct, non-
adjacent edges uniformly at random from G, say F' = {(z,y), (z,w)} and choose a
perfect matching F” from the other two perfect matchings on the same four vertices.

11



If F C E(G) and F'NE(G) = 0, then perform the swap (so E(G') = E(G)UF'\ F).
Assuming that P(G,G’") # 0 and G # G, we have

1
—2\
2(3)("27)
Equation (B.1]) immediately gives that the Markov chain is symmetric. Notice, that if
(F, F") corresponds to a feasible swap, then (F’, F) does not, therefore P(G,G) > %
for any realization G. A Markov chain possessing this property of staying in the
current state with probability at least % is called lazy. Laziness implies that the

eigenvalues of the transition matrix of the Markov chain are non-negative, and it
also implies that the chain is aperiodic.

Prob(G — G') = P(G,G") := (3.1)

For bipartite degree sequences we define our Markov chain (Gp, Pp) as follows: in
the Markov graph Gp(Vp, Ep) the pair (G,G’) is an edge, if these two realizations
differ in exactly one swap. The transition matrix P is defined as follows: we choose
uniformly two-two vertices ui,uo;vy,ve from classes U and V, respectively, and
uniformly randomly choose one of the two matchings between the two pairs. If
it preserves the degree sequence, we remove the chosen matching, and add the
other. The swap moving from G to G’ is unique, therefore the probability of this
transformation (the jumping probability from G to G’ # G) is:

1
n m\ °
2(3)(%)
The transition probabilities are time- and edge-independent, and symmetric. Also,
the entries in the main diagonal are at least %, so the chain is lazy.

Prob(G — G') = P(G,G') := (3.2)

To start with we recall some definitions and notations from the literature. Since
the stationary distribution of the swap Markov chain is the uniform distribution,
we will not state the results we use in full generality. Let P! denote the t** power
of the transition probability matrix and define

Ax(t):=5 > |PYX,Y)-1/N|,
YeV(G)

where X is an element of the state space of the Markov chain and NV is the size of
the state space. We define the mizing time as

Tx(g) == mtin {Ax(t') <eforall t’ >t}.
Our Markov chain is said to be rapidly mizing iff

7x(e) <O (poly( log(N/a)))

12



for any X in the state space. In this case the swap Markov chain method provides
is a fully polynomial almost uniform sampler (FPAUS) of the realizations of the
given degree sequences. Note, that Jerrum and Sinclair have shown that the perfect
matchings of realizations of P-stable degree sequences have a fully polynomial almost
uniform sampler [20]

Consider the different eigenvalues of P in non-increasing order:
1:)\1>)\22"'2)\N2—1.

The relaxation time 7, is defined as

b
-\

Trel =

where \* is the second largest eigenvalue modulus,
A* = max{ g, | An|}.

However, the eigenvalues of any lazy Markov chain are non-negative, so we do know
that A* = Ay for our Markov chain. The following result was proved implicitly by
Diaconis and Strook in 1991, and explicitly stated by Sinclair |29, Proposition 1]:

Theorem 3.1 (Sinclair). Tx(€) < Tpey - log(N/e). O

So one way to prove that our Markov chain is rapidly mixing is to find a poly(log N)
upper bound on 7. We need rapid convergence of the process to the stationary
distribution otherwise the method cannot be used in practice.

There are several different methods to prove fast convergence, here we use — simi-
larly to [22] — Sinclair’s multicommodity flow method ([29, Theorem 5]).

Theorem 3.2 (Sinclair). Let H be a graph whose vertices represent the possible
states of a time reversible finite state Markov chain M, and where (U,V) € E(H) iff
the transition probabilities of M satisfy P(U,V)P(V,U) # 0. Forall X #Y € V(H)
let T'xy be a set of paths in H connecting X and Y and let wx y be a probability
distribution on I'x y. Furthermore let

r= |J TIxy
X#Y €V (H)

where the elements of I' are called canonical paths. We also assume that there is
a stationary distribution m on the vertices V(H). We define the capacity of an edge
e=(W,Z) as

Q(e) :== m(W)P(W, Z)
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and we denote the length of a path v by |y|. Finally let

1
T 2 Q(e) Xy%\:/(H) Tt -

'\/GFX,Y L ey

Then
Trol(M) < Kr (34)

holds. O

We are going to apply Theorem for (G, P), which is either the unconstrained
(G,P) = (G(d), Pq) or the bipartite (G,P) = (G(D), Pp) swap Markov chain.
Using the notation N := |V(G)|, the (uniform) stationary distribution has the value
m(X) = 1/N for each vertex X € V(G). Furthermore each transition probability
has the property P(X,Y) > 1/n? (see (B) and (3.2)). So if we can design a
multicommodity flow such that each path is shorter then an appropriate poly(n)
function, then simplifying inequality (8:3]) we can turn inequality ([8.4]) to the form:

poly(n
Trel < T() e Z vy |- (3.5)
X,Y eV (H)
'\/GFX,Y L ey
If Z € e, then
Z Txy(7) < Z .y (7), (3.6)
X,Y eV (H) X,Y eV (H)
'YEFX,Y T eey ’*{eryy : Zey
so we have
Trel < poly(n) max Z m,y() | - (3.7)
- N ZeV(H) ’

X, YeV(H)
v€lx,y : ZEY

We make one more assumption. Namely, that for each pair of realizations X,Y €
V(G) there is a non-empty finite set Sx y (which draws its elements from a pool of
symbols) and for each s € Sx y there is a path 7(X,Y, s) from X to Y such that

FX,Y = {T(X,KS) s e S)Qy}. (3.8)

It can happen that '(X,Y,s) = Y(X,Y,s') for s # s, so we consider I'xy as a
“multiset” and so we should take

HS €ESxy:v= T(X,Y,S)}‘
1Sx.v|

mxy(y) =

14



foryelxy.

Putting together the observations and simplifications above we obtain the
Simplified Sinclair’s method:

For each X # Y € V(G) find a non-empty finite set Sxy and for each s € Sxy
find a path 7'(X,Y,s) from X to Y such that

e each path is shorter than an appropriate poly(n) function,
e for each Z € V(G)

{seSxy:ZeT(X,Y,s)}|

Z Sy < poly(n) - N. (3.9)
X,YeV(G) XY
Then our Markov chain (G, P) is rapidly mixing.
4. Multicommodity flow — general considerations

Let X and Y be two realizations of the same (unconstrained or bipartite) degree
sequence, by notation they are € G. The high level description of the definition of
multicommodity flow from X to Y can go like this:

(Step 1) We decompose the symmetric difference V = E(X)AE(Y) into alternating
circuits: Wi, Wy ..., Wy,.

(Step 2) We decompose every alternating circuit W; into smaller, “simple” alter-
nating circuits C1,C5 ..., C .

(Step 3) We will construct the canonical path from X to Y along these “simple”
alternating circuits, step by step, using Algorithm iteratively.

Typically, the successful application of the Sinclair’s method requires decomposing
V into alternating circuits (Step 1) in very many ways, and each decomposition
requires one canonical path. These different decompositions will be parameterized
by the set Sx y (see (B.8])). This parametrization (described in details in Lemmal[4.T])
and its application to (Step 1) was introduced in [22]. Now we arrived at the most
sensitive part of the construction: (Step 2). Here we need the following ability:
Let Z denote an arbitrary vertex along a canonical path. To apply Sinclair’s
method we will need that the elements of Sx y can be reconstructed from elements
of Svne(z),v\E(z) (using another small parameter set). In case of UC degree se-
quences (at the current setting, see for example [3] or [16]) these simpler alternating
circuits have the following property: in each “simple” circuit C there is one prede-
fined vertex (actually, the smallest vertex in a predefined full order), which occurs
at most twice in C. This makes the reconstruction above relatively simple, but
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makes (Step 3) more complicated. In the case of bipartite degree sequences (see, for
example, |25] or [7]) the decomposition in (Step 2) became finer: there each vertex
occurs at most once. That made the reconstruction method more complicated but
it makes (Step 3) much more simple and capable. To adapt this method to the UC
degree sequences we cannot expect to be able to decompose into alternating cycles
(bow tie!). Instead we use the following idea.

