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A logarithmic barrier cutting plane method 
for convex programming* 
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Delft University of Technology, Delft, The Netherlands 

The paper presents a logarithmic barrier cutting plane algorithm for convex (possibly 
non-smooth, semi-infinite) programming. Most cutting plane methods, like that of Kelley, 
and Cheney and Goldstein, solve a linear approximation (localization) of the problem 
and then generate an additional cut to remove the linear program's optimal point. Other 
methods, like the "central cutting" plane methods of Elzinga-Moore and Goffin-Vial, 
calculate a center of the linear approximation and then adjust the level of the objective, 
or separate the current center from the feasible set. In contrast to these existing techniques, 
we develop a method which does not solve the linear relaxations to optimality, but 
rather stays in the interior of the feasible set. The iterates follow the central path of a 
linear relaxation, until the current iterate either leaves the feasible set or is too close 
to the boundary. When this occurs, a new cut is generated and the algorithm iterates. 
We use the tools developed by den Hertog, Roos and Terlaky to analyze the effect of 
adding and deleting constraints in long-step logarithmic barrier methods for linear 
programming. Finally, implementation issues and computational results are presented. 
The test problems come from the class of numerically difficult convex geometric and 
semi-infinite programming problems. 

Keywords: Column generation, convex programming, cutting plane methods, decomposition, 
interior point method, linear programming, logarithmic barrier function, nonsmooth 
optimization, semi-infinite programming. 

. 

problem: 

where 

Introduction 

In this paper, we consider the following general (nonsmooth) convex programming 

minimize fo(Y) (1) 

subject to y E F ,  

F : = { y E R m : j ~ ( y ) < 0 ,  l < i < n }  

and the funct ions 3~(Y), 0 < i < n, are assumed to be convex.  The above convex  

p rog ramming  problem may be restated with a linear objective as fol lows:  
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maximize r/ 

subject to fo(Y) + 77 < O, 

fi (Y) < 0, l < i < n .  

Therefore, without loss of generality we may assume that fo(Y) is linear in (1). 
Taking fo(Y) = -bTy,  we will use the following format. 

(CP) maximize bTy 

subject to 3~(Y) <0 ,  1 < i < n ,  

where b ~ R  r~. We will assume that [Ibll = 1 and that f is compact, l~ Further, we 
assume that .T °, the interior of .T, is not empty. This condition is equivalent to the 
Slater condition used by Elzinga and Moore [4]. 

The first and most popular cutting plane algorithm for convex programs was 
independently derived by Kelley [19] and Cheney and Goldstein [2]. Since then, 
several other cutting plane methods for convex programming have been developed. 
One of the advantages of cutting plane methods is that the subproblems generated 
are linear programming (LP) problems. Since these successive LP problems differ 
only slightly from the previous subproblems, efficient "warm start" techniques are 
applicable. Furthermore, no line searches are necessary, and the near linearity of 
nonlinear functions is utilized. A potential drawback with these methods is that the 
size of the generated LP subproblem may increase to become very large. Although 
this growth can be handled by efficient constraint dropping strategies, the generation 
of a large number of cutting planes might still be necessary. Another serious drawback 
of Kelley's method is that no feasible point is generated by the subproblems; it produces 
a sequence of points which are optimal in terms of the LP relaxations but are infeasible 
(except for the final solution) with respect to the original convex problem. Contrary to 
these methods, our algorithm always remains in the interior of the feasible set. 

The central cutting plane methods of Elzinga and Moore [4, 10] and Goffin and 
Vial [9] are considered to be efficient. Also see Kortanek and No [22], Haurie et al. [7], 
Bahn et al. [1], Mitchell and Todd [24], and Kaliski and Ye [18]. Given the current 
linear localization, the method of Elzinga and Moore calculates the center of the 
largest inscribed hypersphere. If the center is feasible, then they add an objective cut; 
if the center is infeasible, then a new separating hyperplane is generated. Goffin and 
Vial choose a similar approach: instead of the center of the largest inscribed sphere, 
they use the analytic center (the point which maximizes the dual logarithmic barrier 
function, see Sonnevend [27]) of the actual linear localization. These two methods 
generate both feasible and infeasible points during the algorithm. 

l)We use the compactness assumption just for the sake of simplicity. In fact, all of our results remain 
valid if we only assume that the level sets of bry in .T are bounded. 
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Convex programming problems are frequently solved as semi-infinite (convex) 
programming problems. Any convex set can be constructed as the intersection of (a 
possibly infinite number of) halfspaces, where the boundary of these halfspaces are 
supporting hyperplanes of the feasible set. An overview of methods for semi-infinite 
programming can be found in the survey of Hettich and Kortanek [12]. 

Contrary to the existing techniques, we develop a method which does not solve 
the linear relaxations to optimality, but rather stays in the interior of the feasible set. 
The iterates follow the central path of a linear relaxation, until the current iterate 
either leaves the feasible set or is too close to the boundary. When this occurs, a new 
cut is generated and the algorithm iterates. We use the tools developed by den Hertog 
et al. [15, 16] to analyze the effect of adding and deleting constraints in long-step 
logarithmic barrier methods for linear programming. In this way, we combine interior 
point methods (IPM) with a new cutting plane (decomposition) method. Since a 
convex programming problem can be considered as a semi-infinite programming 
problem, our algorithm can also be used as an IPM technique to find solutions for 
semi-infinite programming problems. 

In [15], a build-up strategy for the long-step logarithmic barrier method is 
presented. In [16], a logarithmic barrier method for LP is studied which allows 
adding and deleting constraints. Starting with a (small) subset of the constraints, this 
algorithm follows the corresponding central path of the subproblem until the iterate 
is close to (or violates) one of the other constraints. Given some proximity parameter 
ta, new constraints are added to the system whenever their dual slack values fall 
below ta. This process is repeated until the iterate is close to optimality. If - log2t a < O(L),  

then this build-up algorithm finds a solution with duality gap less than 2 -2L within 
O(q*L) Newton iterations, where L is the bit length of the data and q* is the number 
of constraints in the final system. In [16], also a constraint dropping strategy is 
presented which maintains this worst-case complexity. We use these results in our 
algorithm. 

The paper is organized as follows. In section 2, we review the results of 
[ 15,16] corresponding to adding and deleting constraints in logarithmic barrier methods. 
In section 3, our logarithmic barrier algorithm for convex programming problems is 
discussed. In section 4, implementation strategies and computational results for this 
new method are presented. Finally, some conclusions are made. 

Notat ion  

The following notations are used throughout this paper, e denotes the vector 
of all ones. Given an m x n matrix A, its columns are denoted by a i, i = 1 . . . . .  n. Given 
an n-dimensional vector s, S denotes the n x n diagonal matrix whose diagonal 
entries are the coordinates sj of s; s T is the transpose of the vector (matrix) s. Finally, 
tlsll denotes the 12 norm of s. 
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2. Adding and deleting constraints in logarithmic barrier IPMs for LP 

In this section, we review some of the known results for logarithmic barrier 
methods applied to linear programming. After a brief introduction, we highlight the 
effects of adding and deleting constraints and present the build-up and down algorithm 
of [16]. 

2.1. A LONG-STEP PATH-FOLLOWING METHOD 

Consider the dual linear programming problem: 

(D) maximize bTy 

subject to A T y + s = c, s >_ O. 

