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Plug-and-Play Fault Detection and Control-reconfiguration
for a Class of Nonlinear Large-scale Constrained Systems

Stefano Riverso, Francesca Boem, Giancarlo Ferrari-Trecate,and Thomas Parisini

Abstract—This paper deals with a novel Plug-and-Play (PnP)
architecture for the control and monitoring of Large-Scale
Systems (LSSs). The proposed approach integrates a distributed
Model Predictive Control (MPC) strategy with a distributed
Fault Detection (FD) architecture and methodology in a PnP
framework. The basic concept is to use the FD scheme as an
autonomous decision support system: once a fault is detected,
the faulty subsystem can be unplugged to avoid the propagation
of the fault in the interconnected LSS. Analogously, once the issue
has been solved, the disconnected subsystem can be re-plugged-in.
PnP design of local controllers and detectors allow these oper-
ations to be performed safely, i.e. without spoiling stability and
constraint satisfaction for the whole LSS. The PnP distributed
MPC is derived for a class of nonlinear LSSs and an integrated
PnP distributed FD architecture is proposed. Simulation results
in two paradigmatic examples show the effectiveness and the
potential of the general methodology.

I. I NTRODUCTION

Nowadays, several man-made systems are characterized by
a large number of states and inputs with a significant spatial
distribution. triggering an increasing interest in the study of
Systems-of-Systems [1] and Cyber-Physical Systems [2]. LSSs
are often modeled as the interaction of many subsystems
coupled through physical variables or communication channels
[3]. When dealing with control of LSSs, centralized control
architectures can be impractical due to computational, com-
munication and reliability limits, and an alternative is offered
by the adoption of decentralized and distributed approaches.
The application domains for which the proposed approach
may result useful are countless (for instance, energy efficient
buildings, power networks, wind farms, cascade river reaches,
etc.).

In the past, several decentralized (De) and distributed (Di)
MPC schemes have been proposed for constrained LSS (see
the recent survey [4] and the references therein, such as [5]).
In the standard MPC control of LSSs, the prediction of the
LSS behaviour is carried out through a nominal model of
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each subsystem and of the local interactions. However, in
several applications, faults and malfunctions may occur thus
possibly causing critical and unpredictable changes in theLSS
dynamics. Hence, there is a need to devise fault diagnosis
schemes (see, for example, [6], [7]) providing on-line the
information about the health of the system and to exploit this
information to reconfigure the controller so as to guarantee
some degree of fault-tolerance (see the seminal paper [8]).
Model-based schemes have emerged as prominent approaches
to fault diagnosis of continuous and discrete-time systems[9].
As for centralized control, centralized FD architectures suffer
of scalability and robustness issues. To overcome these limits,
decentralized and distributed fault-tolerant control andfault
diagnosis algorithms have been proposed (see [10], [11], [12],
[13], [14], [15], [16], [17] as examples).

In this paper, the integration of a DiMPC scheme and
a distributed FD architecture is proposed for the first time.
Specifically, in the off-line control design phase we adopt a
decentralized algorithm and we assume that the design of a
local controller can use information at most from parents of
the corresponding subsystem, i.e., subsystems that influence
its dynamics. This implies that the whole model of the LSS
is never used in any step of the synthesis process [3]. This
approach has several advantages in terms ofscalability: i) the
communication flow at the design phase has the same topology
of the coupling graph – usually sparse – ii) the local design
of controllers and fault detectors can be conducted indepen-
dently; iii) local design complexity scales with the number
of parent subsystems only; iv) if a subsystem joins/leaves
an existing network (plug-in/unplugging operation) at most
children/parents subsystems have to retune their controllers
and fault detectors. We refer to this kind of decentralized
synthesis as PnP design, if – in addition – the plug-in and
unplugging operations can be performed through a procedure
for automatically assessing whether the operation does not
spoil stability and constraint satisfaction for the overall LSS
(see [18] and [19]). Different definitions of PnP design are
given in [20], [21] and [22].

Novelties: The significant novelty presented in the paper1

is the integration of DiMPC and FD architectures in a PnP
framework for nonlinear LSSs(for centralized approaches, the
interested reader is referred to [24], [25], [26] and the related
work in [27]. Moreover, a centralized reconfiguration process,
based on hybrid systems, is proposed in [28]). Similarly to the
design of local controllers, we propose a PnP design method
for local fault detection. Motivations for PnP MPC/FD are the
following: i) when the behaviour of a subsystem is corrupted

1A preliminary version of this work has been presented at the 53rd IEEE
Conference on Decision and Control [23].
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by a fault, we show how the subsystem can be automati-
cally disconnected while preserving stability and constraint
satisfaction at each time instant for all other subsystems;ii)
when a faulty subsystem is repaired, it can be replugged-
in without changing all existing local controllers and fault
detectors. We highlight that, differently from [18] and [19],
in this paper we design local MPC controllers for a class
of nonlinear LSSs. As regards FD schemes – to the best
of the authors knowledge – it is the first time that a PnP
FD distributed architecture is proposed. Furthermore, in real
application contexts, usually MPC controllers are designed
based on the knowledge of a nominal model of the system.
Therefore a FD scheme is needed to monitor the behaviour
of the system. The proposed FD architecture is robust to
modeling and measurement uncertainties. To achieve this goal,
it considers local models that are different from those usedin
local MPC controllers. In fact, another novel contributionof
this paper is the possibility to use different decompositions and
different models for the control and the monitoring compo-
nents. This feature is useful for applications: local controllers
must compute local control inputs based on local available
measurements only, sometimes with high sampling rates; on
the other hand local fault detectors may work at a different rate
and can keep advantage of the redundancy given by sharing
some variables in order to improve estimation performances.

The paper is organized as follows. After providing a few
notations and basic definitions in Section II, in Section III, we
define the problem addressed in the paper and we introduce the
dual decomposition of the LSS. Then, in Section IV, we design
the nonlinear DiMPC architecture, while in Section V we
derive the PnP distributed FD scheme. The fault detectability
analysis is presented in Section VI. The reconfiguration pro-
cess after unplugging and plugging-in operations are described
in Section VII. In Section VIII, we apply the proposed
architectures to a ring of coupled van der Pol Oscillators
(vdPOs) and to a Power Network System (PNS). Finally, some
concluding remarks are given in Section IX.

II. BASIC NOTATIONS AND DEFINITIONS

We usea : b for the set of integers{a, a + 1, . . . , b}. The
symbolsR+ andR0+ are the sets of positive real numbers,
respectively excluding and including0. The column vector
with s componentsv1, . . . , vs is v = (v1, . . . , vs). The
symbols⊕ and⊖ denote the Minkowski sum and difference,
respectively, i.e.A = B⊕C if A = {a : a = b+c, for all b ∈
B andc ∈ C} andA = B ⊖ C if a ⊕ C ⊆ B, ∀a ∈ A.
Moreover,

⊕s
i=1Gi = G1 ⊕ . . . ⊕ Gs. For ρ > 0, Bρ(z) =

{x ∈ R
n : ||x− z|| ≤ ρ} where||·|| is the Euclidean norm in

R
n. Given a setX ⊂ R

n, convh(X) denotes its convex hull.
Function dist(v,X) denotes the distance among a vectorv and
a setX. The symbol0r denotes a column vector inRr with
all elements equal to0. Let v, v̄ ∈ R

s, the inequality|v| ≤ v̄,
component-wise means|vi| ≤ v̄i, i = 1 : s.

Definition 1 (RCI set). Consider the discrete-time linear
systemx(t + 1) = Ax(t) + Bu(t) + w(t), with x(t) ∈ R

n,
u(t) ∈ R

m, w(t) ∈ R
n and subject to constraintsu(t) ∈ U ⊆

R
m andw(t) ∈ W ⊂ R

n. The setX ⊆ R
n is an RCI set with

respect tow(t) ∈ W, if ∀x(t) ∈ X there existsu(t) ∈ U such
that x(t+ 1) ∈ X, ∀w(t) ∈ W.

III. SYSTEM DEFINITION

Consider a class of discrete-time nonlinear LSSs composed
of M subsystems, using two different decompositions of the
system structural graph (see Figure 1). The control framework

Fig. 1: Two different decompositions of the LSS structural
graph: the non-overlapping subsystems of the control archi-
tecture (in green) and the overlapping subsystems of the fault
diagnosis framework (in red). The small circles represent state
and input variables; the yellow ones are the shared state
variables.

considers a nonlinear model described by the following dy-
namics:

Σ[i] : x+[i] = Aiix[i] +Bi[gi(x[i], ψ[i])u[i] + hi(x[i], ψ[i])]

+ wi(ψ[i]) (1)

wherex[i] ∈ R
ni , u[i] ∈ R

mi , i ∈ M = {1, . . . ,M}, are the
local state and input, respectively, at timet and x+[i] stands
for x[i] at time t + 1. The k-th component of vectorx[i]
is specified byx[i,k]. A similar notation is used for input
and output variables. The vector of interconnection variables
ψ[i] ∈ R

pi collects the states{x[j]}j∈Ni
that influence the

dynamics ofx[i], whereNi is the set of parents of subsystem

i defined asNi = {j ∈ M :
∂x

+
[i]

∂x[j]
6= 0ni

, i 6= j}. We
also defineFi = {k : i ∈ Nk} as the set of children of
Σ[i]. For i ∈ M, Aii ∈ R

ni×ni represent the linear nominal
dynamics, whileBi ∈ R

ni×mi , gi(·) : R
ni × R

pi → R

and hi(·) : R
ni × R

pi → R
mi , consider possibly nonlin-

ear nominal dynamics. Nonlinear dynamics can also include
known relationships with parent subsystems by means of
the interconnection variables. Instead,wi(·) : R

pi → R
ni

represents the unknown possibly nonlinear coupling among
subsystems and includes also modeling uncertainties.

