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Abstract

Partially ordered sets and permutations are combinatorial structures having

vast applications in theoretical computer science. In this thesis, we study

various computational and algorithmic problems related to these structures.

The first chapter of the thesis contains discussion about randomized fully

polynomial approximation schemes obtained by employing Markov chain

Monte Carlo. In this chapter we study various Markov chains that we call:

the gladiator chain, the interval chain, and cube shuffling. Our objective is

to identify some conditions that assure rapid mixing; and we obtain partial

results. The gladiator chain is a biased random walk on the set of permuta-

tions. This chain is related to self organizing lists, and various versions of it

have been studied. The interval chain is a random walk on the set of points in

Rn whose coordinates respect a partial order. Since the sample space of the

interval chain is continuous, many mixing techniques for discrete chains are

not applicable to it. The cube shuffle chain is a generalization of H̊astad’s

square shuffle. The importance of this chain is that it mixes in constant

number of steps.

ii



In the second chapter, we are interested in calculating expected value

of real valued function f : S → R on a set of combinatorial structures S,

given a probability distribution on it. We first suggest a Markov chain Monte

Carlo approach to this problem. We identify the conditions under which our

proposed solution will be efficient, and present examples where it fails. Then,

we study homomesy. Homomesy is a phenomenon introduced by Jim Propp

and Tom Roby. We say the triple 〈S, τ, f〉 (τ is a permutation mapping S

to itself) exhibits homomesy, if the average of f along all τ -orbits of S is a

constant only depending on f and S. We study homomesy and obtain some

results when S is the set of ideals in a class of simply described lattices.
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Introduction

Partially ordered sets, permutations, and ideals are among the combinatorial

structures that have been interesting to both combinatorists and computer

scientists. Here we study some computational and algorithmic problems con-

cerning these structures. These problems vary from Markov Chain mixing

problems to computing the expected value of different statistics of the above

mentioned structures by employing randomized (Markov chains) or deter-

ministic (homomesy) methods. The work can be divided into the following

sections:

Markov Chain Mixing Problems. Suppose that samples are needed

from a probability distribution π on a set Ω whose size is exponential in

some parameter n. In most cases, no polynomial-time algorithm is known

by which we can sample elements of S exactly from a given distribution;

in such a case, computer scientists typically employ approximate sampling

using Markov chains.

Let P be the transition matrix of an ergodic Markov chain X0, X1, . . .
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with state space S and stationary distribution π. Thus

Pr(Xi = xi | Xi−1 = xi−1, Xi−2 = xi−2, . . . , X0 = x0)

= Pr(Xi = xi | Xi−1 = xi−1)

= P (xi, xi−1).

The idea of Markov chain Monte Carlo is to run such a chain for, say, t steps

and use Xt as the sample. Since the distribution of Xt approaches π, this

will work if t is large enough. The difficulty is in showing that one can get

close to π with a value of t that is only polynomial in n.

The least value of t for which the total variation distance between π and

the distribution of Xt is less than some constant (say, 1/4) is known as mixing

time. We say that a Markov chain has polynomial mixing if its mixing time

is polynomial in the size parameter n. In this thesis, we will discuss two

mixing problems.

In the first problem, the sample space Ω is the symmetric group Sn, that

is, the set of all permutations of n objects. Let f be a positive real valued

“strength” function on the set {1, . . . , n} and define a Markov chain on Sn

by choosing i uniformly at random in {1, . . . , n−1}, then swapping σ(i) and

σ(i+1) with probability f(σ(i))/(f(σ(i)) + f(σ(i+1))). We call this chain

the gladiator chain. The gladiator chain has a simply-described stationary

distribution, and it seems to mix rapidly. In fact, I showed that the chain

mixes rapidly in some cases where the gladiators fall into only a few strength

classes [20]. It is worth mentioning that Jim Fill (see [23]) has conjectured
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that all cases of a more general swapping chain mix rapidly, but only certain

special cases have so far been proved.

The second mixing problem is motivated by the hard-core gas model in

dimension 1. Given n points in the unit interval, a natural way to mix them

is to choose one uniformly at random and move it to a random point between

its two neighbors, or between its neighbor and an endpoint; it has been shown

that n3 log n such steps are necessary and sufficient to mix [36]. What if the

points are constrained not by linear order but by a partial order? If they

are all incomparable, then mixing in time n log n is automatic (via “coupon-

collection”). We study this chain in Section 1.4, and present experimental

and theoretical evidences that it mixes rapidly.

Mixing Faster by Taking Larger Steps. Randomized algorithms allow

us to find approximate solutions to some NP-hard problems in polynomial

time. However, Markov chains that make only local changes are limited in

speed, since it takes n log n steps (coupon collector problem) just to hit all

the sites of a space of configurations based on an n-element set. This bound

can sometimes be overcome by the use of chains with big (“global”) steps.

In the following we will study two problems in this topic. The problems

are H̊astad’s square lattice shuffle (see [38]) and the top to random shuffle.

Suppose an m×m array of distinct objects is given. In order to perform

one step of H̊astad’s square lattice shuffle, we pick m independent permu-

tations (σi)
m
i=1 of {1, . . . ,m} uniformly at random. At odd time steps, we

apply each σi to the elements in row i. At even steps another such set of

3



permutations is applied to elements of each column.

This is a huge step, and it is shown in H̊astad’s paper [38] that only a

constant number of these steps are required to mix. H̊astad’s theorem sticks

to the two dimensional case. Here, by adding a few lemmas we generalize

H̊astad’s work to cubes in arbitrary dimension. In particular, we prove that

for any arbitrary k, a cube of size nk mixes in time t, where t is only dependent

on k but not on n.

Calculating the Expected Value of Statistics and Homomesy. Con-

sider a sample space S of combinatorial structures and statistic f : S → R.

For instance, we take S to be the set of all ideals in a poset and f to be the size

of an ideal. We are interested in the expected value of f ; f̂ =
∑

s∈S f(s)π(s),

when π is an arbitrary distribution on S. We study two different approaches

to this problem: running a Markov chain (randomized method) and verifying

homomesy (deterministic method).

In the first approach, the goal is to run a Markov chain for τ steps to

take m different samples s1 . . . sm and calculate the average 1/m
∑m

i=1 f(si).

There are examples of S and f where despite the existence of a rapidly mixing

Markov chain to sample from S, the average of f cannot be approximated

by the aforementioned method in polynomial time. For instance, take S

to be the set of all Eulerian orientations of an Eulerian graph, f : S →

R the number of Eulerian circuits corresponding to each orientation, and

π the uniform distribution on S. Mihail and Winkler showed that there

is a rapidly mixing Markov chain for sampling Eulerian orientations of an

4



Eulerian graph uniformly [71]. However, by running Mihail-Winkler chain

we can not obtain a good approximation of the average number of Eulerian

circuits of an Eulerian graph. Despite the existence of the examples such

as aforesaid, we succeed to show that by employing the above method we

can achieve an ε approximation of f̂ by taking M ≥ 8v/f̃ 2ε3 samples and

running the chain for τ = 2tmix log(fmax

f̃
ε−1/2) number of steps where tmix is

the mixing time of the chain, v is the variance of f and fmax the maximum

value of f in S.

In the other approach we look for a phenomenon called homomesy. Ho-

momesy was studied and named by Jim Propp and Tom Roby [7]. The word

is derived from the Greek for “same average.”

Formally, let S be a set of combinatorial objects and τ : S → S a one-to-

one operation on elements of S. Let f : S → R be a statistic mapping S to

the reals (or any field of characteristic 0).

We say the triple 〈S, τ, f〉 exhibits homomesy if there is a constant c such

that for any orbit O of τ ,

1

|O|
∑
s∈O

f(s) = c.

Thus, in the presence of homomesy, the average value of the statistic (con-

sidering uniform distribution) can be determined from any orbit, without

needing to compute f at every member of S.

Let J([a]×[b]) be the set of all ideals in the lattice [a]×[b], where [n] is the

5



ordered set {1 < 2 < · · · < n}. Propp and Roby studied homomesy when

S = J([a]×[b]) and τ is the action of rowmotion or promotion, both bijective

operations of special combinatorial interest. They showed in particular that

homomesy holds when the statistic is the size of an ideal.

Homomesy turns out to be both ubiquitous and, often, surprisingly non-

trivial to prove. In this thesis, we study homomesy when S = J([a]×[b]), as

well as the set of ideals in some other simply described posets. By extending

the definition of rowmotion and promotion, we define a class of permutations

on J([a]×[b]), show that they produce the same orbit structure, and find a

family of homomesic statistics for them [25].

In another paper that grew out of a workshop held by the American In-

stitute of Mathematics (AIM), we study the expected value of a statistic that

we call jaggedness of ordered ideals in a poset P under certain distributions

that we call toggle symmetric. We derived a formula for this expected value

when the poset P is a skew Young diagram [21].
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Chapter 1

Markov Chain Monte Carlo

“Ah, fill the cup, what boots it to repeat,

How time is slipping underneath our feet,

Unborn tomorrow, and dead yesterday,

Why fret about them if today be sweet!”

–Omar Khayyám.

1.1 Introduction and Preliminaries

Consider Ω a set of combinatorial objects. A Markov chain or a random

walk on Ω is a sequence of random variables X1, X2, . . . , Xn satisfying the

condition:

∀s1, . . . , si ∈ Ω, and i ∈ N,

P r(Xi=si|Xi−1=si−1, Xi−2=si−2, . . . , X1=s1) = Pr(Xi=si|Xi−1=si−1),
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The set Ω is called the state space of the chain. Note that Pr(Xi=s|Xi−1=s′)

only depends on s and s′. This property is known as memorylessness. We

call the probability of going from s to s′ the transition probability from

state s to state s′.

The following terminology is used in the literature:

Definition 1. The matrix P defined by P (s, s′) = Pr(Xi = s|Xi−1 = s′) is

called the transition matrix, and it is an |Ω|×|Ω| matrix.

Throughout, we denote the probability of an event E ⊆ Ω given the

probability distribution γ on Ω by Prγ(E), and we denote the transition

probability of a Markov chainM going from state s to state s′ by PM(s, s′).

We drop the subscripts when they are understood.

Definition 2. The underlying graph of a Markov chain M is a graph

G = 〈S,E〉, where E is the set containing all the edges e satisfying: e =

(s, s′) ∈ E if and only if P (s, s′) > 0. We denote this graph by G(M).

Markov chains were introduced by Andrey Markov, a Russian mathemati-

cian (14 June 1856 – 20 July 1922). Today, Markov chains have applications

in different fields of science such as computer science, genetics, economics,

finance, physics, etc.

In computer science, ergodic Markov chains has received special atten-

tion since they can be employed for designing approximation algorithms to

solve counting or samplings problems. We define an ergodic Markov chain

as follows:
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Definition 3. A Markov chain M is called irreducible if in G(M) any two

vertices u and v are connected via at least one path. The chain is called

aperiodic if in G(M) for any vertex v the least common divisor of lengths

of circuits connecting v to itself is 1. An irreducible and aperiodic Markov

chain is called ergodic.

Theorem 1. Let M = (Xi)i=1 be an ergodic Markov chain on Ω, we have

limi→∞Xi = π, where π is a distribution on Ω that does not depend on X1.

Definition 4. We call a Markov chain M on state space Ω with transition

probability P and stationary distribution π reversible if for any x, y ∈ Ω

we have the following equation:

π(x)P (x, y) = π(y)P (y, x). (1.1)

Equation 1.1 is known as the detailed balanced equation. If a distribution

γ on Ω satisfies the detailed balanced equation, then π = γ.

Consider the following problem:

Problem 1. Consider a set Ω whose size is exponential in some parameter

n and a probability distribution π on it. Assume that sampling from S with

respect to distribution π is not in the complexity class P. Can we design an

approximation algorithm for this problem by which we can take samples from

S with respect to another distribution π′ where π is very close to π?

Example 1. Let Ω be the set of permutations of the numbers 1, 2, . . . , n.

9



Then size of S will be n!. Do we have an efficient algorithm for taking samples

from S according to some arbitrary distribution π?

Example 2. Let Ω be the set of all perfect matchings in an arbitrary graph.

Is there an efficient algorithm to take samples from this set according to an

arbitrary distribution π?

Example 3. Let Ω be the set of all indecent sets in an arbitrary graph. Is

there an efficient algorithm to take samples from this set according to an

arbitrary distribution π?

To formalize the notion of “closeness” we use the following metric on

distributions:

Definition 5. The total variation distance of two probability distributions

γ and ζ on Ω is denoted by ‖ γ − ζ ‖TV and defined as:

‖ γ − ζ ‖TV = 1/2
∑
s∈Ω

|Prγ(s)− Prζ(s)|.

It is known that for any event E ∈ 2Ω, |Prγ(E)− Prζ(E)| ≤‖ γ − ζ ‖TV .

Definition 6. The mixing time of a Markov chain M having stationary

distribution π and convergence factor ε is the minimum natural number t

satisfying the following condition:

‖ Xt − π ‖TV≤ ε.

10



We denote the mixing time of M by tε(M). We often take ε = 1/4 and

drop the subscript. It is known that tε(M) = t(M) log(1/ε) for arbitrary

ε > 0.

We say a Markov chain M is rapidly mixing or we say it mixes in

polynomial time, if t(M) is a polynomial function of the problem’s parame-

ter. The problem of bounding the mixing time of a Markov chain is called a

mixing problem.

Markov Chain Monte Carlo. Markov chain Monte Carlo is a technique

used for designing approximation algorithms when the exact solution is com-

putationally hard. Consider Problem 1, having a rapidly mixing Markov

chain M, converging to the stationary distribution π, we can run M for

t(M) number of steps, and take samples that are close to π.

The idea of Markov chain Monte Carlo has been applied in approximation

algorithms for many instances of Problem 1. In 1989 Jerrum and Sinclair

[70] proved that for self reducible1 structures, sampling uniformly from a set

is computationally equivalent to counting the set. As a result, the following

problem can also be approximated by employing Markov chain Monte Carlo:

Problem 2. Consider a set Ω. Assume we know |Ω| is an exponential func-

tion of some parameter n, but calculating the exact value of |Ω| is computa-

tionally hard. Can we design an approximation algorithm for this problem?

1All of the structures that are discussed in this thesis are self reducible. We will not
present the definition of self reducibly here. The interest reader can refer to [70].
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Example 4. A partially ordered set consists of a set P and a reflexive,

transitive, antisymmetric relation ≤P . Let |P| = n. A linear extension of P

is a linear ordering ≤L of elements of P satisfying: x ≤P y =⇒ x ≤L y. Is

there any algorithm for finding the number of linear extensions of an arbitrary

poset P?

Example 5. Consider a bipartite graph of 2n vertices where each part of

graph contains n vertices. The number of perfect matching in this graph is

equal to the permanent of its adjacency matrix. It is known that calculating

permanent of a 0 and 1 n×n matrix is a #P-complete problem. Is there any

way to sample a perfect matching of a graph, or equivalently, approximate

the permanent of a 0 and 1 matrix?

We conclude this section by presenting two widely studied classes of

Markov chains: the Gibbs sampler and shuffling.

Gibbs Sampler

A Gibbs sampler or Glauber dynamics is a Markov chain for which the sample

space Ω is contained in a set of the form SV , where V is the vertex set of

a graph and S is a set of values for labeling vertices of V . We call each

labeling of vertices a configuration. Assume, we want to sample from Ω with

respect to distribution π. The Gibbs sampler moves as follows when being

at configuration c ∈ Ω:

• Pick v ∈ V uniformly at random (if we pick one v ∈ V at a time step,

12



we say the Gibbs sampler is performing single site updates. We will

see a discussion on single site updates in Section 2.1).

• Update the label of v according to the following distribution:

Pr(v is labeled by ω) = Prπ(v is labeled by ω|All of the other vertices u 6=

v have the same label as in c); ω ∈ S.

Problem 3. (The hard-core model.)

In the hard-core model, we have a graph with vertex set V , and to each

vertex we assign a number from the set S = {0, 1}, such that no adjacent

vertices of v can both have label 1 to constitute Ω. The hard-core model has

two variations, the first one being a special case of the second one:

• Uniform case. Consider the uniform distribution on Ω. The Gibbs

sampler picks v ∈ V uniformly at random at each step. If v has label

1 with probability 1/2 it updates the label from 1 to 0, and keeps the

other labels unchanged. If v has label 0, with probability 1/2 it updates

the label from 0 to 1 under the condition that non of v’s neighbors are

labeled 1, and keeps the other labels intact.

Remark 1. If the uniform hard core is rapidly mixing we will have a

randomized fully polynomial approximation scheme to find the number

of independent sets in an arbitrary graph.

• The hard-core model with fugacity λ. The hard-core model with

fugacity λ is the following Gibbs sampler: Pick v ∈ V uniformly at
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random at each step. If v has label 0 and all of its adjacent vertices

also have label 0 then change its label to 1 with probability λ/(1 + λ).

If v has label 1 change it to zero with probability 1/λ. This chain has

stationary distribution π, where π(I) = λ|I|/Z where Z is a normalizing

factor often called the partition function, and I is any independent set.

Hard core model is a simple Markov chain, and it has vast applications

in statistical physics to model the behavior of gas molecules.. However, if

the maximum degree ∆ in a graph is greater than or equal to 6 there are

examples in which the uniform hard core model does not become close to

stationarity in fewer than exponential number of steps (n being number of

vertices.). (See [89]) The only mixing result for general graphs was proved by

Luby and Vigoda [90], where they demonstrated that the hard-core model

is rapidly mixing when λ ≤ 2/(∆ − 2). This proof was initially presented

for triangle free graphs, and then extended to general graphs [90, 91]. To

summarize, for a general graph we know that the uniform hard core model is

rapidly mixing when n < 6, and it is not rapidly mixing when n ≥ 6. We say

that at n = 6 phase transition is occurring. The following question arises:

Question 1. We know that if the maximum degree of a general graph is

greater than or equal to 6, the uniform hard core model takes exponential

time to converge. Does this mean the hard-core model is not a good model to

approximately sample (or equivalently approximately count) the independent

sets of a graph; or the problem itself is hard to approximate?
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In 2010 Sly proved the following theorem which addresses this question

([86]).

Theorem 2. Unless NP=RP for every ∆ ≥ 6 there does not exist a fully

polynomial approximation scheme for counting independent sets on graphs of

maximum degree at most ∆.

Sly also proves that unless NP=RP there is no polynomial time approx-

imation scheme for the partition function on graphs of maximum degree d

for fugacity λc(d) ≤ λ ≤ λc(d) + ε(d), where λc(d) is the point where the

hard-core model experiences a phase transition if the graph is a d−regular

tree [87]. The relationship between the phase transition and computational

complexity of sampling (i.e. counting) problems has received considerable

attention recently and has been demonstrated for other sampling problems

[88]. These results indicate the strength of the Markov chain Monte Carlo

technique.

Problem 4. (Graph coloring.) Consider a graph with G with vertex set V ,

and the set of colors Q = {1, 2, . . . , q}. A coloring of G is an assignment of

a color from the set Q to each vertex v ∈ V , such that no adjacent vertices

have the same color. Consider the uniform distribution on this set. The

Gibbs sampler picks v ∈ V uniformly at random at each step. Let Q̃v ⊆ Q

be the set of colors of neighbors of v. Pick color c from Q \ Q̃v uniformly at

random, and change color of v to c.

We will get back to this problem and the papers tacking it in Section
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1.2.1.

Shuffling

Let Sn be the set containing all the permutations of numbers 1, 2, . . . , n. A

Markov chain converging to the uniform distribution on Sn is a shuffling

chain. When n = 52 we can think of each number as a playing card. The

riffle shuffle which is the most common way for shuffling a deck of cards was

studied by Bayer and Diaconis in 1992 [81].

Example 6. (The Riffle Shuffle) Consider a deck of size n. Take M from

the distribution Binomial(n, 1/2), and split the deck into piles of size M and

n −M . Cards are dropped from one of the piles one at a time . When the

first pile has size a and the other one has size b, a card will drop from the

first pile with probability a/a + b and from the other one with probability

b/a+ b.

Bayer and Diaconis showed that after log n number of steps, the total

variation distance drops drastically. They call this phenomenon the cutoff

phenomenon: for n = 52, the cutoff happens after 7 steps.

Example 7. (The Top to Random Shuffle) In the top to random shuffle, the

top card of the deck is taken and put back uniformly in any position inside

the deck. It can be shown by a stopping time argument that a deck of n

cards needs n log n number of steps in expectation to become uniform. The

top to random shuffle and a generalization of it are explained in detail in
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Section 1.6.

Example 8. (The Adjacent Transposition Shuffle) In the adjacent transpo-

sition shuffle, we take two adjacent cards from the deck, and we swap their

position with some probability. Depending on whether or not the probabili-

ties are equal we can have a shuffling of cards or we can converge to distri-

bution very different from the uniform distribution. A complete discussion

about various versions of this chain is presented in Section 1.3.

We will discuss another method of shuffling in Section 1.5.
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1.2 Techniques

1.2.1 Coupling

Consider Markov chain M and run two copies of it X : X0, X1, . . . and Y :

Y0, Y1, . . . . We say (X, Y ) is a coupling if both of the marginal distributions

are faithful toM. Meanwhile, the coupling should be designed so that X and

Y are not running independently, and they will collide with high probability

at some tcoup. The time of collision is called the coupling time.

Theorem 3. Let (X, Y ) be a coupling of two copies of Markov chain M.

We define the coupling time to be tcoup such that Pr(Xtcoup 6= Ytcoup) ≤ ε. We

have, tε(M) ≤ tcoup.

Coupling two arbitrary copies of a Markov chain is usually a difficult

task. Thus, path coupling is often employed. In path coupling, instead

of coupling two copies of the Markov chain, we couple any arbitrary pair of

states in the sample space. The following theorem was proved by Bubley and

Dyer, and it appeared in [64].

Theorem 4. Let δ be an integer values metric with maximum value D on the

sample space Ω of a Markov chain M satisfying: for any x, y ∈ Ω: there is a

path x = z0, z1, z2, . . . zr−1, y = zr between x, y, and δ(x, y) =
∑r−1

i=0 δ(zi, zi+1).

(We can take δ to be the shortest path between two states in G(M).) Assume

that we have a coupling such that there is a β < 1 and for any pair of states

(x, y) ∈ Ω × Ω, after one step of coupling E(δ(x, y)) ≤ βδ(x, y). Then,
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tε(M) ≤ Dε−1

1−β .2

Coupling was introduced and applied to some mixing problems by Aldous

[92]. In this thesis we use it in Section 1.5 to show that the cube shuffling

is rapidly mixing. Some classical examples where coupling was the key tech-

nique to bound the mixing time are the following:

Recall the Gibbs sampler the for graph coloring problem (Problem 4.)

Jerrum [31] applied coupling to this chain and demonstrated that it is rapidly

mixing when q > 2∆, where q is the number of colors and ∆ is the maximum

degree in the graph. Later, Vigoda [32] found a path coupling solution and

showed the chain mixed rapidly when q > 11/6∆.

Another way of employing coupling is when Ω, the state space is ordered

by a partial order, and we have a coupling respecting this order. In that

case, we couple the maximal elements of Ω to the minimals. Having them

coupled, all the other pairs will also be sandwiched and coupled.

This way of coupling has appeared in a few places such as: Wilson’s paper

bounding mixing time of the uniform adjacent transposition chain [52] (also

explained in Section 1.3), and Randall and Winkler paper [36] to bound the

mixing time of points moving in the unit interval whose coordinates respect

an order (more details in Section 1.4.)

2There is a more complicated version of path coupling for which β ≤ 1 which we do
not state here.
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1.2.2 Conductance

Conductance is a quantity to measure the geometric structure of a Markov

chain; and it produces lower bounds and upper bounds of the mixing time

of a chain:

Theorem 5. (Conductance)[79]

For any Markov chain, define conductance Φ by:

Φ = min
S∈Ω

π(S)≤1/2

( ∑
s∈Ss′∈Sc

π(s)Pr(s, s′)

)
/π(S).

Then, for arbitrary ε > 0

(
1

Φ
− 1/2

)
log

(
1

2ε

)
≤ τε(M) ≤ 1

2Φ
log

(
1

πminε

)
. (1.2)

One famous application of conductance is its application by Dyer and

Frieze to the mixing problem on a Markov chain for sampling from convex

bodies. [33].