A is an m x n matrix, b and c are m- and n-dimensional vectors, respectively; the m- 
dimensional vector y is the variable in which the maximization is done, and s is the 
n-dimensional dual slack vector. As usual, L denotes the bit length of the input data 
of (D). We also make the standard assumption that A has full row rank and that the 
feasible set of (D) has bounded level sets and a nonempty interior. 

We consider the dual logarithmic barrier function 

n 
f(y, It)'= ~bTy + ~ In s j, (2) 

I t  j = l  

where It is a positive parameter, f achieves a maximum value at a unique interior 
point y(It) [23]. We define the related slack as s(#) = c - ATy(it). The central path of 
(D) is defined as the set of solutions y(it) for It > 0. 

Roos and Vial [26] introduced the following measure for the distance of an 
interior feasible point to the central point y(It): 

tS(Y'I t ) '=min{Ix - e I ' A x =  b}. (3) 

The unique solution of the minimization problem in the definition of 8(y, It) is 
denoted by x(y, It). If the Newton direction for (2) is denoted by p, then it can be 
verified that 8(y, It) = IIS-~ATpll [13]. A closed formula for p is 

p= (AS-2AT ) - I (~  _ AS-le),  (4) 

and for x(y, It) 
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x ( y , # )  = p S - l e  + tzs - 2A T p 

= # S - l e  + Izs _ 2AT (AS-2AT ) - I ( ~  _ A S - l e ) .  (5) 

It can easily be verified that if y is feasible, then y = y(#)  ¢:, d(y,  Iz) = O. 
Briefly stated, long-step logarithmic barrier methods proceed as follows. Starting 

from an interior feasible point, the method generates the Newton direction (3) and 
searches along this direction to maximize (I).  Once the maximum point along the 
Newton direction is found, the iterate is updated and a new Newton direction is 
generated. The process continues until the iterate gets close to the current center 
(~(y,/.t) < 1/2). Then the barrier parameter is reduced by a fixed fraction 1 - 0, and 
the entire process continues. Note that all the iterates stay feasible, since the logarithmic 
barrier function assumes its min imum in the interior of  the feasible set. 

Suppose the logarithmic barrier method, as defined in [14], starts with barrier 
parameter/ . t  o > 0 and 0 < 0 < 1, independent of n (say 0 = ½). Then after at most 
O(- log2tc  + In n#0) reductions of the barrier parameter, the long-step algorithm ends 
up with both a primal and a dual feasible solution such that xTs < to. Each reduction 
of  the barrier parameter requires at most  O(n) Newton iterations. See [14]. 

2.2. SHIFTING, ADDING AND DELETING CONSTRAINTS 

The following results pertaining to the shifting, adding and deleting of constraints 
in logarithmic barrier methods are proved in [15,16]. We note that Ye [29] has also 
proved some of these results. 

The full index set { 1,. . . ,n } is denoted by N and Q c N. In this section, we 
use the notation (AS-2AT)Q to denote AS-2A T restricted to the columns of A in the 
index set Q, i.e. 

(AS-2AT)Q .= ~ aiaT 
i~Q s? 

Moreover, we define 

Ilxlla "= T (AS-2A T )QIx. 

Suppose the first constraint is shifted by a fraction of the current slack sl, i.e. the 
constraint 

aTy < cl 
is replaced by 

a~y < cl -- ~sl, O < e < l .  

Let the superscript * refer to this new situation; so s~ = ( 1 -  e)s I and s~ = s i for 
i = 2 .. . . .  n. The following lemma shows the effect of shifting. 
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LEMMA 1 

If we shift the first constraint by eSl(/2), then 

8" (y, #) _< S(y,/2) + e(1 + 8(y,/2)), 

(1 - e)Sl (#) -< s~ (#) _< S 1 ( / 2 ) ,  

f*  (y* (/2), I 2) <-- f(y(/2),  t 2) -- £. [] 

Suppose we add a constraint, aTy <_ c o say. Let So > 0 be the corresponding 
slack variable and define 

SO 

So -IlaollN 

Let the superscript * refer to this new situation. The next lemma analyzes the effect 
of adding a constraint on 8. 

LEMMA 2 

One has 

and 

{ SoS(y,/2) + 1 

8" (y,/2) _< ~ o  2 + 1 

41 + 8(y,/2)2 

if 8o > 6(y, #), 

if 8 o < 8(y,/2), 

s; (#) > so (#). 

Furthermore, if 8(y,/2) < ¼, then 

( 4  1 f*  (y* (12), 12) - f*  (y, 12) < ½ + max O, In ~o ' 
[] 

Suppose the first constraint aTy <_ c~ is removed and assume that the remaining 
constraint matrix still has full rank. Let the superscript * refer to this new situation. 
Now, defining N* • = N \ { 1 } and 

s1 
81- IlalllN' 

we have the following result: 

LEMMA 3 

8" (y, #) <_ S(y,/2) + 
1 + 6(y,/2) 

61 [] 
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2.3. BUILD-UP AND DOWN STRATEGIES 

Based on the analysis presented in the previous section, build-up (adding 
constraints) and build-down (deleting constraints) strategies are given in [16]. As 
described below, an algorithm based on these strategies can be developed which 
solves the original problem while only operating on subsets of N. 

For convenience, we assume the problem contains box constraints ( - e  < y < e) 
whose index set will be denoted as J (J C__ N). Starting with an interior feasible iterate 
(with respect to the original problem), a small subset Q c N \ J  is chosen. Let Q = Q u J. 
Once Q has been chosen, the algorithm proceeds with respect to the subset dual 
problem D O . 

(DQ) max { b T y  " a T y  < C i , i E Q}. 

However, we check in each iteration if there is an index i ~ Q such that 

S i < t a or s i < taS i ,  (6) 

where t,, is some "adding" parameter, and g is the slack vector of the dual iterate 
which was almost centered (6(2~,/)) < 1/4) with respect to the previous value of the 
barrier parameter. If there is such a constraint, we add it to our system, go back to 
the previous iterate (for which si > ta and si > ta si) and continue the logarithmic 
barrier process. Consequently, all iterates remain feasible for the original problem. 
This is the build-up strategy. 

When the iterate is close to the central path, the slack values associated with 
the current iterate are checked. If there is an i such that si > ta, where t a is a 
"deleting" parameter, we remove it from our current system, since it is likely that 
this constraint will be nonbinding in an optimal solution. After removing constraints, 
we recenter as necessary. A deleted constraint may indeed be binding for the optimal 
solution, but this causes no problems because the constraint will then be added in 
subsequent iterations. Cycling (the infinite adding and deleting of a set of constraints) 
is avoided by only deleting constraints when the iterate is close to the central path. 

Before describing the algorithm, we introduce some notations. Let •Q(y, It), 
fQ(y ,  It) and pa  denote the S-measure, the barrier function, and the Newton direction, 
respectively, with respect to the subsystem Q. The algorithm is as follows. 

BUILD-UP AND DOWN ALGORITHM 

Input: 
It =/.t o is the barrier parameter value; 
t c is a convergence parameter; 
0 is the reduction parameter, 0 < 0 < 1; 
Q is the initial subset of constraints; 
y is a given interior feasible point for (D) such that tSQ(y, It) < ¼ (see e.g. [25]); 
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Output: 
Xa is the primal solution vector; 
(y, s) is the dual solution vector/slasck for (D); 

begin 
while sTx(y,  I t) > tc do 

begin 
Delete-Constraints; 
It := (1 - 0)#;  

end 
Calculate Xa using (5); 

end. 