Remark 1. The considered class of nonlinear functions is
general: the only constraints are the matched dependence on
the control input and the fact that the subsystems are input-
decoupled. These two constraints are necessary for the design
of the local tube-based controller in Section IV.

We assume that the state vector is completely measurable.
On the other hand, the distributed FD architecture monitors
a state vectorx̃[i] which is extended with respect to the
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controlled one, since in addition tox[i] it includes some
variablesx[j,s], j ∈ Ni, that it ”‘shares”’ with parent sub-
systems. These variables are a subset of the interconnection
variablesψ[i] influencing the dynamics ofi and are directly
measured by the diagnoser monitoring thei-th subsystem.
We call shared variables ofi both the variables belonging
to parents subsystems monitored also by subsystemi, and the
variables of subsystemi monitored by children subsystems.

Remark 2. In this paper, the structure of the subsystems,
and hence the decomposition of the large-scale system and
the choice of the variables that can be shared, is assumed
to be given a priori. An in-depth discussion about optimality
of the decomposition is out of the scope of this paper. Since
shared variables are monitored by more than one subsystem,
it is reasonable that they represent a connection between
subsystems.

Therefore, the model of the system dynamics exploited by
the i-th local diagnoser can be described as:

Σ̃[i] : x̃+[i] =Ãiix̃[i] + B̃i[g̃i(x̃[i], ψ̃[i], u[i]) + h̃i(x̃[i], ψ̃[i])]

+ w̃i(ψ̃[i]) + φi(x̃[i], ψ̃[i], u[i], t) (2a)

y[i] =x̃[i] + ̺[i] (2b)

where x̃[i] ∈ R
ñi , u[i] ∈ R

mi , y[i] ∈ R
ñi and ̺[i] ∈ R

ñi ,
i ∈ M, are the local state, input, output and unknown
measurement error, respectively, for diagnosis purposes.The
vector of interconnection variables̃ψ[i] ∈ R

p̃i collects any
state and input variable of the parents subsystems influencing
the dynamics of̃Σ[i], namely the variablesψ[i] not measured
by the i-th diagnoser, plus any state and input variable of
j ∈ Ni influencing the dynamics of the shared variables ofi
not controlled byi. As a consequence, the state matrixAii is
extended toÃii to describe the linear dynamics of the state
x̃[i], and similarly B̃i and functionsg̃i, h̃i and w̃i, i ∈ M.
The fault detection model may also consider more complex
dynamics (compared to the control model) by means of the
general nonlinear functions̃gi and h̃i. Instead, the function
φi(·) : Rñi × R

p̃i × R
mi × R → R

ñi represents the fault-
function, capturing deviations of the dynamics ofΣ̃i from
the nominal healthy dynamics. Note thatx̃[i] and ψ̃[i] are
defined in a way such that computing the left hand side of (2)
requires at most information from subsystemsΣ[j], j ∈ Ni. In
other words only transmission of information from parent to
child subsystems is required. This is a notable feature of the
proposed approach. The following assumptions are in place.

Assumption 1. (I) The pair (Aii, Bi) is stabilizable,∀i ∈
M.

(II) SubsystemsΣ[i], i ∈ M are subject to the constraints

x[i] ∈ Xi, u[i] ∈ Ui, ̺[i] ∈ Oi , (3)

whereXi, Ui andOi are compact, convex and contain
the origin in their nonempty interior. Constraints(3)
also induce suitable state constraints onΣ̃[i], i ∈ M,
namelyX̃i, collecting all the possible values that each
component of the vector̃x[i] can have. Similarly, we
denote withΨi (resp. Ψ̃i) constraints induced on in-
terconnection variablesψ[i] (resp.ψ̃[i]), i.e. they collect

all possible values that variablesψ[i] (resp. ψ̃[i]) can
assume, given the state constraints in(3).

(III) Functions wi(·) are bounded for alli ∈ M, i.e. there
are bounded setsWi ⊂ R

ni such thatwi(Ψi) ⊆ Wi.
Moreover if Ψ̄i ⊂ Ψ̂i thenwi(Ψ̄i) ⊂ wi(Ψ̂i).

(IV) Functionsgi(x[i], ψ[i]) are such that

Gi = sup
x[i]∈Xi,ψ[i]∈Ψi

1
∣

∣gi(x[i], ψ[i])
∣

∣

< +∞.

(V) The measurement error̺[i] is bounded for alli ∈ M at
each timet, i.e. |̺[i]| ≤ ¯̺[i] component-wise.

Now, let us provide a formal characterization of the system’s
decomposition already described in qualitative terms.

Definition 2 ([3]). A decomposition of the LSS into subsystems
Σ[i], i ∈ M is said non-overlappingif no state variables are
shared between subsystems. Otherwise, the decomposition is
termedoverlapping.

In this section, we have introduced the models and the two
different decompositions of the LSS we are going to consider.
For what concerns the control architecture, anon-overlapping
decomposition is defined, so that each state component is
controlled by only one local controller. On the other hand, an
overlappingdecomposition is proposed for the FD framework,
which implies that the shared state variables may be monitored
by more than one local diagnosers. In the following sections,
we explain how to design a control and a FD architectures
suitable for a PnP framework.

IV. N ONLINEAR TUBE-BASED DISTRIBUTEDMPC

In this section, we illustrate the proposed distributed tube-
based MPC controller. We design the controller so that it is
able to guarantee stability of the LSS interconnected subsys-
tems both during the healthy behaviour (when no faults are act-
ing on the LSS) and during the reconfiguration process (when
a faulty subsystem is detected and subsequently unplugged).
More specifically, we derive the DiMPC controller such that
it preserves overall feasibility and stability even when a faulty
subsystem is disconnected.

Concerning the control architecture, we consider a non-
overlapping decomposition of the LSS. Note that, in order to
design the local controllers, the model in (1) is used where
wi(·) represents coupling terms only. In the following, we
propose a distributed controller that can be designed in a PnP
fashion by treating parent subsystems as bounded disturbances.
Only for design purposes, as in [29], we define a nominal
model for each subsystem (1)

Σ̂[i] : x̂+[i] = Aiix̂[i] +Biv[i] , (4)

wherev[i] is the input. As in [29] our goal is to relate inputs
v[i] in (4) to u[i] in (1) and compute setsZi ⊆ Xi, i ∈ M
such that

x[i](0) ∈ x̂[i](0)⊕ Zi ⇒ x[i](t) ∈ x̂[i](t)⊕ Zi, ∀t ≥ 0. (5)

In other terms, as in [18] and [19], we want to confinex[i](t) in
a tube around̂x[i](t) of sectionZi. Assume that ifx[i] ∈ Zi

there existsu[i] = κ̄i(x[i]) : Zi → Ui such thatx+[i] ∈ Zi,
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∀x[j] ∈ Xj , j ∈ Ni. Therefore ifx[i] ∈ x̂[i] ⊕ Zi and the
controller

C[i] : u[i] = gi(x[i], ψ[i])
−1[−hi(x[i], ψ[i]) + v[i]

+ κ̄i(x[i] − x̄[i])] (6)

is used, wherēx[i] = x̂[i], then, for all v[i], we havex+[i] ∈
x̂+[i] ⊕ Zi. ControllerC[i] is based on the well-known idea of
“canceling” the nonlinearities in the state equations. This is
possible because in (1) the nonlinear terms are matched, i.e.
they can be directly modified through the control inputu[i]
[30].

Remark 3. We highlight that the proposed controller can be
easily generalized to the case wherewi(·) represents both
coupling terms and model uncertainties. We refer the interested
reader to Chapter 7 of [31] where robustness has been studied
for linear LSSs.