(Step §) We decompose every alternating circuit W, into elementary alternating
circuits C,C5 ..., C}..

This makes the reconstruction process much more demanding but it provides more
verifying power (as it is shown by the new results). In case of bipartite realizations
the elementary circuits were also cycles, but here we will extend this approach for
UC degree sequences and will provide the analogue results.

4.1. (Step 1): parameterizing the circuit decomposition

Now let K = (W, F U F’) be a simple graph where F'N F’ = () and assume that for
each vertex w € W the F-degree and F’-degree of w are the same: d(w) = d'(w) for
allw € W. An alternating circuit decomposition of (F, F") is a circuit decomposition
such that no two consecutive edges of any circuit are in F or in F’. By definition,
that means that each circuit is of even length. Next we are going to parameterize
the alternating circuit decompositions.

The set of all edges in F' (in F’) which are incident to a vertex w is denoted by
F(w) (by F'(w), respectively).

If A and B are sets, denote by [A, B] the complete bipartite graph with classes
A and B. Let

S(F,F') = {s: s is a function, dom(s) = W, and for all w € W
s(w) is a 1-factor of the complete bipartite graph [F(w), F'(w)]}. (4.1)

Lemma 4.1. There is a natural one-to-one correspondence between the family of
all alternating circuit decompositions of (F, F') and the elements of S(F, F").

Proof. If C = {C4,Cs,...,Cy} is an alternating circuit decomposition of (F, F’),
then define s¢ € S(F, F') as follows:

sc(w) :== {((w,u), (w,u)) € [F(w), F'(w)] :
(w,u) and (w,u) are consecutive edges in some C; € C}. (4.2)

On the other hand, to each s € S(F, F’) assign an alternating circuit decomposition

Co={W7, W3 ...,W. }
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of (F,F’) as follows: Consider the bipartite graph F = (F, F'; R(s)), where
R(s) = {((u,w), (u/,w)) cw € W and ((u,w), (u/,w)) € S(w)}.

F is a 2-regular graph because for each edge (u,v) € F U F’ there is exactly one
(u,w) € FUF' with ((u,w), (u,w)) € s(u), there is exactly one (t,v) € FUF’ with
((u,v), (t,v)) € s(v), therefore the F-neighbors of (u,v) are (u,w) and (t,v).

F is a 2-regular, so it is the union of vertex disjoint cycles {W}? : i € I'}. Now
W# can also be viewed as a sequence of edges in F'U F’, which is an alternating
circuit in (W, F U F’), so {W? : ¢ € I} is an alternating circuit decomposition of
(F,F"). Since

sc, = S,

we proved the Lemma. O

If the F-degree sequence (and therefore the F’-degree sequence) is di,...dy, then

write
k

tF,F’ = H(d")
i=1
Clearly
IS(F, F')| = tpp

4.2. Preparing for (Step 5) the T-operator

For bipartite degree sequences (Step 2) simply required a cycle decomposition which
was provided by the T-operator defined in Section 5.2 of |25]. For UC degree se-
quences the best we may hope is a decomposition into elementary circuits (See [4]).
In this subsection we generalize the T-operator so that it can process any balanced
red-blue graph. When this balanced red-blue graph is bipartite, the generalized and
the original T-operator produce the same decomposition of alternating cycles. The
new proof described in this section is simpler than that of [25] because it is described
on a higher level of abstraction.

Let [m] be a base set, denote S, the symmetric group on [m] and let Pos denote
the set of Positions, where Pos = {(1)*,(2)",...,(m — 1)"}. For convenience
we also allow the alternating naming Pos = {(2)7,...,(m)”}. So we consider
(i)t = (i +1)". Let f be a two-coloring on Pos with f € {green, red}"**. We will
describe the state of our system with the pair

(m,f) :+ 7€y, f€ {green,, red}°5.

Let £ C ([g”]) be a fixed subset which we call the set of eligible reversals. Assume

that
the connected components of G = ([m/],£) are cliques. (4.3)
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It is important to recognize, that the eligible reversals belong to the elements of
the base set, and they do not depend on the actual w value of those elements.
Accordingly, to make the definitions more readable, let us define

r (€)= {{r @) m T W)} {ey) € ).

We now define an operator Tg, or T for short, as the index £ is fixed anyway. This
T is a function mapping Sy, x {green, red }Pos into itself. To determine the image
of (m, f) under T, an interval will be selected first. For that end let

oy = min {7 | 3 < 55 F(@) = £ (7)) = green, {75} € 7))

then let
i(x,f) 1= Max {z" < J(m,f) ‘ I ((z')+) = green, {z",j(w,f)} € 71_1(5)}.

We define max () = —oo and min() = +oco. For an integer k : 1 < k < m we define
two positions from Pos. Let a( 5)(k) := k if f((k)”) = green and

a(r, ) (k) = min{i/ <k ‘ vi" st i <i" <k . f ((Z-//)+) _ red}
otherwise. Furthermore let b(mf)(k) .=k if f((k)*) = green and

el 280 52 10) )

otherwise.

We are ready now to define the image of the pair (, f) under the operator T
If jix,p) = +o00, then let (m, f) be a fixed point of the T operator, so its image
is itself. Otherwise define T': (7, f) — (7/, f') as follows. For any k € [1,m], let

) = a(r,f) (k) + ber gy (k) — k. We omit the index (r sy in the following.
m(a(i) + b(j) — k) if k € [a(i),b(j)];

, f f(R)T) 1<k <a(i)orb(j) <k<m,
F(h)7) = { red if a(i) <k < b(j).

We can expand the definition of 7/(k) to a more accessible form:

( (k) if k ¢ [a(2), b(5)],

7T/(k‘) _ m(a(j) + (k —1)) if a(i) < k <1,
w(a(i) + (k—j)) it j <k <b()),

| 7(a(d) +b() — k) ifi<k<j



Figure 2: An example for T'(w, f) = (7', f'). The curved arcs represent the pairs in £. The encircled
numbers are 7(z) and 7’(z), respectively, where z is the first coordinate of the center of the circle.

In yet another form, we extend the interval { (i(r 1))", ..., (j(r,p)) " } to the maxi-
mal containing integer interval {(a(x f)(i¢r 1))t -+, (b ) ((m.p)))” } such that the
f-image of the new positions of the extended interval are red. Take a look at
Figure @l To construct 7’/ from 7, every maximal red interval {z*,... y~} in
{at,... b7} is shifted to {(a +b—y)",...,(a+b—x)”}, and the green positions
are taken in reverse order in the remaining positions between the shifted red inter-
vals.

Lemma 4.2. For any (w, f) which is not a fixed point of the T operator, we have
IT(r,$) > J(mf)-

Proof. Since
(£) " (green) &~ (green),

we have f((i(n’,f’))+) = f((j(wl7fl))_) = green. Clearly, {ﬂ-/(i(w’,f’))’W/(j(n’,f’))} €€,
SO
{W_l(ﬂl(i(ﬂ/’f/))),7T_1(7T/(j(ﬂ/7f/)))} S 7'('_1(5). (44)
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Since f'((jx,) ") = green, we must have jizr 1) > bir 1) (d(r.f) OF Jear 1y < U f)-
In the first case, the proof is trivial, since bir ¢)(j(r,f)) = J(m,f)-

If j(w’,f’) < CL(W’f), then W/(j(n’,f’)) = ﬂ'(j(n’,f’)) and W/(i(ﬂ )) = 7T( )
Plugged into Equation (4.4]), the definition of ji, ) implies that j gy > jix, f) >
A(x,f), & contradiction.