PROCEDURE CENTER-AND-ADD-CONSTRAINTS 

Input: 
t a is an "adding" parameter; 
Q the set of the currently active constraints; 
y is the current iterate; 

Output: 
Q the set of the currently active constraints; 

) is a centered solution; 

begin 
while SQ(y,  It) > ¼ do 

begin 

:=Y; 
6~ "= arg maxa>o { f a ( y  + a p a , P ) "  si - a a T p a  > 0,Vi E Q}; 
y : = y + a p Q ;  

if 3i ~ Q : si < ta max(l, si) then 
begin 

y : = y ;  

Q : = Q U { i : s  i < ta m a x ( 1 , s i ) , i  ~ Q}; 
end 

end 
~ : = y  

end. 

PROCEDURE DELETE-CONSTRAINTS 

Input: 
ta > 4 is a "deleting" parameter; 
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Q the set of the currently active constraints; 
is a centered solution; 

Output: 
Q the set of the currently active constraints; 

is a centered solution; 

begin 
f o r i : = l  t o n d o  

if i E Q \J and si >- td then 
begin 

Q : = Q \ { i } ;  
if t~Q (y, It) > ¼ then Center-and-Add; 

end 
end. 

Remarks  

(1) The selection of the parameters ta, td, tc is adaptive. The choice of the 
parameters of course affects both the practical performance and the theoretical complexity 
of the algorithms. How the theoretical complexity is influenced by the parameters is 
presented in the following subsection. The choice of these parameters in our 
implementation is discussed in section 4. 

(2) The termination criteria sTx(y, #)  > t c says that the algorithm stops if the 
current duality gap is smaller than to. The dual solution (y, s) is dual feasible. The 
primal solution xQ(y, It) is feasible and centered for the problem {AQX 0 = b, XQ > 0}. 
Defining xi = 0 if i ~ Q results in a primal feasible solution to the original (primal) 
problem. 

2.4. COMPLEXITY OF THE ALGORITHM 

The following complexity results are proved in [16]. Let q be the cardinality 
of the current subset Q, and let 0 be independent of q (say 0 = ½). 

THEOREM 1 

Between two reductions of the barrier parameter, the Build-Up and Down 
Algorithm requires at most O(q + r(- logzta)  + r In r) Newton iterations if r constraints 
were added. [] 

Lemma 3 is useful in analyzing the Delete-Constraints procedure. If the ith 
constraint is deleted and the iterate is near the #-center (i.e. So(y,  It) < I/4) whereas 
si > td > 4, then 
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• 1 1 + ¼  1 1 
t~ (y , /z )<  ~- + 4 . ~  < 2" 

As a consequence of lemma 1, we have that recentering costs at most O(1 + r(-log2ta) 
+ r In r) Newton iterations, if r constraints have to be added. 

A constraint which is removed during the outer iterations may be added during 
each inner loop. It is easy to develop strategies to prevent this; e.g. a constraint may 
be deleted only once (or a fixed number of times). For this purpose, we introduce 
K as the maximal number of times a constraint may be deleted. Clearly, K will be 
not larger than the number of updates of #; i.e. K <  (-log2tc) + lnq*# ° := Kmax, 
where q* denotes the maximum number of constraints at any time included in the 
subsystem at any time. 

THEOREM 2 

After at most O((K + 1) (q* In q* - q* log2ta) + q*(ln q*/Zo - log2tc)) Newton 
iterations, a to-optimal solution has been found for (D), where q* denotes the maximum 
number of constraints in the subsystem during the whole process. [] 

COROLLARY 

If K = O(1) and - log 2 tc = O (L), then the Build-Up and Down Algorithm converges 
in O(q*L) Newton iterations. 

If K = Kma x and - l og  2 t a = O(ln q), where q is the current number of constraints 
in our subsystem, then the Build-Up and Down Algorithm converges in O(q*L In q*) 
Newton iterations. [] 

3. A path-following cutting plane method for convex programming 

Now we present our algorithm for convex programming problems. Recall that 
the problem (CP) to be solved is stated as follows: 

(CP) maximize bTy 

subject to 3~(Y) <0 ,  l < i < n .  

As in the previous section, we assume that the problem contains box constraints 
( - e  < y < e) whose index set will be denoted as J. 

Our algorithm is a straightforward application of the Build-Up and Down 
Algorithm of the previous section. The algorithm below can be used to find a primal 
solution to convex, nonsmooth and semi-infinite programming problems. 

In the algorithm, we generate a sequence of linear programming relaxations 
of the original convex programming (CP) problem. Starting from a point in the 
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interior of the feasible region of (CP), a new potential iterate is generated as follows. 
With respect to the LP relaxation, a Newton step is calculated, producing an ascent 
direction for the dual logarithmic barrier function. Along this direction, a line search 
is performed to find the minimum of the barrier function in the interior of the feasible 
set. To avoid the relaxation boundary, we choose the point which is 90% of the 
distance to the minimum point along the Newton direction. If the new iterate violates 
or is too "close" to the boundary of a convex constraint, then the previous iterate is 
retained and a new supporting hyperplane is added to improve the approximation; 
otherwise, the new iterate is accepted. If the current iterate is centered, a deletion rule 
is used to eliminate redundant constraints, which keeps the size of the LP relaxation 
as small as possible. 

Formally, the algorithm is stated as follows. 

A PATH-FOLLOWING CU'ITING PLANE ALGORITHM 

Input: 
P is a convex polytope (the initial LP relaxation) such that F c P ;  

# = #0 is the barrier parameter value; 
tc is a convergence parameter, 0 < tc; 

0 is the # reduction parameter, 0 < 0 < I; 
Q is the initial index set of the (linear) constraints of P ;  
y E F ° is a given interior feasible point such that ~Q (y, p )  -< ¼ ; 

begin 
while sTx(y, ! t) > t¢ do 

begin 
Delete-Constraints; 

I t :=  (1 - 0)it; 
Center-and-Add-Constraints; 

end 
end. 

PROCEDURE CENTER-AND-ADD-CONSTRAINTS 

Input: 
t a is an "adding" parameter, 0 < ta; 

Q the set of the currently active cuts; 

y is the current iterate; 

Output: 
Q the set of the currently active cuts; 

is a centered solution; 
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begin 
while ¢~Q(y, 12) > 1 do 

begin 
y : = y ;  
tZ "= arg maxa>o{fQ(Y + apa,12)'si  -aaTiPa > 0, Vi E Q}; 
y := y + 0.9t~Pa; 
if 3k : -fk(Y) < ta then 
begin 

Add-Cut; 
y = y ;  

end 
end 

~ : = y ;  

end. 

PROCEDURE DELETE-CONSTRAINTS 

Input: 
t a > 4 is a "deleting" parameter; 

Q the set of indices of the currently active cuts; 

is a centered solution; 

Output: 
Q the set of indices of the currently active cuts; 

is a centered solution; 

begin 
for i : = 1  t o n  do 

i f i E Q \ J a n d  si>-tdthen 
begin 

Q:=Q\{ i} ;  
if ~Q(y, 12) >_ 1 then Center-and-Add-Constraints; 

end 
end. 

PROCEDURE ADD-CUT 

Input: 
E F and y ~ F  or y is close to the boundary of F ;  

the set of indices of the currently active cuts; 

Output: 
Q the set of indices of the currently active cuts; 
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begin 
Call O R A C L E  (35, y(a v, y)) 
Q = Q U {(a T ,y)} 

end.  