Conductance is often employed to find lower bounds for mixing time of

Markov chains. We use it for this purpose in Section 1.3. Lemma 10.

In addition we compare conductance of a chain to another chain for which

the mixing time in known to derive upper bounds for the mixing time of the

initial one. We use this technique in Section 1.3. Theorem 14 and Section

1.4. Theorem 19.
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1.2.3 Canonical Paths

The following theorem appeared in [64], and further explained in [60].

Theorem 6. Let M be a Markov chain with stationary distribution π and

E the set of the edges in its underlying graph. For any two states σ and τ in

the state space Ω we define a path γσ,τ . The congestion factor for any edge

e ∈ E is denoted by Φe and is defined by

Φe =
1

Q(e)

∑
x,y

e∈γx,y

π(x)π(y). (1.3)

We can bound the mixing time of M using the congestion factor:

tε(M) ≤ 8Φ2(lnπ−1
min + ln ε), (1.4)

Where Φ = maxe∈E φe, πmin = minx∈Ω π(x) and ε is the convergence factor.

The canonical path theorem has been used to solve some of the most

difficult mixing problems such as: sampling perfect matchings which is com-

putationally equivalent to approximating the permanent of a matrix ([56]).

We use this technique to prove Theorem 15 of Section 1.3.

1.2.4 The Comparison Method

The comparison method was introduced by Diaconis and Saloff-Coste [53]

and then Randall and Tetali extended it and employed it for analysis of

Gibbs samples [54].
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The comparison method is appealing when analyzing Markov chains that

make local moves at each step (for instance single site updates in Gibbs

samplers). In those cases, a variation of that chain is studied which has the

same sample space and stationary distribution, while making a set of moves

simultaneously. Then, the mixing times of the two chains are compared:

Theorem 7. (Comparison method [54])

LetM andM′ be two reversible Markov chains on state space Ω and with

stationary distribution π. Let P be the transition matrix of M and P ′ the

transition matrix of P ′. Consider the two underlining graphs of M and M′,

and let them be G(M) and G(M′) respectively. i.e. G(M) = 〈Ω, E(M)〉

where E(M) = {(σ, τ)|σ, τ in Ω and P (σ, τ) > 0}, for each e = (α, β) ∈

E(M), we define the capacity of e by C(e) = π(α)P (α, β). Similarly, we

define E(M′) , G(M′) and capacity for e ∈ E(M′).

For any edge (σ, τ) in G(M′), we find a path in G(M) from σ to τ . Let

this path be γσ,τ . For an arbitrary edge e ∈ E(M), let Γ(e) = {γσ,τ |γσ,τ

traverses through e} and πmin = minζ∈Ω{π(ζ)}. We define,

Ae =

∑
Γ(e) |γσ,τ |C((σ, τ))

C(e)
. (1.5)

We have,

tε(M) ≤ 4 log(1/επmin)

log(ε/2)
tε(M′) max

e∈E(M)
Ae. (1.6)
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1.2.5 The Decomposition Technique

The decomposition technique is an effective method, when the sample space

can be divided to smaller sets such that the restriction of the Markov chain

M to these smaller sets becomes easier to analyze. There are two variations

of the decomposition technique appearing in [82] and [77]. Here we state the

one which partitions the sample space to non intersecting subsets:

Theorem 8. (Decomposition Theorem) [77]

LetM be a Markov chain on state space Ω partitioned into Ω1,Ω2, . . . ,Ωk.

For each i, let Mi be the restriction of M to Ωi that rejects moves that go

outside of Ω. Let πi(A) = π(A∩Ωi)/π(Ωi) for A ⊆ Ω. We define the Markov

chain M̄ on state space {1, . . . k} as follows:

PrM̄(i, j) =
∑

x∈Ωi,y∈Ωj
πi(x)PrM(x, y)/π(Ωi), where PrM and PrM̄ are

transition probabilities of M and M̄ respectively.

Then,

t(M) ≤ 2t(M̄) max
i
{t(Mi)}. (1.7)

We use the decomposition technique in the proof of Theorem 14. Section

1.3, and the proof of Theorem 19. Section 1.4.

1.2.6 Summary

We conclude this section by presenting the following table which summarizes

our use of the aforementioned techniques together with some of the important

problems in the literature employing these techniques.
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H̊astad’s square shuffle [38] Coupling

The cube shuffle Section 1.5 Coupling

The interval chain of Randall and Winkler [36] (Section 1.4.) Coupling

The Gibbs sampler for k−colorings of a graph [31], [32] Coupling

Decomposition

Three constant ratio gladiators Section 1.3 Comparison

path congestion

Lower bound for gladiators Conductance

Linear extensions of a poset [75] Coupling

Linear extensions of a poset [74] Conductance

(Karzanov-Khachiyan Chain )

Approximating the permanent [56] Path congestion
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1.3 The gladiator Chain

Remember that for any arbitrary natural number n ∈ N, we define Sn

to be the set that contains all the permutations of numbers 1, 2, . . . n. A

natural Markov chain on Sn is the chain which picks a number 1 ≤ i ≤

n−1 uniformly at random and operating on σ ∈ Sn, puts σ(i+1) ahead of

σ(i) w.p. pσ(i),σ(i+1). We call this chain the adjacent transposition Markov

chain. This Markov chain has been studied widely for various choices of pi,j

[52, 51, 55, 23].

In this paper, we consider the total variation mixing time, which is defined

as the time it takes until the total variation distance between the distribution

of the current state and stationarity is less than ε (where ε is some fixed

convergence factor). For Markov chainM we denote this time by tε(M), or

if ε = 1/4, simply by t(M).

A special case of the adjacent transposition chain which we call the glad-

iator chain has been introduced by Jim Fill ([51]). Fill was interested in

probabilistic analysis of algorithms for self-organizing lists (SOLs). Self-

organizing lists are data structures that facilitate linear searching in a list of

records; the objective of a self-organizing list is to sort the records in non-

decreasing order of their access frequencies [68]. Since these frequencies are

not known in advance, an SOL algorithm aims to move a particular record

ahead in the list when access on that record is requested. There are two

widely used SOL algorithms: the move ahead one algorithm (MA1) and the
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move to front algorithm (MTF). In MA1, if the current state of the list is

(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn) and the ith record is requested for access,

it will go ahead in the list only one position and the list will be modified

to (x1, x2, . . . , xi, xi−1, xi+1, . . . , xn). In MTF it will go to the front and the

list will be modified to (xi, x1, x2, . . . , xi−1, xi+1, . . . , xn). It appears that

MA1 should perform better than MTF when the list is almost sorted and

worse when the low frequency records are standing in front; however, this

has not been analytically studied [69]. Considering the adjacent transposi-

tion Markov chain corresponding to MA1, Fill shows ([51]) that there are

cases in which the chain is not rapidly mixing. Hence, he poses the question

of sampling from the stationary distribution of MA1, and he introduces the

gladiator chain which has the same stationarity as MA1 and seems to be

rapidly mixing for arbitrary choice of parameters. He makes the following

conjecture for mixing time of the adjacent transposition chain in general:

Fill’s conjecture ([51]).3 If the adjacent transposition Markov chain

is monotone, then it is rapidly mixing. Monotonicity in this context means:

for all i, j satisfying 1 ≤ i < j ≤ n: pi,j ≥ 1/2, and pi,j−1 ≤ pi,j ≤ pi,j+1.

Here we provide a brief history of the results on the adjacent transposition

Markov chain. All of these chains are monotone and rapidly mixing. Wilson

and Benjamini’s papers [52, 55] led to Fill’s conjecture [51]; Bhakta et al.

[23] verified the conjecture in two cases.

3Fill considered the spectral gap (another measure of mixing) in his study. Here, we are
interested in total variation mixing time which, in this case, is within polynomial factor
of the spectral gap.
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1. The simple chain. In the case where pi,j = 1/2 for all i and j,

the chain will have a simple description: Given a permutation σ, pick two

adjacent elements uniformly at random, and flip a fair coin to decide whether

to swap them. We call this chain, whose stationary distribution is uniform,

the simple chain. Ironically, proving precise mixing results for this chain was

not simple. Many papers targeted this problem [50, 66] and finally Wilson

[52] showed the mixing time for this chain is Θ(n3 log n) (he proved lower

and upper bounds within constant factors).

2. The constant-bias chain. After Wilson’s paper, Benjamini et al.

[55] studied the case where pi,j = p > 1/2 for all i and j, and pj,i = 1−p.

Benjamini et al. [55], reduced this problem to the problem of mixing time of

an asymmetric simple exclusion process (ASEP) and showed that this ASEP,

and consequently the constant-bias chain, mixes in Θ(n2) steps. We will talk

more about the exclusion process chain later on in this introduction.

3. “Choose your weapon” and “league hierarchy” chains. The

following two special cases were studied by Bhakta et al. [23]: the choose

your weapon chain where pi,j is only dependent on i, and the league hierarchy

chain given by a binary tree T with n leaves. Each interior node v of T is

labeled with some probability 1/2 ≤ qv ≤ 1, and the leaves are labeled by

numbers 1 . . . n. The probability of putting j ahead of i for j > i is equal to

pi,j = qj∧i where j ∧ i is the node that is the lowest common ancestor of i

and j in T .

As we mentioned before, one interesting instance of the adjacent trans-
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position chain which is monotone is the gladiator chain. Here we study a

special case of the gladiator chain where gladiators fall into a few classes

according to their strengths. (Definition 7).

The gladiator chain. In this chain each element i can be thought of as

a gladiator with strength s(i). Every permutation of numbers 1, 2, . . . n can

be thought of as a ranking of gladiators. In each step of Markov chains we

choose 1 ≤ k < n uniformly at random, i.e., we choose adjacent gladiators

σ(k) = i and σ(k + 1) = j. These gladiators will fight over their position

in ranking. With probability pj,i = s(i)/(s(i) + s(j)), gladiator i will be the

winner of the game and will be put i ahead of j in σ if it isn’t already. With

probability 1−p, j is put ahead of i.

Corollary 9. The gladiator chain is rapidly mixing if Fill’s conjecture holds.

Particles and the exclusion process. Let G = 〈V,E〉 be a graph and

consider m < |V | particles on the vertices of G. At each step of the Markov

chain we pick a vertex v uniformly at random with probability 1/|V | and one

of its adjacent vertices, w with probability 1/d(v). If there is a particle in

one of them and not the other one, we swap the position of the particle with

probability p.

If p is constant for any choice of v and w, the chain is called the exclusion

process. The exclusion process is a well known Markov chain, and because

of its applications in statistical physics it has been studied widely ([63, 65]).

In fact, a special case of this chain where G is a finite line was studied by

Benjamini et al. [55] as mentioned before.
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Here, we consider the case where G = 〈V,E〉 is a finite line and we

have |V | particles of different types on the vertices of G and they swap their

positions with probabilities dependent on their types (Definition 8). We call

this Markov chain a linear particle system. To any adjacent transposition

Markov chain, we can associate a linear particle system. We will explain this

association in Section 1.3.2 and prove that the mixing time for an adjacent

transposition chain is only polynomially larger than the mixing time of the

corresponding linear particle system.

The simplest interesting case of the linear particle system whose mixing

time is not well understood is the one with 3 particle types, where exchange

probabilities depend only on the types. We will give a formal definition of the

particle system in Section 1.3.1 and prove it is rapidly mixing under certain

conditions.

Definitions and results are presented in Section 1.3.1. Section 1.3.2 con-

tains the correspondence between the gladiator chain and the linear particle

system. Section 1.3.3 contains the main proofs.

1.3.1 Definitions and Results

Definition 7. Gladiator chain. (Playing in teams) Consider the Markov

chain on state space Sn that has the following properties: The set [n] (i.e.

gladiators) can be partitioned into subsets: T1, T2, . . . , Tk (k teams). We
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have the following strength function: s : [n] → R, s(g) = sj iff g ∈ Tj. At

each step of Markov chain, we choose i ∈ [n−1] uniformly at random. Given

that we are at state σ, and σ(i) = g, σ(i+1) = g′, we put g ahead of g′ with

probability s(g)
s(g)+s(g′) .

This is a reversible Markov chain and the stationary distribution π is

π(σ) =
n∏
i=1

s(i)σ(i)/Z. (1.8)

(Z is a normalizing factor.)

Definition 8. The linear particle system. Assume we have k types

of particles and of each type i, we have ni indistinguishable copies. Let

n =
∑k

i=1 ni. Let Ω be the state space containing all the different linear

arrangements of these n particles. If the current state of the Markov chain

is σ, choose i ∈ [1, n − 1] uniformly at random. Let σ(i) be of type t and

σ(i + 1) be of type t′. If t = t′ do nothing. Otherwise, put σ(i) ahead of

σ(i+ 1) w.p. pt,t′ and put σ(i+ 1) ahead of σ(i) w.p. 1− pt,t′ .

This chain is also a reversible Markov chain.

Proposition 1. By regarding gladiators of equal strength as indistinguishable

particles, any gladiator becomes a linear particle system.

Lemma 10. There is an example of the particle system with 3 types of par-

ticles and non-monotone swapping probabilities that does not mix fast.
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Definition 9. Consider the gladiator chain. We denote the following special

case by Gq(a, b, c).

• The set of gladiators, can be partitioned to 3 nonintersecting teams:

Arbelas (team A of a gladiators), Bestiarius (team B of b gladiators),

Cestus (team C of c gladiators). Cestus are the strongest gladiators

and Arbelas are weakest. 4

• Gladiators of Arbelas have strength sA. Gladiators of Bestiarius have

strength sB. Gladiators of Cestus have strength sC . Furthermore, we

have sA/sB = sB/sC = q where 0 ≤ q ≤ 1 is a constant.

The steps of Gq(a, b, c) are as defined in Definition 7.

Definition 10. (The constant-ratio three particle system)

Consider the particle system chain. We denote the following special case

by EX q(a, b, c).

• Particles are in 3 types; type A, type B and type C. We have a in-

distinguishable copies of particle A, b of particle B, and c of particle

C.

• pA,B = 1 − pB,A = 1/(1 + 1/q), pB,C = 1 − pC,B = 1/(1 + 1/q) and

pA,C = 1− pC,A = 1/(1 + 1/q2). For some constant 0 ≤ q ≤ 1.

The steps of EX q(a, b, c) are as defined in Definition 8.

4Arbelas, Bestiarius and Cestus were three of the many types of gladiators in the
Roman Empire.
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Theorem 11. EX q(a, b, c) is rapidly mixing for any choice of a, b, c and

0 ≤ q ≤ 1/2.

We will prove Theorem 11 in Section 1.3.3.

Theorem 12. Gq(a, b, c) is rapidly mixing for any choice of a, b, c and 0 ≤

q ≤ 1/2.

Proof. This is a consequence of Theorem 11 and of Theorem 14, which is

stated and proved in the next section.

Corollary 13. (Generalization of league hierarchies)

Let T be tree with n leaves. Each interior nodes v is labeled with some

probability 2/3 ≤ qv ≤ 1 and the leaves are labeled by numbers 1 . . . n. The

probability of putting j ahead of i for j > i is equal to pi,j = qj∧i where j ∧ i

is the node that is the lowest common ancestor of i and j in T .

It is shown in [23] that in the case where T is a binary tree, this mixing

problem can be reduced to the simple exclusion process chain. Employing

Benjamini’s result ([55]), they prove rapid mixing for the binary tree league

hierarchies. Theorem 11 can be used to extend the results in [23] to ternary

trees.

1.3.2 Gladiators and Particles

Consider the gladiator chain M (Definition 7). At each step of the chain,

one of two things is happening:
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1. Whisking: gladiators of the same team are fighting.

2. Sifting: gladiators of different teams are fighting.

If we were restricted to whisking steps the chain would be equivalent to the

simple chain studied by Wilson. If we were restricted to sifting steps the chain

would be the linear particle system chain. In order to study the mixing time

of the gladiator chain we analyze sifting and wishing steps separately and

then we employ the following decomposition theorem ( Section 1.2. Theorem.

8.

Theorem 14. Let τ and τ ′ be respectively the mixing time for a linear particle

system and its corresponding gladiator chain. Then

τ ′ ≤ O(n2)τ. (1.9)

We use conductance (Section 1.2. Theorem 5) to prove Theorem 14.

Proof. Let G be a gladiator chain and M its corresponding particle system

with Ki copies of particle i and k different particles. Take σ1 ∈ SK1 , σ2 ∈

SK2 , . . . , σk ∈ SKk and let Sσ1,σ2,...,σk ⊆ Sn be the set of all permutations in Sn

in which all the gladiators corresponding to particle i preserve the ordering

associated to them by σi. Restriction of G to Sσ1,σ2,...,σk is equivalent to M.

Considering all the choices of σ1 ∈ SK1 , σ2 ∈ SK2 , . . . , σk ∈ SKk , Sn will be

partitioned into Πk
i=1Ki! copies of M.
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Sifting: Let Ḡ be defined as in Theorem 8; we will show that Ḡ is rapidly

mixing and applying Theorem 8. We show that the conductance of Ḡ is

only polynomially smaller than conductance of the simple chain, which is

known to mix in n3 log n steps ([52]). For this purpose, it suffices to prove

the following claim:

Claim. Let σ1, σ2, . . . , σk be arbitrary, and let Si,k ⊆ Sσ1,σ2,...,σk be the set

of all arrangements in Sσ1,σ2,...,σk such that the ith and i+1th copy of particle k

are adjacent and S̄i,k = Sσ1,σ2,...,σk\Si,k. We have πσ1,σ2,...,σk(Si,k) ≥ 1/(n2+1),

πσ1,σ2,...,σk being the stationary distribution of G restricted to Sσ1,σ2,...,σk , i.e.,

the stationary distribution of M.

Proof of claim. To each σ ∈ S̄i,p, we correspond τ ∈ Si,p such that

π(σ) ≥ π(τ). Consider τ1 and τ2 as follows: Let τ1 be the arrangement that

we get by taking the ith copy of particle p down until it is adjacent to the

i + 1st copy and τ2 the arrangement that we get by taking the i + 1st copy

of particle p up until it is adjacent to the ith copy. By the detailed balance

equation5, we have π(τ1)/π(σ) = π(σ)/π(τ2). Hence one of τ1 or τ2 will have

a larger density of π than σ.

The mapping that we just described sends at most n2 elements of S̄i,k to

Si,k. Therefore, π(Si,k) ≥ 1/(n2 + 1).

�

5Detailed balance equation: π(x)px,y = π(y)py,x
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1.3.3 The Constant-Ratio Three Particle System

In this section, we prove Theorem 11 and Lemma 10. We use the path

congestion method and comparison method to prove upper bounds, and con-

ductance to prove lower bounds. Before we proceed to our proof we introduce

some terminology.

For arbitrary nonnegative natural numbers a, b, c satisfying a+ b+ c = n,

let Ωa,b,c be the set containing all different arrangements of a copies of particle

A, b of particle B and c of particle C. Then |Ωa,b,c| =
(

n
a,b,c

)
≤
(

n
n
3
,n
3
,n
3

)
. We

denote the strength of particle A by sA, the strength of particle B by sB,

and the strength of particle C by sC . Consider an arbitrary arrangement

σ ∈ Ωa,b,c. By σ(i) ∈ A, we mean a particle of type A is presented at index

i of the arrangement σ. The probability of σ in stationarity is

π(σ) = w(σ)/Za,b,c , (1.10)

where w(σ) is the weight of σ and is equal to Πn
i=1s

i
σ(i), and for arbitrary

nonnegative natural numbers a, b, c Za,b,c is called the partition function and

it is equal to

Za,b,c =
∑

σ∈Ωa,b,c

w(σ). (1.11)

For convenience we denote Πn
i=1s

j+i
σ(i) by wj(σ) and similarly

∑
σ∈Ωx,y,z

wi(σ)

by Z ia,b,c.

For any two arrangements σ, τ ∈ Ωa,b,c, we denote the ratio of their
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weights by qτ (σ) := w(σ)/w(τ) = π(σ)/π(τ). In the case that we are in-

terested in, sA/sB = sB/sC = q < 1; hence qτ (σ) is always some power of

q. Given an arrangement σ, we define Q(σ) :=
∑

τ∈Ωa,b,c
qσ(τ). If we restrict

this summation to those choices of τ where all copies of particle of type X

are fixed, we denote it by QX̄(σ).

We write arrangements of particles either from left to right (meaning σ(1)

stands leftmost and σ(n) stands rightmost) or from down to top (meaning

σ(1) is the lowest and σ(n) the highest). When we compare particles, by a

lower particle we mean lower index in arrangement; by a weaker particle we

mean lower in strength.

In an arrangement σ ∈ Ωa,b,c, we specify the ith copy of particle of type

A by Ai and σ(i) = Ak means at position i of arrangement σ we have the

kth copy of type A particles. We denote the position of the ith copy of type

A particles by Ai(σ). Similar definitions for particles of type B and C holds.

The position of the highest copy of particle A below position i is denoted

by, A↓i(σ). i.e. A↓i(σ) = max{k|k < i and σ(k) = A}. Likewise, we define

A↑i(σ). i.e. A↑i(σ) = min{k|k > i and σ(k) = A}. Similar definitions for

particles of type B and C holds.

The sub-arrangement σ[i, j] of an arrangement σ is the restriction of σ

to the closed interval [i, j]; note that σ[i, j] /∈ Ωa,b,c. We use σ(i, n) to denote

σ[i, i+ n− 1], so |σ(i, n)| = n. We denote by σ−A[i, j] the result of removing

from σ[i, j] all copies of particle A and adjusting indices accordingly. Hence,

σ[i, j] ∈ Ωa,b,c ⇒ σ−A[i, j] ∈ Ω0,b,c, σ−B[i, j] ∈ Ωa,0,c, σ−C [i, j] ∈ Ωa,b,0, and
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σ−A(i, n) is equal to σ−A[i, e] for some e such that |σ−A[i, e]| = n. Similar

definitions for particles of type B and C holds.

The concatenation of two arrangements σ and τ is denoted by σ|τ .

Example 9. Let σ := AABBCABCAABACCB ∈ Ω6,5,4, σ(11) = B4,

also σ(11) = B, B4(σ) = 11, B↑4(σ) = 7, B↓4(σ) = 3, σ[4, 8] = BCABC,

σ(4, 6) = BCABCAAB. σ−A[4, 8] = BCBC, σ−A(4, 6) = BCBCBC.

We want to employ the comparison technique (Section 1.2, Theorem 7),

to show rapidly mixing of EX (a, b, c). Hence, we study an easier variation of

EX (a, b, c) and we denote it by EX t(a, b, c).

Definition 11. Let EX t(a, b, c) be a Markov chain on state space Ωa,b,c and

n = a + b + c. If the current state is σ we choose natural numbers 1 ≤ i <

j ≤ n− 1 uniformly at random and swap them following these rules:

1. If σ(i) = σ(j), do nothing.

2. If σ(i) = A and in σ(j) = C or vise versa and σ(i+1) = · · · = σ(j−1) =

1. Then, put them in increasing order w.p. q2(j−i)/(1 + q2(j−i)). With

probability 1/(1 + q2(j−i)), do nothing.

3. If σ(i) = σ(i+1) = · · · = σ(j−1) = B and σ(j) = C or A or If σ(j) =

σ(j−1) = · · · = σ(i+1) = B and σ(i) = C or A. Then, put them in

increasing order w.p. 1/(1 + qj−i). With probability qj−i/(1 + qj−i), do

nothing.
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The following picture depicts moves number 2 and 3. Later in this text

we will refer to these moves by their numbers:

move 2:

C A

B B

B B

. ↔ .

. .

. .

B B

A C

move 3:

B A

B B

B B

. ↔ .

. .

. .

B B

A B

B C

B B

B B

. ↔ .

. .

. .

B B

C B

It can be easily checked that EX t is reversible and its stationary distri-

bution is the π in Equation 1.10.

Theorem 15. EX t(a, b, c) is rapidly mixing.

We use the path congestion method (Also known as canonical paths

method) in our proof. The method is one of the broad approaches usu-

ally used to solve mixing problems ([58, 57]). It was first introduced and

employed by Jerrum and Sinclair to show the mixing time of a Markov chain

which approximates the permanent of a matrix [56] (See Section 1.2).

