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Abstract 

This paper deals with a class of ergodic control prob- 
lems for systems described by Markov chains with 
strong and weak interactions. These systems are com- 
posed of a set of m subchains that are weakly cou- 
pled. Using results recently established by Abbad et 
al. one formulates a limit control problem the solution 
of which can be obtained via an associated nondiffer- 
entiable convex programming (NDCP) problem. The 
technique used to solve the NDCP problem is the An- 
alytic Center Cutting Plane Method (ACCPM) which 
implements a dialogue between, on one hand, a master 
program computing the analytical center of a localiza- 
tion set containing the solution and, on the other hand, 
an oracle proposing cutting planes that reduce the size 
of the localization set at each main iteration. The in- 
teresting aspect of this implementation comes from two 
characteristics: (i) the oracle proposes cutting planes 
by solving reduced sized Markov Decision Problems 
(MDP) via a linear programm (LP) or a policy iteration 
method; (ii) several cutting planes can be proposed si- 
multaneously through a parallel implementation on m 
processors. The paper concentrates on these two as- 
pects and shows, on a large scale MDP obtained from 
the numerical approximation ‘‘A la Kushner-Dupuis” of 
a singularly perturbed hybrid stochastic control prob- 
lem, the important computational speed-up obtained. 

1 Introduction 

Markov Decision Processes (MDPs) or their control 
counterpart, Controlled Markov Chains (CMCs) axe 
versatile modeling tools benefitting from a rather com- 
plete theoretical framework and a series of efficient com- 
putational tools. We refer the reader to the books by 
M. Puterman [21] or D. Bertsekas [4] for a comprehen- 
sive presentation of these methods. In the stochastic 

optimal control realm CMCs play an important role in 
the numerical solution of problems involving controlled 
diffusion and jump Markov processes. The book by 
Kushner and Dupuis [17] gives a comprehensive presen- 
tation of these numerical techniques that use approxi- 
mating CMCs. It has been shown very early (see [7], 
[IS]) that linear programming could be used to solve 
problems involving MDP’s with finite state and action 
spaces, in particular for the ergodic (average cost) case. 
As recalled by Blonde1 and Tsitsiklis in a recent survey 
of computational complexity results in control [5] ... 
linear programming is the only method known to solve 
average cost MDPs in polynomial time. However the 
linear programs (LPs) associated with MDPs are quite 
large and may suffer from ill-conditioning when the 
Markov chains contain strong and weak interactions, 
that is transitions probabilities differing of an order of 
magnitude and corresponding to different time scales. 
These problems, related to the theory of singularly per- 
turbed control systems, have been studied by Delebeque 
and Quadrat [8] and Phillips and Kokotovic[PO] among 
others and, more recently, by Abbad, Bielecki and Filar 
[l] and [2] who have shown that, in the case of average 
cost MDPs, a limit control problem could be defined 
with an associated LP having a nice block-diagonal 
structure. 

One way to deal with large scale but structured LPs 
consists of implementing a decomposition technique. 
The most celebrated one being the Dantxig-Wolfe [6] 
method where an auxiliary nondifferentiable convex 
programming problem is solved by the Kelley cutting 
plane method. Recent advances in this domain have 
permitted the development of a pseudo polynomial 
time decomposition technique called the Analytic Cen- 
ter Cutting Plane Method (ACCPM) [13, 151. In this 
paper we exploit the structured LP formulation pro- 
posed in [l] and ACCPM to provide a pseudo poly- 
nomial time algorithm for solving ergodic MDPs with 
strong and weak interactions. 
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2 ’ Ergodic MDP with strong and weak 
interact ions 