We note that controllerC[i] is distributedsince it depends on
the state variables of parent subsystems by means of the inter-
connection variables, that have to be communicated during on-
line phases between neighbouring control stations. Following
[29], the next goal is to compute tightened constraintsX̂i ⊆ Xi

andVi ⊆ Ui in order to guarantee that

x̂[i] ∈ X̂i andv[i] ∈ Vi ⇒ x+[i] ∈ Xi andu[i] ∈ Ui,

at all time instants. Tightened state constraints must satisfy the
following inclusions

X̂i ⊕ Zi ⊆ Xi , (7a)

Gi (Hi ⊕ Vi ⊕ Uzi) ⊆ Ui , (7b)

whereHi = hi(Xi,Ψi) andUzi = κ̄i(Zi). Obviously, as in
nonlinear tube-based MPC theory, the evaluation of setsGi

andHi can be very challenging. Estimates of these sets can be
obtained using methods of reachability analysis for nonlinear
systems, as those discussed in [32]. Therefore, since we want
to stabilize the nominal subsystems (4) and to guarantee
satisfaction of tightened state constraints, we need to solve
online the followinglocal MPC problemP

N
i (x[i](t)):

min
x̂[i](0)

v[i](0:Ni−1)

Ni−1
∑

k=0

ℓi(x̂[i](k), v[i](k)) + Vfi(x̂[i](Ni)) (8a)

x[i](t)− x̂[i](0) ∈ Zi (8b)

x̂[i](k + 1) = Aiix̂[i](k) +Biv[i](k) k ∈ 0 : Ni − 1 (8c)

x̂[i](k) ∈ X̂i, v[i](k) ∈ Vi k ∈ 0 : Ni − 1 (8d)

x̂[i](Ni) ∈ X̂fi (8e)

In (8), Ni > 0 is the control horizon,ℓi(·) : Rni×mi → R0+

is the stage cost,Vfi(·) : R
ni → R0+ is the final cost and̂Xfi

is the terminal set. Furthermore, following [29], in (6) we set

v[i](t) = v[i](0|t), x̄[i](t) = x̂[i](0|t) (9)

wherev[i](0|t) andx̂[i](0|t) are optimal values of the variables
v[i](0) and x̂[i](0) in the MPC-i problem (8). Note that in (9)
we defined the variablēx[i] depending on the nominal state

x̂[i], i.e. the state of the dynamics of the subsystemΣ[i] without
coupling terms. Note also that the re-definition ofx̄[i] as in
(9) is at the core of the tube-MPC scheme proposed in [29].

Algorithm 1 summarizes the steps needed for computing
function κ̄i(·) in (6), setsZi, Uzi , X̂i, Vi, X̂fi and functions
ℓi(·) and Vfi(·). During the design phases, the setsXi are
communicated to child subsystems, while setsXj are received
from fathers.

Algorithm 1 Design of controllerC[i] for subsystemΣ[i]

Input : Aii, Bi, Xi, Ui, gi(·), hi(·), wi(·), Ni, Fi
Output : controllerC[i]

(I) Send setsXi to child subsystemsj ∈ Fi
(II) Receive setsXj from parent subsystemsj ∈ Ni

(III) Compute the set

Wi = wi(Ψi) (10)

and choosēZ0
i such thatXi ⊇ Z̄

0
i ⊇ Wi ⊕ Bωi

(0) for
a sufficiently smallωi > 0. If Z̄

0
i does not exist, then

stop (the controllerC[i] cannot be designed)
(IV) Check the LP feasibility condition in Step (ii) of Al-

gorithm 1 in [19]. If it is not verified, thenstop (the
controllerC[i] cannot be designed)

(V) Execute Steps (iii) and (iv) of Algorithm 1 in [19].
They provide the MPC-i problem and the function̄κi(·)
defined as in (25) in [19]

Steps (IV) and (V) of Algorithm 1, that provide constraints
in (7), are the most computationally expensive because in-
volve Minkowski sums and differences of polytopic sets. The
interested reader is referred to Sections 3.1-3.3 in [19], where
we show how to avoid burdensome computations exploiting
results from [33] and how to compute a suitable functionκ̄i in
(6) through LP. We also highlight that Step (IV) is the core of
the algorithm: by checking the LP feasibility condition in Step
(ii) of Algorithm 1 in [19], we are able to verify if there exists
a setZi guaranteeingZi ⊆ Xi and (5). This is possible using
a suitable parametrization of the RCI setZi, as proposed in
[33]. Note also that, by construction,Wi ⊆ Zi and, therefore,
the conditionZi ⊆ Xi is more difficult to fulfill for large sets
Wi modeling coupling uncertainties.

Next, we give the main results on stability and constraints
satisfaction for the network of subsystems controlled by dis-
tributed controllersC[i]. It is in fact important for the proposed
fault-tolerance scheme to be able to work in presence of
disturbances, also in healthy conditions.

Theorem 1. Let Assumption 1 hold. Assume state-feedback
controllers C[i] are computed using Algorithm 1 and de-
fine x(t) = (x[1], . . . , x[M ]). Let X

N
i = {s[i] ∈

Xi : (8) is feasible forx[i](t) = s[i]} be the feasibility region
for the MPC-i problem andXN =

∏

i∈M X
N
i . Then, the origin

of the closed-loop system is asymptotically stable. Moreover,
X
N is a region of attraction for the origin andx(0) ∈ X

N

guarantees state and input constraints are fulfilled at all time
instants.
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Proof: The proof of Theorem 1 is given in Appendix A.

Remark 4. Notice that Algorithm 1 provides an off-line de-
centralized procedure for designing distributed PnP regulators
and that it can be executed in parallel for all subsystems.
Therefore, as shown in [18], [19] and as we will see jointly
with the FD architecture presented in Sections VII and VII-B,
plug-in or unplugging operations involve only the update of
a limited number of controllers. Differently from [18] and
[19] (where only linear subsystems have been considered), the
proposed regulator allows to control subsystems describedby
matched nonlinearities and nonlinear couplings with parents.

V. THE FAULT DETECTION ARCHITECTURE

In this section, we design a distributed FD architecture for
the considered PnP framework. Each subsystem is equipped
with a local diagnoser. According to the classical model-
based FD approach, an estimateˆ̃x[i] of the local state vari-
ables is computed; the estimation errorǫ[i] , y[i] − ˆ̃x[i]
is compared component-wise with a suitable time-varying
detection threshold̄ǫ[i] ∈ R

ñi

+ , hence obtaining a local fault
decision classifying the status of the subsystem either as
healthy or faulty. If the residual crosses the threshold, under an
appropriate setting we can conclude that a fault has occurred.
The condition|ǫ[i,k](t)| ≤ ǭ[i,k](t), ∀k = 1 : ñi is a necessary
(but generally not sufficient) condition for the hypothesis
Hi : “SubsystemΣ̃[i] is healthy”. If the condition is violated
at some time instant, then the hypothesisHi is falsified.

In the PnP framework, the diagnosers are designed so to
guarantee the absence of false alarms and the convergence of
the estimator error both during healthy operating conditions
and during the reconfiguration process: the healthy subsystems
diagnosers have to continue to work properly also when the
faulty subsystem(s) is (are) unplugged and then plugged-in
after problem solution.

A. The Fault Detection Estimator

For detection purposes, each subsystem is equipped with a
local nonlinear estimator, based on the local modelΣ̃[i] in (2).
Thek-th non-shared state variable ofΣ̃[i] can be estimated as

ˆ̃x+[i,k] =λ(
ˆ̃x[i,k] − y[i,k]) + Ãii,ky[i] + B̃i,k[g̃i(y[i], z[i], u[i])

+ h̃i(y[i], z[i])],

where the filter parameter is chosen in the interval0 < λ < 1
in order to guarantee convergence properties,z[i] = ψ̃[i] + θ[i]
is the vector of measured interconnection variables available
for diagnosis,θ[i] collects the involved measurement error̺[j],
j ∈ Ni, Ãii,k andB̃i,k are thek-th row of matricesÃii andB̃i,
respectively. Using the shared variablex̃[i,ki] = x̃[j,kj ], where
ki andkj are theki-th andkj-th components of vectors̃x[i]
andx̃[j], respectively, we can take advantage of the redundancy
by using a kind of deterministic consensus protocol (see [13],
[15]). In the following,Sk is the set of subsystems̃Σ[i] sharing
a given state variablek of the LSS. The estimates of shared

variables are provided by

ˆ̃x+[i,ki] = λ(ˆ̃x[i,ki] − y[i,ki]) +
∑

j∈Sk

W k
i,j

[

ˆ̃x[j,kj ] −
ˆ̃x[i,ki]

+Ãjj,kjy[j] + B̃j,kj [g̃j(y[j], z[j], u[j]) + h̃j(y[j], z[j])]
]

(11)

where, for each shared componentk, W k
i,j are the components

of a row-stochastic matrixW k, which will be defined in
Subsection V-C, and is designed to allow plugging-in and
unplugging operations. By now, notice thatW k collects the
consensus weights used byΣ̃[i] to weight the terms communi-
cated byΣ̃[j], with j ∈ S

k, to monitor componentk. In fact,
as regards variables estimation, each subsystem communicates
with parents and children subsystems sharing that variable.
We also note that (11) holds also for the case of non-shared
variables, since, in this case,Sk = {i}, andW k

i,i = 1 by
definition. In the following, for the sake of simplicity, we drop
the subscript of the shared component indexk, that is we write
x̃[i,k] instead ofx̃[i,ki].