The ORACLE routine provides a cut in the case that the new iterate y is either 
outside the convex feasible region or is too near its boundary. The nature of the 
ORACLE changes depending on the characteristics of the convex region. If F is 
differentiable and its gradients can be calculated with little effort, the ORACLE will 
return the gradient; if F is nonsmooth,  the ORACLE returns a subgradient; if function 
evaluations are expensive, the ORACLE is constructed to minimize line searching. 
Below, we give a concrete example for when the functions fk are differentiable and 
the function evaluations are cheap. This is the case for the problem set solved later 
in this paper. 

ORACLE CUT (Smooth functions, cheap evaluation) 

Input: 
35 E F and y ~ F  or y is close to the boundary of F ;  

O u t p u t :  
cut a'ry < ~; 

begin 
If y ~ F then 

Find yb as the boundary point of F on the line segment (35, y); 
Else 

Find yb as the boundary point of  F on the line segment 35 + a ( y  - 35) where 
a >  0; 

Let fk be a constraint with fk(y b) = 0; 
a = Vfk(yb), ~t= aTyb; 
P = P n {ary < y}; 

end.  

Note that yb as defined in the ORACLE above is found through standard line- 
search techniques. If it is difficult to find the boundary point for the above ORACLE 
(due to numeric problems or expensive function evaluations), then a cut can be 
generated based on y or 35 (without line searching) as follows: 

o r  

a = V A ( y ) ,  

)" = a T y  - fk  (Y), 
(7) 
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a = Vfk (y) ,  

)1 = aT~  _ f k ( Y ) .  

To demonstrate the validity and viability of these alternate techniques, we also report 
computational results using (7) as a cut generation technique. See section 4.3. 

3.1. ABOUT CONVERGENCE 

A straightforward convergence proof of the above algorithm can be obtained 
by using the results of the discretization of semi-infinite programming problems (see 
e.g. Gustafson [11]). Since any convex set can be presented as an intersection of an 
infinite number of halfspaces, convex programming problems can always be interpreted 
as semi-infinite programming problems. Gustafson [11] proves the following theorem. 

THEOREM 3 (Gustafson [ 11])2) 

Given a semi-infinite programming problem 

m a x { b T y l a ( v ) T y  < y(V), V E C), 

where C is a compact set and the functions a(v)  and y(v) are continuous on the set C. 
Then there is a finite subset T C C such that the semi-infinite programming problem 
is computationally equivalent to the linear program induced by the finite set T. 

"Computationally equivalent" above means that the two problems are equivalent 
up to a certain given precision. Of course, the finite discretization of the semi-infinite 
programming problem (or equivalently the finite discretization of the convex 
programming problem) can be very large. Nevertheless, theoretically it is enough to 
solve a finite discretization (a finite LP problem) of the original problem. For the 
induced discretization, the results of the Build-Up and Down Algorithm of the previous 
section apply; starting with a small subset of constraints, constraints are added at the 
closest discretization point to the boundary point in question. This proves the practical 
convergence of the algorithm by solving a computationally equivalent problem. Recall 
the complexity of the algorithm depends on the number of the generated cuts, which 
can be enormous (possibly exponential in the original problem dimensions). As a 
consequence, proving the polynomial complexity of our algorithm remains an open 
question - a subject of  further research. 

2) Remember the assumption (the feasible set is compact) and the remark made about its relaxation (it 
is sufficient to assume that the level sets are bounded) in section 1. It is clear from his development 
that Gustafson really meant to include an additional assumption like bounded level sets. 
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3.2. COMPARISON TO OTHER c U T r l N G  PLANE METHODS 

Kelley's cutting plane method [ 19] solves an LP approximation of the problem 
(CP) in each step. LP problems are traditionally solved by the simplex method. The 
solutions to these localizations are all infeasible for (CP). This has two negative 
consequences. The first is that the method is unstable since the subsequent solutions 
may be located at vertices very far from each other. The second is that if the algorithm 
is terminated before optimality, no feasible solution is known, therefore wasting the 
computational effort. 

Elzinga and Moore's [4] central cutting plane method eliminates these 
disadvantages. Centering (calculating the ball center) ensures some stability and 
hopefully at least some of the iterates are feasible; when stopped prematurely, the 
algorithm still produces some useful information. Kortanek and No [22] report some 
encouraging computational results. 

The central cutting plane method of Goffin and Vial [9] also enjoys these same 
advantages. (The relation of the two methods was discussed in section 1.) In this 
method, the analytic center of the polytope is calculated by using a projective interior 
point algorithm. All efficient interior point methods follow the central path of the LP 
problem, which indicates that this method might even be more efficient than the 
cutting plane method of Elzinga and Moore. Impressive computational results are 
reported in [1]. 

Our method shares the advantages of the above central cutting plane methods. 
By following the central path of the actual LP relaxations, our method maintains a 
centering component which provides a stability similar to that mentioned above. By 
adding new cuts, the actual center moves, but in the controlled way as described in 
lemmas 1 and 2. The same controlled movement of the central path occurs when a 
loose cut is deleted. 

The main advantage of our approach is that in the above central cutting plane 
methods the LP relaxation is fixed while the new center is calculated. We dynamically 
refine the LP approximation of (CP) as the iterates draw close to the central path. 
In this way, significant computational savings are gained. Another advantage of our 
approach is that we start from a feasible point of the convex programming problem 
and feasibility is always preserved. Therefore, we can stop at any time. Moreover, 
when an iterate is centered, there is a bound for the duality gap of the LP problem 
which in turn also provides a bound for the solution of the convex programming 
problem. 

4. Implementation issues and computational results 

In this section, we describe an implementation of the cutting plane algorithm 
presented in the previous section. This implementation has been tried in a PC environment 
(using Microsoft FORTRAN), on an IBM 3090-200e mainframe (using vs FORTRAN v2r4), 
and on an HP 9000-720 Apollo workstation with RISC coprocessor (using FORTRAN-77). 
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We present the results from the workstation, although similar results (in terms of  
iteration counts and solution accuracies) may be obtained on the other platforms. The 
exact  configuration of  the HP 9000-720 workstation which was used is as follows: 

(1) Storage: 48 megabytes.  

(2) UNIX version 8.05 Operating System. 

&l. ABOUT THE TEST PROBLEMS 

Table 1 summarizes the 15 convex programming test problems which were 
tried. The first 14 problems come from [21, 1]; the 15th problem comes f rom [17]. 
All are instances of  the geometric programming problem. Problems 13 [5], 14 [6] and 
15 [ 17] come from real applications. The exponential  variable transformation (t i = err) 

Table 1 

Problem definition. 

Problem Problem Number of Degree of Initial 
number in [21] Vars Const difficulty point 

1 1 2 1 1 Phase i 
2 2 4 2 1 Phase 1 
3 3 3 1 5 Phase 1 
4 4 4 1 7 Phase 1 
5 5 11 3 19 e r 

6 6 4 3 3 Phase 1 
7 7a 8 7 3 Phase 1 
8 7b 8 7 3 Phase 1 
9 8 7 7 40 e "r 

10 9a 7 4 10 Phase 1 
11 9b 7 4 10 Phase 1 
12 9c 7 4 10 Phase 1 
13 10 10 7 9 Phase 1 
14 11 22 36 50 Phase 1 
15 - 30 40 274 Phase l 

is used for each of the problems, thereby eliminating the need for explicitly maintaining 
the positivity constraint t i > 0. Also the objective functions for each of  these problems 
have been made linear, using the transformation given in section 1. Finally, in section 4.5 
we also present some illustrative results for some numerically difficult  semi-infinite 
programming problems [3]. These problems were solved by using uniform discretizations 
of  the index set. 
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Although two of the problems were small enough to obtain an initial feasible 
point through inspection, most of them required the use of a phase 1 stage (described 
below) to find an initial interior point. Problems 1-4 ,  6 -8 ,  10-14  required the 
phase 1 stage; for problems 5 and 9, the initial interior point used was e. 