The only remaining case to deal with is ji 1y = a(r p). Then

{7 @ G ) =7 G )} = {7y by G -
Using property (£3) and Equation (4.4]), we have
. . ~1
{iw. ) aen i p)} € 7(E),
which is in contradiction with the choice of j, f). ([l

Let (7, fr) = T" (o, green). In indices, we shorten (7, f,.) by writing r instead.
For example, jr = j(r, ), etc. Using this notation, the previous statement implies
the following claim.

Corollary 4.3. For any r > 0, we have b.(j.) = j,. Moreover, for any j,—1 <k <
m we have f.((k)") = green.

Lemma 4.4. For arbitrary m, r > 0, and k € [1,m], we have

7T7«(k’) = Ty (a(m,f?ﬂ)(k’) + b(ﬂ"mfr') (kf) — k‘) .

Proof. If r = 1, the statement immediately follows from the definition. Suppose the
statement holds for r — 1. If k& ¢ [a,—1(ir—1),br—1(jr—1)] then a,_1(k) = a,(k) and
by—1(k) = b.(k), so

(k) = mr_1(k) = mo(ar—1(k) + br—1(k) — k) = mo(ar (k) + b (k) — k),

as we wished.

Suppose from now on that k& € [ar—1(ir—1),br—1(jr—1)]. We have a,(k) =
ar_l(z'r_l) and br(k’) = b,«_l(jr_l). Let

I = ar—l(ir—l) + br—l(jr—l) — k.

Since the edges in [a;—1(ir—1), br—1(jr—1)] are all red in f,, we have
ar(k) = ar—l(ir—l)y br(k) = br—l(jr—l)-

Again, by induction
(k) = mo_s (7(7»_1)) - (ar—l <<l—(r—1)) b <<l_(r—1)> N 7@_1)) _

20



- -
Since a,_1 ( l (T_l)) = a,—1(l) and b,_; < l (T_1)> = b,_1(l), the right hand side is
equal to my(l). Expanding it, we get

mo(l) = mo(ar—1(ir—1) + br—1(jr—1) — k) = mo(ar (k) + by (k) — k),
which is what we intended to prove. O

Lemma 4.5. The pair of endpoints of a maximal path formed by elements of
[ (red) is an element of w7 1(E).

Proof. Use property ([£3]) and the fact that f((i)*) = f((j)~) = green. By induc-
tion, either a(mf)(z'(mf)) = i(ﬂ7f) or {a(mf) (Z'(W,f))’i(ﬂvf)} S 7T_1(5). By definition,
{itn ) dm )} € T 1(E), thus we also have {a(r ) (i(x, 7)), J(m.p)} € 7 1(E). The same
argument goes through for j and b(j). d

Lemma 4.6. If {1,m} € &, then 3s € N such that f;'(red) = Pos.

Proof. Lemma implies that {1, min{t : f.((t)*) = green}} € 7 (), therefore
{min{t : f.(()7) = green},m} € 7, 1(£), except if f1(red) = Pos already. O

The following claim shows that we cannot have such eligible reversals {z,y} that
<y <jrand f((2)*) = green and f((y)~) = red.

Lemma 4.7. Givenr > 0 and any {z,y} € 7, () such that x < y, either {z,y} =
{ir g}, or f((2)7) = red, ory > jr + 1.

Proof. The lemma trivially holds for » = 0. Suppose now, that r > 1.

If f((z)") = f-((y)~) = green, then by definition y > j.. If y > j, + 1, the
lemma holds. If y = j,, then definition of ¢, implies that z < i,.. If y = j,. and
r < ip, then x < a,(i,). By property [@3), {z,a.(i,)} € 7, 1(€) holds. Since
fr((ar(iy))™) = green, we have a contradiction with the definition of j,.

Suppose, that f.((x)") = green, f,((y)~) = red, and the lemma does not hold.
By Corollary 4.3 we have y < j,_1. Then we must also have x < a,_1(i,—1) (oth-
erwise f,((z)*) = red, a contradiction). Thus 7, ' (m.(z)) = 2, x < 7}, (7(y)) <
jr—1, and so {z, 7 (7, (y))} € 7%, (E). By induction, we should have f,_1((z)") =
red, which implies f,.((x)") = red, a contradiction.

We have checked and eliminated every possible case where the statement of the
lemma is not satisfied. O

Let us define greenify(m, f) := (m, green), i.e., the operator replaces the coloring
f of Pos with the identical green coloring.

Theorem 4.8. Vr € N Jw € N and 3g € {green, red}"** such that

T o greenify o T" (mp, green) = (mo, g).
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Proof. 1f f,(Pos) = red, then Lemma implies that {1,m} € m 1(€), therefore
Lemma provides the existence of an appropriate s.

If f~'(red) is composed of multiple components, then T will successively work
in these components. Lemmald4]say that the order of elements in these components
have been reversed in m, compared to my. Outside these intervals, however, 7, is
identical to 7.

Because of Lemma [l we see that Lemma implies that the maximal red
intervals will be completely processed after a certain number of steps. Lemmas
and [£.7] together imply that if the T operator starts working inside a component
of f1(red) then the next selected interval [i, j] will also be inside until the whole
component becomes red again. O

4.8. (Step 5) — decomposing a circuit into elementary circuits

Given X,Y € G (we do not specify whether the degree sequence is unconstrained or
bipartite), and s € Sx,y, we construct a path between X and Y in G(d) as follows.
The matching s decomposes V = XAY into alternating circuits

W,..., Wi (4.5)

s*

We will use our operator T to decompose the circuits above into elementary circuits
with the ability to reconstruct (with some extra parameters) the realization X,Y
and the original matching function s at any given moment.

Let Wy be an arbitrary but fixed circuit from the collection (A35]). Let vivy
be the lexicographically first edge of W} (with v; precedes v2). Let the Eulerian
trail induced by s starting on the edge v1v2 be v1vaV3Vs ... VEW,) V| EW,) +1, Where
VEW,)+1 = V1. Let m = [E(W)| + 1, mo = id|gw,)|+1, fo = green, and

5:%LQGG?>:WZW@M$Ey(mﬁ%}. (4.6)

By transitivity, this set possesses property (4.3)), so we can apply the T-operator on
mo with £ as the set of eligible reversals. Let (7., f;) = T" (7o, fo).

Lemma 4.9. Visiting the vertices vy, (1)U, (2) - - - U, (|E(Wy)|+1) 0 this order is an
Eulerian trail of Wy in the graph (V, V).

Proof. Easily seen by induction on r. Lemmald.5 and the definition of the T" operator
implies that we get . by reversing such intervals of the trail defined by 7,._1 whose
first and last vertices are identical. Consequently, every edge is visited by the new
trail too. O

It is also clear, by definition, that ()% in the set Pos coincides with the xth edge

along the Eulerian trail m, in the graph (V,V). We will denote this edge with

eg) = U (2) Urp (2 41)
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Lemma 4.10. Let
Ef = BX)0 (U EW)) a{eld) (@) € £ (rea)
Zy = (V, Ey).

Then the graph ZF is a realization from G and the closed vertex sequence T, desig-
nates an alternating chord circuit in it.

In words, we get ZTI? from X by exchanging edges with non-edges (and vica versa)
in the following subsets of edges: any W, for 1 <i < k—1 and any Cf for1 <j<r.

For any k,r we call fo a milestone. Milestones are special realizations: both
ZFAX and ZFAY are subgraphs of X AY. Milestones are uniquely determined by
(X,Y,s) and the fixed lexicographical order.

Lemma 4.11. For any r € N, we can describe w1 (E) as the set of endpoints of
even circuits formed by subintervals of the Bulerian trail in (V, E¥), defined by m,:

€)= {{a:,y} € <[7;]> L VUp(e) = Uny and =y (mod 2)} :

Proof. From (@), we have
&) = {m @ ) e (1) v —nmda =y mod2)
e (') ¢ v =t ) =ml) o2,

because w, is a permutation. It is enough to show that =, preserves parity, i.e.,
(k) = k (mod 2) for any k. For r = 0 this is trivial. Suppose m,_1 preserves
parity. For k ¢ [a,(iy),br(jr)], we have m.(k) = m,—1(k) (mod 2), so parity is
preserved.