B. The detection threshold

In order to define an appropriate threshold for FD, we
analyze the dynamics of the local diagnoser estimation er-
ror when the subsystem is healthy. DefiningW k such that
∑

j∈Sk
W k
i,j = 1 and since for shared variables∀i, j ∈ S

k it
holds

Ãii,kx̃[i] + B̃i,k[g̃i(x̃[i], ψ̃[i], u[i]) + h̃i(x̃[i], ψ̃[i])]

= Ãjj,kx̃[j] + B̃j,k[g̃j(x̃[j], ψ̃[j], u[j]) + h̃j(x̃[j], ψ̃[j])],

the k-th state estimation error dynamics is given by

ǫ+[i,k] =
∑

j∈Sk

W k
i,j

[

λǫ[j,k] − Ãjj,k̺[j] + wj,k(ψ̃[j])

+B̃j,k(∆g̃j,k +∆h̃j,k)− λ̺[j,k]

]

+ λ̺[i,k] + ̺+[i,k] ,

where∆g̃j,k , g̃j,k(x̃[j], ψ̃[j], u[j]) − g̃j,k(y[j], z[j], u[j]) and
∆h̃j,k , h̃j,k(x̃[j], ψ̃[j])− h̃j,k(y[j], z[j]).

As in [15], using the triangular inequality, we can bound
the estimation error, guaranteeing no false-positive alarms. By
taking the absolute value ofǫ+[i,k] component-wise, we get

|ǫ+[i,k]| ≤
∑

j∈Sk

W k
i,j

[

λ|ǫ[j,k]|+ |Ãjj,k̺[j]|+ λ|̺[j,k]|

+|B̃j,k(∆g̃j,k +∆h̃j,k)|+ |wj,k(ψ̃[j])|
]

+ λ|̺[i,k]|+ |̺+[i,k]| .

Therefore, we define the following time-varying threshold
ǭ[i,k] that can be computed in a distributed way:

ǭ+[i,k] =
∑

j∈Sk

W k
i,j

[

λǭ[j,k] +
∣

∣

∣
Ãjj,k

∣

∣

∣
¯̺[j] + w̄j,k(z[j])

+
∣

∣

∣B̃j,k

∣

∣

∣ (∆ḡj +∆h̄j) + λ ¯̺[j,k]

]

+ λ ¯̺[i,k] + ¯̺+[i,k] , (12)

where ∆ḡj = maxx̃[j]∈X̃j ,ψ̃[j]∈Ψ̃j
|∆g̃j(t)| and ∆h̄j =

maxx̃[j]∈X̃j ,ψ̃[j]∈Ψ̃j
||∆h̃j(t)||∞. It is worth noting that As-

sumption 1 implies that the state and input variables are
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bounded; hence all quantities in (12) are bounded as well;
moreover, it is possible to define∀i, k at each time step a
boundw̄i,k, so that

∣

∣wi,k(z[i])
∣

∣ ≤ w̄i,k(z[i]); ¯̺[i,k] is defined in
Assumption 1. The threshold dynamics (12) can be initialized
with ǭ[i,k](0) = ¯̺[i,k](0).

Remark 5. For FD purposes, the communication between
subsystems is limited. It is not necessary, in general, thateach
diagnoser knows the model of parent subsystems. Instead, in
the shared case(11), it is sufficient that each subsystem̃Σ[j]

sends to subsystemsi ∈ S
k only a limited number of variables:

the interconnection variablesz[i] and the consensus terms for
estimates (̃̂x[j,kj ] and Ãjj,kjy[j] + B̃j,kj [g̃j(y[j], z[j], u[j]) +

h̃j(y[j], z[j])) and thresholds (λ(ǭ[j,k] + ¯̺[j,k]) +
∣

∣

∣Ãjj,k

∣

∣

∣ ¯̺[j] +
∣

∣

∣
B̃j,k

∣

∣

∣
(∆ḡj +∆h̄j) + w̄j,k(z[j])), locally computed.

The threshold in (12) guarantees the absence of false-
positive alarms before the occurrence of the fault caused bythe
uncertainties. On the other hand, this is a conservative result
since it does not allow to detect faults whose magnitude is
lower than the uncertainties magnitude in the system dynam-
ics. This issue is formalized in the fault detectability section
(Section VI), where we consider also the issue that the fault
may be hidden by the control action.

C. The consensus matrix

In this subsection, we explain how to properly define
the consensus matrix in order to allow for PnP operations.
Consensus is applied to the shared variables, i.e. state variables
representing the interconnection between two or more subsys-
tems, measured and monitored by more than one diagnoser.
For PnP capabilities, we use a time-varying weighting matrix
W k whose dimension is equal to the maximum number of
subsystems that can be plugged in sharing that variable. This
is not a restrictive assumption since it is possible to choose
a dimension as large as wanted. Each row can have non null
elements only on correspondence of connected (plugged-in)
subsystems. In the case that, at a given time, the variable isnot
shared (and hence at most one subsystem is using it) the only
non-null weight is the one corresponding to the considered
subsystem (this does not affect the convergence of the FD
estimator as illustrated in Subsection V-D).

Indeed, the introduction of the proposed time-varying con-
sensus matrix is advantageous from a second perspective.
Since the proposed threshold is conservative, it is important
to choose it as small as possible. Therefore, in the case of
shared variables, similarly as in [34], we design a time-varying
consensus-weighting matrixW k able to minimize the adaptive
threshold with respect to the consensus weights, by choosing
the smallest threshold term from all the threshold additive
terms in (12). In this consensus protocol, it is convenient to
weight more the subsystem which has got the lowest threshold
component, hence the subsystem that has lower uncertainty in
its measurements and in the local model. These aims can be
achieved by defining the following consensus matrix, where

each(i, j)-th component is computed as:

W k
i,j =















1 if j = argminj∈Sk λ(ǭ[j,k] + ¯̺[j,k]) +
∣

∣

∣Ãjj,k

∣

∣

∣ ¯̺[j]

+
∣

∣

∣
B̃j,k

∣

∣

∣
(∆ḡj +∆h̄j) + w̄j,k(z[j])

0 otherwise
(13)

At each time-step each local fault-diagnoser receives esti-
mates and consensus terms of variablex̃[i,k] only from the
subsystems sharing it at that specific time. Then, it selects
the contribution affected by “smaller uncertainty”. It is worth
noting that the setSk is time-varying and collects only the
subsystems that share variablek and that are connected to
the LSS at that specific time instant. As briefly discussed
in Section VI, fault-detectability may be improved by this
approach. The intuitive idea is that the consensus approach
used to estimate the shared variables allows to decrease theun-
certainty on those variables, thus reducing the conservativeness
of the proposed thresholds and improving fault detectability.
The shared variables may then be chosen in order to improve
the detectability of some faults we are interested to detect.
In the architecture proposed in this paper using the designed
time-varying consensus matrix, sharing some variables always
improves (or does not change) detectability properties. Given
the particular structure of the considered networked subsys-
tems with bounded coupling, the choice of the shared variables
is constrained by Assumption 1(III). In this paper anyway, the
structure of the subsystems, and so the decomposition of the
large-scale system and the choice of the variables that can be
shared, is assumed to be given a priori.

D. Estimator convergence

Next, we address the convergence properties of the overall
estimator before the possible occurrence of a fault, that isfor
t < T0. Towards this end, we introduce a vector formulation
of the state error equation for sake of compacting the notation,
just for analysis purposes. Specifically, we introduce the ex-
tended estimation error vectorǫk,E , which is a column vector
collecting the estimation error vectors of theNk subsystems
sharing thek-th state component:ǫk,E , col

(

ǫ[j,k] : j ∈ S
k
)

.
Hence, the dynamics ofǫk,E can be described as:

ǫ+k,E =W k
[

λǫk,E + Ãk,E̺E + B̃k,E(∆g̃E +∆h̃E)

+wk,E − λ̺k,E ] + λ̺k,E + ̺+k,E , (14)

where̺k,E is a column vector, collecting the corresponding
kj value of vector̺ [j], i.e. ̺[j,kJ ], for eachj ∈ S

k; Ãk,E is
a block matrix withNk rows andnE =

∑Nk

j=1 ñJ columns,
j ∈ S

k, where the elements on the diagonal are the row vectors
Ãjj,k; B̃k,E is defined in an analogous way. Finally,̺E , ∆g̃E ,
∆h̃E and uE are column vectors collecting the vectors̺[j],
∆g̃j , ∆h̃j andu[j], with j ∈ S

k, respectively,wk,E is defined
in an analogous way. The following convergence result is now
in place.

Proposition 1. System(14), where the consensus matrix is
given by(13), is BIBO stable.
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Proof: The proof is carried out exploiting the one reported
in [34] in a purely distributed fault-diagnosis framework.
Specifically, sinceW k is a stochastic matrix, its norm is
always equal to1. Therefore, since0 < λ < 1, then also
||λW k(t)|| ≤ γ < 1, with 0 < γ < 1. Let us define:

Uk,E(t) =W k(t)
[

Ãk,E̺E(t) + B̃k,E(∆g̃E(t) + ∆h̃E(t))

+wk,E(t)− λ̺k,E(t)] + λ̺k,E(t) + ̺k,E(t+ 1).