4.2. ABOUT THE IMPLEMENTATION 

In this subsection, we discuss several of the important implementation techniques 
we used in developing our path-following cutting plane system. This discussion will 
center around the main activities performed by the system: generating the search 
directions, line searching and generating cuts, determining an initial interior point, 
setting the required parameters, and terminating the algorithm. 

4.2.1. Search direction generation 

It is well recognized that the computationally costliest step in virtually all 
interior point methods is the formulation of the normal matrix and the generation of 
the search direction p (or PQ)" For convenience, we restate the definition of pQ (4) 
as the solution of the following linear system. 

b (AS_I)Qe ' (AS -2AT)QPQ-  ]A 

where the columns in A and S correspond to the cuts maintained in the index set Q. 
Frequently, the normal matrices encountered are relatively large and sparse. With 
such matrices, various techniques are typically used to preserve sparsity and speed- 
up the computations. However, this is not the case here. The number of variables (and 
thus the size of AS-2A T) for the problems we consider is relatively small (less than 
100). 

Also, since the cuts are generated as the gradients of the convex constraints, 
the normal matrix in general will not tend to be sparse. 

Initially, we chose Cholesky factorization to solve the symmetric, positive 
definite system. For most problems which were tried, Cholesky proved effective in 
generating search directions of sufficient quality to allow the algorithm to find solutions 
with duality gaps of 10 -9 to 10 -12. However, for those problems where the condition 
number of AS-2A T becomes too large (10:5 and greater), Cholesky fails to find 
reliable search directions, which in turn causes our algorithm to fail. To improve the 
reliability of our algorithm, we switched to QR factorization. This more stable technique 
allowed the algorithm to solve each of the problems in table 1 from any interior point 
we tried. Although QR factorization is computationally more costly than Cholesky, 
we feel that the added stability justified the additional effort. 

Currently, we use LINPACK's QR factorization routines DQRDC and DQRSL 
with the standard column pivoting. We propose several possible enhancements to our 
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current approach. One possible improvement would be to use the faster Cholesky 
technique until numeric accuracy becomes a problem. QR could then be used to 
provide added stability. Another approach would be to investigate more exotic column 
pivoting schemes to help improve the stability of QR. One possible ordering could 
be based on the closeness of each column to the current iterate. Another approach 
would be to replace QR factorization with singular value decomposition. All of these 
possible improvements are left as areas of future investigation. 

The number of cuts which are maintained in the index set Q directly influences 
the efficiency of the algorithm. Obviously, as this algorithm proceeds this set will 
tend to grow, which causes extra storage demands to maintain AQ and slows the 
formulation of the normal matrix. To control these effects, a column adding-delet ing 
strategy is used. 

Initially, AQ is set to 
AQ =[I, - I ] ,  

where I is the m × m identity matrix. These "box" constraints are set large enough 
to contain the original feasible region of (CP) and to provide upper and lower bounds 
for the variables in the model. Our computational experience indicates that the size 
of this box is not crucial; i.e. a large box around the feasible region is sufficient to start 
the process. From this starting polytope, the cuts are generated as described in section 3. 
These cuts are included in the index set Q, which is allowed to grow in cardinality up 
to some initial maximum value. We chose this initial maximum to be a constant multiple 
of the variable dimension; i.e. for our system, this maximum was set at 4m. 

Once this maximum was reached, the following adding-delet ing procedure is 
used. Whenever a new cut is to be added, an old cut is identified for removal. The 
cut which is removed is that cut from the final 3m columns of AQ which has the 
highest dual slack value si. Once this column is found, the new cut simply overwrites 
the old one, c i is updated to reflect the new cut, and the algorithm continues. The 
first m columns of AQ are left unchanged so as to ensure that AQ is always of full 
row rank. The second m columns of the initial box may be overwritten (be generated 
cuts) as necessary. 

Other schemes and other default values could be used to control the maximum 
number of active cuts. For example, the first 2m columns could be retained and the 
new cuts could overwrite the final 2m columns. Theoretically, retaining the first 2m 
columns is unnecessary to ensure that AQ is of full row rank. We have also found 
after extensive experimentation that retaining these extra m columns does little to 
improve the numeric stability of the algorithm. We prefer to maintain 3m columns 
of generated cuts, as opposed to 2m. Of course, maintaining all of the box constraints 
or increasing this initial maximum may be preferable on some problem sets. Fine- 
tuning this choice on other problem sets is left as a topic of further investigation. 

There is one potential flaw with this scheme. If the initial maximum size of 
Q is set too low, then there is the possibility the discarded columns from AQ may still 
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contain valuable information and removing them may significantly shift the central 
path, thus making is difficult to recenter the current iterate. Unfortunately, intelligently 
choosing the optimal maximum for a problem a priori is difficult. Instead, we propose 
the following adaptive technique. Initially, a maximum is chosen and maintained as 
described above. This maximum is kept until the system senses that recentering has 
become a problem, i.e. until the number of minor iterations required to recenter has 
exceeded some threshold value. We chose a value of 4m for this threshold. When this 
threshold is reached, the initial maximum is increased by m so that the next m 
columns generated may be included in AQ without the removal of any of the previous 
cuts currently resident in AQ. Based on the allowed memory allocation for the program, 
a final maximum is imposed on the cardinality of Q, beyond which the set is not 
allowed to grow. If difficulties in recentering occur and the final maximum cardinality 
of Q has been reached, the system is terminated. 

For the problems reported below, the initial maximum was set at 4m. For the 
problems reported here, there was never any need to increase this maximum. Note 
if a phase 1 stage was required or if the objective function needed to be linearized, 
then the number of variables maintained by the program may be as much as two 
greater than that reported in table 1. These extra variables are included in the 4m 
maximum. Although this adaptive strategy is a slight deviation from the procedure 
described in section 2, we found it to be practically more efficient. This strategy 
allows for easier control of memory and for increased speed in calculating search 
directions. 

Finally, it should be noted that our cutting plane algorithm does not ensure 
monotonicity in the objective values bTy for the iterates generated. However, for this 
system we chose to impose objective monotonicity. This was done by adjusting the 
barrier parameter/.t in any iteration where the generated direction would cause the 
objective value to fall, i.e. if bTpQ < 0, then/.t is adjusted to 

b T (AS-2A T )Qlb 

# = eT(AS_1)TQ(AS_2AT)QIb" 
(8) 

A new direction pQ is recomputed with this updated/.t. Note that this approach uses 
the previous factorization and only requires two additional QR solves. 

4.2.2. Line searching and cut generation 

As stated, the algorithm may require two line searches to be performed. The 
first is required in the Center-and-Add-Constraints procedure. This line search is used 
to find the maximum of the logarithmic barrier function along the line segment which 
starts at the current iterate and extends in the pQ direction. This is done by finding 
a root of the derivative of the logarithmic barrier function with respect to a, i.e. find 
a such that 
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n aSs i  
b T pQ Z si _ a(~s  i - 0, 

]'/ i=I 

where (~S i = (A~pQ)i. This line search is performed accurately and quickly by a hybrid 
bisection and secant method. 

