2,622 research outputs found

    Model Prediction-Based Approach to Fault Tolerant Control with Applications

    Get PDF
    Abstract— Fault-tolerant control (FTC) is an integral component in industrial processes as it enables the system to continue robust operation under some conditions. In this paper, an FTC scheme is proposed for interconnected systems within an integrated design framework to yield a timely monitoring and detection of fault and reconfiguring the controller according to those faults. The unscented Kalman filter (UKF)-based fault detection and diagnosis system is initially run on the main plant and parameter estimation is being done for the local faults. This critical information\ud is shared through information fusion to the main system where the whole system is being decentralized using the overlapping decomposition technique. Using this parameter estimates of decentralized subsystems, a model predictive control (MPC) adjusts its parameters according to the\ud fault scenarios thereby striving to maintain the stability of the system. Experimental results on interconnected continuous time stirred tank reactors (CSTR) with recycle and quadruple tank system indicate that the proposed method is capable to correctly identify various faults, and then controlling the system under some conditions

    Decentralized fault-tolerant control of inland navigation networks: a challenge

    Get PDF
    Inland waterways are large-scale networks used principally for navigation. Even if the transport planning is an important issue, the water resource management is a crucial point. Indeed, navigation is not possible when there is too little or too much water inside the waterways. Hence, the water resource management of waterways has to be particularly efficient in a context of climate change and increase of water demand. This management has to be done by considering different time and space scales and still requires the development of new methodologies and tools in the topics of the Control and Informatics communities. This work addresses the problem of waterways management in terms of modeling, control, diagnosis and fault-tolerant control by focusing in the inland waterways of the north of France. A review of proposed tools and the ongoing research topics are provided in this paper.Peer ReviewedPostprint (published version

    Damage Tolerant Active Contro l: Concept and State of the Art

    Get PDF
    Damage tolerant active control is a new research area relating to fault tolerant control design applied to mechanical structures. It encompasses several techniques already used to design controllers and to detect and to diagnose faults, as well to monitor structural integrity. Brief reviews of the common intersections of these areas are presented, with the purpose to clarify its relations and also to justify the new controller design paradigm. Some examples help to better understand the role of the new area

    Plug-and-Play Fault Detection and control-reconfiguration for a class of nonlinear large-scale constrained systems

    Get PDF
    This paper deals with a novel Plug-and-Play (PnP) architecture for the control and monitoring of Large-Scale Systems (LSSs). The proposed approach integrates a distributed Model Predictive Control (MPC) strategy with a distributed Fault Detection (FD) architecture and methodology in a PnP framework. The basic concept is to use the FD scheme as an autonomous decision support system: once a fault is detected, the faulty subsystem can be unplugged to avoid the propagation of the fault in the interconnected LSS. Analogously, once the issue has been solved, the disconnected subsystem can be re-plugged-in. PnP design of local controllers and detectors allow these operations to be performed safely, i.e. without spoiling stability and constraint satisfaction for the whole LSS. The PnP distributed MPC is derived for a class of nonlinear LSSs and an integrated PnP distributed FD architecture is proposed. Simulation results in two paradigmatic examples show the effectiveness and the potential of the general methodology

    Fault estimation and active fault tolerant control for linear parameter varying descriptor systems

    Get PDF
    Starting with the baseline controller design, this paper proposes an integrated approach of active fault tolerant control based on proportional derivative extended state observer (PDESO) for linear parameter varying descriptor systems. The PDESO can simultaneously provide the estimates of the system states, sensor faults, and actuator faults. The L₂ robust performance of the closed-loop system to bounded exogenous disturbance and bounded uncertainty is achieved by a two-step design procedure adapted from the traditional observer-based controller design. Furthermore, an LMI pole-placement region and the L₂ robustness performance are combined into a multiobjective formulation by suitably combing the appropriate LMI descriptions. A parameter-varying system example is given to illustrate the design procedure and the validity of the proposed integrated design approach

    Robust model-based fault estimation and fault-tolerant control : towards an integration

    Get PDF
    To maintain robustly acceptable system performance, fault estimation (FE) is adopted to reconstruct fault signals and a fault-tolerant control (FTC) controller is employed to compensate for the fault effects. The inevitably existing system and estimation uncertainties result in the so-called bi-directional robustness interactions defined in this work between the FE and FTC functions, which gives rise to an important and challenging yet open integrated FE/FTC design problem concerned in this thesis. An example of fault-tolerant wind turbine pitch control is provided as a practical motivation for integrated FE/FTC design.To achieve the integrated FE/FTC design for linear systems, two strategies are proposed. A H∞ optimization based approach is first proposed for linear systems with differentiable matched faults, using augmented state unknown input observer FE and adaptive sliding mode FTC. The integrated design is converted into an observer-based robust control problem solved via a single-step linear matrix inequality formulation.With the purpose of an integrated design with more freedom and also applicable for a range of general fault scenarios, a decoupling approach is further proposed. This approach can estimate and compensate unmatched non-differentiable faults and perturbations by combined adaptive sliding mode augmented state unknown input observer and backstepping FTC controller. The observer structure renders a recovery of the Separation Principle and allows great freedom for the FE/FTC designs.Integrated FE/FTC design strategies are also developed for Takagi-Sugeno fuzzy modelling nonlinear systems, Lipschitz nonlinear systems, and large-scale interconnected systems, based on extensions of the H∞ optimization approach for linear systems.Tutorial examples are used to illustrate the design strategies for each approach. Physical systems, a 3-DOF (degree-of-freedom) helicopter and a 3-machine power system, are used to provide further evaluation of the proposed integrated FE/FTC strategies. Future research on this subject is also outlined

    Distributed L1-state-and-fault estimation for Multi-agent systems

    Full text link
    In this paper, we propose a distributed state-and-fault estimation scheme for multi-agent systems. The proposed estimator is based on an ℓ1\ell_1-norm optimization problem, which is inspired by sparse signal recovery in the field of compressive sampling. Two theoretical results are given to analyze the correctness of the proposed approach. First, we provide a necessary and sufficient condition such that state and fault signals are correctly estimated. The result presents a fundamental limitation of the algorithm, which shows how many faulty nodes are allowed to ensure a correct estimation. Second, we provide a sufficient condition for the estimation error of fault signals when numerical errors of solving the optimization problem are present. An illustrative example is given to validate the effectiveness of the proposed approach

    Fault diagnosis for uncertain networked systems

    Get PDF
    Fault diagnosis has been at the forefront of technological developments for several decades. Recent advances in many engineering fields have led to the networked interconnection of various systems. The increased complexity of modern systems leads to a larger number of sources of uncertainty which must be taken into consideration and addressed properly in the design of monitoring and fault diagnosis architectures. This chapter reviews a model-based distributed fault diagnosis approach for uncertain nonlinear large-scale networked systems to specifically address: (a) the presence of measurement noise by devising a filtering scheme for dampening the effect of noise; (b) the modeling of uncertainty by developing an adaptive learning scheme; (c) the uncertainty issues emerging when considering networked systems such as the presence of delays and packet dropouts in the communication networks. The proposed architecture considers in an integrated way the various components of complex distributed systems such as the physical environment, the sensor level, the fault diagnosers, and the communication networks. Finally, some actions taken after the detection of a fault, such as the identification of the fault location and its magnitude or the learning of the fault function, are illustrated

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)
    • 

    corecore