We have:

||ǫk,E(t+ 1)|| ≤ ||λW k(t)ǫk,E(t)|| + ||Uk,E(t)||

≤ ||λW k(t)||||λW k(t− 1)|| . . . ||λW k(0)||||ǫk,E(0)||

+

t
∑

j=1

||λW k(t)||||λW k(t− 1)|| . . . ||λW k(j)||||Uk,E(j)||

≤ γt||ǫk,E(0)|| +
t

∑

j=1

γt−j ||Uk,E(j)||

≤
1

1− γ
sup
j≥1

||Uk,E(j)||

For t → ∞, the state of the unforced system converges
to zero and the series converges to a bounded value (see
results in [35]). Moreover, using results in [36] for un-
forced systems, we can state that a systemx(t + 1) =
A(t)x(t), with A(t) ∈ convh(A1, . . . , AN ) is exponen-
tially stable iff ∃ a sufficiently large integerq such that
||Ai1 Ai2 . . . Aiq || ≤ γ < 1, ∀(i1, . . . , iq) ∈ {1, . . . , N}q.
In our case, therefore, we only need to analyze matrixW k(t).
Since each row ofW k(t) has all null elements except one
equal to 1, the productW k(t)W k(t − 1) . . .W k(0) is a
stochastic matrix. Hence, since0 < λ < 1, we have
||λt(W k(t)W k(t− 1) . . .W k(0))|| < 1 and the hypothesis is
satisfied. Finally, since all the uncertain terms are bounded,
then the discrete-time system (14) is BIBO stable.

VI. FAULT DETECTABILITY ANALYSIS

In this section, we analyze the fault detectability properties
of the proposed FD architecture. In particular, we highlight the
effects of the control input on fault detectability conditions.
Let us now consider the case of a faulty subsystem, that is,
suppose that a faultφ(·) occurs at an unknown timet = T0 on
thek-th state variable. In the general case of a shared variable,
φk,E = φ[·,k](1, . . . , 1)

T denoting the extended fault function
vector collecting for the componentk the same fault value for
each subsystem sharing thek-th variable. After the occurrence
of the fault, fort > T0, the state estimation error dynamics is
given by:

ǫ+k,E =W k
[

λǫk,E + Ãk,E̺E + B̃k,E(∆g̃E +∆h̃E)

+wk,E − λ̺k,E ] + λ̺k,E + ̺+k,E + φk,E .

Then, at a time instantt1 > T0, the estimation error is

ǫk,E(t1) =

t1−1
∑

h=0

(λW k(h))t1−1−h[W k(h)Ãk,E̺E(h)

+W k(h)w̃k,E(h) +W k(h)B̃k,E(∆g̃E(h) + ∆h̃E)

− λW k(h)̺k,E(h) + λ̺k,E(h) + ̺k,E(h+ 1)

+ φk,E(h)] +

t1−1
∏

h=0

(λW k(h))ǫk,E(0) .

Now, we derive a sufficient condition in order to characterize a
class of faults that can be detected by the proposed FD scheme.
In order to detect the occurrence of the fault at a certain time
t1, the following inequality has to be satisfied:

|ǫk,E(t1)| > ǭk,E(t1),

for at least one subsystemi ∈ S
k. When dealing with vectors,

in this paper, the inequality operator is applied component-
by-component. Using the triangle inequality and the threshold
definition (12), the following is implied

|ǫk,E(t1)| ≥ −ǭk,E(t1) +

∣

∣

∣

∣

∣

t1−1
∑

h=T0

[λt1−1−hφk,E(h)]

∣

∣

∣

∣

∣

.

Since φk,E is a vector whose components are all equal to
φk = φi,ki = φj,kj , it is easy to see that the FD condition
∣

∣ǫ[i,k](t1)
∣

∣ > ǭ[i,k](t1) is satisfied if

∃t1 > T0 :

∣

∣

∣

∣

∣

t1−1
∑

h=T0

λt1−1−hφk(h)

∣

∣

∣

∣

∣

> 2ǭ[i,k](t1) (15)

for at least one componentk ∈ {1 . . . , ñi}, thus allowing
the detection of a fault at timet1. Condition (15) implicitly
characterizes the class of faults that are detectable by the
proposed FD architecture at timet1. Moreover, thanks to the
introduction of the time-varying consensus weighting matrix,
the threshold on the right-hand-side of (15) is the smallest
one in the set of the proposed conservative thresholds of
subsystems sharing the same variable, guaranteeing no false
alarms. The choice of a smaller threshold makes it easier the
detectability at the general time instantt1, thus we can say
intuitively from (15) that the class of detectable faults attime
t1 is enlarged thanks to this choice.

In the case that the fault detection subsystem are input-
decoupled as the control ones,∆ḡE can be computed as
∆ḡE |uE(h)|. It is then worth emphasizing the influence of the
control inputs on the fault detectability condition by rewriting
(15) as

∣

∣

∣

∣

∣

t1−1
∑

h=T0

λt1−1−hφk,E(x̃E , ψ̃E , uE , h)

∣

∣

∣

∣

∣

>

2
(

t1−1
∑

h=0

(λW k(h))t1−1−h[W k(h)
( ∣

∣

∣
Ãk,E

∣

∣

∣
¯̺E(h) + w̄k,E(h)

+
∣

∣

∣
B̃k,E

∣

∣

∣
(∆ḡE |uE(h)|+∆h̄E) + λ ¯̺k,E(h)

)

+ λ ¯̺k,E(h) + ¯̺k,E(h+ 1)] +

t1−1
∏

h=0

(λW k(h))ǫk,E(0)
)

.

(16)
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Actually, the norm of the control termuE(t1 − 1) affects the
threshold on the right side of the inequality and, in particular,
it may have a detrimental effect on the fault detectability
by increasing the detection threshold. On the other hand, the
control influences also the left part of the condition inequality,
by acting on the fault function, which depends directly on
uE(t1 − 1) and, by means of̃xE , it depends also on the past
history of the control input. In order to analyze this point,it
is possible to rewrite (16) as

∣

∣

∣

∣

∣

t1−1
∑

h=T0

(λW k(h))t1−1−hW k(h)φk,E(x̃E , ψ̃E , uE , h)

∣

∣

∣

∣

∣

>

2
(

t1−1
∑

h=0

(λW k(h))t1−1−h[W k(h)
∣

∣

∣
B̃k,E

∣

∣

∣
(∆ḡE |uE(h)|

+∆h̄E)] + ςE(h)
)

(17)

where

ςE = 2
(

t1−1
∑

h=0

(λW k(h))t1−1−h[W k(h)
( ∣

∣

∣Ãk,E

∣

∣

∣ ¯̺E(h)

+ w̄k,E(h) + ∆h̄E) + λ ¯̺k,E(h)
)

+ λ ¯̺k,E(h)

+ ¯̺k,E(h+ 1)] +

t1−1
∏

h=0

(λW k(h))ǫk,E(0)
)

is the threshold part that does not depend directly on the
extended control input. Therefore, it is constant w.r.t. the
control input2. As a consequence, the contribution of the
control input to detectability properties at a certain timet1
could be highlighted by deriving the vectors of functions
∣

∣

∣φk,E(xE , ψ̃k,E , uE , h)
∣

∣

∣ and
∣

∣

∣B̃k,E

∣

∣

∣ (∆ḡE |uE(h)| + ∆h̄E)

w.r.t. the vectoruE norm component-by-component. If it is
possible to obtain the derivatives vector of the fault function
we want to detect (as example, if it is possible to assume that
it is a Lipschitz function w.r.t. the control input norm and to
know the Lipschitz constant), then, it is possible to compare
the two derivatives for each subsystemi ∈ S

k. In fact, the
right side term is linear w.r.t. to the norm of the control input.
Intuitively, if the control input norm makes the magnitude of
the fault function grow less than the threshold bounds, thenthe
control input has a detrimental effect on detectability at time
stept1, since it increases the uncertainty threshold terms that
hide the fault effects. On the other hand, if the control input
norm makes the magnitude of the fault function grow much
more than the threshold bounds, then it could be possible to
take advantage of the control input effect trying to improve
detectability. A detailed analysis of this issue is out of the
scope of this paper.

VII. R ECONFIGURATION STRATEGY

In the previous sections, we derived suitable control and
fault detection architectures for a PnP framework. We now

2This could be not always true since the control input could influence
also the bounds of the measurement error and coupling by means ofthe
state dynamics. However in some cases this dependence could beneglected
especially when considering conservative bounds.

explain how to use them during plugging-in and unplugging
operations. In this section, the reconfiguration of the LSS,
in case of detection of a fault in one of the subsystems, is
addressed (see Fig. 2 for a visual description). We assume
that, when the plant is started, all subsystems are healthy,
governed by local controllers designed through Algorithm 1
and monitored by local diagnosers proposed in Section V.