Consider an MDP with finite state and control sets S 
and U respectively. A state s E S is represented by a 
pair s = (2, i)  where 2 E X corresponds to a fast mode 
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and i E I to a slow mode respectively. More precisely, 
the generator of the MDP GE[(z,  i), (d,j)Iu] is assumed 
to have the form 

where 

0 B[(z, i), (d , j ) lu ]  is the generator of a completely 
decomposable MDP, with card( I) subprocesses 
which do not communicate one with the 0ther;i.e. 
if i # j  then B[(z , i ) ,  (d , j> lu ]  = 0 Vx,x’ E X  

gether these card(I) sub-blocks. 
0 eD[ (x , i ) ,  (x’,j)lu] is a perturbation that links to- 

This structure is illustrated below by the shadows of 
the matrices B and ED respectively. The size of the 
dot indicates the order of magnitude of the correspond- 
ing coefficient 

B =  

‘ .  . 0 -  
0 . .  . . .  . . .  . . .  . . .  

0 . .  

0 . .  . . .  
. . . . . .  
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A transition cost Li(x,u) is associated with the state 
s = ( i , ~ )  and the control action U .  The class r of 
admissible stationary policies is a set of feedback laws 
y : (z,i) I+ U = y(z,i). We assume, to simplify, that 
each admissible policy generates an ergodic Markov 
chain. One searches for a stationary policy y* E l? 
that maximizes the average cost criterion 

2.1 LP formulations 
Let Zi(z,u) denote the joint probability of being in 
state (i,z) and taking the action U .  The MDP can be 
solved as the following LP 

i x u  
s.t. 

i E I  X E X  UEU 

X’EX, j c I  

(3) 

(4) 

i x u  

0 <_ Zi(z,u) i ~ 1  z ’EX,  U E  U. ( 6 )  

This problem is usually ill-conditioned because of the 
presence of big and small transition probabilities in 
Eq. (4). 

2.2 The LP associated with the limit control 
problem 
It has been shown in [2] that, when E tends to zero, 
the solution of the MDP can be approximated by the 
solution of a’ limit control problem (LCP). To this LCP 
corresponds the following LP 

i x u  
s.t. 
0 = 2 B[(z ,  Z), (d, i)lU]Zi(S, U )  

x u  

vx‘ E x,i E I 

i x ’ x u  

v j  E I 

i x u  

0 I Z i ( Z , U )  i E I 2’ EX, U E U. (11) 

In this formulation the E term has vanished and there- 
fore the ill-conditioning, due to the mixing of high and 
low transition probabilities, also disappears. In this LP 
the constraints (8) have a block-diagonal structure while 
the constraints (9-10) are the coupling ones. Clearly 
this places the problem in the realm of decomposition 
methods in LP. 

3 The decomposition method 

3.1 Decoupling the MDPs 
The LP associated with the limit MDP (7-11) admits 
a dual formulation. Let +(z’,i) and $ ( j )  be the dual 
variables associated with the constraint of index (E’, i) 
in Eq. (8) and the constraint of index j in Eq. (9) re- 
spectively. Let T be the dual variable associated with 
the constraint Eq. (10). The dual LP is 

min T 
$> 4, -r 
s.t. 
T 2 L y z ,  U )  - B[(s ,  i), (d, i ) l U ] 4 ( 2 ’ ,  i) 

X’ 

j I’ 
i E I ,  x E x,u E U. 

D e h e  the expressions 

j I’ 
i E I, x E x,u E U. (13) 
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Then the the dual problem (12) can be rewritten as 

min T *, 4, 
s.t. 