Depending on how the cuts are generated, a second line search may be required. 
As shown in the concretized version of Add-Cut and ORACLE procedures, a line 
search is needed to find yO, a point of the boundary of the convex region. We have 
found this to be a reasonable strategy as long as the gradients of the constraints are 
easy to compute. This was the case for the geometric programming problems in 
table 1 ; closed form gradients are easily calculated for each. However, if the constraints 
are not differentiable or if the gradients are difficult/expensive to compute, then we 
recommend basing the cuts on some point which does not require a line search to 
be performed, such as y or ~ as shown in (7). In section 4.3, we report results based on 
cuts generated with line searching (using yb) and without line searching (using y). 

A line search strategy similar to the first is also used here. However, numeric 
difficulties may arise in this search. In particular, if the norm of the gradient at the 
point of intersection is quite large, it may be numerically infeasible to find a point 
y on the line segment such that I fk  (Y) I < e for some small, positive tolerance e near 
machine precision. Instead, it may well happen that two points, Yl and Y2, on the line 
segment are found such that 

II Y l  - Y2[I < e, 

A(Yl )  < - e ,  

A(Y2) > ~:. 

If this is the case, then it is possible that the cut described in Add-Cut may be 
invalid (it may remove feasible solutions) and should be corrected as follows. Let 
i = arg mini= 1,2( [ fk(yi)t ). Then 

a : V fk (y i ) ,  

7 = V f k ( y i )Ty i  - fk (Yi ) ,  

P = P A {aTy _< ~y}. 

Finally, we recall that the cuts are removed on the basis of the associated dual slack 
values. It is clear that this is not a scaling independent measure of closeness to the 
current iterate. To compensate for this, the cuts which are generated are all scaled 
so that Ilaill = 1 for all columns i. This allows the dual slacks to be a more reliable 
measure of closeness. 

4.2.3. Finding an initial feasible interior point 

The cutting plane method we propose requires an initial interior feasible point 
(in terms of the original convex region) to start. For some problems, such a point may 
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be easily found by inspection. However, finding such a point by inspection for larger 
or more complex problems in general is very difficult. 

To solve this problem, we may use either the well-known phase 1-phase 2 or 
big M approaches, as needed. As with the LP case, the big M method allows the 
convex programming problem to be solved in one pass. For some choice of the 
parameter M, the following problem replaces the original problem (CP). 

(CPM) maximize b T y - MT: 

subject to 3~(Y)-~" <0 ,  l < i < n ,  

7:>0. 

By adjusting "~ to be large enough, an initial interior solution (yO, 7:) can easily be 
chosen. Starting from this point, (CPM) is then solved using the algorithm described 
in section 3. If M is chosen to be large enough, 7: will be set to zero in the optimal 
solution, hence simultaneously solving the original convex programming problem. If 
during the iterations y E .T O occurs, one sets 7: = 0 and continues to solve the original 
problem. 

An alternative approach for finding an initial interior iterate is to apply the 
phase 1-phase 2 approach. Consider the following phase 1 problem. 

maximize - 7 :  

fi(y) - 7: _< 0, l < i < n .  

With phase 1, an artificial variable is added to each of the constraints. This allows 
an interior feasible point to be easily chosen for this augmented system. With the 
objective of maximizing the negative artificial variable, the cutting plane method is 
allowed to iterate on the augmented problem until an interior feasible point is found 
for the original problem. At this point, phase 1 terminates and the method proceeds 
on the original problem using the interior point found previously as a starting point. 

We chose to implement the phase 1 approach over the big M because of the 
difficulty of choosing an appropriately large value for M on the various problems. 
See section 4.3 for a summary of the performance of the phase 1. 

4.2.4. P a r a m e t e r  set t ings 

In this subsection, we discuss several of the parameter settings which are 
required by the algorithm. Our experience has been that the performance of the 
method (measured in terms of total CPU time and in final solution accuracy) is 
insensitive to each of the settings #0, 0, t c and I Qt. The last parameter, ta, has a 
definite impact on the final solution accuracy which can be obtained and is closely 
tied to machine accuracy. 



90 D. den Hertog et al., Logarithmic batZrier cutting plane method 

The initial value of #, #0, is arbitrarily set to 100. The algorithm is insensitive 
to this setting because this value may be automatically changed, as shown in (8). This 
change is frequently invoked during the initial iterations when large movements of 
the iterate occur. 

The parameters 0 and tc are set at 0.9 and 10 -16, respectively. Taking a small 
0 (much less than 1/2) would definitely slow down the algorithm, but the algorithm 
performance seemed insensitive for the values 1/2 < 0<  0.99. 

Recall, in section 2 tc is defined as the convergence parameter, i.e. the maximum 
possible duality gap at the algorithm termination. By setting this parameter to such 
an optimistically low level (approximately machine accuracy), we allow the algorithm 
to either find an exact solution or to proceed as far as possible until numeric difficulties 
cause the algorithm to end prematurely. This topic will be discussed further in 
section 4.2.5. 

Recall that the initial maximum size of Q which is allowed was heuristically 
set to 4m. Other values for this parameter were tried, but none seemed to have a clear 
advantage in the majority of cases tried. We chose this level because it was a 
reasonable compromise in the tradeoff between memory requirements and computation 
speed. Recall that for the problems investigated, this maximum was not increased. 

The final parameter to be set is found in the Center-and-Add-Constraints 
procedure. The t a parameter monitors how closely an iterate is allowed to drift toward 
the boundary of the convex region before a new cut is added. Using exact arithmetic, 
this parameter could be ignored and the iterate could be allowed to approach arbitrarily 
close to the convex boundary, although this would typically result in significantly 
higher iteration counts. Unfortunately, the computer uses far from exact arithmetic 
and allowing the iterate to approach the boundary can cause serious numerical problems. 
In particular, as the iterate draws close to the boundary, the associated slack variable 
draws correspondingly close to zero. This in turn causes the other slack variables to 
become less significant in the normal martix calculation A S - 2 A  T, causing this matrix 
to become seriously ill conditioned. The proper setting of the ta parameter can help 
to alleviate these numeric problems, ta should be set so that if the calculated point 
has a dual slack which becomes small enough to cause the other slacks to lose 
significance, a new cut is generated, shifting the central path away from the constraint. 

Judging the exact value that I a should be set at a priori to avoid this problem 
is difficult, but we do use a heuristic which worked very well in practice. Let y~ E f 0  
be the current iterate and y = Yk + apQ be the trial point. The decision rule is as 
follows: 

Find the closest convex constraint i such that: 

( ~ ( y )  > 0.0) or 

(~(Yk) < - 1 0 - k '  and j ~ ( y ) > - 1 0  -/k'+k'-)) or 

(fi(Yk) > -10-k'  and j~(y) > - 10-k2J](yk) ) 
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If  such a constraint i exists then 

Add a new cut for constraint i and recompute a new trial point y 

Else 
No new cut is required - update the iterate. 

End If 

Note ta = 10 -kz. This rule simultaneously prevents one slack from becoming 
too small too quickly while allowing the iterate to draw close to the optimal solution 
towards the end of the procedure. We set kl and k2 so that 2(kt + k2) is less than the 
number of digits of  machine accuracy. This sum is multiplied by 2 because the slacks 
are squared in the normal matrix calculation. For our implementation, we chose ki 
and k2 to be 6 and 2, respectively; thus, t a = 10 -2. 