Proof. For any two arbitrary states σ, τ ∈ Ω, we introduce a path γσ,τ . Then,

we employ the canonical paths method (Section 1.2. Theorem 6) to show that

EX t is rapidly mixing.
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Consider arbitrary σ, τ ∈ Ωa,b,c. Let n = a+b+c, we choose the following

path from σ to τ :

Starting from σ, repeat the following steps until τ is reached.

Initially, let i, j = 1.

1. Let k = Bj(τ). We define the j th block of σ and τ to be the substring

starting from i and ending in k. Note that in τ , each blocks starts right

after a B and ends with a B. In the jth iteration, the goal is to change

σ[i, k] until σ[1, k] = τ [1, k], i.e. the first j blocks equal in σ and τ .

2. Using move 2, and starting from the lowest index i, we bring particles

C or A down until the k − i A and C particles have the same order in

σ and τ .

3. We use move 3 and bring the jth B in σ to Bj(τ). In this process, we

may need to bring several copies of particle B out of the jth block in

σ. In that case, we choose a random ordering of Bs and move them

with respect to that order. (Details explained in the proof.)

4. Let i = Bj(τ) + 1.

5. j++.

We claim that using these paths the congestion factor for every edge in

EX t is polynomial.
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1st iteration: 2nd iteration:

C C C C C C
σ : A A A A A A

B B B B B B
C C C C C C
A move 2 A move 2 A move 2 A move 3 A move 3 B
C −→ C −→ A −→ A −→ B −→ A
B Step 1 B Step 1 B Step 1 B Step 2 A Step 2 A
C A C C C C
A C C C C C

3rd iteration:
C A
A τ : C
C C
B B

move 3 B move 2 B
−→ A −→ A

Step 2 A Step 1 A
C C
C C

Figure 1.1: Going from σ to τ using moves 2 and 3.
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There are two types of edges: those that make move 2 and those that

make move 3. We show that neither of these edges are congested by a factor

of more than a polynomial function of n.

Consider an edge that makes move 2. Let this edge be connecting two

states α and β where α and β only differ in a transposition of type move 2.

Assume the swapping C and A are the lth C and mth A and Cl(α) < Am(α).

Let’s say e = (α, β) is on the path connecting σ to τ . i.e. (α, β) ∈ γσ,τ .

It follows from the way we set the paths that, for some j, Am(α) ≤ j <

A↑Amα(α), Am(σ) = j and for some i, A↓Am(β)(β) < i ≤ Am(β), Am(τ) = i.

We have, α[1, i−1] = τ [1, i−1] and α[j+1, n] = σ[j+1, n]. Let’s say the

number of Bs in σ[0, i] is o i.e. σ[0, i] ∈ Ωm,o,l. There are no As in α[i, j],

hence we assume it is in Ω0,x,y.

We will try to find an upper bound for the congestion factor of the edge

e = (α, β). Let g = Am(α)− Cl(α).

Φe =
(
1 + q2(g)

) ∑
σ;

α[j+1,n]=σ[j+1,n]

π(σ)

π(α)

∑
τ ;

α[1,i−1]=τ [1,i−1]

π(τ)

π(α)

 π(α). (1.12)

To make the analysis easier we divide each arrangement to 3 segments;

the first segment [1, i], the second [i, j] and the third [j, n]. Let Mt(α) be an

arrangement that you get from replacing the lowest t particles of typeC with

particles of type A in α[i, j].
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Note that,

π(σ)

π(α)
=
w(σ[1, i])wi(σ[i, j])wj(σ[j, n])

w(α[1, i])wi(α[i, j])wj(α[i, j])
=
w(σ[1, i])wi(σ[i, j])

w(α[1, i])wi(α[i, j])
(1.13)

Let St be the set of all σs of the above form for which we have t 0s in

σ[i, j] and therefore m + t 2s and l−t 0s in σ[1, i] and remember that the

positions of 1s in σ[i, j] and α[i, j] are the same. We have,

∑
σ∈St

w(σ[1, i])

w(α[1, i])
=
Zm+t,o,l−t

w(α[1, i])
. (1.14)

And, ∑
σ∈St

w(σ[i, j])

w(α[i, j])
=
wi(Mt)Q

i
1̄(Mt(α))

w(α[i, j])
. (1.15)

In addition,

∑
τ ;

α[1,i−1]=τ [1,i−1]

π(τ)

π(α)
=
Z ia−m,b−o,c−l
wi(α[i, n])

(1.16)

Putting all of these together, Φe will be equal to:

(
1+q2g

)( w(α)

w(α[1, j])wi(α[i, n])

)(Z ia−m,b−o,c−l
Za,b,c

)∑
t

Zm+t,o,l−tw
i(Mt)Q

i
1̄(Mt).

(1.17)

Note that 1+q2g ≤ 2 , w(α)
w(α[1,j])w(α[i,n])i

= 1
w(α[i,j])i

, α[i, j] = M0(α) and
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C
B
C
C
B
B
B : #As in �[i, j] = 0
.
B
C
B
B
C
B

#As in �[i, j] =?
A
B
C
A
B
B
B : #As in �[i, j] = 3
.
B C
C B
B C
B A
A M3(↵) : B
B B

B
.
B
A
B
B
A
A

� ↵ � ⌧
. . . .
. . . .

Am(⌧) = j A C C .
. B B .
. " C C .
. C, B C C .
. # B B .
. mth A A C
B B B
. . . .
B B B
C lth C C A .
B B B .
. " B B .
. C, B C C .
. # B B A Am(⌧) = i
. . . .
. . . .
. . . .

Q
Q

Q
Qk

⌘
⌘

⌘
⌘+ �

�
�

�
�
�

�
�

�
� 

Figure 1.2: The congestion factor of move 2 in polynomial.

Za,b,c < Z ia−m,b−o,c−lZm,o,l. Hence, if we only restrict the summation over all

t to the case where t = 0 we can see that Equation 2.36 is clearly less than

or equal to 2. We show in a lemma that if we take the sum over all values of

t, Equation 2.36 only goes up at most to a polynomial.
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Lemma 16. For any arbitrary t,

w(Mt)Q1̄(Mt) ≤ qt(t+1)−2tw(α[i, j]). (1.18)

and

Zm+t,o,l−t ≤ nq−otZm,o,l. (1.19)

Proof of Lemma 16. Using the following observations will give us the

proof: We define Mx,y,z := 0x1y2z. Clearly, Mx,y,z has the maximum proba-

bility in Ωx,y,,z and Zx,y,z ' w(Mx,y,x)Q(Mx,y,z). For notation simplicity we

use Q(Mx,y,z) and Qx,y,z, and also qMx,y,z(σ) and q(σ) interchangeably.

Let
(
x+y
y

)
q

be the q-binomial which is the generating function of number of

integer partitions that fit into a rectangle of width x and length y. Note that

Qx,y,0 = Q0,y,x =
(
x+y
y

)
q

(See Figure 1.3.3). We also have Qx,0,y =
(
x+y
y

)
q2

.

The following equations involving q-binomials are shown in appendix:

q2 < q ⇒
(
x+ y

y

)
q2

<

(
x+ y

y

)
q

. (1.20)

q < 1/2⇒
(
x+ y

y

)
q

=

(
x+ y

x

)
q

< 2x ≤ q−x. (1.21)

Note that Q1̄(Mt) ≤
(
y
t

)
q2 ≤ q−2t and w(Mt)/w(α[i, j]) ≤ qt(t+1). Hence,

we have Equation 2.6.

To prove Equation 2.5 we show that Qx,y,z+t ≤ nQx,y,z where n = x+y+z.

Let σCt be the concatenation of t copies of C to left of σ and let σ ↑ be

an arrangement that you get from bringing Cz(σ) up to the nth position.
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Hence for σ = CBBCAAB, and t = 3, σCt = CBBCAABCCC and σ ↑=

CBBAABC.

Qx,y,z+t =
∑
i

∑
σ∈Ωx,y,z ;
Cz(σ)=i+1

q(σ[1, i])Q(σ[i+ 1, n]Ct) ≤
∑
i

∑
σ∈Ωx,y,z ;
Cz(σ)=i+1

q(σ)

(
i+ t

i

)
q

=
∑
i

∑
σ∈Ωx,y,z ;
Cz(σ)=i+1

qiq(σ ↑)
(
i+ t

i

)
q

≤ n
∑
i

∑
σ∈Ωx,y,z ;
Cz(σ)=n

q(σ) ≤ n Qx,y,z.

Clearly, Qx−t,y,z+t ≤ Qx,y,z+t, and Qx−t,y,z+t ≤ Qx,y,z+t ≤ n Qx,y,z.

Hence,

Zm−t,o,l+t = w(Mm−t,o,l+t)Q(Mm−t,o,l+t)

≤ n w(Mm−t,o,l+t)Q(Mm,o,l)

≤ n
w(Mm−t,o,l+t)
w(Mm,o,l)

w(Mm,o,l)Q(Mm,o,l)

≤ n q−otZm,o,l.

�

We can now get back to Equation 2.36 and bound Φe.
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Φe =
(
1 + q2g

)(Z ia−m,b−o,c−l
Za,b,c

)∑
t

Zm+t,o,l−t(
w(Mt)

w(α[i, j])
Q1̄(Mt))

i (1.22)

≤
(
1 + q2g

)(Z ia−m,b−o,c−l
Za,b,c

Zm,o,l

)∑
t

n(q2it+it(t+1)−(2t+ot)). (1.23)

We know 2i+ it+ 1 > 2 + o. Hence, Φe ≤ 2n2.

Note. If Cl(α) > Am(α), we can similarly show that the congestion

factor is less than 2n2.
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9 = 4 + 4 + 1 :

τ1 :
C
B
C
C
C
B
B

9 = 4 + 3 + 1 :

τ2 :
C
C
B
C
B
C
B

9 = 3 + 3 + 3 :

τ3 :
C
C
C
B
B
B
C

Figure 1.3: Correspondence of partition functions with q-binomials: There
are three integer partitions of 9 that fit into a 3×4 rectangle, and there are
two arrangements of gladiators in Ω0,3,4 with q(τ1) = q(τ2) = q(τ3) = q9. i.e.
the coefficient for q9 in Q0,3,4 equals 3.
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So far, we showed that any move 2 edge is only congested by a factor

of a polynomial function of n. Consider an edge corresponding to move 3,

namely e. We denote this edge by e = (α, β) where α and β are the same

except from a B and A between which we have all Bs are swapped (Or a B

and C between which we have all Bs).

Consider a state σ that used e to get to τ , and let’s say we traversed e

while fixing block [i, j], and we had As and Cs in the block fixed and bringing

the kth B to its position in τ .

Before we proceed to the proof there is a subtlety about using move 3

that needs to be explained. If Ak has to go down to reach its position in τ

or if there is only one copy of it in the block there is no complication. Let’s

assume we have t copies of particle B in σ[i, j]. All of the t copies of B

should move up and stand out of block σ[i, j] to reach their position in τ . In

order to accomplish this, we choose a subset of S ⊆ {1k, . . . 1t+k} uniformly

at random and we move the elements of S in decreasing order of their index

out of the block.

Assume, when going from σ to τ we used e = (α, β) and in α[i, j] we

have t copies of B; Bk, . . . Bk+t and the transposition that we are making

swaps the Bk+l, Bk+l+1, . . . Bk+d with the next A. We have, τ [1, i] = α[1, i],

σ[j + t, n] = α[j + t, n], α−1[i, j + t] = τ(i, j) (See Figure 1.4) and Bk+i(α) <

Bl+k(α) =⇒ Bk+i(α) = Bk+i(σ). There is some information about S that

can be determined by examining α and β: Bk+d+1, . . . Bk+t /∈ S but S can

contain any of Bk, . . . Bk+l. Hence, among the random paths connecting σ
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�0 � ↵ � ⌧ 0 ⌧
. . . . . . "
. . . . . . |
. A A A A ? |

�0[j, n] = ↵[j, n] C C C C ? |
. A A A B ? |
. B B B B ? |
. C C C B ? |
. B B B B ? |
. C B B B B j |
. 2 S B C C C C |

�0[i, j] = �[i, j] C C C A A |
. C C C C C |
. /2 S B B B C C |
. C C C C C |
. A A A C C |
. A A A C C ⇣[i + 1, n] = ⌧ [i + 1, n]
. C C C C C |
. A A B B B |
. C B B A A |
. B B B A A |
. A B A C C Bl+k |
. B C C A A |
. A A A C C |
. C A A A A |
. B C C A A |
. A A A C C |
. B B B A A |
. C C C C C i #
. B B B B B
. " ? C C C C

�0[1, i] = ↵[1, i] | ? C C C C
. | ? B B B B
. | . . . . .
. ⇣[1, i] = �[1, i] . . . . .
. # . . . . .

Figure 1.4: The congestion factor for move 3 is polynomial. τ ′ is the arrange-
ment that we get when all Bs are out of block [i, j].
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to τ , there are 2l subsets that use e and hence the congestion they place on

e is π(τ)π(σ)/2t−l.

To bound Φe for each e we introduce correspondence Fe : Ωa,b,c×Ωa,b,c →

Ωa,b,c which satisfies,

∀ζ ∈ Fe(Ωa,b,c);

∑
σ,τ ;

F−1
e (ζ)=(σ,τ)

π(σ)π(τ)

π(α)
≤ 2t−lπ(ζ); (1.24)

where c is the number of Cs in α[i, j] and Fe(σ, τ) 6= NULL ⇐⇒ e =

(α, β) ∈ γσ,τ .

Let σ and τ be two ends of a path that traverses e, we define Fe to be

the following:

Fe(σ, τ) := ζ; ζ[i, n] := τ [i, n], ζ[1, i] := σ[1, i].

Let σ and τ be two ends of e and ζ = Fe(σ, τ).

π(σ)π(τ)

π(α)
=
π(σ)

π(α)

π(τ)

π(α)
π(α) = qα(σ)qα(τ)π(α). (1.25)

π(ζ)

π(α)
=
π(ζ[1, i])

π(α[1, i])

π(ζ[i, j])

π(α[i, j])

π(ζ[j, n])

π(α[j, n])
. (1.26)

=
π(σ[1, i])

π(α[1, i])

π(τ [i, j])

π(α[i, j])

π(τ [j, n])

π(α[j, n])
= qσ′(σ)

π(σ)

π(α)

π(τ)

π(α)
qσ′(σ)qα(σ)qα(τ).

Where σ′ is the following arrangement: σ′[1, i] := α[1, i], σ′[i, j] = σ[i, j], and
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σ′[j, n] = α[j, n], we have π(σ′)/π(α) = π(σ[i, j])/π(α[i, j]). Hence,

∑
σ,τ ;F(σ,τ)=ζ

π(σ)π(τ)

π(α)
=

∑
σ,τ

F(σ,τ)=ζ

qα(σ)qα(τ)π(α) =
∑
σ,τ

F(σ,τ)=ζ

qσ′(σ)π(ζ). (1.27)

Since we have t−l Bs with undecided position between j−i other elements

we have,
∑
qσ(σ′) ≤

(
j−i+t−l
t−l

)
q
. Using Equations 1.20 and 1.21, we have∑

qσ(σ′) ≤ 2t−l. Hence, we have Equation 1.24.

Φe=(α,β) = (1 + qg)
∑
σ,τ

e∈γσ,τ

π(σ)π(τ)

π(α)2t−l
≤ 1. (1.28)

We showed the for any arbitrary edge e, Φe ≤ max{n2, 1}. We also have

πmin ≤ (qn(n+1)/| Ωa,b,c|). Now we apply Theorem 6 and we will have,

tε(EX t) ≤ 8n4(n3 + ln(ε−1)). (1.29)

t(EX t) ≤ 8n7. (1.30)

To show that the exclusion process chain is rapidly mixing we compare

it to EX t.

1.3.4 Proof of Theorem 11.

We compare EX t and EX , using Theorem 7 and knowing EX t is rapidly

mixing will make the proof complete.
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Proof. Consider an edge e = (σ, τ) that makes move 2 in EX t. Assume e

is swapping σ(i) = A and σ(i + 1 + d) = C and σ[i + 1, i + d] = Bd. We

indicate a swap of elements σ(i) and σ(i+1) in EX by ti or ti(p, p
′) if we are

swapping particles p and p′ and σ(i) = p, σ(i+1) = p′.

Let γσ,τ := ti(A,B), . . . ti+d−1(A,B), ti+d(A,C), ti+d−1(B,C), . . . ti(B,C). Con-

sider an arbitrary e = (α, β) that is making swap ti(A,B) and α[i−t, i−1] =

1t. If e ∈ γσ,τ then, ∃j ∈ [1, t];∀k 6= i, i− j σ(k) = α(k);σ(i− j) = A, σ(i) =

B. And τ will be the state that you reach by swapping σ(i−j) = A and

σ(i+1+d) = C. Let e′ be the edge in EX t that connects σ to τ . We have,

C(e′) = π(σ)/(1 + 1/q2(d+j)) and π(σ) = π(α)1/qj.

Ae =

∑
Γ(e) |γσ,τ |C(e′)
C(e)

=
t∑

j=1

|γσ,τ |1/qj(1 + 1/q)

1 + 1/q2(d+j)
≤ 2(d+t)

t∑
j=1

1/qj(1 + 1/q)

1/q2(d+j)

(1.31)

Ae ≤ 2(d+t)(1 + 1/q)q2d

t∑
j=1

qj =
2(d+t)(1 + 1/q)q2d(1− qt+1)

1− q
(1.32)

Hence, Ae ≤ 2(d + t) ≤ n, where n is the length of the arrangements or

total number of particles.

Similarly, we can show that ∀e ∈ EX ,Ae ≤ n. πmin ≤ (qn(n+1)/23/2n).

Hence using Theorem 7, Theorem 15 and Theorem 6 we have,
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t(EX ) ≤ n(2n3)t(EX t) ≤ 16n11. (1.33)

1.3.5 Proof of Lemma 10

Proof. Let M be a particle system of types A,B,C, each type having m

copies, pA,B = pB,C = 1
1+q

> 1/2, i.e. q < 1 and pA,C = 1/2 (The values for

m and q will be set later.) We show that the conductance of this chain in

small, employing Theorem 5 we conclude

t(M) ≥
(

1

4Φ
− 1/2

)
≥ O(q−2m)

Let P be the transition matrix of M. Consider the set S ⊆ Ω to be the

set of all arrangements where all the Cs are above As. The conductance of

S is denoted by Φ(S) which is an upper bound for the conductance of the

chain if π(S) ≤ 1/2.

Let ρ(S) = {x ∈ S|∃y ∈ Ω \ S;P (x, y) > 0}. To each σ ∈ ρ(S), we

assign σ′ ∈ S \ ρ(S) by taking either the topmost A (or the lowermost C

in σ) and taking it down (or top) below (or above) the next m/2 ones; σ′

will be satisfying π(σ′) = qm/2π(σ). For a particular choice of σ′ there are at

most 2m arrangements which are assigned to it. Hence Φ(S) ≤ qm/2/2m. It

remains to show π(S) ≤ 1/2.

Since swapping a A and C does not change π we have the following
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equation in which k shows the position in which we can have the lowest C

or topmost A:

π(S) ≤ ∑m
k=1

(m+k
k )

q
(2m−k
m−k )

q

(2m
m )

2

q

≤ m
(m+m/2

k )
2

q

(2m
m )

2

q

≤ m
(

(1−qm/2)
(1−q2m)

)2m

≤ m

((1+qm/2)(1+qm))
2m

Hence for having π(S) ≤ 1/2 it suffices to set q >
(
(2m)1/2m − 1

)1/m
.

Note that since lim(2m)1/2m = 1, for any m > 2, there is a constant value

for q < 1 satisfying q >
(
(2m)1/2m − 1

)1/m
.
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1.4 The Interval Chain

Recall that a partially ordered set or a poset on {1, 2, . . . n} is a reflexive,

transitive, and antisymmetric relation on {1, 2, . . . n}. The spectacular va-

riety of the applications of partially tordered sets in other fields of science

together with the beauty of related combinatorial problems have been in-

triguing many mathematicians, computer scientists, biologists, and recently

micro economists [75, 73, 84].

Notation. Like other sections of this thesis, we denote a partially ordered

set by P and by i ≤P j we mean (i, j) ∈ P . If i �P j nor j �P i, we say i

and j are not comparable in P , and we denote it by i ‖P j. Recall that for

a poset P on {1, 2, . . . n}, the set L(P) is the subset of all linear orders l of

numbers {1, 2, . . . , n} in which i ≤P j =⇒ i ≤l j. The set L(P) is known

as the set of linear extensions of P . Let l ∈ L(P) be a linear extension of

P with total ordering l1 ≤l l2 ≤l · · · ≤l ln, x, y ∈ {1, 2, . . . n} are adjacent

in l if and only if ∃ili = x, li+1 = y. Two linear extensions l, l′ ∈ L(P ) are

different in adjacent transposition i if l1 ≤l l2 ≤l . . . li ≤l li+1 · · · ≤l ln and

l1 ≤l′ l2 ≤l′ · · · ≤l′ li+1 ≤l′ li · · · ≤l′ ln. When putting no subscrit on ≤ we

mean the ordering in real numbers.

It is known that counting the number of linear extensions is an NP-

hard problem [75], and there had been a significant amount of research to

find algorithms to approximate this number until a Markov chain algorithm

was introduced and analyzed by Karzanov and Khachiyan in 1991 ([74]),
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Wilson tightened the upper bound of its runtime in 2004 ([52]). Since the

two problems of sampling uniformly from a set and approximating its size

are known often to be computationally equivalent [70], many Mathematicians

studied the problem of approximating |L(P )| by looking at the Markov chains

on L(P ) [74, 22, 52].

One of the most natural Markov chains on L(P) is the following chain

introduced and analyzed by Karzanov and Khachiyan (1991) [74]:

Karzanov-Khachiyan Chain (Order Markov Chain.) Let P be a

partially ordered set on the elements of {1, 2, . . . n} and L(P) the set of its

linear extensions. At state l ∈ L(P), pick two adjacent elements li and li+1

w.p. 1/2(n− 1), and swap them if li ‖P li+1. Otherwise do nothing.

It is easy to show that the above chain is ergodic and that it converges to

the uniform distribution on L(P ). Karzanov and Khachiyan demonstrated

that it is rapidly mixing by analyzing its conductance (Section 1.2. Theorem

5):

Theorem 17. [74] The conductance of the Karzanov-Khachiyan chain for a

poset of n elements is at least 2−3/2n−5/2.

Using the the above analysis, Karzanov and Khachiyan obtained an upper

bound of O(n7/2 log2(n)) for the mixing time of their chain. Wilson tightened

this bound to O(n3 log n)[52].

The Karzanov-Khachiyan chain is a random walk on a convex hull of

some vertices (determined by the poset) on the permutohedron. The chain
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we are interested is a random walk in the union of simplices in the unit cube

of dimension n: Consider x = (x1, x2, . . . , xn) ∈ [0, 1]n where the coordinates,

xi are ordered according to the partial order P defined on {1, 2, . . . n}. i.e.

i ≤P j =⇒ xi ≤ xj. The set of all such xs corresponds to a union of

simplices in [0, 1]n. Although rapidly mixing Markov chains on arbitrary

convex bodies [34, 35] have been studied in various papers, Markov chains

on simplices corresponding to partial orders have not been studied yet. Since

simplexes especially those corresponding to linear orders as defined above, are

much simpler than convex bodies in general, we became motivated to design

and analyze a simpler Markov chain for the purpose of sampling points from

them.

The following chain was motivated by the so called “micro-canonical hard-

core lattice gas model in dimension 1” and introduced and studied by Randall

and Winkler [36].

Randall-Winkler Chain . Let Ω = {x = (x1, x2, . . . , xn)|0 ≤ x1 ≤ x2 ≤

. . . xn ≤ 1}. At state x ∈ Ω, pick i ∈ {1, 2, . . . , n} uniformly at random.

Then, pick x′i uniformly at random from [xi−1, xi+1]. Change xi to x′i in x

and leave the rest unchanged.

Theorem 18. [36] The mixing time of the Randall-Winkler chain is O(n3 log n).