T 2 H($, x,  2, U )  - BKX, i),  (x/, i)lU14(X', 2) 
5' 

i E I, x E x,u E U. (14) 

Due to the block-angular structure of the generator B, 
the constraints in (14) decouple. More precisely we 
formulate the card(1) subproblems 

s.t. 
Ti 2 H($, x, i ,  U )  - Bi[x, x'lu](b(xl, i), 

2' 

vx E x , v u  E U, (15) 

where Bi denotes the block of nonzero coefficients in the 
matrix B. For each i E I, the problem (15) corresponds 
to a decoupled MDP. Hence, if one knows the correct 
dual values $(i), i E I, then, by introducing the modi- 
fied rewards H(+, x,  i, U )  as defined in (13), the problem 
can be decomposed into card(1) decoupled MDPs. The 
solution is therefore obtained by solving the convex op- 
timization problem involving the dual variables $ 

where x($) is the convex function defined as x(T+!J) = 
maxiE' xi($) and xi($) is the optimal value obtained 
for the problem (15). We notice here that, each prob- 
lem (15) can be solved either as an LP or via a typi- 
cal dynamic programming method like, e.g. policy im- 
provement or value iterations. 

4 The Analytic Center Cutting Plane Method 

We use ACCPM with a parallel processor implemen- 
tation to solve the convex programming problem (16). 
The epigraph of x can be approximEted by intersections 
of half-spaces. Given a test value $ in Rcard('), a pro- 
cedyre called oracle generates a subgradient X ( 4 )  E dx 
at $ with the property 

This inequality defines a supporting hyperplane for the 
function to be optimized; we call it an optimality cut. 

Suppose the oracle has been called at a given sequence 
of points {qhn}, n E N .  The oracle has therefore gener- 
ated a set of optimality cuts defining a piecewise linear 
approximation x : Rcard(') -+ R to the convex function 
X 

- 

This permits us to write the following linear program 

min c 
s. t. c L x ( V )  + ( X ( V ) , @  - V) ,  Vn E N ,  

the solution of which gives a lower bound IQ for the con- 
vex problem (16). Observe also that the best feasible 
solution in the generated sequence provides an upper 
bound rU for the convex problem (16), i.e. 

nu = min{x(qn)}. 
nEN 

For a given upper bound T ,  we call localization set the 
following polyhedral approximation 

q..> = {(c,$) : 7i- s c, c L X(V)  + 
( X ( V ) ,  1L - V),  %l E W .  (20) 

It is the best (outer) approximation of the optimal set 
in (16) in the epigraph space of the function x. 
We can now summarize the ACCPM algorithm 
1. Compute the analytical center' (C,$) of the local- 
ization set L(7ru) and an associated lower bound E. 
2. Call the oracle at (C,?). The oracle returns one or 
several cuts and an upper bound x($) 
3. Update the bounds: 7ru = min{x($),7ru} and 

4. Update the upper bound ?r in the definition of the 
localization set (20) and add the new cuts. 

These steps are repeated until a point is found such that 
rU - 7r1 falls below a prescribed optimality tolerance. 
The polynomial convergence of the method was studied 
in [3] and [12]. 

In our case, as the function x is the maximum of card(]) 
functions, i.e. 

Tl = "{E, T l }  

x($) = yEyxz($), (21) 

the oracle may generate multiple cuts, one for each i 
in I .  The single cut (17) is replaced with the following 
card(1) cuts: 

x(+) 2 Xi($) + (Xi(4),$ - 4), (22) 

where Xi($) is a subgradient of the function xi at 4. 
This multiple cut approach is more efficient than a sin- 
gle cut approach since the computation time to intro- 
duce a cut is negligible and the work of the oracle is the 
same in both cases. Indeed the oracle has to compute, 
at each iteration, xi($) and Xi(4) for all subproblems 
i in I. In the single cut approach one selects the cut 
touching the epigraph of x and one doesn't use the other 
cuts, contrarily to the multiple cut approach where all 

'The analytic center is the unique point in that set that m a -  - . = ~ ~ { x ( ' n )  + (x('n)' ' - ',")}. (18) 
imizes the product of the slacks to the defining constraints. 
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cuts are used. Furthermore, the oracle can benefit from 
a parallel implementation, since the card(1) MDPs are 
totally decoupled and, therefore, can be solved on differ- 
ent computers. As indicated earlier, the oracle can use 
a policy improvement (PI) algorithm instead of a pure 
LP approach, as it has been observed in practice that 
PI is efficient in solving average cost MDPs of moderate 
size. 