For k € [a,(iy),b-(j.)], first observe that Lemma implies a,(z) = b.(z)
(mod 2) for arbitrary xz. Moreover, a,(i,) = i, = j, = by(i,) (mod 2), thus

(k) =
= Tr—1 (ar(ar(ir) + br(jr) - k) + br(ar(ir) + br(jr) - k') - (ar(ir) + br(jr) - k))
=mr—1(ar(ip) + by (4r) — k) = mpr—1(k) =k,  (mod 2)

which is what we desired. O

Let £}, be the maximum for which my, 1 # 7, . For any 1 <r < ¢y, let
B(CF) = {ef) s ()" € £, (red) \ 2 (red) } = (4.7)

_ {egﬂ s (2 € fir1y e — 1) A ((2)T € f;_ll(green))}. (4.8)

23



Take the list of edges of W}, starting with vivs in the order defined by the Eulerian
trail mo = id|,,]. This order can be restricted to the edges of C’ff, so there is a natural
Eulerian trail on C¥, too.

Lemma 4.12. Uff;l C’TI? is an alternating elementary circuit decomposition of Wy,.

Proof. Observe that f, defines a coloring of the edges of Wj: the edge vjv;41 has
color f.((1)*). Moreover, as r increases, red edges stay red. As Wy, is an alternating
circuit, |E(W})| is divisible by two, so {1,|E(Wy)| + 1} € £. Lemma implies
that Uf’;l C¥ is indeed an edge disjoint partition of Wj. Furthermore, C¥ is an
alternating circuit because of the definition of £ and Lemma

Suppose CF visits some vertex three times, that is
dz <y <zstoi <xy,2 <Jrand U (p) = Un(y) = VUr,(2)-

The proof of Lemma [Tl shows that 7, preserves parity. If z = y (mod 2), then
Yy > jr—1, a contradiction. Similarly, we must have y # 2z (mod 2) and = # z
(mod 2). In any case, we have a contradiction.

Similarly, if an even number of steps lead from one copy of a vertex to another
copy of it on C¥, then j,_; is not minimal, contradiction. O

Observe, that an alternating elementary circuit on a bipartite graph is a cycle. The
produced decomposition is identical to the one described in [25].

4.4. (Step 8) — Describing the swap sequence along an elementary alternating cir-
cuit

In this subsection we will construct swap sequences to transform one milestone
realization into the next one, using Algorithm Recursive application of this
procedure will provide the entire swap sequence between realizations X and Y.

From Lemma 410l and Lemma [£12] it follows that for any 1 < k < ks and
1 <r </, we have

Ef = B} AB(CY).

Clearly, X = Z& and Y = ZZS Also, Zéfk = Z(]f"'l for 1 <k < k;.
We have

E(C*) = {vgvaq1 ¢ i1 <2 < jr_1 and fr_1((x)T) = green},
so there is a natural Eulerian circuit on the edges (and vertices) of CF.
Let 21 € V(CF) be a vertex which has minimum degree in Z*" "}V (CF)].  (4.9)

We take swap sequence between Zf_l and Zf which is produced by Algorithm
as described by Lemma The symmetric difference of Z¥ | and ZF is E(CF).
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Let ¢ = |E(C¥)|, which is even. To apply Lemma 5], we label the vertices of C¥
by x1,2,..., 24— 1,xq = x1. The natural Eulerian circuit on C’k which starts on a
non-edge z1xo ¢ E _; uniquely determines the Eulerian trail x1, 2, ..., 2.

Recall Lemma [2.0] and Equation (2ZII), which in our setting translates to
R=(Z0Z}F)\ E(CY) (4.10)

We use the T-operator in the previous subsection to decompose Wy, into alter-
nating elementary circuits C¥, a process which is tracked by the pair (7, f.), an
Eulerian trail on W), (Lemma [A.9]) and a red-green coloring of E(W}). Let w be
given by Theorem (4.8 for 7,_1. Unfortunately, R may intersect W; for some i # k,
so it is favorable to work on a graph Z’ which is close to Z:

7' = ZAR. (4.11)

Although generally Z’ is not a realization of d, it is well-behaved with respect to
alternating circuits other than Wj. From the definitions and Lemma 2.0(g)| we can
read off that

Z'NX,Z'AY C E(CF) C XA Y,
E(Z"YNnEW,;) = E(X)NEW,) for i > k,
E(ZYNE(W;) = E(Y) N E(W;) fori < k, (4.12)
E(Z")NE(C}) = E(X)NE(C}) for j >,
E(Z')\NE(C}) = E(Y)NE(C}) for j <r.

If Z is a milestone, ie., Z = Z* for some k,r, then R = () and E(Z') N E(CF) =
E(Y) N E(CF) holds too.

Let s(X,Y,Z) € Synz,v\z be the matching we get by modifying the original
s € Sx,y in such a way that on W}, it induces the Eulerian-trail m,_;. However, this
trail does not alternate at a constant number of positions in Wy, so we delete any
matches between two non-edges or two edges of Z.

Thus knowing only Z’, V, and s*, generally we cannot reassemble 7,_1 nor Wj,.
However:

Lemma 4.13. If Z is an intermediate realization produced on the swap-sequence
between ZF | and Z¥, then Z'AZ C Wy,. Moreover, the Eulerian trail defined by
m—1 on Wy alternates on Z' with the exception of at most 8 pairs of chords in the
unconstrained case (6 in the bipartite case).

Proof. From Lemma[2.6g)]it follows that the natural Eulerian trail on C¥ alternates
on Z', except at the two-two endpoints of the at most 3 walks (2 in the bipartite
case) formed by Z'AZF | = Z'AZE. Beyond these at most 6 (at most 4) sites of
non-alternation, two extra irregularities are created at the points where the trail
defined by 7,._1 enters and leaves C’f. O
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Since W is split into at most 8 walks (6 in the bipartite case), the parts can be
reassembled in a constant number of ways. Let o be the list of assembly instructions,
in which we also indicate in which direction 7,._; starts from vg. Trivially, o can be
encoded in a constant number of bits. Let us define a list of additional parameters
associated to some quadruplet where Z € 7(X,Y, s):

B(X,Y,Z,s) := (x1,0, R,w). (4.13)

4.5. Reconstructing the swap sequence

Let the auxiliary structure M be defined by the equation M=A x+Ay — Az, where
Ax, Ay, Ay are the adjacency matrices of XY, Z, respectively. (In the adjacency
matrices in the columns the vertices are enumerated from left to right, while in the
rows from top to bottom. Therefore the matrix is symmetric with identically zero
main diagonal.) In this subsection we focus on the role of M in the reconstruction
process. We will discuss further its properties in Section [6l

Lemma 4.14. There is a function ¥ and a parameter set B such that |B| < O(n®)
(and |B| < O(n®) in the bipartite case), and for each (X,Y,s) € X(Z, M), there
exrists a B € B for which

(20,5, B) = (X,Y,5),

where s* = s(X,Y, 7).

Proof. The heavy lifting in the proof is reconstructing the s € Sxy for which s* =
s(X,Y, Z) holds. The graph XAY is determined by Z and M (but these data alone
do not separate the X-edges and Y-edges). Let B be the set of additional parameters
we defined in Equation (@I3). Clearly, 0 < w < n?, because the generalized T-
operator decreases the number of green positions in each iteration. Take a look at
Lemma 26 given z; R has only n® possible values (n? in the bipartite case). Since
o has a description of constant size, we have |B| < O(n®) (and O(n®) in the bipartite
case).

