4,409 research outputs found

    Slow Adaptive OFDMA Systems Through Chance Constrained Programming

    Full text link
    Adaptive OFDMA has recently been recognized as a promising technique for providing high spectral efficiency in future broadband wireless systems. The research over the last decade on adaptive OFDMA systems has focused on adapting the allocation of radio resources, such as subcarriers and power, to the instantaneous channel conditions of all users. However, such "fast" adaptation requires high computational complexity and excessive signaling overhead. This hinders the deployment of adaptive OFDMA systems worldwide. This paper proposes a slow adaptive OFDMA scheme, in which the subcarrier allocation is updated on a much slower timescale than that of the fluctuation of instantaneous channel conditions. Meanwhile, the data rate requirements of individual users are accommodated on the fast timescale with high probability, thereby meeting the requirements except occasional outage. Such an objective has a natural chance constrained programming formulation, which is known to be intractable. To circumvent this difficulty, we formulate safe tractable constraints for the problem based on recent advances in chance constrained programming. We then develop a polynomial-time algorithm for computing an optimal solution to the reformulated problem. Our results show that the proposed slow adaptation scheme drastically reduces both computational cost and control signaling overhead when compared with the conventional fast adaptive OFDMA. Our work can be viewed as an initial attempt to apply the chance constrained programming methodology to wireless system designs. Given that most wireless systems can tolerate an occasional dip in the quality of service, we hope that the proposed methodology will find further applications in wireless communications

    An interior-point and decomposition approach to multiple stage stochastic programming

    Get PDF
    There is no abstract of this report

    Volumetric center method for stochastic convex programs using sampling

    Get PDF
    We develop an algorithm for solving the stochastic convex program (SCP) by combining Vaidya's volumetric center interior point method (VCM) for solving non-smooth convex programming problems with the Monte-Carlo sampling technique to compute a subgradient. A near-central cut variant of VCM is developed, and for this method an approach to perform bulk cut translation, and adding multiple cuts is given. We show that by using near-central VCM the SCP can be solved to a desirable accuracy with any given probability. For the two-stage SCP the solution time is independent of the number of scenarios

    Decomposition and parallel processing techniques for two-time scale controlled Markov chains

    Get PDF
    This paper deals with a class of ergodic control problems for systems described by Markov chains with strong and weak interactions. These systems are composed of a set of m subchains that are weakly coupled. Using results recently established by Abbad et al. one formulates a limit control problem the solution of which can be obtained via an associated non-differentiable convex programming (NDCP) problem. The technique used to solve the NDCP problem is the Analytic Center Cutting Plane Method (ACCPM) which implements a dialogue between, on one hand, a master program computing the analytical center of a localization set containing the solution and, on the other hand, an oracle proposing cutting planes that reduce the size of the localization set at each main iteration. The interesting aspect of this implementation comes from two characteristics: (i) the oracle proposes cutting planes by solving reduced sized Markov Decision Problems (MDP) via a linear program (LP) or a policy iteration method; (ii) several cutting planes can be proposed simultaneously through a parallel implementation on m processors. The paper concentrates on these two aspects and shows, on a large scale MDP obtained from the numerical approximation "a la Kushner-Dupuisā€ of a singularly perturbed hybrid stochastic control problem, the important computational speed-up obtained

    From Cutting Planes Algorithms to Compression Schemes and Active Learning

    Get PDF
    Cutting-plane methods are well-studied localization(and optimization) algorithms. We show that they provide a natural framework to perform machinelearning ---and not just to solve optimization problems posed by machinelearning--- in addition to their intended optimization use. In particular, theyallow one to learn sparse classifiers and provide good compression schemes.Moreover, we show that very little effort is required to turn them intoeffective active learning methods. This last property provides a generic way todesign a whole family of active learning algorithms from existing passivemethods. We present numerical simulations testifying of the relevance ofcutting-plane methods for passive and active learning tasks.Comment: IJCNN 2015, Jul 2015, Killarney, Ireland. 2015, \<http://www.ijcnn.org/\&g
    • ā€¦
    corecore