In this paper we introduce a Markov chain on the set containing all the

combinations of n dots6 in the unit interval respecting a partial order P (See

6In this text, we stick to Randall and Winkler’s terminology of calling the elements in
[0, 1]n “points”. If x = (x1, x2, . . . , xn) ∈ [0, 1]n then, we call xis as “coordinates” or “dots
in [0, 1]”.
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x1
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1

Figure 1.5:
On the left we see the convex hull corresponding to the poset P = {1 ≤P
2, 1 ≤P 3, 1 ≤P 4} on the permutohedron of 4 elements. (Discrete model.)
On the right we see the simplex corresponding to P = {1 ≤P 2, 1 ≤P 3} in
the unit cube [0, 1]3 for 3 elements. (Continuous model.)
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Definition 14). The two extreme cases are when P is a chain7 (which is

the Randall-Winkler chain) and the case where P is an antichain8. (which

mixes in time n log n by the coupon collector problem.) We present positive

evidences that this chain mixes rapidly for arbitrary P .

We define the following variant of Randall-Winkler chain:

Definition 12. Let Ω = {x = (x1, x2, . . . , xn)|0 ≤ x1 ≤ x2 ≤ . . . xn ≤ 1},

and I the following Markov chain on Ω: At state x ∈ Ω, pick x′ ∈ [0, 1]

uniformly at random. Find the smallest interval [xi, xi+1] with the property

that x′ ∈ [xi, xi+1]. (Take x0 = 0 and xn+1 = 1.) Flip a fair coin and change

xi to x′ or change xi+1 to x′. (If xi = 0 or xi+1 = 1, do nothing.) Leave the

rest of the dots unchanged.

At this point we have no knowledge about the missing time of I. We

present some experimental evidences that it mixes rapidly at the end of this

section.

Definition 13. Let P be a partially ordered set defined on {1, 2, . . . n}. We

define ΩP as follows:

ΩP = {x = (x1 . . . xn)|xi ∈ [0, 1], i ≤P j =⇒ xi ≤ xj} (1.34)

ΩP is a union of simplices in the unit cube of dimension n.

7A chain is a poset in which all the elements are comparable.
8An antichain is a poset in which all the elements are incomparable.
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Notation. In P , we say i covers j iff j ≤P i, j 6= i and @kj ≤P k ≤P i. We

denote i covers j by j <• i. Consider x = (x1, x2, . . . , xn) ∈ ΩP , we define

max(xi) = xj iff xj has the minimum value among all xks for which we have

i <• k in P . If i is maximal in P , max(xi) = 1. likewise, min(xi) = xj iff xj

has the maximum value among all xks for which we have k <• i in P . If i is

minimal in P , min(xi) = 0.

To take approximately uniform random samples from ΩP we propose the

following Markov chain:

Definition 14. Let M be the following Markov chain on ΩP :

At state x = (x1, x2, . . . xn) ∈ ΩP , pick one of the numbers {1, 2, . . . n}

with probability 1/2n , and with probability 1/2 don’t do anything. If i ∈

{1, 2, . . . , n} is taken, pick a point x′i uniformly at random from the interval

[min(xi),max(xi)], change the position of xi to x′i and keep the rest of points

unchanged to move to state x = (x1, x2, . . . xi−1, x
′
i, xi+1, . . . , xn) ∈ ΩP .

It is easy to see thanM is an ergodic Markov chain and since the interval

[min(xi),max(xi)] is unchanged we have ∀x, x′ ∈ ΩP , P (x, x′) = P (x′, x) and

then detailed balance affirms that the stationary distribution of M is the

uniform distribution on ΩP .

Theorem 19. Let t(I) be the mixing time of the Markov chain I. Then,

t(M) ≤ O
(
n7/2 log(|L(P)|)

)
t(I) (1.35)

We employ the decomposition technique (See Section 1.2. Theorem 8.)

60



tx1tx3tx2 tx5 tx4 tx6tx7

� -

tx′1tx3tx2 tx5 tx4 tx6tx7

3
r����

2
r����AAAK 7

r����1 r����AAAK6
r

4
r

5
r

Figure 1.6:
In the Markov chain M, x1 is picked up w.p. 1/14 then it moves uniformly
at random in the interval [x3, x4].

Proof of Theorem 19. Consider L(P) the set of all linear extensions of

P , we partition ΩP into {Ωl}l∈L(P). For any arbitrary l ∈ L(P), Ωl is the set

{x = (x1, x2, . . . , xn)|xi ∈ [0, 1], i ≤l j =⇒ xi ≤ xj}. By rejecting the moves

outside Ωl, we will have I:

It remains to analyze the mixing time of M̄ of Theorem 8. This chain

has the state space {Ωl}l∈L(P) and transition probability of going from Ωl to

Ωl′ is nonzero iff l and l′ only differ in a legitimate shift.

A legitimate shift in a linear extension of l : l1 ≤l l2 ≤l · · · ≤l ln ∈ LP is

to take a sequence li ≤l li+1 ≤l . . . li+k and shift it to li+1 ≤l′ li+2 ≤l′ · · · ≤l′

li+k ≤l′ li or li+k ≤l′ li ≤l′ li+1 ≤l′ li+2 ≤l′ · · · ≤l′ li+k−1 if that makes l′

another linear extension of P .

Example 10. Consider the poset P depicted in Figure 2. The following

pairs of linear extensions differ in a legitimate shift: 2731645 ↔ 2735164,

2731645↔ 2753164, and 2371564↔ 3275164.
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Although it is difficult to find the exact values for the transition proba-

bilities of M̄, the following claim will play a key role in finding a polynomial

bound for mixing time of M̄:

Claim 1. Let l and l′ be two linear extensions of P differing only in adjacent

transposition i and li ‖P li+1. Then the transition probability of going from

Ωl to Ωl′ in M̄ satisfies:

PM̄(Ωl,Ωl′) ≥ 1/8n2. (1.36)

Proof of Claim 1. Consider an arbitrary i ∈ {1, 2, . . . , n} and x uniformly

at random from Ωl and assume there are k point within [min(xli),max(xli)].

We have,

Pr(
|xli−xli+1

|
|max(xli )−min(xli ),|

≥ 1/k) = (1− 1/k)k ≥ 1/4 (for k ≥ 2.)

Hence, if xli ‖P xi+1, then k ≥ 2 and in at least 1/4th of the points x ∈ Ωl

we have,

|xli − xli+1
|

|max(xli)−min(xli), |
≥ 1/k ≥ 1/n.

∑
y∈Ωl′

P (x, y) ≥ 1

2n

(
Pr(

|xli − xli−1
|

|max(xli −min(xli)|
) ≥ 1

k

)
.
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PM̄(Ωl,Ωl′) =
∑

x∈Ωl,y∈Ωl′

π(x)P (x, y)/π(Ωi) ≥ (
1

n2
)
∑
x∈Ωl

π(x)/π(Ωi) ≥ (
1

8n2
).

�

We now compare the conductance of M̄ to the conductance of Karzanov-

Khachiyan chain [74], (Theorem 17) to bound the mixing time t(M̄).

Lemma 20. t(M̄) = O
(
n5/2 log |L(P )|

)
.

Proof of Lemma 20. Let K be the Karzanov-Khachiyan chain and PK

its transition probability. Let l and l′ be two linear extensions of P that

differ in an adjacent transposition which swaps li and li+1 where li ‖ li+1.

We have PM̄(Ωl,Ωl′) ≥ 1/8n2 and PK̄(l, l′) = 1/2(n− 1). i.e. PM̄(Ωl,Ωl′) ≥

(1/4n)PK̄(l, l′).

Hence, for any S ⊂ ΩP ; π(S) ≤ 1/2 by applying Theorem 17 we have,

∑
x∈S,y∈S̄

(
π(x)PM̄(x,y)

π(S)

)
≥
∑

x∈S,y∈S̄ 1/n
(
π(x)PK(x,y)

π(S)

)
≥ (1/4n)2−3/2n−5/2

= 2−7/2n−7/2.

(1.37)

Using Theorem 5,

t(M̄) = O
(
n7/2 log |L(P )|

)
.

�

By employing Theorem 8 we will have Equation 1.35.
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To conclude this section, we present some experimental result suggesting

that the Markov chain I and consequently M mix rapidly.

1.4.1 Experimental Results

We ran a simulation of the Randall-Winkler chain and the interval chain I

in MATLAB. For each chain, we generated point in Rn for different values

of n, and we took a histogram of n2 points generated between time t and

t + n2 (t increasing until some conditions are met), and took that as the

probability distribution. We calculated the total variation distance between

this histogram and the histogram for the uniform distribution.

Our experiments suggest that the mixing time of the Randall-Winkler

chain and our chain are very close. In the following picture we took n = 24;

and the number of histogram bins, b is equal to 12. For various choices of n

and b we will get the same plot.
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Figure 1.7: The red plot shows the total variation distance of our chain and
the uniform distribution as time increases; and the blue plot shows the same
quantity for Randall-Winkler chain.
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1.5 H̊astad’s Shuffling

Consider the numbers {1, 2, . . . , n}, and let Sn be the set containing all the

permutations of these numbers. As discussed in the introduction of this

chapter, shuffling these numbers is a random walk on Sn converging to the

uniform distribution on Sn.

Here we study a shuffling studied by Y. H̊astad (See [38]), when n = m2

and the numbers {1, 2, . . . n} are arranged in an m ×m square. We extend

H̊astad’s result to the cases where n = mk for arbitrary k and the numbers

1, 2, . . . , n are arranged in a cube of dimension k.

The shuffling in an square is as follows:

Definition 15. (Square Shuffling) Consider an m ×m square. Assume we

are at state σ of the chain. At each step of the Markov chain, we pick m

independent permutations (πi)
m
i=1 uniformly at random. At odd time steps

and for 0 ≤ i ≤ m−1, we apply πi, to the elements in row i all at the same

time. At even steps these permutations are applied to columns of the square.

We call this Markov chain Mm.

By applying these rules, we are actually taking a permutation from dis-

tribution Π and applying it is σ. We will use this notation throughout, and

by σ ◦ Πt we mean t repetitions of applying the aforementioned steps to σ.

The following theorem appeared in [38]:

Theorem 21. (H̊astad’s theorem [38])
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Let Um2 be the uniform distribution on the elements of an m×m square.

We denote the standard deviation of Πt and Um2 by ‖ (Πt, Um2) ‖TV and we

have,

‖ Πt, Um2 ‖TV≤ O
(
m2−bt/3c1/2(2 logmbt/3c)

)
.

Corollary 22. ‖ Πt, Um2 ‖TV≤ log5(m)/m4 ≤ 1/4 for m ≥ 2. Thus, for all

m tmix(Mm) ≤ 15.

The proof of Theorem 21 which appeared in [38] relies on coupling (See

subsection 1.2.1). In fact H̊astad shows that for any σ1 and σ2 which are

arrangements of numbers in an m × m square and are different only in a

single transposition, if we take (τ1, τ2) with marginal distribution Π3, then

we can couple σ1 and σ2 such that σ1 ◦ τ1 = σ2 ◦ τ2 with probability 1 − q,

otherwise σ1 ◦τ1 and σ2 ◦τ2 still differ only in one transposition. In this proof

q = O((m/ logm)−1/2). We will discuss the details of this coupling in future.

Using this coupling H̊astad concludes:

‖ Πt, Un ‖TV≤ nqt ; q = O((m/ logm)−1/2). (1.38)

Before explaining how H̊astad’s coupling works, we present the follow-

ing definition which appeared in [38] for squares, and here we state it for

rectangles of arbitrary sizes:

Definition 16. (pattern [38])

To each successive row and column permutations taken from Π2, we as-

sociate a pattern. A pattern is an m × r rectangle containing m copies of
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numbers 0, . . . ,m−1. In each cell (i, j) of this square, we have a number α

which denotes the row number where the current element in (i, j) will move

to after arrow and column shuffling. Note right before another row shuffling,

a pattern would contain all the important information we need.

The key idea in H̊astad’s proof is the association between patterns and bi-

partite graph matching covers. H̊astad discovers this association for squares,

and we observed that it also works for rectangles. We present a very brief

summary here the interested reader should refer to proof of Lemma 3.3 in

[38], and observe that it also works for rectangle patterns.

The coupling. Take a uniformly random pattern p of size m × n, and

erase without loss of generality its contents at cell (0, 0) and (1, 1). To

the original p we can associate a bi-partite multi graph having 2m vertices:

{1+, 2+, . . .m+} ∪ {1−, 2−, . . .m−}. There is an edge with label j between

(i+, α−) if and only if cell (i, j) contains α in p. Note that each vertex has

degree n, and thus this multigraph can be partitioned to n matching covers.

To each matching cover will be mapped to a pattern but each pattern can

be mapped will be mapped to a number of matching covers. The number of

matching covers mapped to a pattern is proportional to the probability of

that pattern.

Consider p and its erased cells again. If the two values we eased are the

same, the patterns will be coupled after the next row permutation. Hence, we

assume they have different values, i.e. there are two ways to fill this partially

filled pattern. Let these two ways be p1 and p2. H̊astad categorized the
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matching covers associated to p1 and p2; and by finding a mapping between

them shows:

∑
p

|Pr(p2)− Pr(p1)| ≤ O

(
(
logm

m
)1/2

)
. (1.39)

Then, he derives Equation 1.38.

We generalize H̊astad’s result to higher dimension lattices:

Definition 17. (k-dimensional Cube Shuffling) Consider an mk square. As-

sume we are at state σ of the chain. At each step of the Markov chain,

we pick m independent permutations (πi)
m
i=1 uniformly at random. Each of

these permutation are permutations on an mk−1 cube. At time step t, we

apply these permutations to the m, k − 1-dimensional cubes, that we get by

fixing the ith coordinate, i being the remainder of t divided by m.

By applying these rules, we are actually taking a permutation from dis-

tribution Πk and applying it to σ. We will use this notation throughout, and

by σ ◦ Πt
k we mean t repetitions of applying the aforementioned steps to σ.

We prove that this chain, like the square chain becomes close to the

uniform distribution, Umk in constant number of steps. (the constant is

dependent on k but not m.)

Theorem 23. Let Umk be the uniform distribution on the elements of a k

dimensional cube of size mk. We have,

‖ (Πt
k, Umk) ‖TV≤ O(mk−1/2bt/3c(log(m)1/2 + 1/m)bt/3c).
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We prove Theorem 23, by induction. Hence, we need the following defi-

nitions and lemmas:

Definition 18. (Rectangle Shuffling)

Let’s say we have an m × n square. At each odd time step we pick

m independent permutations of {0, . . . n−1}, (σi)
m
i=1 uniformly at random.

For 1 ≤ i ≤ m, we apply σi to the elements in row i. At even steps, we

pick n independent permutations of [m], (σi)
n
i=1 uniformly at random. These

permutations are applied to elements of column i all at the same time.

We denote the distribution of the elements in an m× n rectangle after t

steps by Πt
m×n. As we discussed H̊astad’s proof can be extended to work for

rectangles, and we have the following lemma:

Lemma 24. Let Um×n be the uniform distribution on the elements of an

m × n square. We denote the standard deviation of Πt
m×n and Um×n by

‖ Πt
m×n − Um×n ‖TV and we have,

‖ Πt
m×n − Um×n ‖TV≤ O(m× n1−bt/3c1/2(log nbt/3c)). (1.40)

Definition 19. (Approximate Shuffling)

Let’s say we have an m × n square. At each odd time step, we pick m

independent permutations of {0, . . . , n}, (σi)
m
i=1 uniformly at random. We

apply eachσi to the elements in row i. At even steps we pick n indepen-

dent permutations of {0, 1, . . . ,m}, (σi)
n
i=1 from a random distribution Ũm
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where we have ‖ Ũm − Um ‖TV≤ ε, and Um is the uniform distribution on

{0, 1 . . . ,m}. These permutations are applied to elements of column i all at

the same time.

We denote the distribution of the elements in an m× n rectangle after t

steps of approximate shuffling by Π̃t
m×n. We have the following theorem:

Lemma 25. Let Um×n be the uniform distribution on the elements of the

elements of an m× n square. We have,

‖ Π̃t − Um×n ‖TV≤ O(mn((
log n

n
)1/2 + ε)bt/3c).

Consider all m × n patterns. Let p be any of possible m × n partial

patterns in which the two cells (0, 0) and (1, 1) are erased. Let p1 and p2 be

two m×n patterns that can be constructed by filling the two erased elements

of p. We prove the following lemma. Then, we can show that Π̃t
m×n allows a

coupling of distance two with parameter ε+ (n/ log n)−1/2.

Following H̊astad’s proof and employing the triangle inequality we will

have:

Lemma 26. Let p1 and p2 be two m × n patterns of approximate shuffling

that differ in a single transposition. We have,

∑
p

|Pr(p1)− Pr(p2)| ≤ ε+ (n/ log n)−1/2. (1.41)

Definition 20. (Stop and Shuffling in k-Dimensional Cube)
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In a k-dimensional cube , the stop and shuffling is similar to the normal

shuffling of Definition 17. In the stop and shuffling of rate γ, we pick m

independent permutations (πi)
m
i=1 at γ consecutive time steps . Each of these

permutation are permutations on an mk−1 cube. We apply these permuta-

tions to the m k − 1-dimensional cubes that we obtain by fixing dimension

i dimension. We go that to the next dimension after repeating this for γ

times.

Lemma 27. Given Definitions 17 and 20, we have,

‖ Πt
nk − Unk ‖TV ≤ ‖ Πt

nk − Unk ‖TV . (1.42)

Proof. Consider a k dimensional cube of size mk. We run an equivalent ver-

sion of the Markov chain introduced in Definition 17 by taking m permuta-

tions at a time and applying them to the m, k−1-dimensional cubes obtained

by fixing the first coordinate. i.e. rows. Instead of going to the next dimen-

sion, we rotate the cube. Since the uniform distribution is symmetric on

the whole cube, the deviation distance of the distribution of the cube after t

steps from the uniform distribution is equal to ‖ Πt
nk
− Unk ‖TV . To imitate

the stop and shuffle chain, we perform the same operation but we rotate the

cube every γ times. After each t = γk steps we have,‖ Πt
nk −Unk ‖TV ≤ ‖

Πt
nk
− Unk ‖TV . Hence, Equation 1.42 holds.

Proof of Theorem 23.

We prove this theorem by induction. For base case, we have H̊astad’s

72



theorem.

Assume the theorem holds for n = k − 1 i.e. after t = 6k + 6 steps:

‖ Πt
nk−Unk−1 ‖TV≤ O(n−2(log(n)1/2+1/n)2k+2) = O(n−2 log(n)k+1) = O(n−1).

We perform a stop and shuffling of the k-dimensional cube at rate 6k+6.

Note that this whole process will be equivalent with approximate shuffling a

rectangle of size nk−1 × n where, ‖ Ũ − U) ‖TV≤ 1/n. Therefore, using the

result of theorem 19, we will have the result.

�
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1.6 The Top to Random Shuffle

In the top to random shuffling we take a card from the top of the deck and

insert it uniformly at random into the deck. This chain was analyzed by

Aldous and Diaconis ([72].)

The chain can be analyzed very similar to the coupon collector problem:

Let Ω be the state space containing all permutations of numbers {1, 2, . . . , n}.

Assume without loss of generality that we start at σ = (1, 2, 3, . . . , n). Let

Ti be the time needed to place card i after card n given that i−1 is already

placed after n; Ti has the domestic distribution with parameter (n− i+ 1)/n

thus, E(Ti) = n/n− i+ 1.

Let T be the time it takes card n − 1 to be places after card n. Then,

E(T ) =
∑n−1

i=1
n

n−i+1
+ 1. Note that limn→∞E(T ) = n log n. Hence, in expec-

tation it takes n log n number of steps, and the deck will be shuffled.

We modify the top to random shuffling in the following sense:

Definition 21. (α-top to random shuffling)

At each time step we take αn of top cards, shuffle them, and place them

randomly inside the deck.

Lemma 28. The expected number of steps by which a deck of n cards mixes

by the α-top to random shuffle is:

Hn − 1

Hαn

.

74



In this formula Hn is the nth harmonic number. 9

Proof. Let Tαn be the time that it takes to see αn distinct cards when we

perform the top the random shuffle. Following the analysis in [72], E(Ti) =

1 + 1/2 + · · ·+ 1/(αn).

Let Ti be the time by which we have seen iαn distinct cards when per-

forming the top to random shuffle; and τ be the number of steps by which we

will see card n in the α-top to random shuffle. Since E(τ) and E(Ti)s are all

finite, and also our stopping rule does not see the future, we employ Wald’s

equality to derive:

E(T ) = E(T1 + T2 + · · ·+ Tτ ) = E(τ)E(T ′)⇒ E(τ) = E(T )/E(T ′). (1.43)

Plugging in the values will give the result.

Note that this problem is equivalent to a generalized version of coupon

collector problem when in each step the collector takes αn distinct coupons.

9Hn =
∑n
i=1 1/i.
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Chapter 2

Homomesy; Expected Value of

Functions

“The orbit upon which mortals come and go,

Has no end nor beginning that we know,

And none there is to tell us in plain truth,

Whence do we come and whither do we go.”

–Omar Khayyám.

2.1 Introduction and Motivation

In the previous chapter we studied various Markov chains and their mixing

times. We observed that in some cases by making a bundle of steps and

merging them into a single step, we can reduce the mixing time significantly.
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e.g. H̊astad’s square shuffle and the generalization we presented.

Like H̊astad’s square lattice shuffle, the idea of “reducing randomness”

and sometimes even “de-randomization” appear in various places, when study-

ing computational models. Systematic sweeping and Propp’s rotor-

router model, are two examples of such models. In this introduction, we

present a brief introduction of these two models, then we introduce the

problem of our interest which is calculating the expected value of functions

mapping a set of combinatorial objects to real numbers, given an arbitrary

probability distribution.

Systematic Sweeping. Remember that in the Gibbs sampler model

(Section 1.1), we have a Markov chain on a state space that has the form SV ,

S being the set of values attained by elements of V . As we discussed, at state

Xt of the chain the random single site update model picks a v ∈ V uniformly

at random, and it updates the value of v with respect to the conditional

distribution π where any other u ∈ V has the same value as in Xt. We

update the value of v and keep the values of all the other elements of V

except v the same as what they were at Xt to reach Xt+1.

Let |V | = n, note that after n random single site updates, the probability

that there is at least one v ∈ V not updated equals 1− n!
nn
' 1−

√
2πn
en

. To

avoid this situation, the systematic sweeping Gibbs sampler is suggested. In

systematic sweeping, we fix an ordering of V , say v1, v2, . . . , vn. Instead of

picking v ∈ V uniformly at random and update it, at time t we pick vi, i

being the reminder of t divided by n, and we update it.
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The Rotor-Router Model. The Rotor-Router is a de-randomized ran-

dom walk coined by Jim Propp [26]. Recall that in a random walk on a

graph G = 〈V,E〉 we start at some arbitrary vertex v ∈ V and we go from

v to u w.p. pu,v associated to the edge (v, u) ∈ E. In the Rotor-Router

model, we have a chip that can be on any vertex v ∈ V . On each vertex

v ∈ V of the graph we have a number r(v); 1 ≤ r(v) ≤ deg(v), the numbers

1, 2, . . . , deg(v) correspond to the vertices adjacent to v, and they indicate

where the chip should go if it is on edge v. At each time step t, we have a

configuration consisting of the graph G, a rotor on each vertex, and a vertex

v which indicates the position of the chip. At time step t+ 1, the position of

the chip will be upgraded to r(v), the rotor on v will be upgraded to r(v) + 1

mod deg(v), and everything else will remain the same.

The rotor-router model is a deterministic automaton, and it has the prop-

erty that some of the interesting statistics of it (e.g. hitting times, frequency

of visits) are concentrated around the expected value of those statistics in

an equivalent random walk by a discrepancy of order 1/n. Note that by

running the equivalent random walks n times, the discrepancy of an statistic

from its expected value is bounded by 1/
√
n by the central limit theorem.

(See Appendix [26] for more details.) Rotor-router models have been studied

for graphs having different topologies, different initial rotor assignments, and

various statistics of them have been compared to their analogous random

walks. e.g. [27, 28, 29].

In this chapter our goal is to address the problem of calculating the ex-

78



pected value of a function f : S → R, S being a set of combinatorial objects,

when given a probability distribution π on S. We propose a solution for this

problem which is running a Markov chain on S and taking k samples from π.