Using B, construct Z/ = ZAR. On XAY, Z' and s* determine the alternating
cycles W; for i # k. Though W} may be cut into at most 8 components (see
Lemma [13]), o allows us to reassemble W}, and m,_1. Using w, the last coordinate
of B, it is possible to restore the original Eulerian trail on Wy, namely 7y (see
Theorem [4.8)). Consequently, the elementary cycle decomposition US;IC’;“ can be
determined (along with the value of r, too).

Recall Equation (£I2]). It determines which edges of C; belong to X (and Y'),

except when i = k and j = 7. On E(C¥), we know the identity of x1 and x9, and
that z1x9 is a non-edge in X. Because C’,’f alternates between edges and non-edges
in X, the Eulerian-trail 79 on W} determines which edges of C* belong to X, and
which belong to Y. U
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5. Directed degree sequences

Now it is time to extend our management for directed degree sequences. This short
description goes more or less in parallel with [10].
Let G be a simple directed graph (parallel edges and loops are forbidden, but

—

oppositely directed edges between two vertices are allowed) with vertex set X(G) =
{z1,29,...,2,} and edge set E(é) For every vertex z; € X we associate two
numbers: the in-degree and the out-degree of x;. These numbers form the directed
degree bi-sequence d.

We introduce the following bipartite representation of G: let B(G) = (U, V; E)
be a bipartite graph where each class consists of one copy of every vertex from X (C_j)
The edges adjacent to a vertex u, in class U represent the out-edges from x, while the
edges adjacent to a vertex v, in class V represent the in-edges to = (so a directed edge
xy corresponds the edge ugvy). If a vertex has zero in- (respectively out-) degree
in é, then we delete the corresponding vertex from B (é) (This representation
was used by Gale [11], but one can find it already in [27].) The directed degree
bi-sequence d gives rise to a bipartite degree sequence D.

Since there are no loops in our directed graph, there cannot be any (uy,v,) edge
in its bipartite representation — these vertex pairs are non-chords. It is easy to see
that theseqforbidden edges form a forbidden (pzlrtial) matching F in the bipartite

graph B(G), or in more general terms, in B(D), and we call this a restricted
bipartite degree sequence.

Definition 5.1. For restricted bipartite degree sequences, the set of chords is the
vertex pairs of the form u,v, where x # y.

—

We consider all bipartite realizations G(D) which avoid the non-chords from F.
Now it is easy to see that the bipartite graphs in G(f)) are in one-to-one correspon-
dence with the possible realizations of the directed degree bi-sequence.

Consider now two o%ositely oriented triangles, C'3 and (5. Consider the bipar-
tite representations B(C3) and B(Cj3), and take their symmetric difference V. It
contains exactly one alternating cycle (the edges come alternately from B (5;) and
B (<C_3)), s.t. each vertex pair of distance 3 along the cycle in V forms a non-chord.
In this alternating cycle no “classical” swap can be performed. To address this issue,
we introduce a new swap operation: we exchange all edges coming from B(C3) with
all edges coming from B (<C—’3) in one operation.

In general, a triple-swap is defined as follows: take a length-6 alternating
cycle C in V, and if all three vertex pairs of distance 3 in C' form non-chords, we
exchange all edges of C to non-edges and vica-versa. The swaps and the restricted
triple-swaps together are called the F-swaps. It is a well known fact ([5], |7]) that
the set G(B(D)) of all realizations is irreducible under F-swaps.

The example of C3 and C3 demonstrates why the triple-swap operation is nec-
essary. However, as long as some steps of the Markov-chain require choosing 6
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vertices, it seems wasteful to not perform the triple-swap simply because some of
the the vertex pairs of distance 3 are chords.

In this paper, we relax the restrictions on triple-swaps: given a length-6 alter-
nating cycle C' in V, a triple swap is valid if and only if at least one of the three
vertex pairs of distance 3 in C' is a non-chord. This relaxation allows us to shave off
a factor of n% from the mixing time of the Markov chain. To see this, compare the
proofs of Theorem [.3 and Theorem [7.71

The inner loop of Algorithm has to be modified, because the conclusion
of Lemma [2:4] does not necessarily hold in the directed case. Instead of calling
DOUBLE STEP in Algorithm when x129; is a non-chord, the procedure should
call TRIPLE-SWAP of Algorithm Bl If Z, gets its value from TRIPLE-SWAP, then

Algorithm 5.1 The (relaxed) triple-swap operation

Ensure: x;z9; is a non-chord
function TRIPLE-SWAP(G, 1, [X2t—2, Tot—1, Tat, Tot4+1, T2+2])
return G+ (517151721‘,—2 —Tot—2%2t—1 + T2t—1T2t — T2T2t+1 + T2 4+1T2¢42 — $2t+2331)
end function

Lemma [Z:6((d)| will apply to R (see Equation (2.1])). Because of this, the statements
of Lemma [£.13] and [£.14] about the bipartite case apply to the directed case as well.

We are ready to define our swap Markov chain on (G(D),P) for the restricted
bipartite degree sequence D.

The transition (probability) matrix P of the Markov chain is defined as follows: let
the current realization be G. Then

(a) with probability 1/2 we uniformly choose two-two vertices w,u’;v,v" from
classes U and V', respectively. There are two matchings {{uv, u'v'}, {uv', v'v}}
between the two-two vertices, let F' be chosen randomly, and let F’ be the
other matching. If both F' and F’ consist of chords only and F' C E(G) and
F'NE(G) = 0, then perform the swap (so E(G’) = E(G) UF’\ F), otherwise
G =G.

(b) With probability 1/2 we choose three-three vertices from U and V. Let F
and I’ be a uniformly randomly selected pair of disjoint perfect matchings
between the three-three vertices. If both F' and F’ consist of chords only,
and the remaining matching between the three-three vertices contains a non-
chord, and F' C E(G) and F' N E(G) = 0, then perform the triple-swap (so
E(G") = E(G)UF'\ F), otherwise G' = G.

The (triple-)swap moving from G to G’ is unique, therefore the probability of this
transformation (the jumping probability from G to G’ # G) is:

1 1
Prob(G =) G') := P(G,G') = — - ————r (5.1)

BNCUILO)
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and ] 1
Prob(G —) G') := P(G,G") = —_— (5.2)

24 (50 (5

The probability of transforming G to G’ (or vice versa) is time-independent and
symmetric. Therefore, P is a symmetric matrix, where the entries in the main
diagonal are non-zero, but (possibly) distinct values. Again, P(G,G) > %, because
if (F, F') corresponds to a feasible (triple-)swap, then (F’, F') does not. Therefore
the chain is aperiodic and the eigenvalues of its transition matrix are non-negative.

However it is important to recognize that in papers |14] and [16] there was a
slightly different Markov chain studied, where it is assumed that the degree se-
quences under study are irreducible using swaps only. One notable example is the
regular directed degree sequence. Papers [2] and [24] provide a full characterization
of directed degree sequences with this property.

6. The auxiliary matrix M

The auxiliary matrix M = Ax + Ay — Az is a linear combination of three
adjacency matrices. The row and columns sums are equal to the corresponding
degrees prescribed by d. If Z = Z*, then ZFAX C XAY implies that Mis a
0-1 matrix. If Z is an intermediate realization, M is still a 0-1 matrix except on
the entries associated to edges in R, since (ZAR)AX C XAY. These +2 and —1
entries will be called bad entries, and the chords to which they correspond to are
called type-(2) and type-(—1) chords, respectively.

Lemma 6.1. If R falls under case or of Lemma [2.8, then R contains at
most two type-(2) and at most one type-(—1) chords.