• At a certain time, in subsystem̃Σ[j], one or more residual
components may cross the corresponding threshold. We
then have local fault detection (see Fig. 2-a)).

• Depending on the specific application context, two dis-
tinct actions may turn out to be feasible: i) immediate
“disconnection” of the faulty subsystem or ii) continua-
tion of the system operation in “safety mode”. As in this
paper we deal with anactive distributed fault-tolerant
control scheme, we consider only the first scenario.
Subsystem̃Σ[j] is then disconnected from the networked
system. This is theunpluggingstep and is shown in Fig.
2-b) in a pictorial way.

• Due to subsystem̃Σ[j] unplugging, the neighboring sub-
systems have to reconfigure their local controllers and
diagnosers. This is described in Fig. 2-c) and explained
in Subsection VII-A.

• When subsystem̃Σ[j] has been repaired or replaced, it
can be re-plugged in into the networked system and the
neighboring subsystems local controllers and diagnosers
are retuned in Fig. 2-d) and Subsection VII-B).

In the following, theunpluggingafter fault-detection and
the possibleplug-in after subsystem repair/replacement are
addressed separately.

Fig. 2: The reconfiguration process: the a), b), c), d) steps
described in Section VII.

A. Subsystem unplugging after fault detection

In this section, we show how to reconfigure local controllers
and fault-detectors when a fault is detected in a subsystem.
The proposed strategy is based on the isolation of the faulty
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subsystem and on the reconfiguration of controllers and fault-
detectors to guarantee closed-loop stability, constraintsatis-
faction and monitoring of the new network with one less
subsystem.

In the following, we describe in depth the needed operations
after a fault detection. Lett = t1 the detection time of a fault in
the j-th subsystem (̃Σ[j] in the FD architecture andΣ[j] in the
control architecture), then the faulty subsystem is unplugged
and the involved subsystems reconfigured.
As regards the distributed FD, we need to perform the follow-
ing operations.

• In the children subsystemsi ∈ Fj , for t ≥ t1, the
components ofψ̃[i] and z[i] related to subsystem̃Σ[j]

become equal to0. Hence, fort ≥ t1, the interconnection
variables and measurements related to subsystemΣ̃[j] do
not influence the time-behaviour of the state estimation
(11) and of the threshold (12) of subsystemsΣ̃[i].

• In the children subsystemsi ∈ Fj , the adaptive threshold
ǭ[i] is computed through (12) by not considering the cou-
pling terms related to thej-th subsystem when computing
w̄i for t ≥ t1.

• In the neighbouring subsystemsi, with i ∈ Fj or i ∈ Nj ,
sharing some variables with̃Σ[j], the weights associated
with Σ̃[j] in the consensus matricesW k computed in
(13) are set to zero, that is,j /∈ S

k for t ≥ t1 for all
the shared variablesk. This allows to manage the fact
that after unplugging the connected subsystems have not
access anymore to the signals from̃Σ[j].

Beyond the above changes in the local estimators embedded
in the distributed FD framework as a consequence of the
subsystem unplugging after the detection of a fault, the re-
configuration of the control architecture has to be addressed as
well. Under Assumption 1-(III), for eachi ∈ Fj , a contraction
of the setNi takes place, since subsystemΣ[i] has one parent
less. Then, a contraction takes place also on setWi in (10) and
the set̄Z0

i already computed still verifies the inclusions in Step
(III) of Algorithm 1. Therefore, for eachi ∈ Fj , the previous
choice of Z̄0

i (made before the unplugging) still guarantees
the feasibility of the LP problem in Step (IV) of Algorithm 1
which finally implies that there is no need of redesigning the
controllerC[i] to keep the overall stability.

In conclusion, thanks to the distributed MPC controllers and
distributed fault detectors schemes we designed, the detection
of a fault in a subsystem implies the isolation of the faulty
subsystem and the reconfiguration of local controllers and fault
detectors, at most, of parent and children subsystems. This
guarantees that the fault is not propagated in the network.

B. Subsystem plugging-in

The plug-in of a subsystem into the LSS interconnected
structure may be needed in case of replacement of a previ-
ously unplugged subsystem the fault diagnoser in use before
subsystem disconnection can be reused. Since we assumed
controllersC[i] existed for the subsystem and its children when
it was connected to the plant, this operation is always feasible

as regards the control framework3. For what concerns the
distributed FD architecture, thanks to the way the time-varying
shared variables estimator is defined, the plug-in is always
feasible as well.

Remark 6. Note that, differently from [18], [19], here we do
not consider the plugging-in of new subsystems but just the
reconnections of subsystems after they have been repaired.
Therefore, existence of controllersC[i] when all subsystems
are healthy guarantees that after a plugging-in or unplugging
operation in real-time

• constraints on the input and states of all subsystems are
still fulfilled;

• the new mode of operation of the whole plant is asymp-
totically stable (Theorem 1).

However, as well known in the hybrid system literature [37],
frequent and persistent switching between different modesof
operation could compromise asymptotic stability of the whole
plant. A remedy could be assuming a minimal dwell-time
between consecutive switches [37] although this issue deserves
further investigations.

Remark 7. For what concerns the control, the operations
that have to be performed on-line involve the computation
of the MPC control input and, in case of reconfiguration
operations, the reconfiguration of neighbouring controllers. As
regards the fault detection, it is necessary to compute at each
sampling time the state estimates and thresholds, including the
computation of the time-varying consensus matrix.

VIII. E XAMPLES

vdPO 1 vdPO 2 vdPO 3 vdPO 4 vdPO 5

vdPO 13

vdPO 21

vdPO 12 vdPO 11 vdPO 10 vdPO 9

vdPO 7

vdPO 8

vdPO 6

vdPO 14

vdPO 16

vdPO 15 vdPO 20

vdPO 17

vdPO 18

vdPO 19

Fig. 3: Matrix composed of coupled van der Pol oscillators.

A. Coupled van der Pol oscillators

In this example, we apply the proposed methodologies to a
matrix of coupled vdPOs as in Figure 3. They can be used to
model many oscillating systems in a wide area of applications,

3Otherwise, if considering the plug-in of new subsystems, we should check
the feasibility of this operation by verifying that the execution of Algorithm
1 for the new subsystem or its children does not stop.
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Fig. 5: Simulation of the networked vdPOs in Fig. 3. Dashed lines are the absolute values of errorsǫ[i] = |y[i] − ˆ̃x[i]| (where
|·| is used component-wise) and bold lines are the thresholdsǭ[i], for i = {10, 11, 12, 19}. The same color has been used for
each scalar component of the error and the corresponding scalar threshold.

including biological rhythms, heartbeat, chemical oscillations,
circadian rhythms [38].

The dynamical model of thei-th coupled vdPO (ΣC[i]) is
given by

ẋ[i,1] =x[i,2]

ẋ[i,2] =− (1 + |Ni|β̄)x[i,1] + β̄





∑

j∈Ni

x[j,1]





− ᾱ(x2[i,1] − 1)x[i,2] + gAi (x[i,1])u[i],

(18)

wheregAi (x[i,1]) =
1

0.4+0.1x2
[i,1]

is the function describing the

nonlinear dynamics of an actuator. Each oscillatori ∈ M,
is a subsystem with statex[i] = (x[i,1], x[i,2]) and input
u[i], where x[i,1] is the displacements of oscillatori with
respect to a given equilibrium position on the matrix,x[i,2]
is the velocity of the oscillatori andu[i] is the force applied
to oscillator i. For all vdPOs, we consider̄α = 0.1 and
β̄ = −0.3. Subsystems are equipped with the state constraints
||x[i,1]||∞ ≤ 3, ||x[i,2]||∞ ≤ 2, i ∈ M and with the input con-
straints||u[i]||∞ ≤ 8. We obtain modelsΣ[i] by discretizing
continuous-time models withTs = 0.1 sec sampling time,
using Euler discretization. In this example, the local fault
detectors do not share variables, henceΣ[i] = Σ̃[i]. Moreover
the design parameter of fault detectors has been setλ = 0.1.
As regards the control architecture, for each controller, we set

u[i] = (0.4 + 0.1x2[i,1])
[

ᾱ(x2[i,1] − 1)x[i,2] + v[i]

+κ̄i(x[i] − x̄[i])
]

.

Then, we synthesize controllersC[i], i ∈ M using Algorithm
1.
In the following simulation, we consider a matrix composed
of M = 21 vdPOs (see Figure 3). We also consider the
measurement errors bounded in the sets

Oi = {̺[i] ∈ R
2 : ||̺[i]||∞ ≤ 10−1}.