4.2.5. The termination of  the system 

As mentioned in the previous section, one method of terminating this procedure 
is when the duality gap falls near to machine tolerance. Unfortunately, this is not 
usually obtainable in practice. Typically, the numeric difficulties discussed above will 
cause the QR procedure to generate unreliable search directions as the iterate draws 
near the optimal solution. The algorithm is terminated when the error in the generated 
direction (as measured by the norm of the residual vector) grows beyond a fixed 
tolerance. Such a termination technique is more realistic. 

It should also be pointed out that if the problem is stated with finite precision 
or if the constraint function/gradients are difficult to compute accurately, then there 
is little sense to compute a solution vector with greater accuracy than the original 
data. The algorithm should be terminated when the duality gap reaches this accuracy 
level. 

4.3. COMPUTATIONAL RESULTS 

In this section, we present the computational results we found with our cutting 
plane algorithm on the problem data set previously described. Our results are summarized 
in tables 2, 3, and 4. Table 2a summarizes our findings using the feasible boundary 
technique of generating cuts (with line searching); table 2b summarizes our findings 
using a y-based cut generation technique (without line searching). All other parameters 
and settings were identical for both sets of  runs. We feel these results are very 
comparable. It appears that the gain which is received from not requiring the extra 
line search is approximately lost due to the need for addition cuts. Tables 3, 4, and 5 
are based on results from table 2a. 

There are several points which we wish to highlight from tables 2a and 2b. 
First, there seems to be a remarkable consistency in the major iteration counts listed. 
This consistency is a direct result from the strategy we use to reduce the logarithmic 
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Table 2a 

Problem results overview with line search. 

Problem 
number  

Max Number  of Duality 
Q size Major Matrix Cuts Fnct evals, gap 

iters, factor. 1000's 

Total 
CPU 

(s) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

I1 

12 

13 

14 

15 

16 I7 53 27 1.3 9.9e - 15 

24 19 66 27 1.9 2.6e - 15 

20 18 78 48 2.2 4.6e - 12 

24 19 108 74 4.1 1.0e - 09 

48 t2 I38 99 3.9 1.0e - 10 

24 19 94 52 2.9 4.8e - 09 

40 19 t18 65 4.8 7.2e - 13 

40 18 117 79 4.6 7.2e - 13 

32 13 150 115 6.2 6.4e - 13 

36 17 181 128 6.1 9.7e - 11 

36 i7 168 114 5.6 4.7e - 1 0  

36 17 158 108 5.5 1.5e - 10 

48 20 207 135 9.9 8.1e - 07 

96 17 327 253 32.4 2.5e - 11 

128 21 557 471 74.3 1.4e - 09 

0.23 

0.47 

0.47 

0.99 

3.56 

0.83 

2.17 

2,08 

2.01 

3.25 

2.51 

2.36 

6,54 

39.60 

162.88 

Table 2b 

Problem results overview without line search. 

Problem 
number  

Max Number of 
Q size Major Matrix Cuts Fnct evals. 

iters, factor. 1000's 

Duality 
gap 

Total 
CPU 

(s) 

1 16 18 61 34 0.5 

2 24 19 62 23 0.9 

3 20 19 84 50 0.9 

4 24 19 100 68 0.5 

5 48 14 139 106 1.3 

6 24 19 113 70 1.0 

7 40 20 166 108 2.8 

8 40 18 166 t12 2.8 

9 32 14 152 t23 2.7 

10 45 18 233 190 2.7 

I1 36 18 189 138 2.1 

12 36 20 182 128 2.0 

13 48 22 259 176 4.5 

14 96 19 321 262 24.3 

15 128 24 652 560 54.6 

2Ae - 15 

4 . 3 e -  15 

5.6e - 12 

1 . 4 e  - t 0  

4 . 1 e -  12 

1.5e - 08 

5 . 6 e -  14 

2.6e - 13 

1 . 6 e -  12 

6.3e - 11 

2,7e - 11 

2.7e - 12 

3.3e - 07 

2 . 6 e -  11 

4 . 7 e -  10 

0.28 

0.43 

0.50 

0.83 

3.65 

1.12 

3.08 

2.94 

2.00 

3.96 

2.84 

2.76 

8.13 

38.60 

195.67 
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Table 3 

Phase 1-phase 2 breakdown. 

Problem Phase I Phase 2 
number Major Normal CPU Major Normal CPU 

iters, factor (s) iters, factor (s) 

1 2 8 0.03 15 45 0.20 
2 2 9 0.06 17 57 0.41 
3 4 9 0.07 14 69 0.40 
4 3 10 0.09 16 98 0.90 
6 4 25 0.20 15 69 0.63 
7 4 29 0.50 15 89 1.67 
8 3 21 0.33 15 96 1.75 

10 4 30 0.45 13 151 2.80 
11 4 30 0.43 13 138 2.08 
12 4 30 0.45 13 128 1.91 
13 6 44 1.21 14 163 5.33 
14 4 41 3.71 13 286 35.89 
15 4 119 30.19 17 438 132.69 

barrier parameter #. At the start of each major iteration, this parameter is reduced 
by a factor of  I0. Since the algorithm theoretically stops when the duality gap is less 
than t c and on the central path the gap is the product of nl.t, then this consistency 
should not be surprising. A more reliable measure of the work required to solve the 
problem may be found in the number of  normal matrix formulations and factorizations, 
and in the number of cuts generated to obtain a given level of solution accuracy. 

Also, in tables 2a and 2b we see that duality gaps of 10 -1° to 10 -15 can 
typically be achieved with this method. Although machine accuracy (1016 ) is not 
obtained, the method presented here typically does significantly better than the previous 
methods proposed in [21] and [1] to solve these problems in terms of  solution 
accuracy. Our results are comparable and frequently better than Vial's [28] results. 

Note that for problem 13, our method had difficulties obtaining the usual level 
of  precision; a gap of  only 8 . 1 e -  7 was possible. In this problem, there was an 
enormous range on the coefficients which exacerbated the numeric difficulties addressed 
earlier; i.e. the range caused the iterate to fall too near a constraint before a higher 
degree of  precision could be obtained. 

Table 3 highlights the phase 1 -phase  2 comparison on the problems which 
required a phase 1 stage to be performed. In general, we found that approximately 
15 -25% of the total computational effort is spent in the phase 1 stage. 

Table 4 presents a percentage CPU breakdown for the largest problem that was 
solved. As might be expected, the majority of effort of this method is spent formulating 
the normal matrix and computing the search direction. In this system, the normal 
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Table 4 

Time percentage breakdown for problem 15. 

Normal matrix formulation/solving 77% 
Evaluating convex constraints/gradients 7% 
Line search operations 7% 
Pricing (ArpQ calculations) 5% 
Miscellaneous 4% 

matrix is reformulated and refactored at each iteration. It is possible that numerically 
this is not really required. It is possible that the normal matrix (and its factorization) 
could be maintained for several inner iterations without seriously affecting the directions 
that are generated. This possibly could save a significant amount of effort. Such 
investigations are left as an area of future research. 

4.4. COMPARISON TO PAST WORK 

In tables 5a and 5b, a comparison of our results and those of [21,17, 1,28] is 
given. Our method seems more stable on this problem set. The logarithmic barrier 
path following method is on average several more digits of accuracy in the solution 
than that of  [21] and [1]. Note that the higher degree of accuracy we obtained 
required only slightly more effort than required in [21] and [1]. Higher degrees of 
precision are important with these problems because there is the real possibility that 
the central path may fall close to one of the constraints. If this happens and the 
method terminates prematurely, then the point which is found to be "optimal" by the 
method may in fact be far from the true optimum, however the true duality gap is 
always bounded by the gap presented. 