Proof. Lemma or @ claims that R has at most three elements. Of these,
T1TstartChord A T1TendChora are edges in X, so the entries associated to them in
M are two-two 42 or +1 entries. In case if R contains the third chord, zjxo,
and it is an edge in X, then we must have endChord = 2t, so R actually does not
contain xyxg;. Thus z1290 € R = x129¢ ¢ E(X), so the entries associated to
T1T9: in M are —1’s or 0’s. Case @ is similar to case ]

A switch on a symmetric matrix is defined as follows. Suppose M e ZFx[K,
For any z,y € [k] we define the one-edge graph G*Y = ([k]; {xy}) with the adjacency
matrix Ag,. Clearly, A;, is a symmetric matrix with two 1’s. Let (z,y;z,w) be a
list of four pairwise distinct elements of [k]. Switching along these four vertices
produces the symmetric matrix

M =M+ Ay, — Ay + Ay — Aua- (6.1)

Clearly, the row and column sums of ]\/4\’ are identical to that of M. Notice, that a
swap in Z translates into a switch on M.

29



Notice, that for bipartite degree sequences, the “top-right” submatrix of this M
is equal to the auxiliary matrix used in [25] (the bipartite adjacency matrix).

Lemma 6.2. Suppose M € ZW*K s o symmetric matriz with 0’s in the diagonal,
such that each row and column sum is in [1,k—2]. Also, suppose that the row sum of
the first row is minimal. If the entries of M are 0 and 1, except for at most 2 pairs
of entries of +2 in the first row and in the first column, and at most two, symmetric
—1’s anywhere in the matriz, then there exist at most 2 switches that transform M
into a 0—1 matriz except for at most two symmetric —1.

Proof. Suppose M; ; = 2. We must have j # 1, which means that the maximum
of an entry in the rest of the column of j is 1. Because the column sum is at most
k — 2 and there is at most one —1 in the column, there exist 4,7 € [k] \ {1,;} such
that ¢ # ¢ and M, j, My ; € {—1,0}. We have two cases.

1. There 31 € [k] \ {1,i} such that M;; > Mj;: since 1 # i,l, we assumed
that M;; < 2, therefore M;; € {0,—1}. Switch along (1,i;1,5) in M. The
operation decreases M; ; to 1. If M;; = 0, then M; ; = —1, so when the switch
creates a symmetric pair of —1’s, it also eliminates another pair. The matrix
resulting from the switch operation satisfies the assumptions of this lemma
and contains two fewer +2 entries.

2. If VI € [k]\ {1,i} M;; < M, : since the row sum of the first row is minimal,
we have

k k
Z M < Z M;,
=1 =1
0< My + M;;— My; — My j=M,;; — 2,

which implies that ¢ = 1, a contradiction.

By recursion a second pair of 42 can also be eliminated. O

7. An application of the unified method

In this Section we harvest some fruits of our unified machinery proving a rather
general result for all typical degree sequence types.

In 1990 Jerrum and Sinclair published a very influential paper (|20]) about fast
uniform generation of regular graphs and about realizations of degree sequences
where no degree exceeds \/n—/2. To achieve this goal they applied the Markov chain
they have developed in [19]. Informally it is known as JS chain, and it is sampling
the perfect and near-perfect 1-factors on the corresponding Tutte gadget. The fast
mixing nature of the JS chain depends on the ratio of the number of perfect and
the number near-perfect 1-factors. As they proved it is applicable if and only if the
degree sequence d belongs to a P-stable class.
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Roughly speaking, a degree sequence is P-stable, if small perturbations to the
sequence (like considering a graphic degree sequence of at most distance two in ;-
norm) do not change the numbers of all possible realizations greatly. More precisely
we use the following definition:

Definition 7.1. Let D be a set of (unconstrained, bipartite or directed) degree
sequences. We say that D is P-stable, if there exists a polynomial p € R [x] such
that for any n € N and any degree sequence d € D on n vertices we have

G(d)u U G@+1.+1,) || <pr)-IGd),
z,y€[n], z#y

where 1, is the z*® unit vector.

Without proof we state, that the notion of P-stability does not change even if we
require |[{G | G € G(d'), d' e N, ¢;(d,d’) < 2}| < p(n) - |G(d)|. In a forthcoming
paper we will study P-stability in details, but here we confine ourselves to the
following observation, some statements and their direct consequences.

Careful examination of the known results about rapidly mixing swap Markov chains
revealed the fact that all known “good” degree sequence classes (for UC degree
bipartite or directed degree sequences) are P-stable. It raises the conjecture that
the swap Markov chains on P-stable degree classes are rapidly mixing. We resolve
this conjecture affirmatively in this section.

Let the set of auxiliary structures be
M = {]\7 . 3X,Y,Z € G(d) 5.t M = Ax + Ay —AZ}.
For a fixed B € B, let the set of compatible auxiliary structures be

MB:{]\/Z : 3X,Y, Z € G(d), se€ Sxy

st. M= Ay + Ay — Ay, B :B(X,Y,Z,s)}.

At this point, the proofs for unconstrained, bipartite, and directed degree se-
quences slightly diverge. The most general of these is the case of unconstrained
degree sequences. First, we discuss this case. Having understood the argument, it
is relatively simple to fit it to the cases of the bipartite and directed degree sequence
cases. Moreover, the tools required for proving our results on the latter two classes
have already been published in [25], so their proofs will be less verbose than the
next section on unconstrained degree sequences.
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7.1. Unconstrained degree sequences

First, let us bound the number of auxiliary structures compatible with a given
parameter set.

Lemma 7.2. If the stability of an unconstrained degree sequence d is bounded by
the polynomial p(n), then
(M| <n®-p(n)

holds for any B € B.

Proof. Equation (3.8) defines B = (z1,0, R,w). Recall, that (ZAR)AX C XAY,
so the bad entries (+2 and —1 values) in M correspond to positions assigned to
chords in R. Let M be the symmetric submatrix of M induced by the vertices of
C* as rows and columns. We have two cases.

Case 1: R falls under case or|(d) of Lemma

All of the non 0-1 entries of M are contained in M , in the rows and columns as-
sociated to x;. Lemmal6.Iland Assumption ([A.9]) implies that we can use Lemma[6.2]
to remove the +2’s from M with at most two switches. For each switch, the type-(2)
chord determines two vertices of the switch, thus there are n* ways to choose the at
most two switches that eliminate the +2 entries.

Let 1\/\4\ " be the matrix we get after applying the switches defined by Lemma
Either M’ is an adjacency matrix of a realization of d, or ]\/4\/ contains —1 entries
at positions associated to the chord zy. In the former case M’ € G(d), and in the

latter M’ + Agy + Aye € G(d + 0, + 6,).

Case 2: R falls under case or[(f) of Lemma

Let f € R be the unique edge which is not incident to x;. The auxiliary structure
belonging to the intermediate realization before or after Z on the swap sequence is
one switch away from M , moreover the switch touches f. As in the previous case,
f determines two vertices of this switch, so there are n? possibilities to choose the
other two vertices. After performing the switch, Case 1 applies. O

We are ready to prove one of the main results of this paper.

Theorem 7.3. The swap Markov chain is rapidly mizing on P-stable unconstrained
degree sequence classes.