The modelling of the LSS, the design of PnPMPC controllers
and the simulations have been performed using the PnPMPC
toolbox for MatLab [39]. During the simulation, the control
actionu[i](t) computed by the controllerC[i], for all i ∈ M,
is kept constant during the sampling interval and applied to
the continuous-time system. In Figure 4a and 4b we show

a simulation where att = 0, all vdPOs exceptΣ[21] are
connected and placed in a random position around the origin.
We consider that the21-st vdPO is plugged-in at timet = 1.5s.
For 0 ≤ t < 2.5s, due to the presence of measurements errors,
the state is kept around the origin. In particular each controller
C[i] computes the control inputs shown in Figure 4c. At time
t = 1.5s, oscillatorΣ[21] is plugged-in connected as in Figure
3, henceN21 = 17 : 20. Since all parents ofΣ[21] have
one more child, they receive state constraints from the new
oscillator and retune their controllers based on the presence
of the new subsystem. The21-st oscillator is initialized with
x[21](1.5s) = (−2.5, 0) and then the controller steers the state
around the origin. At timēt = 2.5s, a fault occurs in the11-
th vdPO: the actuator breaks down and saturates the control
input, henceu[11](t) = 8, ∀t ≥ t̄, and we can also see in
Fig. 4b that the velocity of the11-th vdPO diverges. The next
time instant, due to a large error between the state estimates
and the measured states, the11-th FD detects the fault, indeed
|y[11,2](t̄+ Ts)− ˆ̃x[11,2](t̄+ Ts)| ≥ ǭ[11,2](t̄+Ts) (see Figure
6). At this time instant, the reconfiguration process starts:
the faulty subsystem is unplugged and then the neighbouring
oscillators (Σ[j], j = {10, 12, 19}) retune their controllers and
their fault detectors. At timet = t̄+10Ts, the11-th actuator is
fixed, then the vdPO can be plugged in: therefore neighbouring
oscillators retune their controllers and fault detectors.The
oscillator is initialized withx[11](t̄+10Ts) = (2.5, 0) and then
the controller steers the state around the origin. In Figure4a
and 4b, we can note that fort ≥ t̄+10Ts, all states are still kept
around the origin. In Figure 5, we can see that the estimators
of the neighboring oscillatorsj = {10, 12, 19} continue to
work and thresholds continue to guarantee the absence of false
alarms during all the reconfiguration procedures.

B. Power Networks System

In this example, we apply the proposed state-feedback
PnPMPC and FD scheme to the PNS proposed in Appendix
B of [31]. In the following we first design the Automatic
Generation Control (AGC) layer for the PNS composed of5
areas as in Figure 7, then we show how, after a fault in area 4,
we can disconnect the faulty area (unplugging operation) and
redesign the controllers of neighbouring areas (reconfiguration
operation). The dynamics of an area equipped with primary
control and linearized around the equilibrium value for all
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(c) Inputsu[i], i ∈ M.

Fig. 4: Positions, velocities and control inputs for all the
vdOPs.

variables can be described by the following model [40]

ΣC[i] : ẋ[i] = Aiix[i]+Biu[i]+Li∆PLi
+

∑

j∈Ni

Aijx[j] , (19)

wherex[i] = (∆θi, ∆ωi, ∆Pmi
, ∆Pvi) is the state,u[i] =

∆Prefi is the control input of each area,∆PL is the local
power load andNi is the set of neighbouring areas, i.e. areas
directly connected toΣC[i] through tie-lines. The matrices of
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Fig. 6: Dashed lines are the absolute values of errorsǫ[11] =

|y[11] − ˆ̃x[11]| and bold lines are the thresholdsǭ[11] during the
detection of the fault in the 11-th vdPO.

Fig. 7: Power network system of Scenario 2 in Appendix B
of [31].

system (19) are

Aii({Pij}j∈Ni
) =











0 1 0 0

−
∑

j∈Ni
Pij

2Hi
− Di

2Hi

1
2Hi

0

0 0 − 1
Tti

1
Tti

0 − 1
RiTgi

0 − 1
Tgi











Bi =









0
0
0
1
Tgi









, Aij =









0 0 0 0
Pij

2Hi
0 0 0

0 0 0 0
0 0 0 0









, Li =









0
− 1

2Hi

0
0









For the meaning of constants as well as parameter values we
refer the reader to Appendix B of [31]. We highlight that all
parameter values are within the range of those used in Chapter
12 of [40]. Model (19) is input decoupled since both∆Prefi
and∆PLi

act only on subsystemΣC[i]. Moreover, subsystems
ΣC[i] are parameter dependent since the local dynamics depends

on the quantities−
∑

j∈Ni
Pij

2Hi
. Each subsystemΣC[i] is subject

to constraints on∆θi and on∆Prefi in Appendix B of [31].
We obtain modelsΣ[i] by discretizing modelsΣC[i] with 1
sec sampling time, using exact discretization and treatingu[i],
∆PLi

, x[j], j ∈ Ni as exogenous signals. As regards the FD
architecture, each area is equipped with a local fault detector
Σ̃[i] sharing some state variables. In particular area 1 and 2
share∆θ1, area 2 and 3 share∆θ3, area 2 and 5 share∆θ5
and area 3, 4 and 5 share∆θ4. We note that the choice
of shared variables allow each FD to locally consider the
effect of coupling terms and hence, from an electrical pointof
view, to take into account how tie-line powers are exchanged
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among areas. Moreover we consider the following bounded
measurement errors
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Fig. 9: First simulation example: for each area, for each color,
dashed lines are the absolute values of errorsǫ[i] = y[i] − ˆ̃x[i]
and bold lines are the corresponding thresholdsǭ[i].

Oi = {̺[i] ∈ R
4 : ||̺[i]||∞ ≤ 10−3}.

The modelling of the LSS, the design of PnPMPC controllers
and the simulations have been performed using the PnPMPC
toolbox for MatLab [39]. For each subsystemΣ[i], the con-
troller C[i], i ∈ M is designed by executing Algorithm 1. The
aim of the AGC layer is to restore the frequency in each area
next to step loads, therefore each controller must be designed
in order to stabilize the local area around an equilibria that
depends on∆PLi

. As regards fault diagnosis, for each local
FD Σ̃[i], the filter parameterλ is set to0.4.

In the simulation, step power loads∆PLi
specified in Table

I have been used and they cause the step-like changes of the
control variables in Figure 8.

In Figure 8a we show, how in presence of loads, the
frequency deviation is steered in a neighbourhood of zero:
however, due to the presence of measurement errors̺[i]
(randomly extracted in the setsOi), ∆ωi cannot be perfectly
zeroed. In Figure 8b we note how the power references∆Prefi
are changed in order to compensate for local loads.

We consider two simulation examples. In the first, at time
instant t = 50, the following fault occurs in area 4: the
inertia constantH4 is reduced from8 to 6. From an electrical

Step time Area i ∆PLi

5 1 +0.10
15 2 -0.16
20 1 -0.22
20 2 +0.12
20 3 -0.10
30 3 +0.10
40 4 +0.08
40 5 -0.10

TABLE I: Load of power∆PLi
(p.u.) for simulation.+∆PLi

means a step of required power, hence a decrease of the
frequency deviation∆ωi and therefore an increase of the
power reference∆Prefi .

point of view, there is a fault in a local generator, hence,
for safety reasons, area 4 must be isolated in order to not
propagate faults in the PNS. However, the fault is not detected
by the FDΣ̃[4], as it is possible to see in Fig.9 in the initial
part of the simulation. This is probably due to the fact that
the magnitude of the fault is lower than the measurement
and modeling uncertainties and therefore hidden by them.
Moreover, we also note that, in absence of disturbances, the
PNS is at steady-state, therefore the states change around the
steady-state equilibrium due to the measurement disturbances.
In these conditions, then there is no guarantee to detect the
fault. At time instantt = 80, the inertia constantH4 is reduced
from 6 to 1. In Figure 9, we note that fort < 82, the errors
|ǫ[i]| are always upper bounded by the thresholdsǭ[i], hence
no faults are detected3. At time instantt = 82, FD Σ̃[4] detects
the fault in area 4, indeed at timet = 82, |ǫ[∆Pv4

]| > ǭ[∆Pv4
].

Therefore, area 4 is unplugged and controllersC[i] and FDs
Σ̃[i], i = {3, 5} are retuned. Note that the reconfiguration
operation does not involve areas 1 and 2 since they where not
connected with area 4 and they did not share any state variables
with it. As a consequence, the reconfiguration process is not
propagated in the network. Next to the unplugging of area 4,
the new PNS can still compensate power loads and FDs do
not detect any fault3.