We identify the conditions under which this solution is efficient and present

two examples in which running a Markov chain fails to serve our purpose.

Thus, showing that calculating the average of f : S → R cannot be always

solved by taking samples from S.

We suggest that other models of computation should be taken into con-

sideration. With the aforementioned motivation we study homomesy which

is a term coined by Jim Propp and Tom Roby [7]. We study homomesy in

a class of simply described lattices. Unfortunately, at this point homomesy

does not provide us any known computational application, and this problem

remains open.
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2.2 Estimating the Expected Value of a Func-

tion Using Sampling

Consider a function f : S → R and a probability distribution π on S. We

are interested in finding the expected value of f , f̃ =
∑

s∈S f(s)π(s). In the

presence of fast algorithms for sampling from S according to π, one would

think of taking m samples s1, s2, . . . sm and approximating f̃ by calculating∑m
i=1 si/m. In this section, we investigate the efficiency of this approach. We

obtain sufficient conditions under which this approach can be fruitful and

bring interesting examples of #P-hard problems where either a proposed

Markov chain is not rapidly mixing, or despite the existence of a rapidly

mixing Markov chain, finding an approximation to the expected value of f

is still an open problem.

Theorem 29. Consider a Markov chain on set S with stationary distribution

π, transition probability P , and mixing time τ Let f : S → R be a real valued

function with variance v and f̃ =
∑

s∈S f(s)π(s) the expected value of f . We

can obtain an ε approximation for f̃ that satisfies Equation 2.37 by taking

m ≥ 8v/f̃ 2ε3 samples s1, s2, . . . sm from S and calculating f̂ = 1/m
∑m

i=1 si.

The samples si are taken from S, by running the Markov chain, for at least

2τ log(fmax

f̃
ε−1/2) number of steps. Then,

Pr(| f̂
f̃
− 1| ≤ ε) ≥ 1− ε (2.1)
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Proof. Let m ≥ 8v/f̃ 2ε3. Fix an arbitrary T , s0 ∈ S and let π′ be the

following probability distribution on S: π′(x) = P T (s0, x). We will have the

following equations:

Eπ′ [f̂ ] = MEπ′ [f ]/M = Eπ′ [f ]

Eπ′ [f ] =
∑

s∈S f(s)π′(s).

Varπ′ [f̂ ] =
∑

iVarπ′ [f(si)/M ] = (
∑

iVarπ′ [f(s′i)])/M
2 = Varπ′ [f ]/M

Varπ′ [f ] =
∑

s∈S(f(s)− Eπ′ [f ])2π′(s).

By Chebyshev’s inequality we have, Pr(|f̂ − E[f̂ ]| ≤ kσ) ≥ 1 − 1
k2 where

σ =

√
Var[f̂ ]. Hence, setting k = εf̃

2σ
we have,

Pr(|f̂ − E[f̂ ]| ≤ kσ) ≥ 1− 1
k2

= Pr(|f̂ − E[f̂ ]| ≤ f̃ ε/2) ≥ 1− (
2
√
Var[f̂ ]

f̃ ε
)2

= Pr(|f̂ − E[f̂ ]| ≤ f̃ ε/2) ≥ 1− (
2
√
Varπ′ [f ]
√
Mf̃ε

)2

= 1− (
4Varπ′ [f ]

Mf̃2ε2
).

(2.2)

We have, T ≥ 2τ log(4fmax

f̃
ε−1/2). Therefore, |π − π′|TV ≤ ( f̃

4fmax
)2ε = ε′.

Note that we have ( f̃
4fmax

)2ε = ε′ which implies f 2
maxε

′ = f̃ 2ε/16 and fmaxε
′ ≤

f̃ ε/16.

Considering the following inequalities, we relate Varπ′ [f ] to v and Eπ[f ]

to f̃ :
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|Eπ′ [f ]− f̃ | ≤
∑

s∈S f(s)|π(s)− π′(s)| ≤ fmaxε
′ ≤ εf̃/16. (2.3)

|Eπ[f 2]− Eπ′ [f 2]| ≤
∑

s∈S f
2(s)|π(s)− π′(s)| ≤ f 2

maxε
′

|E2
π′ [f ]− f̃ 2| = |(Eπ′ [f ]− f̃)(Eπ′ [f ] + f̃)| ≤

(fmaxε
′)(f̃ + fmaxε

′ + f̃) = f 2
maxε

′2 + 2f̃fmaxε.

|Var′π(f)− v| = |(E2
π′ [f ]− f̃ 2) + (Eπ[f 2]− Eπ′ [f 2])| ≤

|(E2
π′ [f ]− f̃ 2)|+ |(Eπ[f 2]− Eπ′ [f 2])| ≤

f 2
maxε

′ + f 2
maxε

′2 + 2f̃fmaxε
′ =

f 2
maxε

′(1 + ε′ + 2 f̃
fmax

) ≤ 4f 2
maxε

′ =

f̃ 2ε/4.

(2.4)

Assuming M ≥ 8v/f̃ 2ε3, for ε ≤ 4v/f̃ 2 we will have:

(4Varπ′ [f ])/(Mf̃ 2ε2) ≤

(4v + f̃ 2ε)/(Mf̃ 2ε2) ≤

4v/(Mf̃ 2ε2) + 1/(Mε) ≤

ε/2 + ε/2 ≤ ε.

Pr(|f̂ − Eπ′ [f̂ ]| ≤ ε/2f̃) ≥ 1− (
4Varπ′ [f ]

Mf̃2ε2
)

≥ 1− ε.
(2.5)
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Given that M ≥ 8v/f̃ 2ε3 with a probability greater than 1− ε and using

equations (2.3), (2.5) and triangle inequality we will have:

|f̂ − f̃ | ≤ |f̂ − Eπ′ [f̂ ]|+ |Eπ′ [f̂ ]− f̃ | ≤ (ε/2 + ε/16)f̃ ≤ εf̃ .

| f̂
f̃
− 1| ≤ ε.

(2.6)

�

2.2.1 Examples.

Example 11. Counting the number of Eulerian circuits

in an Eulerian graph

Consider an Eulerian graph G = 〈V,E〉, a connected graph in which

all vertices have even degrees. We are interested in finding the number of

Eulerian circuits in G.

An Eulerian trail of a graph is a trail which traverses trough all edges

once and only once. An Eulerian circuit is an Eulerian trail which starts

and ends on the same vertex. We denote the set of Eulerian circuits of G by

Eu(G).

If G is a directed graph the exact value of |Eu| can be calculated using

BEST theorem [12], named after de Bruijn, van Aardenne-Ehrenfest, Smith

and Tutte. However, not only finding the exact value of |Eu| for an undirected

graph is is known to be #P-hard by a result of Brightwell and Winkler [13],
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but also approximating this value for an undirected graph in general case is

still an open problem.

Finding Eulerian trails in a graph has broad applications in other fields

of science such as reconstruction of DNA sequences [17] and CMOS circuit

design [18]. Many Computer Scientists have been intrigued by the problem of

sampling from Eu(G) or counting it when G is undirected. However, they only

succeeded to find polynomial time algorithms for this problem in restricted

cases [14, 16, 15]. The problem is still open for an arbitrary, undirected graph

G.

Despite the lack of algorithms for approximating |Eu(G)|, Mihail and

Winkler designed a rapidly mixing Markov chain to sample from the set of

all Eulerian orientations of a graph. In the light of this result, one would like

to define f as the following and apply Theorem 29 to approximate E(|Eu|).

Definition 22. For an arbitrary undirected graph G, let O(G) be the set of

all of its Eulerian orientations. We define f : O(G) → N to be the function

that to each orientation in O assigns the number of its circuits.

Unfortunately, considering the following example, we observe that apply-

ing Theorem 29, requires taking exponential number of samples, i.e. expo-

nential runs of the chain.

Consider the multigraph Gn with vertex set V = {v1, v2, . . . , vn} and edge

set E = {ei1, ei2 = {vi, vi+1(mod n)}, 1 ≤ i ≤ n}.

There are two classes of Eulerian orientations for this graph. We call

these two classes O1 and O2. in O1 we direct the edges of Gn in the following
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way: for all i both ei1 and ei2 are directed from vi to vi+1; or, for all i both

ei1 and ei2 are directed from vi+1 to vi. This class has two orientations in it.

In the second class, O2 for each i we direct ei1 from vi to vi+1 and ei2

from vi+1 to vi; or, ei1 from vi+1 to vi and ei2 from i to i+ 1. This class has

2n orientations in it.

The number of Eulerian circuits associated to each orientation in O1 is 2n:

Choose a sequence a1, a2, . . . an, ai ∈ {1, 2} and for each i let bi be the other

element in {1, 2} that is not ai. The associated circuit will be the following:

e1,a1 , e2,a2 , . . . en,an , e1,b1 , e2,b2 , . . . en,bn .

The number of Eulerian circuits associated to each orientation in O2 is

n+ 1: One circuit is e1,1, e2,1, . . . en,1e1,2, e2,2, . . . en,2. For each j we have the

following circuit:

ej,1, ej,2, ej+1,2, ej+2,2 . . . ej−1,2, ej−1,1, ej−2,1, . . . , ej+1,1.

Let O be the set of orientations. We know O = O1 ∪ O2 and |O| =

2n+n+1. Assuming that we have the uniform distribution on the set of

orientations, we will have,

f̃ =
1

2n + 2
(2× 2n + 2n × (n+1)) =

2n−1(n+ 2)

2n−1 + 1
= O(n).

Var[f ] =
2(2n − f̃)2

2n + 2
+

2n(n+ 1− f̃)2

2n + 2
= O(2n).

Theorem 29 requires O(2n/ε3) number of samples to estimate f̃ which is

not efficient.
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The following calculations show that it is impossible to use any algorithm

sampling from O(G) to obtain a sturdy approximation for E[f ] as defined in

Definition 22.

Assume that we take p samples from O(G). With probability (1− 1
2n−1 )p

there is no orientation of class O1 among our samples. If p is polynomial,

this number is very close to 1.

The approximation we obtain will be f̂ = n+1. Hence,

| f̂
f̃
− 1| = |(n+ 1)2n−1 + 1

2n−1(n+ 2)
− 1| ≥ |n+ 1

n+ 2
− 1| ≥ 1

n+ 1
.

Therefore, for any ε ≤ 1/(n + 1) our method is not capable of giving us

a good approximation.

Example 12. The average of real valued functions on the

set of ideals in a partially ordered set.

Recall that by a partially ordered set (or a poset in abbreviation), we

mean a set P together with a reflexive, antisymmetric, and transitive rela-

tion ≤P : S → S. Remember that for any x, y ∈ P , by x ≤P y we mean

(x, y) ∈≤P . We define an ideal in P as follows:

Definition 23. An order ideal I in P is a subset of it which satisfies the

following: ∀p ∈ I and q ∈ P ; q ≤P p =⇒ q ∈ I. The set of all order ideals

in P is denoted by J(P). Order ideals are also known as ideals or down sets.

Order ideals are ubiquitous in combinatorial optimization and operations

research. For instance, they appear in dynamic programming algorithms [39],
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constrained scheduling problems [40, 41], assembly line balancing problems

[42], and in reliability networks [43].

A number of questions can be asked about J(P), some natural questions

being: Is it possible to enumerate J(P), count it or take samples from it?

For arbitrary poset P , the problem of counting (or equivalently sampling

from) J(P) is known to be a #P-hard problem [43]. The problem is tractable

in some special cases, for instance, when P is 2-dimensional or series parallel

[45, 46].

It is worth mentioning that 〈J(P),⊆〉 constitutes a distributive lattice1.

We study a natural single site update Gibbs sampler on J(P). The update

rule that we use is known as toggling. The term was coined by Striker and

Williams [5] when they studied involution on sets of ideals of posets, and

it appears without this name in many other places e.g. [85]. By saying we

toggle an element x ∈ P in an ideal I ∈ J(P) or out of it, we mean the

following:

Definition 24. Consider a poset P , an order ideal I ∈ J(P), and an element

x ∈ P . We define the toggle in σ+
x , toggle out σ−x and the toggle map σx as

follows:

σ+
x (I) =


I ∪ {x} if I ∪ {x} ∈ J(P).

I otherwise.

(2.7)

1In fact every distributive lattice can be obtained this way i.e. the correspondence is
one to one.
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σ−x (I) =


I − {x} if I − {x} ∈ J(P).

I otherwise.

(2.8)

σx(I) =


σ+
x (I), if x /∈ I.

σ−x (I), if x ∈ I.
(2.9)

Consider a poset P . The following chain on J(P) is a single site update

Markov chain, and we denote it by MP :

At state I ∈ P ,

1. Pick p ∈ P with probability 1/n, n being the cardinality of P .

2. Flip a biased coin. If heads, toggle p into I i.e let I ′ = σ+
x (I). If tails,

toggle p out of I i.e let I ′ = σ−x (I). Move to I ′.

Despite the simplicity of the chain, it fails to mix rapidly except for a very

small class of posets. It is shown by Wilson [52] that if P is a square lattice,

this Markov chain is rapidly mixing. It was later proved by Greenberg et al.

(2009) that the biased chain mixes rapidly when the poset is a k−dimensional

cube lattices [85]. In Proposition 2, we present an example of a simply

described poset, which we call the butterfly poset for which the suggested

chain requires at least exponential number of steps until it becomes close to

stationarity. Thus, calculating the average of any function f : J(P) → R

using Theorem 29 will fail for the butterfly poset defined in Proposition 2.
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Figure 2.1: The butterfly poset when n = 4 and m = 5. The order is directed
from north east to sour west meaning box j is less that box i if j is placed
south west of i in the picture.

Definition 25. Let Qa,b = [a]×[b] ([n] = {1, 2, . . . , n}). Each element p ∈

Qa,b can be presented by a pair p = (i, j), i ∈ [a], j ∈ [b] and (i1, j1) ≤ (i2, j2)

iff i1 ≤ i2 and j1 ≤ j2.

Proposition 2. Consider the posets I = Qn,n and J = Qm,m, take x to be

the minimum element in I and y to be the maximum element in J . We let

K = I ∪ J , and ≤K is defined as follows: for any i and j in K,

i ≤K j ⇔ (i ≤I j or i ≤J j or (i = y and j = x)) .

We call K the butterfly poset. The conductance Φ of MK, satisfies:

Φ =
2

n2m2
/

(
2n

n

)(
2m

m

)
∼ 2

4n4m((nm)3)(
√
nm)

. (2.10)

Hence, by Theorem 5 the mixing time of MK is at least O(4m+n).
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2.3 Some Instances of Homomesy Among Ide-

als of Posets

Consider a poset P , and let J(P) be the set containing all of the ideals

in P . The rowmotion operation, is an operation mapping J(P) to itself,

and it has been studied widely by combinatorists and under various names

(Brouwer-Schrijver map [1], the Fon-der-Flaass map [6], the reverse map [4],

and Panyushev complementation [3]). Rowmotion is defined as follows:

Definition 26. Given a set P with partial order ≤P , and an order ideal

I ∈ J(P), rowmotion is denoted by %(I), and it is defined to be the down

set2 of the minimal elements in P−I.

Remark 2. Propp and Roby use ΦJ to denote rowmotion acting on order

ideals and ΦA for rowmotion acting on antichains. In this section, we discuss

only actions on order ideals. Moreover, since we are using Φ for conductance,

we denote rowmotion by %.

Recall that another interesting operation mapping J(P) to itself is the

toggle map (Definition 24). We can define the rowmotion operation also as

the combination of several toggles.

Proposition 3. For all x ∈ P and I ∈ J(P), σ2
x(I) = I. If x, y ∈ P and x

does not cover y nor y covers x, we have σx ◦ σy(I) = σy ◦ σx(I).

2In a poset P on elements of P the down set of a set X ⊆ P is the following: {y ∈
P|∃x ∈ X , y ≤ x}.
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We take a linear extension (x1, . . . , xn) of P to be an indexing of the

elements of P that is xi < xj in P implies i < j. The following proposition

was demonstrated in [2].

Proposition 4. [2] Given an arbitrary I ∈ J(P) and linear extension (x1, . . . , xn)

of P, we have %(I) = σx1 ◦ σx2 ◦ σx3 ◦ · · · ◦ σxn(I).

Remember the following definition from the previous section (Definition

25): Let Qa,b = [a]× [b] ([n] = {1, 2, . . . , n}). Each element of the poset can

be presented by a pair (i, j), i ∈ [a], j ∈ [b] and (i1, j1) ≤ (i2, j2) iff i1 ≤ i2

and j1 ≤ j2.

In this paper, we are interested in the maps on J(Qa,b), as well as J(Ua)

and J(La) where Ua and La are subsets of Qa,a and defined as:

• Ua ⊆ Qa,a, Ua = {(i, j)|i, j ∈ [a], i ≥ a+1−j}.

• La ⊆ Qa,a, La = {(i, j)|i, j ∈ [a], i ≥ j}.

Notation. Let P be one of Qa,b, Ua or La. By saying (i, j) ∈ P we

are referring to the element in [a] × [b] with coordinates i and j. By saying

x = (i1, j1) ≤ y = (i2, j2) we mean x is less than y in P . To avoid confusion,

we never use (i, j) ∈ P to indicate i is less than j in the partial order.

We call Qa,b the square lattice or the product of two chains, Ua the upper

lattice and La the left lattice. Among combinatorists Ua is also known as the

root poset of type Aa , and La as the minuscule poset of type Ba or Da+1.

We employ the following terminology:
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Figure 2.2: Q5,4 and R4(Q5,4) U4 and F−1(U4) L4 and C3(L4)

Definition 27. Let P be one of Qa,b, Ua or La. For any arbitrary I ∈ J(P),

We call the set of all points (i, j) ∈ P with constant i+j a rank; Rc(I) =

{(i, j) ∈ I|i+j = c}.

We call the set of all points (i, j) ∈ P with constant i−j a file; Fc(I) =

{(i, j) ∈ I|i−j = c}.

We call the sets of all points (i, j) ∈ P with constant i a column; Cc(I) =

{(i, j) ∈ I|i = c}.

In the case when no ideal is specified we have Rc = Rc(P), Fc = Fc(P)

and Cc = Cc(P); P should be clear from the context.

Example 13. The following figure shows Q5,4 and R4 in it, U4 and F−1 in

it and L4 and C3 in it.

Remark 3. In Figure 13 and all the other figures in this section and Section

2.4, we draw the posets from south west to east coast, meaning if box i is

located north east of box j, then i is greater than j.

We can now define toggling for the above sets.

Definition 28. Consider the poset Qa,b and I ∈ J(Qa,b). Let S be one of

Rc or Fc for some arbitrary c. Letting x1 . . . xm be some arbitrary indexing
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of the elements of S, we define σS(I) = σx1 ◦ σx2 ◦ · · · ◦ σxm(I). Note that no

two elements xi, xj of S constitute a covering pair, thus σS is well defined.

For S = Cc, let S = {x1, x2, . . . xm} where x1 < x2 < · · · < xm. We define

σS(I) = σx1 ◦ σx2 . . . σxm(I).

Striker and Williams studied the class of so-called rc-posets, whose ele-

ments are partitioned into ranks and files3. Here, we will discuss the special

rc-posets of the form Qa,b, Ua or La. The following definitions are from [5],

restricted to the product posets of interest to us.

Definition 29. [5] Consider Qa,b. Let ν be a permutation of {2, . . . , a+b}.

We define %ν to be σRν(a+b−1)
◦ σRν(a+b−2)

◦ . . . σRν(1)
.

Having Proposition, 4 it can be concluded that the following holds:

for ν = (a+b, a+b−1 . . . , 2), we have %ν = %.

Consider Qa,b, and ν a permutation of {2, . . . , a+b}. Then, %ν is a per-

mutation on J(Qa,b) that partitions J(Qa,b) into orbits. Striker and Williams

showed that the orbit structure4 of %ν does not depend on the choice of ν.

Definition 30. Consider Qa,b, promotion is a permutation ∂ : J(Qa,b) →

J(Qa,b), defined by: ∀I ∈ J(Qa,b), ∂(I) = σFa−1◦σFa−2◦· · ·◦σF0◦· · ·◦σF1−b(I).

As with rowmotion, Striker and Williams [5] define a generalized version

of promotion.

3Striker and Williams use the terminology “row” for what we call “rank” and “column”
for what we call “file”.

4The orbit structure of a bijection f on a set S is the multiset of the sizes of the orbits
that bijection f constructs on the set S.
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Definition 31. [5] Consider the lattice Qa,b, and let ν be a permutation of

{−b+1, . . . , a−1}. We define ∂ν to be σFν(a+b−1)
◦ σFν(a+b−2)

◦ · · · ◦ σFν(1)
. By

Definition 30, for ν = (−b+1, . . . , a−1) we have ∂ν = ∂.

As with rowmotion, for any permutation ν on files of any poset P , ∂ν

will partition J(P) to orbits. Again, Striker and Williams [5] showed that

regardless of which ν we choose, J(Qa,b) will be partitioned into the same

orbit structure by ∂ν . Moreover, the orbit structures for ∂ν and for %ω are

the same for any two permutations ν and ω:

Theorem 30. [5] Consider the lattice Qa,b, for any arbitrary permutation ν

on {2, . . . , a+b} and ω on {−b+1 . . . a−1}, there is an equivariant bijection

between J(Qa,b) under %ν and J(Qa,b) under ∂ω.

Permutations defined on combinatorial structures and the associated or-

bit structures became more interesting after Propp and Roby introduced a

phenomenon called homomesy [7]. Propp and Roby also discussed some

instances of homomesy by studying the actions of promotion and rowmotion

on the set J(Qa,b). Homomesy has attracted many combinatorics’ attentions

after it was defined and studied by Propp and Roby [8, 9, 10, 47, 19], and it

is defined as follows:

Definition 32. [7] Consider a set S of combinatorial objects. Let τ : S → S

be a permutation that partitions S into orbits, and f : S → R a statistic

of the elements of S. We call the triple 〈S, τ, f〉 homomesic (or we say it
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exhibits homomesy) if and only if there is a constant c such that for any

τ -orbit O ⊂ S we have

1

|O|
∑
x∈O

f(x) = c.

Equivalently, we can say f is homomesic or it exhibits homomesy in τ -

orbits of S. If c = 0, the triple is called 0−mesic.

Proposition 5. Consider a set S and permutation τ : S → S. If f1, . . . , fn

are homomesic functions in τ -orbits of S, then any linear combination of the

fis is also homomesic in τ -orbits of S.

Theorem 31. [7] Consider f : J(Qa,b) → R defined as follows: for all

I ∈ Qa,b, f(I) = |I|. Let ∂, % : J(Qa,b) → J(Qa,b) be the rowmotion and

promotion operation. The triples 〈J(Qa,b), ∂, f〉 and 〈J(Qa,b), %, f〉 exhibit

homomesy.

In this paper, we generalize Theorems 31 and 30 in the following sense:

Definition 33. Consider the poset P to be one of Qa,b , Ua or La. For any

permutation ν of [a], we define the action comotion, Tν : J(P)→ J(P) by:

∀I ∈ J(P), Tν(I) = σCν(a)
◦ σCν(a−1)

◦ · · · ◦ σCν(1)
(I).

The following proposition can be proved by applying Proposition 3 in-

ductively.

Proposition 6. Let P be one of Qa,b, Ua and La, the action of promotion

coincides with T(a,a−1,...1) and rowmotion coincides with T(1,2,...a).
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In what follows, Theorems 32, 33, 34 which are the main results of this

paper will be stated. We will provide a roadmap to their proofs later in this

introduction, and will complete the proof in Sections 2.3.1 and 2.3.2.

Theorem 32. (Homomesy in J(Qa,b))

1. For any arbitrary natural number a and ν a permutation on [a], Tν

partitions J(Qa,b) to orbits. The orbit structures of Tν on J(Qa,b) is

independent of choice of ν.

2. Consider I ∈ J(Qa,b). We have the following homomesy results:

• Let gi,j, 1 ≤ i ≤ a and 1 ≤ j ≤ b be defined as follows:

gi,j =


1, if |Ci(I)| = j

0, otherwise.

(2.11)

For an arbitrary permutation ν of [a], 1 ≤ i ≤ a and 0 ≤ j ≤ b, the

function di,j = gi,j − ga+1−i,b−j is 0-mesic in Tν-orbits of J(Qa,b).