Proof. Apply the simplified Sinclair’s method. It is sufficient to show that Equa-
tion (B3] holds. For any Z € G(d) we have to estimate from above the value of

Z [{s € Sxy: ZeT(X,Y,s)}\_

7.1
’SX,Y‘ ( )

X, YeV(G)
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The set in the nominator can be rewritten as follows:
{s € Sxy :IBEB, M € M,s" € Synzvz st B(Z M,s*, B) = (X,Y, s)}

where V = XAY. Observe, that |Sx y| is already determined by V, which in turn
is determined by Z and M. Let ty := |Sx,y|. Furthermore, Z’ is determined by B
and Z (see Equations (411]) and (4I3])). Lastly, observe that

1Svnz v z| < (maxd)® -ty

because half of the ¢; distance of the degree sequences of Z’ and V \ Z’ is at most
8 (follows from Lemma [£.13]). Let

B — {B(X,Y,Z,s) c M=Ax+Ay — Ay, s¢ SX,Y}.
We can continue writing (7.1]) as follows:

‘{cp(z, M,s*,B) : 3B € B,s* € Synz vz}

£ lv B
Mem
B3zl - |SVmZ',V\Z'|
< /Z = (maxd)® Z Bl
Mem Mem

Continue by applying Lemma

(maxd)®- > [By| < (maxd)®- > [Mp| <
MeM BeB
< (maxd)® - [B[ - n° - p(n) - |G(d)| < O(n*) - p(n) - |G(d)|

In the last step, we used Lemma [Z141 O

7.2. Bipartite degree sequences

Let D denote a bipartite degree sequence on N = n 4+ m vertices. Recall that
an alternating elementary circuit on a bipartite graph is a cycle. Also, for any
X,Y,Z € G(D), the auxiliary structure M = Ax + Ay — Az is determined by
the submatrix spanned by U x V C (U @ V)?. This is the “top-right” submatrix,
often called the bipartite adjacency matrix. The “top-left” and the “bottom-right”
submatrices are zero.

Lemma 7.4. If the stability of a bipartite degree sequence D is bounded by the
polynomial p(N), then
M| < (nm)* - p(N)

holds for any B € B.
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Proof. The proof is simpler and slightly different than that of Lemma[7.2l DOUBLE
STEP is never called in the bipartite case (Lemma [2.5]), so either R is empty or
Lemma [6T] applies to it. Hence, there are (nm)2 possibilities to choose the two-two
other vertices of the switches that eliminate the type-(2) bad chords.

Secondly, we have to make sure that the switches produced by Lemmal[6. 2l respect
the bipartition. As before, let M be the the submatrix of M induced by the vertices
of Ck. Let H = K u(cky ¥ Ky (cry be the disjoint union of the two cliques within the
classes. Instead of applying Lemma on M, apply it on M + Ag. Each row and
column sum increased by the same number, therefore assumptions of the lemma are
still satisfied. Any swap which eliminates a +2 from this matrix which is valid in
the unconstrained sense also respects the bipartition. O

Theorem 7.5. The swap Markov chain is rapidly mixing on P-stable bipartite de-
gree sequence classes.

Proof. Instead of Lemma we use Lemma [(4l The bound on the size of B is
O(n%) according to Lemma ET4l Furthermore, the constant 8 improves to 6 in
Lemma [£T3] thus half of the ¢; distance of the degree sequences of Z' and V '\ Z’ is
at most 6.

Other than the mentioned differences, the proof is identical to that of Theo-
rem [7.3t

Z Hs €Sxy: ZGT(X,Y,S)H <

X,YeV(G) [Sx.x]

< (maxD)° - [B] - (nm)” - p(N) - |G(D)| < O(N'®) - p(N) - |G(D))

7.8. Directed degree sequences

Recall from Section [ that instead of directly manipulating directed graphs,
we work on their bipartite representations. Formally, the degree sequence of the
directed graph is identical to that of its bipartite representation. Let D denote a
directed degree sequence on N = n + n vertices (so the bipartite representation has
N vertices).

Lemma 7.6. If the stability of a directed degree sequence D is bounded by the
polynomial p(n), then
(Mgl <n'-p(n)

holds for any B € B.

Proof. The proof of Lemma [T.4] applies to the bipartite representation, but we have
to check that applying Lemma[6.2on M + Ay produces switches that avoid the non-
chords. Indeed, this is the case, because the non-chords of the form u,v, correspond
to the main diagonal in M, which the switches chosen by the lemma avoid. O
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Theorem 7.7. The swap Markov chain is rapidly mizing on P-stable directed degree
sequence classes.

Proof. By Lemma BI4] the bound on the size of B is O(n%), as in the proof of
Theorem [Z.3l Similarly, half of the ¢; distance of the degree sequences of Z’ and
V\ Z’ is at most 8 (Lemma [£.13)).

Other than the mentioned differences, the proof is identical to that of Theo-
rem [(.0l

Z {s€Sxy:ZeT(X,Y,s)}| <

X,YEV(G) |Sx.y]

6
d

< (maxD)" - B -n* - p(n) - [G(D)| < O(n'®) - p(n) - |G(D).

8. P-stable degree sequence classes

In the proof of almost every previous result on rapid mixing of the swap Markov
chain, it turns out there is a short hidden proof that the degree sequences under
study are P-stable. The unified proof contains most of the technical difficulty of
proving rapid mixing of the swap Markov chain.

There have already been successful attempts at unifying some of the proofs, most
notably [1], which studies the notion of strong stability:

Definition 8.1 (adapted from [1]). Let D be a set of degree sequences. Let
G'd= |J Gd-1,—1y)
z,y€(n]

We say that D is strongly stable if there exists a constant £ such that for any d € D
and any G’ € G'(d) there exists a set of chords E¢ of cardinality at most ¢ such
that G'AEq € G(d).

The statement without proof after Definition [ZI] hints at the fact that strongly
stable degree sequence classes are also P-stable, because E¢g comes from a set of
2
size at most (", ), which is a polynomial of n.

Theorem 8.2 (Amanatidis and Kleer [1]). The swap Markov chain is rapidly mizing
on strongly stable unconstrained and bipartite degree sequence classes.

In the following subsections of this section we discuss all known P-stable degree
sequence regions. It is an intriguing problem to discover other P-stable regions.
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8.1. Unconstrained degree sequences

For the sake of having more readable and compact formulas, let A = maxd,
§ =mind, and m = 3>, |, d(v) be functions of d.

Recently, Greenhill and Sfragara [16] published a breakthrough result on the
rapid mixing of the swap Markov chain.

Theorem 8.3 ([16]). The swap Markov chain is rapidly mizing on the following
family of unconstrained degree sequences:

1
Da.g = {d €eZt : §>1, 3<maxd < g\/2m} (8.1)

It turns out that the authors implicitly prove on page 10 of [16] that Dg.g is a
P-stable class. However, this implicit result is actually not new: Jerrum, McKay,
and Sinclair extensively studied the notion of P-stability in their seminal work [21].

Theorem 8.4 (Jerrum, McKay, Sinclair — Theorem 8.1 in [21]). The family of
unconstrained degree sequences

Diys := {d e N" : (maxd —mind +1)? < 4-mind - (n — maxd — 1)}

s P-stable.
Theorem 8.5 (Jerrum, McKay, Sinclair — Theorem 8.3 in [21]). The family of
unconstrained degree sequences
Dimss = {d e N" : (2m —nd)(nA —2m) <
< (A—8)((2m —nd)(n — A — 1) + (nA — 2m)0) }

is P-stable.

Theorem [7.3] implies that the swap Markov chain is rapidly mixing on elements of
Diyms and Diyvsy. Moreover, it is easy to see that Dg.g C Dyvs+. However, the
proofs of Theorems [R.4] and actually prove a bit more than just P-stability.

In [21] it is also shown that Djyyg and Dyys+ are strongly stable regions with
£ <10, so Theorem already applies to them.

The following corollary is a consequence of the fact that the degrees in an Erdés-
Rényi random graph are tightly concentrated around their expected value.

Corollary 8.6. If G(n,p) is an Erdds-Rényi random graph of order n > 100 with
edge probability p then Pr(d(G(n,p)) € Dyys+) > 1 — %
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Proof. We may suppose that p < % by taking the complement of G if necessary.
Let p = p(n), e1 = (125?) and m = Y, o, d(v) = (5)(p + £2). By Hoeffding’s
inequality, we have

Pr(A(G) > (p+e1)-(n—1)) <
< 3 Pr(d@) < (e (n-1)) < e 0D <

S|

IFAG) <(p+e1) - (n—1)and 6(G) > (p—¢e1) - (n— 1), then d(G(n,p)) € Dyms+
holds if

(2m —nd)(nA —2m) < (A —0) ((2m —nd)(n — A —1) + (nA —2m)d)  (8.2)

Because increasing A or decreasing § makes the inequality stricter, without loss of
generality, we may substitute A = (p+¢1)-(n—1) and § = (p —¢€1) - (n — 1) into
inequality.