5 Experimentation 

5.1 A switching diffusion ergodic control model 
We consider an ergodic stochastic control problem of 
the class studied in Ref. [ll]. More details on the e c e  
nomic interpretation of this model can be found in [19] 
and [16]. The system has an hybrid state (x,(). The 
continuous state x takes value in R2 and evolves ac- 
cording to a controlled diffusion process 

d Z k ( t )  = [ U k ( t )  - a k z k ( t ) ] d t  + U k d w k ( t )  k = 1,2. 

whereas the discrete state ( takes value in a finite set 
I and evolves according to a controlled jump process 
with transition rates 

A reward rate is defined by 

We consider the above model with a set of parameter 
values given in Table 1. Here the parameter h defines 
the grid mesh for the x variables, and h, the grid mesh 
for the controls. 

5.2 The approximating MDP 
To compute numerically the solution to this stochas 
tic control problem we implement the method of [17] 
which uses a sequence of approximating MDPs. The 
singular perturbation structure in the stochastic con- 
trol problem translates into an MDP with strong and 
weak interactions, in this approximation technique. We 
refer again to [lo, 16, 191 for more details on the struc- 
ture of the approximating MDPs. 

5.3 Solving the limit control MDP 
We implemented two methods for the resolution of the 
limit control problem: the decomposition method pre- 
sented above and a direct solution of the structured LP 
using a commercial solver (CPLEX). 

We implemented ACCPM with a policy improvement 
(PI) algorithm for the oracle2. The parallel implemen- 
tation of ACCPM has been realized using MPI, a li- 
brary of C-callable routine (see MPI’s reference book 
[22]) on a cluster of 4 PC. 

For I = {1,2,3,4} and a grid mesh h=10/3, corre- 
sponding to 30 sampling points on each axis, we have 
solved the limit control problem obtained when E --f 

0. The corresponding linear program has 3’849 rows 
135’444 columns and 1’136’514 non-zero elements. To 
solve the LP, CPLEX used 981 seconds (on a PC, 400 
Mhz, under L i n ~ x ) ~ .  When using ACCPM-PI the com- 
puting time to  solve the limit control problem falls to 
290 seconds. If we run the parallel version of ACCPM- 
PI on four processors the execution time drops to 91 
seconds. In Figure 1 we display, for the parallel imple 
mentation of the decomposition method, the speed-up 
as a function of the number of processors. 

Figure 2 shows, for both methods (CPLEX vs ACCPM- 
PI), the steady state probabilities for z, when i = 3. 
We see distinctly that both methods give the same re- 
sults. In addition, the maximal expected reward growth 
rate J equals 27.6, for both methods. Although the 
linear programming direct approach gives an accurate 
solution concerning the steady state probabilities and 
the maximal expected reward growth rate, this method 
gives, in most cases, an imprecise solution concerning 
the controls and the value function. Figure 3 shows the 
value function and Figure 4 shows the optimal policy, 
for the discrete state i = 3, for both methods. We 
see that the direct approach gives an accurate result 
in the middle of the grid but a blurred result near the . 

2The oracle is written in C and uses a sparse linear equation 

3CPLEX offers three methods, namely the simplex, the dual 

Table 1: List of parameter values for the numerical exper- solver SuperLU i91. 
iments. 

simplex and an interior point method. The solver took 981 sec- 
onds with the dual simplex, more than 3’000 seconds with the 
primal simplex. The interior point method of CPLEX stopped 
after 307 seconds and proposed an infeasible solution with an ob- 

to obtain a feasible solution took 726 seconds more. 

In this model the parameter E will eventually tend to 

sion control problem of the type discussed in [lo]. 
zero, leading to a singularly perturbed switching jective value close to the optimal value. Running the crossover 

? 
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Figure 1: Speed-up as a function of the number of pro- 
cessors. 