We propose a second simulation example (see Figures 10
and 11), where att = 50 we still consider that in area 4 the
inertia constantH4 is reduced from8 to 6. However in this
example we change the power load in area 4 as∆PL4

= 0.15
at t = 60 and∆PL4

= −0.25 at t = 70. In Figures 10 and 11
simulation results are shown. For time instants50 ≤ t ≤ 59,
as in the previous example, the fault is not detected by the
FD Σ̃[4]. At time t = 60 the increase of power load in area 4
can be compensated locally even in presence of the fault and
the fault is still not detected. This is due to multiple reasons:
the magnitude of the fault is lower than the measurement and
modeling uncertainties and the controller is robust enoughto
compensate the increasing of requested power even in presence
of the fault. At time t = 70 the power load changes from
∆PL4

= 0.15 to ∆PL4
= −0.25 and the fault is detected by

FD Σ̃[4]. In this case even if the magnitude of the fault is not
changed, the power reference∆Pref4 changes and the fault is
not hidden anymore. Summarizing, this second example shows
that, as highlighted in Section VI, the detectability of a fault
depends on the uncertainty as well as on the trajectories and
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Fig. 8: First simulation example of a fault in area4 at time t = 50 and t = 80: frequency deviation (panel 8a) and load
reference (panel 8b) in each area.
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Fig. 10: Second simulation of a fault in area4 at timet = 50: frequency deviation (10a) and load reference (10b) in eacharea.

the excitability of the system.

3For the convenience of the reader, in Figure 9, after the reconfiguration
process, errors and thresholds involving state variables of area 4 are kept
constants for display purposes. After fault detection, thelocal estimator is
stopped.

IX. CONCLUDING REMARKS

In this paper, a novel integrated architecture composed of a
distributed MPC scheme and of a distributed FD architecture
has been proposed in the context of fault-tolerant control
for a class of large-scale nonlinear systems. The integrated
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Fig. 11: Second simulation: for each area, for each color,
dashed lines are the absolute values of errorsǫ[i] = y[i] − ˆ̃x[i]
and bold lines are the corresponding thresholdsǭ[i].

control scheme guarantees closed-loop asymptotic stability
and constraints satisfaction at each time instant, while the FD
architecture allows to detect faulty subsystems guaranteeing
the absence of false-alarms and the convergence the estimators
also during reconfiguration processes. The innovative ideais
to combine distributed MPC and distributed FD architectures,
where local controllers and state estimators can be designed
in a PnP fashion, i.e. the overall model of the LSS is never
used in any step of the design phase. The proposed architec-
ture is suitable for several large-scale applications, allowing
revamping of actuators and isolating faulty subsystems before
the fault is propagate in the network.

Future research efforts will be devoted to generalizing the
approach to a larger class of nonlinear systems and to address
the important issue of optimal decomposition of the LSS
towards better fault detectability properties (preliminary results
are given in [41]).

APPENDIX

A. Proof of Theorem 1

Proof: The proof of Theorem 1 is an adaptation of the
proof of Theorem 9 in [19] to the nonlinear case. Due to
space limitation in [19], this proof is available in [31] as
the proof of Theorem 6.1. First, we can easily show that, if
x[i](0) ∈ X

N
i , the MPC-i optimization problem defined n (8) is

always feasible and its optimizerŝx[i](0|t) andv[i](0|t) verify
x̂[i](0|t) → 0ni

andv[i](0|t) → 0mi
as t→ ∞.

Differently from [31], where coupling terms have been
defined as linear functions, subsystemsΣ[i], i ∈ M defined
in this paper take into account nonlinearities in the coupling
among subsystems.

Similarly to Step 1 of the proof of Theorem 6.1 in [31], we
aim at showing that ifx[i](0) ∈ X

N
i there isT̃ > 0 such that

x[i](T̃ ) ∈ Zi and hence dist(Zi, x[i](T̃ )) = 0. From (1) and
(6), we can write

x[i](t+ 1) = Aiix[i](t) +Biκ̄i(x[i](t)) + wi(ψ[i](t)) + η̄i(t)
(20)

where

η̄i(t) = Bi(v[i](t) + κ̄i(z[i](t))− κ̄i(x[i](t))) (21)

andz[i](t) = x[i](t)− x̂[i](0|t). In particular, ifx[i](0) ∈ X
N
i ,

recursive feasibility of the MPC-i problem (8) implies that
(20) holds for allt ≥ 0.
Note that Step (III) of Algorithm 1 guarantees that Assumption
6.3 in [31] is verified and therefore, the LP problem (6.14) in
[31] is feasible for allz[i] ∈ R

ni . This implies that the function
κ̄i(x[i](t)) in (20) is always well defined.
From the asymptotic convergence to zero of the nominal state
x̂[i](0|t) and the input signalv[i](0|t), it holds

∀δi > 0, ∃Ti,1 > 0 : ||x̂[i](0|t)|| ≤ δi and ||v[i](0|t)|| ≤ δi,
(22)

∀t ≥ Ti,1. Moreover, according to [42], we can assume
without loss of generality that̄κi(·) is a continuous piecewise
affine map. In view of this,̄κi(·) is also globally Lipschitz,
i.e.

∃ Li > 0 : ||κ̄i(x[i] − x̂[i])− κ̄i(x[i])|| ≤ Li||x̂[i]|| (23)

for all (x[i], x̂[i]) such thatx[i] ∈ Xi andx[i]−x̂[i] ∈ Zi. Using
(23) one can show that settingδi =

ǫi
||Bi||(1+Li)

the following
implication holds for allǫi > 0:

||x̂[i](0|t)|| ≤ δi and ||v[i](0|t)|| ≤ δi ⇒ ||η̄i(t)|| ≤ ǫi,

∀x[i](t) ∈ Xi. Therefore, from (22),

∀ǫi > 0, ∃Ti,1 > 0 : ||η̄i(t)|| ≤ ǫi, ∀t ≥ Ti,1. (24)

Since x̂[i](0|t) → 0ni
, as t → ∞, andZi containsBωi

(0ni
)

(see Step (III) of Algorithm 1), then

∀δzi > 0, ∃Ti,2 > 0 : x̂[i](0|t) ∈ δziZi, ∀t ≥ Ti,2 (25)

Hence, from (8b),

x[i](t) = x̂[i](0|t)+(x[i](t)−x̂[i](0|t)) ∈ (1+δzi)Zi, ∀t ≥ Ti,2.
(26)

From (20) we have, for alli ∈ M,

x[i](t+ 1) = Aiix[i](t) +Biκ̄i(x[i](t)) + ŵ[i](t) (27)

where ŵ[i] = wi(ψ[i]) + η̄[i], ∀i ∈ M. Let Pi be the
map that builds the vectorψ[i] from {x[j]}j∈Ni

, i.e. ψ[i] =

Pi({x[j]}j∈Ni
) and defineΨ̂[i] = {Pi({x[j]}j∈Ni

) : x[j] ∈
(1 + δzi)Zj}. Setting T̄ = maxi∈M{Ti,1, Ti,2} and δz =
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maxi∈M δzi , using (24) and (26), remembering thatψ[i] is
the vector of coupling variables, one has,∀t ≥ T̄

ŵ[i] ∈ wi(Ψ̂i)⊕Bǫi(0ni
). (28)

From Steps (III)-(V) of Algorithm 1, sinceΨi =
{Pi({x[j]}j∈Ni

) : x[j] ∈ Xj}, using (7), we can deduce that
Ψ̂i ⊂ Ψ̇i. Under Assumption 1-(III), we have

wi(Ψ̂i) ⊂ Wi = wi(Ψi) (29a)

Therefore, there isξi ∈ [0, 1) (that does not depend onǫi)
such that

wi(Ψ̂i) ⊆ ξiWi, (30)

and then, from (28),

ŵ[i] ∈ (1 + δz)ξiWi ⊕Bǫi(0ni
), ∀t ≥ T̄ .

Note that in (24) the parameterǫi > 0 can be chosen arbitrarily
small. Assume that it verifiesǫi < (1+δz)ξiω̄i, ∀i ∈ M where
ω̄i are the radii of the balls in Assumption 6.3 in [31]. Then,
using Assumption 6.3 in [31] we get fort ≥ T̄

ŵ[i](t) ∈ (1 + δz)ξi(Wi ⊕Bω̄i
(0ni

)) ⊆ (1 + δz)ξiZ̄
0
i . (31)

In view of (26) and (31), Lemma 6.2 in [31] guarantees that

x+[i] ∈ (1 + δz)(Zi ⊖ (1− ξi)Z̄
0
i ) (32)

From Assumption 6.3 in [31], one hasZi⊖ (1−ξi)Z̄
0
i ⊂ Zi⊖

B(1−ξi)ωi
(0ni

) and hence, sinceZi contains the origin in its
interior, there isµi ∈ [0, 1) such thatZi⊖ (1− ξi)Z

0
i ⊂ µiZi.

From (32) we getx+[i] ∈ (1 + δz)µiZi. If in (25) we setδz
such that(1 + δz)µi < 1, we have shown that fort = T̄ it
holdsx[i](T̄ + 1) ∈ Zi and Step 1 of the proof is concluded
settingT̃ = T̄ + 1.
The proof of Theorem 1 can be concluded using Steps 2 and
3 of the proof of Theorem 6.1 in [31]. In particular in Step 2
we prove the convergence of the overall state to the origin and
in Step 3 we prove stability of the closed-loop overall system.
We note that Steps 2 and 3 use the fact that setZ =

∏

i∈M Zi

is an RCI set for the overall closed-loop system.
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