• For all 1 ≤ i ≤ a, let

si,j =


1 if |Ci(I)|+ i = j

0 otherwise.

(2.12)

For any arbitrary permutation ν of [a] and 1 ≤ j ≤ b, sj =∑a
i=1 si,j is homomesic in Tν-orbits of J(Qa,b). Moreover, the av-
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erage of all sj along an orbit is constant and equal to a
a+b

. In other

words, for all j, l, sl − sj is 0-mesic.

Any function f : J(Q)→ R which is a linear combination of various si

and di is homomesic in Tν-orbits of J(Qa,b).

Theorem 32 introduces a different family of permutations that produce

the same orbit structure as % and ∂; hence, it generalizes Theorem 30. It

also generalizes Theorem 31 because it introduces a class of permutations

and statistics whose triple with J(Qa,b) exhibit homomesy. Moreover, it will

provide another proof for Theorem 31. The main idea of our proof is the

correspondence between comotion and winching (See Definition 34). We

will define winching and also its correspondence with comotion in Section

2.3.1. Then, we extend the definition of winching to winching with lower

bounds and winching with zeros. Studying these two variations helps us

obtain homomesy results in J(Ua) and J(La).

Theorem 33. (Homomesy in J(Ua))

Let a be an arbitrary natural number and ν an arbitrary permutation of

[a]. Consider Tν : J(Ua) → J(Ua) as defined in Definition 33. For each

i ∈ [2a] let [i, 2a] = i, i+ 1, . . . , 2a and f : [2a] → R a function that has the

same average in all [i, 2a] where i is odd. Let g : J(Ua) → R be defined as:

∀I ∈ J(Ua), g(I) =
∑a

i=1 f(|Ci(I)| + 2i + 1). Then, the triple 〈J(Ua), Tν , g〉

exhibits homomesy.

Theorem 34. (Homomesy in J(La))
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Let a be an arbitrary natural number and ν an arbitrary permutation of

[a] and Tν : J(La)→ J(La) be defined as in Definition 33. We have,

1. The orbit structures of Tν on J(La,b) is independent from choice of ν.

2. For any 1 ≤ i ≤ a and 0 ≤ j ≤ a we define si,j : J(La)→ R as follows:

si,j =


1 if |Ci| = j

0 otherwise.

(2.13)

For any 1 ≤ j ≤ a sj =
∑a

i=1 si,j is homomesic. Moreover, the average

of all sj along any Tν-orbit of J(La,b) is the same. In other words, for

all j, l sl − sj is 0-mesic.

Moreover, any function f : J(La) → R which is a linear combination

of various si is homomesic in Tν-orbits of J(La).

In Section 2.3.1 of this paper we introduce the permutation winching on

the set of increasing sequences of length k. We show that there is a natural

equivariant bijection between the set of ideals under comotion and the set of

increasing sequences under winching.

Then, we introduce two different variations of winching and their corre-

spondence with comotion in J(Ua) and J(La).

In Section 2.3.2 we will use the Theorems 32, 33 and 34 to show homomesy

of some functions in the orbit structure produced by comotion in J(Qa,b),

J(Ua) and J(La).
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In Section 2.3.3 we will prove homomesy of a class of statistics when the

permutation is winching and two different variations of it. These results have

intrinsic interest because they are instances of homomesy. Moreover, by the

correspondence between winching and comotion proof of Theorems 32, 33,

and 34 will be obtained.

2.3.1 Comotion, winching and their correspondence

In the previous section, we defined the action of comotion on the set of order

ideals of a poset. In this section, we define winching and show a correspon-

dence between winching on increasing sequences and comotion on J(Qa,b).

Then, we define winching with lower bounds and winching with zeros. The

former corresponds to comotion on J(Ua) and the later corresponds to co-

motion on J(La).

Definition 34. Let Sk,m be the set of all k-tuples x = (x1, . . . , xk) satisfying

0 < x1 < x2 < · · · < xk < m+1. We define the map Wi : Sk,m → Sk,m, called

winching on index i, by Wi(x) = y = (y1, y2, . . . , yk), where yj = xj for i 6= j,

and

yi =


xi + 1, if xi + 1 < xi+1.

xi−1 + 1, otherwise.

(2.14)

We assume that always x0 = 0 and xk+1 = m+1.

Example 14. Let ν = (2, 3, 1, 4) and x ∈ S4,7 be x = (2, 3, 5, 7). Then,
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Wν(x) = (1, 4, 6, 7).

Lemma 35. There is a bijection α : J(Qa,b) → Sa,a+b such that for any

I ∈ J(Qa,b), α(σCj(I)) = Wj(α(I)).

Proof. Consider I ∈ J(Qa,b), we define α(I) = (α1, . . . αa) as follows: for any

1 ≤ j ≤ a, we have αj(I) = |Ca+1−j(I)| + j. Since I ∈ J(Qa,b), for any

j1 < j2, take |Cj1(I)| ≥ |Cj2(I)|. Therefore, α(I) is an increasing sequence.

Let Cj be {v1, v2, . . . vb}; vi = (j, i), and assume |Cj(I)| = l. We have,

n > l+1, σvn(I) = I, and for n = l+1, σvn(I) = I ∪ {vn} if and only if

|Cj−1| ≥ l+1. Also, n < l, σvn(I) = I − {vn} if and only if |Cj+1(I)| ≤ n−1.

For boundary cases, we assume |C0| = b and |Cb| = 0. Letting K = σCj(I)

we will have,

Cj(K) =


Cj(I) ∪ {vl+1}, if |Cj−1(I)| ≥ l+1.

Cj(I)− {vl, vl−1, . . . , vp+1}(p = |Cj+1(I)|), otherwise.

(2.15)

⇔ |Cj(K)|+a+1−j =


l+1 + a+1−j,

if |Cj−1(I)|+ a−j+2 ≥ l+1 + a−j+2.

|Cj+1(I)|+ a+1−j, otherwise.

(2.16)
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⇔ αa+1−j(σCj(I)) =


αa−j+1(I)+1, if αa−j+2(I) > αa−j+1(I) + 1.

αa−j(I) + 1, otherwise.

(2.17)

⇔ αa+1−j(σCj(I)) = Wa+1−j(α(I)). (2.18)

Corollary 36. Consider an arbitrary natural number a, ν a permutation of

[a], and for any x ∈ Sa,a+b, let Wν(x) = Wν(a) ◦ Wν(a−1) ◦ · · · ◦ Wν(1)(x).

The bijection α introduced in Definition 35 satisfies the following property:

α(Tν(I)) = Wν(α(I)).

Theorem 37. Consider a natural number k and an arbitrary permutation ν

of [k]. With Wν : Sk,m → Sk,m defined as above we will have,

1. Wm
ν (x) = x for all x ∈ Sk,m.

2. The orbit structure that winching produces on the set Sk,m is the same as

the orbit structure for rotation acting on the set of 2-colored necklaces

with k white beads and n − k black beads, and hence independent of

choice of ν.5 (The orbit structure of necklaces if a classical problem in

Combinatorics and the solution is a result of applying Pólya’s Theorem

[11].)

5The definition of rotation acting on the set of 2-colored necklaces is presented in
Section 2.3.3 (Definition 43).
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3. The following functions (and any linear combination of them) are ho-

momesic in Wν-orbits of Sk,m.

• Let gi,j : Sk,m → R, 1 ≤ i ≤ k and 1 ≤ j ≤ m be defined as

follows:

gi,j(x) =


1, if xi = j

0, otherwise.

(2.19)

For any arbitrary 1 ≤ i ≤ k and 1 ≤ j ≤ m, the function di,j =

gi,j − gk+1−i,m+1−j is 0-mesic in Wν-orbits of Sk,m.

• For an arbitrary 1 ≤ j ≤ m, let fj : Sk,m → R be defined by:

fj(x) =


1, if j ∈ x

0, otherwise.

(2.20)

For any 1 ≤ j ≤ m, the triple 〈Sk,m,Wν , fj〉 is homomesic and

the average of fj along Wν orbits is k/m.

We will prove the above theorem in the next section. Given the bijection

in Corrollary 36, Theorem 32 is a straightforward conclusion of Theorem 37.

In addition, Theorem 31 can be concluded from the above theorem. In fact,

a more general statement is shown in the next section (Corollary 44).

The following variation of winching is called winching with lower bounds

and it corresponds to comotion on J(Ua).
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Definition 35. Consider the sequence of lower bounds l = (l1, . . . , lk), 0 <

l1 < · · · < lk < m+1 and S ′k,m = {(x1, x2, . . . xk) ∈ Sk,m|xi ≥ li}, where Sk,m

is the set defined in Definition 34. For any index i ∈ [k], we define the map

W i : S ′k,m → S ′k,m called winching with lower bounds l on index i by

∀w ∈ S ′k,m W i(w) = max{Wi(w), li},

where Wi is the action of winching on index i (Definition 34). Having Ua be

the poset which is defined in Definition 25, we will have:

Lemma 38. There is a bijection β : J(Ua) → S ′a,2a such that for the lower

bounds l = (1, 3, 5, . . . , 2a−1), we have: for any I ∈ J(Ua), β(σCj(I)) =

W j(β(I)).

Proof. Fix arbitrary a and consider I ∈ J(Ua), we define β(I) = (β1, . . . , βa)

as follows: for any 1 ≤ j ≤ a, βj(I) = |Ca+1−j(I)| + 2j−1. Considering the

ideal I ′ ∈ J(Qa), I ′ = I ∪ (Qa,a − Ua), we will have, β(I) = α(I ′). Hence, β

is an increasing sequence. Since σCj(I) = σCj(I
′)− (Qa,a − Ua) we have,

βj(σCa+j−1
(I)) = |σCa+j−1

(I)|+ 2j − 1 = |σCa+j−1
(I ′)− (Qa,a − Ua)|+ 2j − 1

(2.21)
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⇒ βj(σCa+j−1
(I)) = max{|σCa+j−1

(I ′)| − j + 1, 0}+ 2j − 1

= max{|σCa+j−1
(I ′)|+ j, 2j − 1}

(2.22)

⇒ βj(σCa+j−1
(I)) = max{(Wj(α(I ′)))j, 2j − 1} = max{(Wj(β(I)))j, 2j − 1}.

(2.23)

Corollary 39. Consider any arbitrary permutation ν : [a]→ [a], the action

Tν : J(Ua)→ J(Ua) and I ∈ J(Ua). For any x ∈ Sa,2a, let the lower bounds be

l = (1, 3, . . . , 2a−1). Then: W ν(x) = W ν(a) ◦W ν(a−1) ◦ · · · ◦W ν(1)(x). Bijec-

tion β introduced in 38 satisfies the following property: β(Tν(I)) = W ν(β(I)).

Theorem 40. Let ν be an arbitrary permutation of [a]. Consider W ν :

S ′a,b → S ′a,b with lower bounds (l1, l2, . . . , la). For each i ∈ [a+b] let [i, a+b] =

i, i+ 1 . . . a+b and f : [a+b] → R a function that has the same average in

all [li, a + b] , 1 ≤ i ≤ a. Let g : S ′a,b → R be defined as, g(x) =
∑a

i=1 f(xi).

Then, the triple 〈S ′a,b,W ν , g〉 exhibits homomesy.

We now define the action of winching with zeros to study homomesy

in J(La).
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Definition 36. Let Sn be the set of all n-tuples x = (x1, . . . , xn) such that

for some 0 ≤ k ≤ n x1 = x2 · · · = xk = 0 and 1 ≤ xk+1 < xk+2 · · · < xn ≤ n.

We define the map WZi : Sn → Sn, called winching with zeros on index i to

be

WZi(x) =


xi+1 if xi+1 < min{xi+1, n+1};

xi−1+1 if 1 < i and 0 < xi−1;

0 otherwise.

Lemma 41. There is a bijection γ : J(La) → Sa such that: for any I ∈

J(La), γ(σCj(I)) = WZj(γ(I)).

Proof. Fix an arbitrary natural number a and consider I ∈ J(La). We define,

γ(I) = (γ1, γ2, . . . , γa) as follows: for 1 ≤ j ≤ a, γj(I) = |Ca+1−j(I)|. For any

j1 < j2, we have |Cj1(I)| > |Cj2(I)|. Hence, γ will be an increasing sequence.

Let Cj = {vj, vj+1, . . . va} where for j ≤ i ≤ a, vi = (j, i). Assume

|Cj(I)| = l, which means Cj(I) = {vj, vj+1, . . . vj+l−1}. For n > j + l,

σvn(I) = I. We have three cases: if n = j + l, we will have σvn(I) = I ∪{vn}

if and only (j − 1, j + l) ∈ I i.e. |Cj−1(I)| > l + 1. If Cj+1(I) = 0, σCj(I) =

I − Cj(I). And if σCj(I) > 0, then σCj(I) = I − {vk+1, . . . , vj+l−1}, where

k = |Cj+1(I)|. Letting σCj(I) = K, we will have:
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Cj(K) =



Cj(I) ∪ {vj+l}, if |Cj−1(I)| > l+1.

∅ if |Cj−1(I)| ≤ l + 1

,and |Cj+1(I)| = 0.

Cj(I)− {vk+1, vk+2, . . . , vj+l−1}, otherwise.

k = |Cj+1(I)| > 0

(2.24)

|Cj(K)| =



l + 1, if |Cj−1(I)| > l+1.

0 if |Cj−1(I)| ≤ l + 1, and |Cj+1(I)| = 0.

k + 1, otherwise.

k = |Cj+1(I)| > 0

(2.25)

γj(K) =


γj(I) + 1, if γj+1(I) > l+1.

0 if γj+1(I) ≤ l + 1 and γj−1(I) = 0.

γj−1 + 1, otherwise.

(2.26)

⇔ γa+1−j(σCj(I)) = WZ a+1−j(γ(I)). (2.27)
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Corollary 42. Consider any arbitrary natural number [n] and permutation

ν on n, the action Tν : J(La) → J(La), and I ∈ J(La). For any x ∈ Sa,

we will have: WZν(x) = WZν(a) ◦WZν(a−1) ◦ · · · ◦WZν(1)(x). The bijection γ

introduced in 41 satisfies the following property: γ(Tν(I)) = WZν(γ(I)).

Theorem 43. Consider an arbitrary natural number n and an arbitrary

permutation ν of [n]. With WZν : Sn → Sn defined as above we will have,

1. WZ2n
ν (x) = x for all x ∈ Sn.

2. For an arbitrary 1 ≤ j ≤ n, let fj : Sn → R be defined by:

fj(x) =


1, if j ∈ x

0, otherwise.

(2.28)

The triple 〈Sn,WZν , fj〉 is homomesic and the average of fj along WZν-

orbits is 1/2. Moreover, any linear combination of fjs is homomesic in

WZν-orbits of Sn.

We will prove the above theorem in Section 2.3.3. Given the bijection in

Corollary 36, Theorem 34 is a straightforward consequence of Theorem 43.

2.3.2 Some homomesy results in the comotion-orbits

of J(Qa,b), J(La), and J(Ua).

The following homomesy results can be easily verified using Theorem 32.
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Corollary 44. Let P be Qa,b or La. Consider an arbitrary natural number

a, an arbitrary permutation ν, and Tν : J(P) → J(P) as defined in 33.

We define the size function, f : J(P) → R as, ∀I, f(I) = |I|. The triple

〈J(P), Tν , f〉 is homomesic for any choice of ν .

Proof. For P = Qa,b, f =
∑a

i=1 i si− a(a+ 1)/2. For P = La, f =
∑a

i=1 i si.

In both cases f is a linear combination of fi using Theorems 32 and 34 we

will have the result.

Corollary 45. Consider the lattice Qa,b and an arbitrary permutation ν of

[a]. Let x ∈ [a]× [b]. We define the antipodal function A : [a]× [b]→ [a]× [b]

by A(x) = y where x = (i, j)⇔ y = (a− i+1, b−j+1). For I ∈ J(Qa,b) and

x ∈ [a]× [b], we define the characteristic function II(x) : [a]× [b] → {0, 1}s

follows:

II(x) =


1 if x ∈ I

0 otherwise

(2.29)

For any arbitrary x ∈ [a] × [b] let h : J(Qa,b) → {0, 1,−1} be given by

h(I) = II(x)− (1− II(A(x))). Then h is 0−mesic in Tν−orbits of J(Qa,b).

In other words, we have central antisymmetry, i.e. the average of number

of ideals that contain x is equal to the number of ideals that do not contain

A(x).

Proof. Consider arbitrary I ∈ Qa,b and x = (x1, x2) ∈ [a]× [b]. Then
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II(x) = 1⇔ (x1, x2) ∈ I ⇔ |Cx1(I)| ≥ x2

⇒ II(x) =
∑b

j=x2
gx1,j.

(2.30)

Similarly,

1− II(A(x)) = 1⇔ (a− x1 + 1, b− x2 + 1) /∈ I ⇔ |Ca−x1+1(I)| < b− x2 + 1

⇔

|Ca−x1+1(I)| ≤ b− x2 ⇒ 1− II(A(x)) =
∑b−x2

j=0 ga−x1+1,j =
∑b

j=x2
ga−x1+1,b−j.

(2.31)

By Equations 2.30 and 2.31, we have hx(I) =
∑b

j=x2
gx1,j − ga−x1+1,b−j.

Employing Theorem 32 we deduce that hx is 0−mesic for any arbitrary x ∈

[a]× [b].

Corollary 46. Let P be one of Qa or Ua. Consider arbitrary I ∈ J(P).

We denote the rank-alternating cardinality of I by R(I) and we define it

as R(I) =
∑

(i,j)∈I(−1)i+j. The triple 〈J(P), Tν ,R〉 is homomesic for any

arbitrary permutation ν of [a].

Proof. We will first consider the case when I ∈ J(Qa,b). In this case we have:
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2 R(I) =
∑

x=(i,j)∈P(−1)i+jII(x)

=
∑

x=(i,j)(−1)i+jII(x) +
∑

x=(i,j)(−1)i+jII(x)

⇒ 2 R(I) =
∑

x=(i,j)∈X (−1)i+jII(x) + (−1)2a−(i+j)+2II(A(x))

=
∑

x=(i,j)∈X (−1)i+jh(x) + 1.

(2.32)

In the case where I ∈ J(Ua) we have:

R(I) = (−1)a+1
∑

i;|Ci|odd

1.

We define the function f : N→ {0, 1} as follows: f(x) = 1 iff x odd, f(x) =

0 otherwise. Note that the average of f in any [i, 2a] that i is odd is equal to

1/2. Therefore, by Theorem 33 we will have the result.

2.3.3 Homomesy in winching

In this section we will prove Theorems 37, 40, and 43. The concepts of tuple

board and snake are the key definitions of this section, and they help us

understand the orbit structure and homomesy in winching.

Fix k, for arbitrary ν a permutation of [k], let Fν be one of Wν , W ν or

WZ ν . Let S = Sk if F = WZ ν and S = Sk,m otherwise. We define a tuple

board as follows:
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row 1 (x1) x1
1 . . . x1

k

row 2 (x2) x2
1 . . . x2

k

row 3 (x3) x3
1 . . . x3

k

. . . . . . . . . . . .

. . . . . . . . . . . .

Figure 2.3: A tuple board.

Definition 37. Consider x ∈ S and ν a permutation of [k]. We write

x,Fν(x),F2
ν (x), . . . in separate, consecutive rows as depicted below. Let

TB(x) = [x1, x2, . . . ] be such a table, where TB(i, ·) = xi = (xi1, . . . , x
i
k) and

xi = F i−1
ν (x). We will have a board looking as follows:

TB(x) is called the tuple board of x. Since Fν is a permutation, there

is some n such that Fνn+1(x) = x. Therefore, we can also define a cylinder

corresponding to the orbit containing x:

Consider O, an Fν-orbit of S which is produced by applying Fν consecu-

tively to x. We define the tuple cylinder TS(O) to be the cylinder that is

produced by attaching the first and the n+1st row of TB(x). Since O is an

orbit it is more natural to think of a tuple board as a cylinder. We will use

the terms interchangeably in this text.

Notice that any cell in a tuple board contains a number from the set

{0, 1, 2, . . . ,m}. In what comes in the following we will introduce the notion

of snakes. Given a tuple board T , any snake in it, is a sequence of adjacent

cells in T that contain the numbers 1, 2, . . .m. The mathematical definition

of a snake comes in the following:
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Definition 38. For arbitrary ν = (ν1, ν2, . . . , νk) a permutation of [k] and

x ∈ S, let TB = TB(x) be the tuple board of x as defined in Definition

37. Considering T = {TB(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ k}, we define a snake

s = (sf , sf+1, . . . , st) as follows: s is a maximal sequence of sis such that

each si is a cell in the tuple board containing i, and for i > f , si =M(si−1),

where M is defined as follows:

M(T (i, j)) =



T (i+1, j) if T (i+1, j) = T (i, j) + 1.

T (i, j+1) if T (i, j+1) = T (i, j) + 1,

T (i+1, j) 6= T (i, j) + 1,

and ν(j) < ν(j + 1).

T (i+1, j+1) if T (i+1, j+1) = T (i, j) + 1,

T (i+1, j) 6= T (i, j) + 1,

and ν(j) > ν(j + 1).

(2.33)

Definition 39. Consider T = TB = [x1, x2, . . . , xn] as defined previously for

x ∈ S. In what follows row numbers in a tuple board are understood modulo

n.

Consider s a snake in T . We define the snake map S, a function that

associates any snake with an element in Nk as follows: for an arbitrary snake

s, S(s) = (c1, c2, . . . , ck), where cj = |{i|T (i, j) ∈ s}|.
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. . . . . . . . . . . . . . .
1 2 ? ? ?
? 3 ? ? ?
? 4 5 ? ?
? ? 6 ? ?
? ? 7 ? ?
? ? ? 8 9
? ? ? ? 10
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
? 4 ? ? ?
? ? 5 ? ?
? ? 6 ? ?
? ? 7 ? ?
? ? 8 9 10
? ? ? ? ?
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

A tuple board corresponding to Wν A tuple board corresponding to Wν

x ∈ S5,10 and with lower bounds (2, 4, 6, 7, 8).
ν = (1, 2, 4, 3, 5). x ∈ S5,10 and ν = (1, 3, 2, 4, 5).
The snake map is (1, 3, 3, 1, 2). The snake map is (0, 1, 4, 1, 1).

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
0 1 ? ? ?
? ? 2 ? ?
? ? 3 4 5
? ? ? ? ?
? ? ? ? ?
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

A tuple board corresponding
to W Zν . x ∈ S5 and
ν = (1, 3, 2, 4, 5)
The snake map is (0, 1, 2, 1, 1).

Figure 2.4: Tuple boards and snakes corresponding to different variations of
winching.
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2.3.4 Proof of Theorem 37

In this subsection we prove Theorem 37.

Definition 40. Let W̄i : Sk,m → Sk,m be the following map: ∀x = (x1 . . . xk) ∈

Sk,m, W̄i(x) = y = (y1, y2, . . . , yk) where ∀j 6= i, yj = xj, and

yi =


xi+1−1, if xi = xi−1 + 1.

xi−1, otherwise.

(2.34)

Note that ∀x ∈ Sk,m, W̄i ◦ Wi(x) = x. We call W̄i inverse winching at

index i.

Definition 41. For ν an arbitrary permutation of [k], W̄ν : Sk,m → Sk,m is

defined by W̄ν = W̄ν(1)◦W̄ν(2)◦· · ·◦W r
ν(k) and we have ∀x ∈ Sk,m, W̄ν(Wν(x)) =

x.

Lemma 47. Any snake in a tuple cylinder TS(O) (where O is a Wν-orbit

of Sk,m) is of length m, starts in the first column of the cylinder with s1, and

ends in the last column of the tuple cylinder with sm.

Proof. Consider some x ∈ O and a snake s in the tuple board T = TB(x) =

[x1, . . . , xn]. We assume that s = (sf , . . . , st). Having, xi+1 = Wν(x
i), it

is easy to verify that unless t = m, we can find a cell in T to expand s.

Similarly, since xi−1 = W̄ (xi). If ν(j) < ν(j + 1), we can see: unless f = 1,

the snake s can be expanded.
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Definition 42. LetH : [m][k] → [m][k] be defined as follows: ∀x = (x1, . . . , xk),

H(x) = y = (y1, . . . , yk) where ∀1 ≤ i < k, yi = xi+1 and yk = x1. We call H

the left shift operator.