4.5. SEMI-INFINITE PROGRAMMING RESULTS 

Finally, as a means of demonstrating the usefulness of this technique for 
finding the optimal solution to semi-infinite programming problems, we consider the 
following problem which was extensively tested in [3]. 

Minimize 
gl 

~.a Xi /i 
i = 1  

/I 

subjectto ~.asi-lxi > tan(s) forall  s ~ [0,1]. 
i = I  

As mentioned in theorem 3, we can find an optimal solution to this problem by imposing 
a uniform grid for s over [0,1]; i.e. we solve the generated linear programming problem 
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Table 5a 

Result comparison. 

Problem Solution accuracy 3) 

number Current Method [21] Method [28] 

I 9.9e - 15 2 . 0 e -  9 1.6e - 7 

2 2.6e - 15 4 . 0 e -  6 2.2e - 9 

3 2.6e - 12 3 . 0 e -  5 l . l e  - 3 

4 1 .0e -  9 4 . 0 e -  6 7.3e - 2 

5 1 .0e -  10 l . l e - 4  l . l e - 6  

6 4.8e - 9 4 . 0 e -  5 2.1e - 3 

7 7.2e - 13 8 . 0 e -  5 7.5e - 8 

8 7.2e - 13 8 . 0 e -  8 6.3e - 6 

9 6 . 4 e -  13 7 . 0 e -  5 7.1e - 6 

10 9.7e - 11 7 . 0 e -  6 1 .2e -  3 

11 4.7e - 10 7 . 0 e -  7 1.1e - 4 

12 1.5e - 10 7 . 0 e -  5 1.2e - 4 

13 8.1e - 7 1 .0e -  3 4.2e - 3 

14 2.5e - 11 2 . 2 e - 4  6.8e - 10 

15 1 . 4 e - 9  , ,4 )  6 . 4 e - 1 0  

Table 5b 

Result comparison to [1]. 

Problem Current method Method [1] 

number Accuracy No. of cuts Accuracy No. of cuts 

! 9.9e - 15 27 4 . 0 e -  7 14 

2 2.6e - 15 27 9 . 0 e -  7 35 

3 4.6e - 12 48 8 . 0 e -  7 31 

4 1 .0e-  9 74 9 . 0 e -  7 41 

5 1 .0e-  10 99 9 . 0 e -  7 84 

6 4.8e - 9 52 6 . 0 e -  7 41 

7 7,2e - 13 65 7 . 0 e -  7 73 

8 7.2e - 13 70 9 . 0 e -  7 75 

9 6 . 4 e -  13 115 9 . 0 e -  7 73 

10 9.7e - 11 128 7 . 0 e -  7 71 

11 4.7e - 10 114 8 . 0 e -  7 75 

I2 1.5e - l0  108 9 . 0 e -  7 89 

13 8.1e - 7 135 8 . 0 e -  7 146 

14 2.5e -11  253 9 . 0 e -  7 123 

15 1 .4e -  9 471 

3) For the current method and for [21], the value of the barrier parameter/.t is reported. This value is multiplied by 

n to obtain an upper bound for the duality gap. Some of the results of [21] are from the technical report, since 

they were removed from the final version. Vial [28] reports the achieved relative duality gap. Since this table 

presents the absolute duality gaps, the reported (relative) duality gaps are adjusted appropriately. 
4)This problem is not solved in [21], but the authors of paper [21] did solve this problem in [17]. The solution 

presented in [17] has a small typographical flaw; as stated, constraint no. 34 is violated (0.3125Qo ~ 1 where the 

reported value for Qo = 5.38). 
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Table 6 

Semi-infinite programming results. 

Number Grid Major Matrix Cuts Gap CPU 
of vars. fineness iters, factor. (s) 

(n) (m) 

10 le2 15 63 24 3.6e - 14 0.6 
10 le3 13 79 35 1.8e - 13 2.1 
10 le4 12 78 39 2.1e - 12 14.1 
10 le5 13 83 42 2.2e - 13 137.4 
10 te6 13 84 42 2.6e - 13 1399.3 
20 le2 9 54 23 1.2e - 8 1.1 
20 le3 10 76 38 6.4e - 10 3.8 
20 le4 9 66 29 3.5e - 8 23.5 
20 le5 10 52 19 8.4e - 10 179.3 
20 te6 10 67 30 9.2e - 10 2310.0 
30 le2 9 48 23 9.0e - 8 1.8 
30 le3 11 59 25 5.9e - 10 4.6 
30 le4 10 51 22 6.0e - 9 25.7 
30 le5 10 52 19 5.2e - 9 244.0 
30 le6 9 55 26 2.0e - 7 2559.2 

with m constra ints  o f  the form ET=lsi-lxi ~ tan(s)  for  f ixed s = {0, 1/m, 2/m . . . . .  1 }. 

Using a var iety of  f inenesses,  we have solved this semi- inf ini te  p r o g r a m m i n g  p rob l em 

for  n = 10, 20, 30. The  results are summar i zed  in table 6. 

No te  that, as a finite subset  o f  the infinitely m a n y  l inear  const ra in ts  is used 

in the discret izat ion,  we cannot  be sure wi thout  min imiz ing  the one -d imens iona l  
x-'~n i-I  * nonl inear  nonconvex  funct ion min Ig(s) = 2.,i=ls x i -  tan(s)  if  the obta ined  op t imal  

solut ion x* is real ly feas ible  for  the semi- inf ini te  p rob lem or not. However ,  the dual 

op t imal  solut ion is feas ible  for  the dual semi- inf ini te  p r o g r a m m i n g  prob lem.  To keep  

the presenta t ion  compac t ,  this extra  one-d imens iona l  min imiza t ion  is not d iscussed  

here. 

5. Conclusions 

As reported in the li terature,  the analyt ic  central  cut t ing p lane  me thods  are 

more  stable than other cutting plane methods [1,9]. We also presented a new logari thmic 

barr ier  cut t ing plane method.  In this method,  the local izat ion is done  in teract ively  

(more  drast ical ly)  wi thout  gett ing too close or calcula t ing expl ic i t ly  the "cen te r"  of  

the actual  local izat ion.  

Proving  global convergence (possibly polynomial  complexi ty)  o f  our  logari thmic 

barrier cutting plane method remains an open problem, although we have seen that, based 
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on the discretization of  the feasible set, polynomial complexity (polynomial in the 
number of discretization points) can be derived based on the analysis of  [13, 15, 16]. 

We have also demonstrated that the logarithmic barrier cutting plane method 
is a computationally viable technique for solving several geometric and semi-infinite 
programming problems. We have found this method to be numerically more stable 
than some previous methods with comparable amounts of computational effort. However, 
some of the methods produce both primal and dual optimal solutions. 

In terms of  implementation issues, we leave several questions open as areas 
of  possible future research. The first is whether a better adaptive heuristic can be 
found for directing the reduction of the logarithmic barrier parameter #, which would 
reduce the total number of  factorizations required. The second is developing strategies 
for maintaining the normal matrix for consecutive inner iteration without seriously 
eroding the quality of  search directions that are generated. For larger problems with 
difficult to evaluate functions, additional methods for generating cuts should be 
further explored. Finally, various techniques for improving the stability of  generating 
the search direction should also be investigated. 
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