(2m —nd) = <2 <Z> (p+e2) —n(p+er)(n— 1)> =n(n—1)(e1 + €2)
(nA —2m) =n(n—1)(e1 + &2)
2m—nd)n—A—-1)=n(n—1)(e1+e2)- (1 —p—e1)(n—1)
(nA—=2m)d =n(n—1)(e1 +e2)- (p—e1)(n—1)
Therefore (8.2]) becomes
(n(n —1)(e1 +€2))* < 2e1(n — 1) -n(n — 1)(e1 + &2) - (1 — 2e1)(n — 1)
n(e; +e2) <2e1(1 —2e1)(n—1)
ney < (n—2)e; —4ei(n — 1)

Ifeg < —Vlong", then last inequality is satisfied, if

/1
Viegn < (n—2) no%nl —4logn

1
4/logn+1 < (n —2)

n—1

Clearly, the right hand side grows orders of magnitude faster than the left hand side
as n — o0, and the inequality already holds for n = 101. Lastly, it is very likely
that g9 < —Vl‘:f", thus

Pr <§ > dw) > <p+ez>(§>> <o) < o

veV
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All in all, Pr(d(G(n,p)) ¢ Dyms+) <+ + 2+ 1. 0

—n
Similar result has already been shown about bipartite Erd6s-Rényi graphs [9,10],
with the requirement that p is a bounded away from 0 and 1 by at least 4

2logn
—

8.2. Unconstrained power-law bounded degree sequences

The swap Markov chain is not the only way to exactly sample the uniform
distribution on the realizations of a degree sequence. Recently, Gao and Wormald
presented the first “provably practical” sampler for power-law distribution-bounded
degree sequence where «y is allowed to be less than 3; in fact they can go as low as
2.8811. For such degree sequences, they provide a linear time approximate sampler
and a polynomial time exact sampler.

In degree distributions of empirical networks following a power-law, the param-
eter ~ is usually between 2 and 3.

Gao and Wormald also enumerate the number of realizations of several heavy-
tailed degree sequences [12]. In particular, they calculate the number of realizations
of degree sequences that are

(1) power-law density-bounded with v > 2.5,
(2) power-law distribution-bounded with v > 1 + /3 ~ 2.732.

Their analysis of degree sequences obeying (1) shows that they are contained by
Dg.s. The formula in [12] enumerating the realizations of degree sequences obeying
(2) directly implies P-stability, thus our Theorem [7.3] applies. Gao and Wormald
also claim that degree sequences obeying a power-law distribution-bound with v > 2
are P-stable [13]. Therefore Theorem [7.3] provides a fully polynomial time almost
uniform sampler:

Theorem 8.7 (Follows from Theorem [7.3] and [13]). The swap Markov chain is
rapidly mizing on unconstrained degree sequences satisfying a power-law distribution-
bound for any ~v > 2.

8.8. Bipartite degree sequences

Let D be a bipartite degree sequence on U and V as color classes. We use the
following shorthands in this sub-section:

Sy =minD 8y = minD

v = minD(u), v = minD(v),

Ay = maxD Ay =minD
v = magD) v =upDw)

and m =3 ;D(u) =>,, D).
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Theorem 8.8 (implicitly proved in Theorem 2 in [10]). The set of bipartite degree

sequences D that satisfy
1
2<AL \/gm, (8.3)

Clearly, Theorems [R.3] and B.8 are closely related, the difference in constants is
caused by the different structural constraints only.

is P-stable.

Theorem 8.9 (implicitly proved in Theorem 3 in [10]). The set of bipartite degree
sequences D that satisfy

(Ay = v — 1)(Ay —dy — 1) < max <5U(|U| — Ay +1),0v (V] - Ay + 1)>

is P-stable.

The previous theorem is also present in v3 (6 Oct 2018) of |1] as Corollary 18,
but it does not cite paper [10], where the theorem was first published, even though
the paper is present in [1] as reference 17.

Theorem 8.10 (Corollary 19 in [1]). The set of bipartite degree sequences that
satisfy

(Ay — 8u) - (Ay — &) < 4-min (5U(|U| Ay, Sy (V] — AU)) (8.4)
1s P-stable.

8.4. Directed degree sequences

Let D be a directed degree sequence on X as vertices. Let Doyt be the out-degree
sequence and Dy, be the in-degree sequence. We use the following abbreviations in
this sub-section:

dout = min I_jout(:n), din = min I_jin(:n),
reX zeX
Aout = gél)? Doyt (517)7 Ain = gél)l(l Din($)7

and m =Y,y Dout(z) = 3, x Din(2).

Theorem 8.11 (implicitly proved in [16]). The set of bipartite degree sequences D
that satisfy

2 < max(Aout, Ain) < i\/r_n, (8.5)

is P-stable.
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Theorem 8.12 (implicitly proved in Theorem 4 in [10]). The set of directed degree
sequences D satisfying

2 < max(Agut, Ain) < m —4,

1
V2
is P-stable.

Theorem 8.13 (implicitly proved in Theorem 5 in [10]). The set of directed degree
sequences D satisfying

(Aout - 50ut) : (Ain - 5in) <2-n+
+ max (50111: (n - Ain - 1) + 5in + A0111:7 5in(n - Aout - 1) + 5out + Ain)

is P-stable.

9. Summary

To summarize the new results of the paper, let us present Table 2] an updated
version of Table[Ilwhich contains both entirely new and improved results. A strongly
stable class is, as the name suggests, naturally P-stable, see the recent paper of
Amanatidis and Kleer [1]. Their results already provide a unified framework for
proving all previously known bipartite and UC degree sequence results.

The flexibility of our unified method allowed us to extend the rapid mixing
results of the swap Markov chain in two directions (in the table):

e vertically (power of machinery) to P-stable degree sequence classes, and
e horizontally (applicability of machinery) to directed degree sequences.

Theorem B.7] extends the class of power-law like degree sequences having an
almost uniform sampler from degree sequences obeying a power-law density-bound
with v > 2.5 to ones conforming to a power-law distribution-bound with v > 2.
Empirical evidence suggests that this latter class contains every real-world network
following a power-law [12].

We have also shown that the degree sequence of the Erdds-Rényi random graph
G(n,p) is rapidly mixing with high probability as n — oo, for any (including non-
constant) edge probability.

The notion of P-stability is a natural obstacle on the rapid mixing of the swap
Markov chain [20, 21], and it would be really intriguing to find even a small rapidly
mixing degree sequence class which is not P-stable.

Finding the bipartite and directed analogues of Theorem seems to be a rela-
tively easy and moderately rewarding open problem. For example, such a theorem
would probably be sufficient to prove that the bipartite and directed Erdés-Rényi
graphs have P-stable degree sequences asymptotically almost surely.
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UC degree sequences bipartite deg. seq. directed deg. seq.

regular [3] (half-)regular [25] regular [14]

almost half regular [7]

A < 2V2m [16] A < —=y/m [10] A < —=vm —4 [10]
Power-law distribution-
bound, v > 2
(A—=d6+1)7°< (A —6)? < similar to the bip. case
<4-6(n—A—1)[1] <§(%—A) 9, 10] 9, 10]

Erdés-Rényi G(n,p) Bip. E.R. with edge prob. | similar to the bip. case
with high prob. p,1—p > 44/ 281 (9 10] 9, 10]

n

strongly stable degree sequence classes [1]

P-stable degree sequence classes

Table 2: Updated version of Table [I] with the new results in this paper. Here A and § denote
the maximum and minimum degrees, respectively. Half of the sum of the degrees is m, and n is
the number of vertices. The notation is similar for bipartite and directed degree sequences. Some
technical conditions have been omitted. Gray text is used for cells which have not been updated.
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