Lemma 48. Let (p, 1) and (q, 1) (p < q) be two cells of tuple board T with

value 1, such that there is no p < i < q with T (i, 1) = 1. Consider the snake

sp = (sp1 . . . s
p
m) starting with sp1 = T (p, 1) and S(sp) = cp = (cp1, . . . , c

p
k) its

snake map; and similarly consider the snake sq and its snake map S(sq) = cq

starting at T (q, 1). Then,

• If T (i, j) ∈ sp, we have the following:

– T (i+ 1, j) /∈ sp ⇒ T (i+ 1, j) ∈ sq.

– If j > 1 then, T (i, j−1) /∈ sp ⇒ T (i, j−1) ∈ sq.

In other words there is no gap between two consecutive snakes in the

tuple board.

• We have cq = H(cp).

Proof. In order to prove this lemma we fix ν = (1, 2, . . . , k). The proof will

be similar for any arbitrary permutation ν. To make notation simpler we

drop the subscript from W meaning ν = (1, 2, . . . , k).

Suppose that we have the action of winching W(1,2,...,k) on x ∈ Sk,m making

the orbit O in Sk,m. Moreover, suppose the tuple board corresponding to

x (equivalently, the tuple cylinder corresponding to O) is T = TB(x) =

[x1, x2, . . . , xn] where xi = W i−1(x) is as defined in Definition 37.
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Claim 1. cp1 = q − p.

Since T (q, 1) /∈ sp, cp1 ≤ q − p. Moreover cp1 = c1 ≤ q − p implies

spc1+1 = T (p+c1−1, 2) = c1 + 1 meaning xc12 = c1 + 1 and xc11 = c1. We have

xc1+1 = W (xc1), and hence xc1+1
1 = 1, and T (c1 + p, 1) ∈ sq ⇒ c1 + p = q ⇒

c1 = q − p.

Note that Claim 1 implies that there is no gap between the two snakes in

column 1. (See Figure 2.3.4).

Claim 2. cq1 = cp2. For simplicity, we denote cp1 by c1 and cp2 by c2.

We have sp1 = T (p, 1) = 1, sp2 = T (p + 1, 1), . . . , spc1 = T (p + c1 − 1, 1).

(See 2.3.4)

Then, for all 1 ≤ i ≤ c2:

spc1+i = T (p+ c1−1+(i−1), 2)

⇒ spc1+i = T (q+(i−2), 2) (Since q = p+ c1)

⇒ xc1+i−1
2 = c1 + i

(2.35)

We also have

spc1+c2+1 = T (q + c2 − 2, 3) = T (p+ c1 + c2 − 2, 3)⇒ xc1+c2−1
3 = c1 + c2 + 1.

(2.36)

Now consider sq. For all i, 1 ≤ i ≤ c2 − 1 we have that if xc1+i
1 = i,
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xc1+i
1 = i

xc1+i
2 = c1 + i+ 1 > i

W (xc1+i) = xc1+i+1

⇒ xc1+i+1
2 = i+ 1 (2.37)

Therefore,

xc1+1
1 = 1⇒ ∀i, 1 ≤ i ≤ c2 − 1, M(sqi ) = T (q + i, 1)

⇒ ∀1 ≤ i ≤ c2, s
q
i = T (q + i− 1, 1).

(2.38)

From Equation 2.37 we can conclude xc1+c2
1 = c2. By Equations 2.36 and

2.35, and the fact that W (xc1+c2−1) = xc1+c2 , we have xc1+c2
2 = c2 +1. Hence,

M(sqc2) = T (q + c2 − 1, 2).

It follows that cq1 = cp2. Moreover, T (i, 2) ∈ sp ⇒ T (i, 1) ∈ sq and

T (i− 1, 2) ∈ sq for any i (if they are not already in sp).

Very similar to the proof of Claim 2, the following can be proved using

the definitions:

Claim 3. Let r < k with ∀l, 1 ≤ l < r − 1, cql = cpl+1, then cqr = cpr+1.

Having Claims 2 and 3, by employing induction we can show: for all

i, 1 ≤ i < k − 1, cqi = cpi+1, and there is no gap between the snakes in any of

the columns. Furthermore, since all snakes have the same length, cqk = cp1. �

Proof of Theorem 37, Part 1. Consider an n × k tuple board T

such that T = TB(x) and x ∈ Sk,m. Let’s assume that n ≥ m (if n <

m, append enough copies of T to it until n ≥ m). Let s1 be the snake
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that covers T (1, 1), s2 the next snake immediately below s1, and si the

last snake right below si−1. Letting S(s1) = c = (c1, c2, . . . , ck), we have

S(si) = H i−1(c). The numbers in the first column of T will be: x1, x1 +

1, . . . , x1+c1−1, 1, 2, . . . c2, 1, 2, . . . , c3, . . . . Since
∑k

i=1 ci = m, the m + 1st

number in the first column will be x1. Similarly, for each column i, the

m+1st element will be xi. Thus, Wm+1(x) = x.

Corollary 49. The above reasoning also shows there are exactly k snakes

covering an m× k tuple cylinder.

Corollary 50. Fix k and n and ν a permutation of [k]. To each tuple cylinder

T of size k × n corresponding to a Wν−orbit, we can assign a sequence

c = (c1, c2, . . . , ck), satisfying
∑k

i=1 ci = n where T is covered by snakes

s1, s2, . . . , sk and for all 1 ≤ j ≤ k, there is an i such that S(sj) = H i(c).

Since filling the first column of the cylinder will impose the other numbers,

this correspondence is a one to one mapping.

In order to prove Part 2 of Theorem 37, we present the definition of

rotation on 2-colored necklaces with k white beads and n − k black beads,

then we proceed to the proof:

Definition 43. Let Nk,m the set of all k-tuples (x1, x2, . . . , xk) satisfying

1 ≤ x1 < x2 < · · · < xk ≤ m and
∑k

i=1 xi = m. The action of rotation

on this set is defined as R : Nk,m → Nk,m, ∀x ∈ Nk,m, R(x) = y, where
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. . .
row p (x1) 1 . . .
row p+1 (x2) 2 . . .

row p+c1−1 (xc1) c1 c1+1 . . .
row q (xc1+1) 1 c1+2 . . .

row q+c2−1 (xc1+c2−1) c2 c2+1
row q+c2 (xc1+c2) 1 c2+2 . . .

Figure 2.5: S
nakes in a tuple board of W(1,2,...,a).
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y = (x1+1, x2+1, . . . , xk+1) if for all i, xi < m. Or y = (1, x1+1, . . . xk−1+1)

if xk = m.

Lemma 51. There is a map K : Sk,m → Nk,m satisfying ∀x ∈ Sk,m, R(K(x)) =

K(W̄ν(x)).

Proof. Consider arbitrary x ∈ Sk,m and T = TB(x) as in Definition 37.

Let s be the snake covering T (1, 1). For S(s) = (c1, c2, . . . , ck), we define

K(x) = (y1, y2 . . . yk) ∈ Nk,m, where y1 = c1−x1+1, and for 2 ≤ i ≤ k,

yi = yi−1 + ci.

Note that R(K(x)) = K(W̄ (x)) if and only if R(K(W (x))) = K(x). Let

T = TB(x), T ′ = TB(W (x)). Let s be the snake in T covering T (1, 1),

c = S(s), and similarly let s′ be the snake in T ′ covering T ′(1, 1), c′ = S(s′),

and W (x) = z. Either c = c′ and x1 + 1 = z1 or c′ = H(c), x1 = c1, and

z1 = 1.

R(K(z)) = R(y1, y2, . . . yk); y1 = c′1 − z1 + 1, yi+1 = yi + c′i+1 (2.39)

=

 R(y1, y2, . . . yk); y1 = c1 − (x1 + 1) + 1, yi+1 = yi + ci+1

R(y1, y2, . . . yk); yi|y1 = c2 − 1 + 1, yi+1 = yi + ci+2

(2.40)

=

 R(y1, y2, . . . yk); y1 = c1 − x1, yi+1 = yi + ci+1

R(y1, y2, . . . yk); y1 = c2, yi+1 = yi + ci+2(mod k)

(2.41)
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T = TB(2, 3, 4, 6) : T ′ = TB(1, 2, 5, 7) :
2 3 4 6
1 2 5 7
1 3 6 7
2 4 5 6
3 4 5 7
1 2 6 7
1 3 4 5

1 2 5 7
1 3 6 7
2 4 5 6
3 4 5 7
1 2 6 7
1 3 4 5
2 3 4 6

Figure 2.6: The snake covering T (1, 1) has snake map (2,1,3,1). Hence,
K(x) = (1, 2, 5, 6). The snake covering T ′(1, 1) has snake map (1,3,1,2).
Hence, K(W (x)) = (1, 4, 5, 7).

Hence R(K(z)) equals:

 {(y
′
1, y
′
2, . . . y

′
k); y1 = c1−x1+1, yi+1 = yi+ci+1}) because ∀i, yi < m

R({yi|yi = ci+1(1 ≤ i ≤ k − 1), yk = m}) = (1, 1+c2, . . . , 1 +
∑k

i=1 ck)

(2.42)

= K(x) (2.43)

Example 15. Consider x = (2, 3, 4, 6) ∈ S4,7, W (x) = (1, 2, 5, 6). In Figure

5, TB(x) and TB(W (x)) are depicted. We see that K(W (x)) = (1, 4, 5, 7),

and K(x) = (1, 2, 5, 6). Note that R(1, 4, 5, 7) = (1, 2, 5, 6).

Proof of Theorem 37, Part 2. Having Lemma 51, we conclude that

the orbit structures of 〈Nk,m, R〉 and 〈Sk,m,W 〉 are the same.

Lemma 52. Let T be an m × k tuple board. Consider the column r: Tr =

{T (i, r)}. For any 1 ≤ r ≤ k, there exists a one-to-one function F : Tr →
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Tk+1−r, satisfying F(x) = m+1−x.

Proof. For any r, we construct a mapping from {∪rt=1Tt} to {∪kt=k−r+1Tt}.

Consider a number x in Tr. Let it be the lth element in Tr, covered by a

snake having snake map p = (c1, c2, . . . , cr, . . . , ck). Consider the snake with

snake map p′ = (cr+1, . . . , c1, c2, . . . , cr). Let y be the
∑r−1

i=1 ci+lth element

from the end in this snake. Then y = m+1 −
∑r−1

i=1 ci+l = m+1−x. Since∑r−1
i=1 ci+l ≤

∑r
i=1 ci, y will be lying in one of the columns k, . . . k−r+1.

Having the above mapping, we know there is also a one-to-one mapping

in {∪rt=1Tt} → {∪kt=k−r+1Tt} and also in {∪r−1
t=1Tt} → {∪kt=k−rTt}. Hence,

there exists F : Tr → Tk+1−r satisfying the lemma’s conditions.

Proof of Theorem 37, part 3. Considering any m× k tuple cylinder

TS(O), Lemma 48 shows that TS(O) is totally covered by k snakes. There-

fore, each element 1 ≤ i ≤ m appears k times in the cylinder and therefore

the average of fi as defined in Theorem 37 part 3 is independent of O and

equal to k/m.

Lemma 52 shows that the number of js in any column i is equal to the

number of m−j+1’s in column k − i + 1 of TS(O). Thus,
∑

x∈O gi,j(x) =∑
x∈O gk−i+1,m−j+1(x). In other words, ∀1 ≤ i ≤ k, 1 ≤ j ≤ m, gi,j −

gk−i+1,m−j+1 is 0-mesic in W -orbits of Sk,m. �
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2.3.5 Proof of Theorem 40

In this subsection we will prove Theorem 40. Remember the definitions

of tuple board, snake, snake map and the correspondence to the action of

winching with lower bounds.

Definition 44. For the set of lower bounds l = (l1, . . . lk) and i ∈ k, let W̄ i

be defined as: W̄ i : Sk,m → Sk,m; ∀x ∈ Sk,m W̄ i(x) = max{li, W̄i(x)}, where

W̄i is defined as in Definition 40.

Note that ∀x ∈ Sk,m, W̄i ◦Wi(x) = x. We call W̄i inverse winching at

index i.

Definition 45. For arbitrary k and ν a permutation of [k], W̄ν : Sk,m →

Sk,m is defined by W̄ν = W̄ν(1) ◦ W̄ν(2) ◦ · · · ◦ W r
ν(k) and we have ∀x ∈

Sk,m, W̄ν(Wν(x)) = x.

In contrast to what we showed in Lemma 47 for Wν-snakes , W ν-snakes

do not necessarily cover all the numbers 1, 2, . . . ,m. As depicted in Figure 3,

they only contain li, . . .m where li is one of the lower bounds. The following

lemma states this formally:

Lemma 53. Consider a tuple cylinder TS(O) which is constructed by ap-

plying the action of W ν to an arbitrary x ∈ Sk,m. Let the lower bounds for

this action be l = (l1, l2, . . . , lk). Any snake in this tuple board starts in some

column q and with slq , and ends in the last column of the tuple cylinder with

sm.
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Proof. Consider x ∈ O and snake s in the tuple board T = TB(x) =

[x1, . . . , xn]. We assume that s = (sf . . . st). Following the definitions of

winching and snakes, we can see that unless t = m we can append more cells

to the tail of the snake, and if li < f we can append more cells to the head

of the snake.

Proof of Theorem 40.

Any tuple cylinder corresponding to action of W ν can be partitioned to

snakes that start with some slq and end in sm. Therefore, if f is a function

that have the same average on all the numbers contained in any snake, it will

have the same average over all the elements in the tuple cylinders. Therefore,

we will have the result.

�

2.3.6 Proof of Theorem 43

In this section, we will prove Theorem 43. Remember the definitions of tuple

board, tuple cylinder, snake, snake map. Consider x ∈ Sn and the action

of WZ ν for some arbitrary permutation ν of [n]. Note that in the case of

winching with zeros, since we might have a bunch of zeros in our tuple board

the snake does not necessarily start in column 1. However, it is a consecutive

collection of numbers 1, 2, . . . n as was the case in Lemma 47.

Definition 46. Let Mn be the set of all sequences (c1, . . . , cn) that have k
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preceding 0s for some 0 ≤ k ≤ n − 1, ck+1 . . . cn > 0, and
∑n

i=k+1 ci = n.

Let Mn be the set of all possible snake maps. We define the action crawl

C : Mn →Mn such that for any c ∈Mn, C(c) = c′ where,

For 1 ≤ i ≤ n−1,

c′i =

 max{0, ci+1−1} If c1, . . . , ci ≤ 1;

ci+1 otherwise.

And, c′n = n−
∑n−1

i=1 c
′
i.

Lemma 54. Consider some arbitrary ν a permutation of [n]. Let Tm×n be

a tuple board corresponding to WZν, i a row in T containing a 1, and snake

s starting at row i. Let j be the smallest number greater than i containing

another 1, and s′ the snake starting at row j.

1. We have j = i+ 2.

2. Let c = (c1, . . . , cn) be snake map of s and c′ = (c′1, . . . , c
′
n) be snake

map of s′. We have c′ = C(c)

3. Any element of the tuple board is either a 0 or it belongs to a snake.

Proof. For simplicity we assume ν = (1, 2, . . . , n), and drop subscript from

W . The proof any arbitrary permutation ν of [n] will be similar.

Proof of Part 1. First, we argue that c1 ≤ 1. We know that
∑n

i=1 ci =
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n. If c1 6= 0 then we have

c2, . . . , cn > 0⇒ c2 + · · ·+ cn ≥ n−1⇒ c1 ≤ n− (n−1) = 1.

Since there is a 1 in row i if T (i, 1) = 0, T (i, 2) = 0 or T (i, 2) = 1. In

both cases, applying winching will derive, T (i+1, 1) = 0. If T (i, 1) = 1

since c1 ≤ 1 we have T (i, 2) = 2, and T (i+1, 1) = 0. Thus, in both cases

T (i+1, 1) = 0. Consider the first column where s turns down and let it

be column j. We have, c1, . . . , cl−1 ≤ 1, and T (i, l) + 1 = T (i+1, l). Note

that for any 1 ≤ k ≤ l, T (i, k) = 0 or T (i, k) = T (i, k−1) + 1. Hence,

applying WZ to y = T (i, .) will result in T (i+1, k) = 0 for 1 ≤ k ≤ l−1,

and T (i+1, l) > 1. Since the rest of entries in row i+1 will be in increasing

order, there will not be any 1 in this row. In the i + 2nd row, we will have

T (i+2, k) = 0 for 1 ≤ k ≤ l−2, and T (i+2, l−1) = 1. As a result, j = i+ 2.

Proof of Part 2. As we argued in part 1, s′ starts at T (i+2, l−1).

Since elements of s and s′ will be nonzero from this point to the right then

by the same argument presented for regular winching in the proof of Lemma

48) we can show the snakes will move in parallel to each other. Note that in

row i+1 we have zeros until we get to T (i+1, l). In row i+2 we have zeros in

T (i+2, 1), . . . , T (i+2, l−2), i.e. c′1 = · · · = c′l−2 = 0. At column l−1, s′ will

start and move parallel to s but there is a zero between s and s′ in column

l−1. Therefore, c′l−1 = cl − 1, and there is no zero between the remaining

part of s and s′, thus c′k = ck+1, for l ≤ k ≤ n−1. The rest of s′ will continue
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in column n.

Proof of Part 3. It is clear from the above argument that the space

between the initial segments of any two snakes is filled with zeros.

Lemma 55.

For any c ∈Mn we have, Cn(c) = c.

We will need the following definitions and lemmas to prove Lemma 55.

Definition 47. Consider the set Mn. We define the one-to-one map F :

Mn → {0, 1}2n as follows:

for all c ∈Mn, F(c) = b = (b1, . . . , b2n) where for 1 ≤ i ≤ n,

bi =

 1 If ∃k; c1+ . . .+ck = i;

0 Otherwise.

And, for n < i ≤ 2n, bi = ¬bi−n+1.

Lemma 56. F is one-to-one.

Proof. Assume F(x) = F(y) = w, and let j be the smallest index where

wj = 1. We have x1 = y1 = j. The next nonzero index will determine that

x2 = y2 and likewise, we can verify that all entries of x and y are equal.

Definition 48. Let Bn ⊂ {0, 1}2n be the set of all b ∈ {0, 1}2n such that

for all, 1 ≤ i ≤ n, bi = ¬bn+i. We define the action of rotation R : B → B

on this set as follows: Partition b into maximal blocks of 1k0, remove the

leftmost block, and put it on the right.
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Example 16. Let b = (110010001101). The partitioning of b will be (110.0.10.0.0.110.1).

Therefore, R(b) = (0.10.0.0.110.1.110).

Lemma 57. For c ∈Mn, we have F(C(c)) = R(F(c))

Proof. Consider an arbitrary c = (c1, . . . , cn) ∈ Mn. Let’s say we have c1 =

· · · = ck−1 = 0, and ck is the leftmost nonzero element in c. Consider the

set A = {a1 = ck, a2 = ck+ck+1, . . . , an−k =
∑n

i=k ci}. Let C (c) = c′ and

b = (b1, . . . , bn), the binary word representing A. In other words for all

a, a ∈ A ⇔ ba = 1.

Similarly, let A′ = {ck′ , ck′+ck′+1, . . . ,
∑n

i=k′ c
′
i} where k′ is the leftmost

nonzero element in c′ and b′ be A′s binary representation.

According to the definition of crawl, we know that, if ck = · · · = cl−1=1,

we will have c′k−1, . . . , c
′
l−2 = 0 and c′l−1 = cl−1, where l is the leftmost ele-

ment greater than 1. This means that if have a1 = 1, a2 = 2, a3 = 3, . . . al−1 =

l, they should be removed from A to make A′ . In other words, any set of

consecutive elements starting from a 1 will be removed in A′. Moreover, cl

will be decremented which means a1 and the rest of the elements in A will be

decreased by l except the last one which should always be an n. Now, let’s

see how b will change accordingly. We remove consecutive elements starting

with a 1 from A which means we remove the preceding 1s from b until we hit

a 0. All the other elements will be decreased by l which means they should

be shifted to left by l positions. This is equivalent to removing the first block

from b. Now, we need to add b′n−l+1, . . . , b
′
n−1 = 0. And b′n = 1 because c′n

should be increased by l to make the length of the snake equal to n. This
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whole process is removing the leftmost block and adding its negation to the

right, which is equivalent to a rotation of a block in F(c).

Lemma 58. ∀x ∈ Bn, Rn(x) = x.

Proof. Consider any arbitrary x, any block in x has a single 0. Moreover,

the number of zeros in x is n. Therefore, after n rotations x will get back to

its initial state.

Proof of Lemma 55. From Lemma 58 and 57 and the fact that F is a

one-to-one function we have, ∀c ∈Mn, Cn(c) = n.

Proof of Theorem 43 Part 1. By employing Lemma 54 we can verify

that the snakes appear in alternating rows. By Lemma 55 we know that each

snake gets back to itself after n crawls. Thus, T (1, .) = T (2n+1, .) where T

is a tuple board corresponding to WZ, and WZ2n(x) = x.

�

Proof of Theorem 43 Part 2. Part 2. Using Lemma 54 part 3 we

know that half of any tuple board is filled with zeros, and the rest is filled by

equal repetitions of numbers 1 to n. In addition, there are n snakes in any

tuple board and in any snake j appears once and only once. Therefore, each

element will appear n times in the tuple board and the average of fj = 1/2

for each j.
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2.4 Expected Jaggedness of Ordered Ideals

Recall the definition of Qa,b (Definition 25) from Section 2.3, and consider

J(Qa,b). We define a probability distribution on this set as follows:

Definition 49. An ideal occurs with probability proportional to the number

of a × b standard Young tableaux6 with which it is compatible. (We say a

path s is compatible with a tableau T if all the labels of T northwest of s are

smaller than all of the labels of T southeast of s. We use English notation

throughout.) We will call this distribution µlin, the linear distribution on

lattice paths, since it comes from linear orderings of the ab boxes in the grid.

Example 17. The following picture shows the six lattice paths in a 2 × 2

grid occur in µlin with the probabilities shown below:

1/5 1/5 1/10 1/10 1/5 1/5

Note that each ideal we can assign a lattice path (presenting its border).

We define the jaggedness of a lattice path to be equal to the number of turns

in the lattice path:

Definition 50. The jaggedness of an order ideal I ∈ J(P), denoted jag(I),

is the total number of elements p ∈ P which can be toggled into I or out of

I.
6See Appendix 2.5 for an introduction to Young tableaux.
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We define, for each p ∈ P , two indicator random variables T +
p , T −p :

J (P ) → R that record whether p can be toggled in (respectively toggled

out) of an order ideal. Explicitly, for I ∈ J(P), we define

T +
p (I) :=


1 if p can be toggled in to I,

0 otherwise

,

T −p (I) :=


1 if p can be toggled out of I,

0 otherwise.

These random variables are highly related to Striker’s toggleability [48]. In-

deed, her toggleability statistic Tp simply decomposes as Tp = T +
p −T −p . Note

furthermore that jag =
∑

p∈P (T +
p + T −p ). Here, we will show how certain

conditions on Tp imply conditions on jag, as in the following main definition

of the section.

Definition 51. Let µ be a probability distribution on J(P). Given an ele-

ment p ∈ P , we say that µ is toggle-symmetric at p if

Prµ( p can be toggled in to I) = Prµ( p can be toggled out of I).

Equivalently, µ is toggle-symmetric at p if

Eµ(Tp) = Eµ(T+
p )− Eµ(T−p ) = 0.
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We say that µ is toggle-symmetric if it is toggle-symmetric at every p ∈ P .

We would like to introduce toggle-symmetric probability distributions as

an interesting class of distributions on order ideals of posets. Throughout,

we fix a poset P with n = |P |.

We may ask: what is the expected jaggedness of a lattice path, chosen

according to µlin? The answer is surprisingly simple. The following theorem

appeared in [49]:

Theorem 59. ([49]) The expected jaggedness of a lattice path in an a × b

grid, chosen under the distribution µlin, is exactly 2ab/(a+b), the harmonic

mean of a and b.