Problem 1 proc I mult-proc Simplex 
D10-2 I 4 8  I 3 4  I 4 8  

ACCPM-PI CPLEX 

IPM +croesover 
6 4  2 5  

Figure 2: Steady state probability. 

D50-4 
D10-6 
D30-6 
D40-6 

D10-12 
D30-12 

boundaries. This is typically due to the fact that the 
steady state probabilities are close to 0 near the bound- 
aries. In an LP approach the policy is defined by the 
ratio of the joint stateaction probability ZZ(z, U) with 
the steady state probability xuEu Zi(z, U).  This ratio 
is prone to numerical instability when the values are 
close to 0. The PI algorithm avoids such a pitfall. 

. 

4 10409 369684 3117954 
6 733 24606 205512 
6 5773 203166 1738632 
6 10093 357246 3066792 

12 1465 49212 419226 
12 11545 406332 3544986 

5.4 Computational performance 
We have performed a series of tests on different in- 
stances of this approximating MDP, as shown in Ta- 
ble 2. There the value in first column, e.g. D10-2, 
indicates the number of sampling points on each z-axis 
(in this case 10) and the number of discrete states (here 
card(1)=2). The other columns indicate the size of the 
associated LP for the limit control problem. 

D30-2 
D50-2 

D10-4 
D30-4 

Table 2: Characteristics of the equivalent LP formulation. 
(size reduced by the presolver). 

ACCPM-PI CPLEX 

Figure 3: Value function. 

ACCPM-PI CPLEX 

Figure 4: Optimal policy. 

The corresponding execution times are given in Table 3, 
whereas the speed-up resulting from prallel implemen- 

D30-2 
D50-2 
D70-2 
D10-4 
D30-4 
D50-4 
D10-6 
D30-6 
D40-6 
DlO-12 

1663 

1234 
93.9 
1264 

15.3 
206 
540 

32.5 
420 

289 
2046 
7929 
14.2 
981 

5685 
35.0 
3040 
7498 

156 
13937 

193 743 
1013 >20000 
1593 >20000 
21.1 8.8 
307 726 

1457 >20000 
22.3 31.5 
458 3923 
451 > 10000 

68 129 
2134 > 20000 

Table 3: Execution times. 

tation are reported, for the different models, in Table 4. 
Finally Table 5 indicates,for different instances of the 
problem, the maximal size of the grid that would lead 
to a computationally feasible limit control model. For 
instance a problem with 4 discrete states and 200 sam- 
pling points on each x-axis was solved in 18h36 using 
four processors. The maximal grid size for the ACCPM- 
PI method remains identical for all instances, since the 
limiting factor, here is the convergence in the oracle. 
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D70-2 
D10-4 
D30-4 
D60-4 

D40-6 

time sp-up ~ p - u p  

- 
897 1.55 
16.2 1.62 

40 290 1.90 
1663 1.77 

96 35.4 1.62 2.31 

90 1234 1.60 2.29 
264 93.9 1.64 2.29 
118 1264 1.66 2.26 

- 
- 

501 1 . m  2.43 

Table 4: Speed-up of ACCPM-PI 

# subproblems ACCPM-PI AMPL-CPLEX 
2 2OOXZOO 75 x 76 
4 200x200 55 x 55 
6 40x40 200x200 

. 

4 proc. 

2.89 
3.01 

Table 5: Maximal grid size solvable in a reasonable time 

6 Conclusion 

This-paper presented a parallel implementation of a de- 
composition method for the computation of the solution 
of average cost MDPs with strong and weak interac- 
tions (or two time scales). We compared the ACCPM 
decomposition method, involving a policy improvement 
algorithm at the oracle level, with a direct LP method 
to solve the limit control problem. We observed (i) a 
sensible reduction of the execution time, (ii) a better 
accuracy of the policies, (iii) a sensible reduction of the 
RAM needed. 
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