The purpose of this chapter is to give a generalization of Theorem 59,

in particular explaining the seeming coincidence above, and putting it in its

proper combinatorial context: order ideals in arbitrary posets, and toggle-

symmetric probability distributions on them. This last is a class of probabil-

ity distributions that we would like to put forth as an interesting property

to study, especially in relation to the developing area of dynamical algebraic

combinatorics. We define toggle-symmetric distributions on order ideals of

posets. The word “toggle” refers to the procedure of adding or removing

an element from a set if it is permissible to do so. The term was coined by

Striker-Williams [48]. Our results have direct applications to homomesy re-

sults for order ideals under special compositions of toggles, as we will discuss.
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In Section 2.4.1, we prove our main result: a formula for expected jagged-

ness that applies to all skew Young diagrams, not just rectangles, and any

toggle-symmetric distribution. Here is our main theorem:

Theorem 60. Let σ be a connected skew shape with height a and width b.

Let µ be any toggle-symmetric probability distribution on the subshapes of σ.

Then the expected jaggedness of a subshape of σ with respect to µ is

2ab

a+ b

1 +
∑
c∈C(σ)

δ(c)Prµ(c)

 . (2.44)

Here C(σ) is the set of outward corners of σ, Prµ(c) is the probability accord-

ing to µ that the outward corner c is included in a subshape (a.k.a. lattice

path), and δ(c) is a notion of signed displacement that we will define in

Section 2.4.1. For now, the main point is that the expected jaggedness can

be calculated as the harmonic mean of a and b, plus a sum of correction

terms that can be completely understood in terms of µ and σ. (When σ is a

rectangle, there are no correction terms and (2.44) gives the harmonic mean

exactly, for any toggle-symmetric distribution.)

There are several key differences between Theorem 60 and the correspond-

ing result [49, Theorem 2.8] of Chan et al. First, our theorem applies to any

toggle-symmetric distribution. Moreover, it is fully symmetric with respect

to interchanging rows and columns, which is not the case in [49]. Indeed, our

result makes explicit that the only dependence is on the outer corners and

their displacements. This will allow us to immediately derive that for any
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balanced shape, the expected jaggedness is always the harmonic mean; see

Corollary 64.

We also note that our results, combined with theorems of Striker [48], have

direct applications to homomesy results under the operations of rowmotion

on posets. In particular, they allow us to recover and generalize a theorem of

Propp and Roby [7] on homomesies for antichain cardinalities. We present

an example that illustrates Theorem 60, and then we will proceed to the

proof.

Example 18. Consider the Young diagram shape σ = (3, 1). The seven

subshapes of σ, equivalently the lattice paths in σ, are depicted below. The

numbers below each path indicate that subshape’s jaggedness, along with the

probability of that subshape’s occurrence according to the linear distribution.

Then we can calculate directly that Eµlin
(jag) = 34/15.

(1; 1/5) (2; 1/15) (3; 2/15) (3; 1/5) (2; 1/15) (3; 2/15) (2; 1/5)

Now, let us use Theorem 60 instead to compute Eµlin
(jag). Note that the

corner c occurring at (1, 1) is the only outward corner of σ. Its displacement

δ(c) is −1/6, as in Definition 53. Finally, we have Prµlin
(c) = 1/3. Plugging
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these values into (2.44) yields

E(jag) = (12/5) (1− 1/6 · 1/3) = 34/15,

as expected.

2.4.1 Proof of Theorem 60.

In this section, we prove a general result giving a formula for the expected

jaggedness of an order ideal in a poset P for any toggle-symmetric distribu-

tion whenever P is the poset corresponding to a skew Young diagram. We

first define the terms that are used in the statement of Theorem 60.

We assume that the reader is familiar with definitions of Young diagram,

Young tableaux, and skew shapes. This definitions are provided in Appendix

2.5.

Let σ = λ/ν be a skew shape. Throughout, we let a denote the height

of σ, i.e., the number of rows in σ, and let b denote the width of σ, i.e., the

number of columns. In order to refer to the boxes of σ and their corners, we

will fix coordinates as follows. Place σ in an a× b rectangle. Our convention

will be that the northwest corner of the rectangle is (0, 0) and the southeast

corner is (a, b). The corners of the boxes of σ are then various lattice points

in this rectangle. Furthermore, we will extend this coordinate system to the

boxes of σ by writing [i, j] for the box whose southeast corner is (i, j). For

example, the upper-leftmost box of a Young diagram is the box [1, 1].
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Figure 2.7: With σ = (3, 3, 1)/(1), we depict (2, 1, 1)/(1) ∈ J (σ) shaded in
yellow and its associated lattice path in red.

Associated to any skew shape σ is a poset Pσ whose elements are the

boxes of σ and with [i, j] ≤ [k, l] if and only if i ≤ k and j ≤ l. The order

ideals in J(Pσ) are subshapes of σ.

We also often identify a subshape ρ/ν ∈ J(Pσ) with its lattice path,

which is the sequence of steps of the form (−1, 0) and (0, 1) connecting the

point (a, 0) to (0, b) (in the coordinate system defined above) given by the

southeast border of ρ. In this way J(Pσ) is in bijection with the set of lattice

paths connecting (a, 0) to (0, b) that stay within the diagram of σ. For an

example of this bijection see Figure 2.7.

Definition 52. Let σ be a skew shape. We say σ is connected if the poset

Pσ is connected. Suppose σ is connected. Then an outward corner of σ is

two consecutive steps along the boundary of σ that do not border a common

box of σ. We say that a corner occurs at the lattice point (i, j) where its two

steps meet. We write C(σ) for the set of outward corners of σ.

Note that because σ is a skew shape, the outward corners of σ are ei-

ther northwest corners or southeast corners, i.e., they comprise part of the

northwest border of σ or the southeast border, respectively.
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Figure 2.8: A diagram explaining our notation for corners. Box [3, 4] of σ is
shaded yellow and the points where corners c ∈ C(σ) occur are marked with
a circle; the points where c ∈ C34(σ) occur are open circles.

The following notation will be convenient for us: given a box [i, j] ∈ σ,

we define Cij(σ) to be equal to the following set:

{corners c ∈ C(σ) occurring strictly northwest or strictly southeast of [i, j]}.

When we say that a corner c occurs “strictly northwest” or “strictly south-

east” of a box [i, j], we mean that it occurs strictly northwest (respectively

strictly southeast) of the center of that box. For example, a corner at the

point (i, j) occurs strictly southeast of the box [i, j]. Figure 2.8 illustrates

our notation for corners.

For c ∈ C(σ) and µ a probability distribution on J(Pσ) we use the nota-

tion Prµ(c) to mean the probability with respect to µ that a subshape of σ,

thought of as a lattice path, includes the two steps of the corner c.

Definition 53. Let σ be a connected skew shape with height a and width b.

The main anti-diagonal of σ is the line joining (a, 0) to (0, b). For (i, j) ∈ R2

let ~d(i, j) denote the vector from (i, j) to the main anti-diagonal of σ (and
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orthogonal to it). For an outward corner c ∈ C(σ) that occurs at (i, j) we

define the displacement of c to be

δ(c) :=


the unique x ∈ R with ~d(0, 0) = x · ~d(i, j) if c is a northwest corner,

the unique x ∈ R with ~d(a, b) = x · ~d(i, j) if c is a southeast corner.

Note that δ(c) is a signed quantity. Explicitly,

δ(c) =


1− i

a
− j

b
if c is a northwest corner,

−1 + i
a

+ j
b

if c is a southeast corner.

In the rest of this section we will prove Theorem 60. In order to that, we

define a set of random variables Rij that we refer to as rooks. The proof of

the main theorem involves strategically placing rooks on our skew shape σ.

Let [i, j] be a box in σ. We write T +
ij and T −ij for the toggle-indicator

random variables T+
[i,j] and T−[i,j] on J(Pσ). We define the rook random vari-

able Rij : J(Pσ)→ R as follows:

Rij :=
∑

i′≤i, j′≤j
[i′,j′]∈σ

T +
i′j′ +

∑
i′≥i, j′≥j
[i′,j′]∈σ

T −i′j′ −
∑

i′<i, j′<j
[i′,j′]∈σ

T −i′j′ −
∑

i′>i, j′>j
[i′,j′]∈σ

T +
i′j′ . (2.45)

The equation defining Rij is complicated and it is best understood by a

drawing as in Figure 2.9. In this figure, we record the coefficients of the terms

T+
i′j′ and T−i′j′ in Rij in the northwest and southeast corners, respectively, of
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Figure 2.9: An example of a “rook” at the box [3, 2].

the box [i′, j′]. The reason we call Rij a rook is explained by the next lemma,

which says that for a toggle-symmetric distribution µ only the toggleability

statistics corresponding to boxes in the same row or column as [i, j] contribute

to the expectation Eµ(Rij).

Lemma 61. Let σ be a skew shape and µ a toggle-symmetric probability

distribution on J(Pσ). Then for any [i, j] ∈ σ we have

Eµ(Rij) =
∑

[i′,j]∈σ

Eµ(T +
i′,j) +

∑
[i,j′]∈σ

Eµ(T +
i,j′).

Proof. Expanding formula (2.45),

Rij =
∑

i′<i, j′<j
[i′,j′]∈σ

T +
i′j′ −

∑
i′<i, j′<j
[i′,j′]∈σ

T −i′j′ +
∑

i′>i, j′>j
[i′,j′]∈σ

T +
i′j′ −

∑
i′>i, j′>j
[i′,j′]∈σ

T −i′j′

+
∑

[i,j′]∈σ T
+
i′,j +

∑
[i,j′]∈σ T

+
i,j′ .
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Figure 2.10: This figure illustrates how each subshape may contribute
to E(Rij). Here [i, j] = [3, 2] and the points where corners c ∈ Cij occur
are marked with a circle. Two lattice paths ρ1, ρ2 ∈ J(Pσ) are drawn in blue
and red; we can verify that Rij(ρk) = 1 + #Cij(ρk) for k = 1, 2.

Since µ is a toggle symmetric distribution, by linearity of expectation we get

Eµ

 ∑
i′<i, j′<j
[i′,j′]∈σ

T +
i′j′ −

∑
i′<i, j′<j
[i′,j′]∈σ

T −i′j′

 = 0;

Eµ

 ∑
i′>i, j′>j
[i′,j′]∈σ

T +
i′j′ −

∑
i′>i, j′>j
[i′,j′]∈σ

T −i′j′

 = 0.

Hence the claimed expression for Eµ(Rij) indeed holds.

Lemma 62. Let σ be a connected skew shape and µ a probability distribution
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on J(Pσ). Then for any [i, j] ∈ σ we have

Eµ(Rij) = 1 +
∑

c∈Cij(σ)

Prµ(c).

Proof. Let ρ ∈ J(Pσ). Let Cij(ρ) be the set of all corners c ∈ Cij(σ) included

in the lattice path ρ. We observe that Rij(ρ) = 1 + #Cij(ρ). This obser-

vation is again best understood by a picture, as in Figures 2.9 and 2.10. In

Figure 2.9, the set Cij(σ) is empty, and the claim that Rij(ρ) = 1 for any

lattice path ρ drawn through the skew shape corresponds to the observation

that the turns in ρ always have total weight 1 (with the weights as drawn).

As usual, we identify lattice paths and subshapes.

The more general formula Rij(ρ) = 1 + #Cij(ρ) then corresponds to the

fact that any outward corner c ∈ Cij(σ) used by ρ is no longer labeled −1,

simply because there is no box at c to be toggled in or toggled out. This is

illustrated in Figure 2.10.

But

Eµ(#Cij(ρ)) =
∑

c∈Cij(σ)

Prµ(c)

and hence the claimed expression for Eµ(Rij) indeed holds.

Lemma 63. For any connected skew shape σ with height a and width b there

exist integral coefficients rij ∈ Z for [i, j] ∈ σ such that

• for all 1 ≤ i ≤ a,
∑

[i,j′]∈σ ri,j′ = b;

• for all 1 ≤ j ≤ b,
∑

[i′,j]∈σ ri′,j = a.
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Proof. If we interpret the coefficient rij as the number (possibly negative)

of rooks placed at box [i, j] ∈ σ, the equalities say that each row should

be attacked by a total of b rooks and each column by a total of a rooks.

There are many possible such placements. Here is one. Let B := {[i, j] ∈ σ :

[i+1, j+1] /∈ σ} denote the set of boxes in the southeast border strip of σ.

We claim there is a unique choice of rij satisfying the desired equalities with

rij = 0 if [i, j] /∈ B. Let b1, b2, . . . , bm be the elements of B in the unique order

so that b1 is southwesternmost, bm is northeasternmost, and bk is adjacent

to bk+1 for all 1 ≤ k < m. Then for each 1 ≤ k ≤ m, exactly one of the

following holds:

1. bl is not in the same row as bk for all l > k;

2. bl is not in the same column as bk for all l > k.

Thus for k = 1, . . . ,m with bk = [ik, jk], we can choose the correspond-

ing coefficients rik,jk in order: when we are in case (I) we choose rik,jk so

that
∑

[ik,j]∈σ rik,j = b; when we are in case (II) we choose rik,jk so that∑
[i,jk]∈σ ri,jk = a. For each row or column, there is at least one bk in that

row or column, so in the end all the equations will be satisfied. The result is

an assignment of coefficients that looks like Figure 2.11.

Proof of Theorem 60. Let rij be the coefficients from Lemma 63. Note that

the sum of all coefficients is
∑

[i,j]∈σ rij = ab. Also, for any [i′, j′] ∈ σ the sum

of coefficients in its row and its column is
∑

[i,j]∈σ
i=i′

rij +
∑

[i,j]∈σ
j=j′

rij = a + b.
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6 4 −3

9 −2

4 4 4 −5

Figure 2.11: An example of a rook placement that satisfies Lemma 63.
Here a = 4 and b = 7; the southeast border strip is shaded in yellow.

Using Lemma 61, we get

E

∑
[i,j]∈σ

rijRi,j

 =
∑

[i,j]∈σ

rij

 ∑
[i′,j]∈σ

E(T +
i′,j) +

∑
[i,j′]∈σ

E(T +
i,j′)

 (2.46)

=
∑

[i,j]∈σ

 ∑
[i′,j]∈σ

ri′,j +
∑

[i,j′]∈σ

ri,j′

E(T +
i,j )

= (a+ b)
∑

[i,j]∈σ

E(T +
i,j )

On the other hand, by Lemma 62,

E

∑
[i,j]∈σ

rijRi,j

 =
∑

[i,j]∈σ

rij

1 +
∑

c∈Cij(σ)

Prµ(c)

 (2.47)

=
∑

[i,j]∈σ

rij +
∑

[i,j]∈σ

rij
∑

c∈Cij(σ)

Prµ(c)

= ab+
∑
c∈C(σ)

 ∑
[i,j]∈σ with
Cij(σ)3c

rij

Prµ(c)

As depicted in Figure 2.12, for any corner c ∈ C(σ) occurring at (x, y) and
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for any [i, j] ∈ σ, we have c ∈ Cij(σ) if and only if (x ≥ i and y ≥ j) or

(x < i and y < j). Let c ∈ C(σ) be a southeast corner occurring at (x, y).

We have

∑
[i,j]∈σ with
Cij(σ)3c

rij =
∑

[i,j]∈σ

rij −
∑

[i,j]∈σ
i≤x;j>y

rij −
∑

[i,j]∈σ
i>x;j≤y

rij

= ab− (a− x)b− (b− y)a

= ab
(x
a

+
y

b
− 1
)
.

With similar calculations we can see for any c ∈ C(σ) a northeast corner

occurring at (x, y) we also have
∑

[i,j]∈σ
Cij(σ)3c

rij = ab(1− x
a
− y

b
). In other words,

for c ∈ C(σ), ∑
[i,j]∈σ
c∈Cij(σ)

rij = ab · δ(c). (2.48)

Putting equations (2.46), (2.47) and (2.48) together yields

(a+ b)
∑

[i,j]∈σ

E(T +
i,j (σ)) = ab

1 +
∑
c∈C(σ)

δ(c)Pr(c)

 .

But since µ is a toggle-symmetric measure, Eµ(jag) = 2
∑

[i,j]∈σ E(T +
i,j (σ)).

Hence the claimed formula for Eµ(jag) holds.

Let us say a skew shape σ is balanced if it is connected and δ(c) = 0

for all c ∈ C(σ). In other words, a connected skew shape is balanced if all

outward corners occur at the main anti-diagonal. An immediate corollary of
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Figure 2.12: In the above diagram, let X1 be the set of pink boxes and X2 the
set of dark red boxes. Let c1 be the corner occurring at (2, 5) (in pink) and c2

the corner at (3, 2) (in dark red). Then [i, j] ∈ X1 if and only if c1 ∈ Ci,j(σ)
and [i, j] ∈ X2 if and only if c2 ∈ Ci,j(σ).

(A) (B) (C) (D)

Figure 2.13: Examples of balanced skew shapes.

our main theorem is the following:

Corollary 64. Let σ be a balanced skew shape with height a and width b.

Let µ be any toggle-symmetric probability distribution on J(Pσ). Then the

expected jaggedness of a subshape in J(Pσ) with respect to the distribution µ

is 2ab
a+b

.

Some examples of balanced skew shapes are depicted in Figure 2.13.

They include rectangles like (A), staircases like (B), “stretched” staircases

(i.e., staircases where we have replaced each box by a k×l rectangle) like (C),

as well as other more general shapes like (D). There are a total of 3gcd(a,b)−1

balanced skew shapes with height a and width b for any a, b ≥ 1.
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Along the same lines, say that a skew shape σ is abundant if all of its

northwest corners occur on or above its antidiagonal and all of its southeast

corners occur on or below its antidiagonal. Let us say that σ is deficient if

all of its northwest corners occur on or below the antidiagonal and all of its

southeast corners occur on or above the antidiagonal. Then we immediately

get:

Corollary 65. Let σ be a skew shape of height a and width b and µ be any

toggle-symmetric probability distribution on J(Pσ).

• If σ is abundant, then the expected jaggedness of a subshape in J(Pσ)

with respect to the distribution µ is at least 2ab/(a+b).

• If σ is deficient, then the expected jaggedness of a subshape with respect

to µ is at most 2ab/(a+b).

2.4.2 Connections to antichain cardinality homomesy

In this subsection we give an application of our main result to the study of

homomesies in combinatorial maps. Recall the definitions of rowmotion, and

homomesy from Section 2.3.

Let P be a poset. To any I ∈ J(P) we associate the antichain A(I)

of P consisting of the maximal elements of I. The antichain cardinality

statistic is the map f : J(P)→ R given by f(I) = |A(I)|.
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Corollary 66. If P is the poset associated to the skew shape σ and µ is any

toggle-symmetric distribution, then

Eµ(f(I)) =
ab

a+ b

1 +
∑
c∈C(σ)

δ(c)Prµ(c)

 .

Proof. This result was already obtained in the proof of Theorem 60. Explic-

itly, the antichain cardinality statistic is just
∑

p∈Pσ T
−
p , so the average of

this statistic is

Eµ(
∑
p∈Pσ

T −p ) =
1

2
(Eµ(

∑
p∈Pσ

T −p ) + Eµ(
∑
p∈Pσ

T +
p ))

=
1

2
Eµ(jag)

where Eµ(
∑

p∈Pσ T
−
p ) = Eµ(

∑
p∈Pσ T

+
p ) thanks to the toggle-symmetry of µ.

Now apply Theorem 60.

Corollary 67. For Pσ the poset corresponding to a balanced skew shape σ

of height a and width b, the antichain cardinality statistic is ab
a+b

-mesic with

respect to the action of rowmotion on J(Pσ).

Proof. Let O ⊆ J(Pσ) be a %-orbit and let µ be the distribution on J(Pσ)

that is uniform on O. By a result of Striker [48] we know that µ is toggle-

symmetric. Thus, by Corollaries 64 and 66 we conclude that Eµ(#A(I)) =

ab
a+b

.
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The above corollary is a result of Propp and Roby [7] if σ has a rectangular

shape, and our Theorem provides another proof to it. For non-rectangular,

balanced σ the homomesy result appears to be new.
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2.5 Conclusion

Remember the butterfly poset K and the set of its ideas J(K) from

Example 11 in Section 2.2. We observed in Section 2.2 that the natural

Markov chain defined by toggling is not rapidly mixing for the butterfly

poset.

Let f : J(K) → R be a function that is homomesic in rowmotion orbits

of Qn,n. We are interested to find the average of f in K. (See Theorem 32,

Section 2.3.)

We have no knowledge whether or not 〈K, %, f〉 exhibits homomesy, and

in fact for particular choices of f , for instance the size of the ideal, we can

observe that it does not. However, looking at the %-orbits of K, we notice

that all the orbits are the same orbits as in Qn,n or in Qm,m except the

one orbit that contains ∅. Let this orbit be O. Applying rowmotion to ∅

repeatedly, we will obtain an orbit of size 2(n + m) − 2. By Theorem 32,

Section 2.3, we know the average of f on other orbits, and also size of the

orbits containing ∅ in Qn,n and Qm,m it remains to find the average of f in

O and we will be able to find the average of f in J(Q). Considering the fact

that |O| is polynomial in n and m, this can be done in polynomial time.

The above example suggests that in cases were calculating the average of

f : S → R is an NP-hard problem, we might be able to use homomesy, and

with a similar approach, simplify S by removing those orbits of it in which

we have some knowledge of the average and then, approximating the average
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of f on remaining parts. Unfortunately, at this point we do not have any

example to which we can apply this idea.
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Integer Partitions, Young

Tableaux, and q−binomials

The contents of this appendix can be found in Richard Stanley’s course:

“Topics in Algebraic Combinatorics”, Chapter 6 (See [59].)

For an integer n, an integer partition of it is λ = (λ1 ≥ . . . ≥ λk) which

is a sequence of weakly decreasing positive integers satisfying n =
∑k

i=1 λi.

Definition 54. A Young diagram is a finite collection of left justified boxes

with the row lengths weakly decreasing. The size of a Young diagram is the

number of boxes in it.

Note that to any integer partition λ there is a Young diagram where λi

is the number of boxes in the ith row.

Given two partitions λ and ν of the numbers ` and n respectively, we say

that ν ⊆ λ if νi ≤ λi for all i. We use the usual convention that λi = 0 if

i is greater than the number of parts of λ. We use English notation when

drawing partitions, so for instance the Young diagram corresponding to the
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partition λ = (4, 3) is

Definition 55. Let ν ⊆ λ be two partitions. The diagram obtained by

subtracting the Young diagram of ν from the Young diagram of λ is called a

skew Young diagram or skew shape. We will write σ = λ/ν for this shape.

A Young diagram or a skew diagram can also be understood as a lattice.

Take the partial order to be: box x is less than box y if and only if x is

located north west of y.

Definition 56. A Young tableau (A skew tableau) is a one to one an assign-

ment of numbers 1, 2, . . . , n to the bode in a Young diagram (skew diagram)

where n is the size of it.

Note that any Young (skew) tableau can be understood as a linear order-

ing of the lattice associated to the corresponding diagram.

The Gaussian binomial coefficients or q-binomial coefficients are polyno-

mials defined in analogy to the binomial coefficients. For r ≤ m they are

defined by:

(
m

r

)
q

=
(1− qm)(1− qm−1) . . . (1− qm−r+1)

(1− q)(1− q2) . . . (1− qr)
. (49)

It is known that the generating function for the number of Young dia-

grams fitting in an m×n box or equivalently the number of integer partitions

having at most n parts each smaller than m equals
(
m
n

)
q
.
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Gaussian binomial coefficients have many properties similar to binomial

coefficients such as the following:

(
m

r

)
q

=

(
m

m− r

)
q

.

(
m

r

)
q

=

(
m− 1

r

)
q

+ qm−r
(
m− 1

r − 1

)
q

.

Proposition 7. If q < 1/2 we will have,

(
m
r

)
q

= (1−qm)(1−qm−1)...(1−qm−r+1)
(1−q)(1−q2)...(1−qr)

=
∏r

i=1 (1− qm−i+1)/(1− qi)

<
∏r

i=1 1/(1− q)

< 2r < (1
q
)r.

Proposition 8. The q-binomial is always a polynomial of q with positive

coefficients. Hence,

q < q′ ⇒
(
m

r

)
q

<

(
m

r

)
q′
. (50)
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