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From Cutting Planes Algorithms to Compression
Schemes and Active Learning

Ugo Louche and Liva Ralaivola
Qarma, LIF - CNRS, Aix-Marseille University. Email: firstname.lastname@lif.univ-mrs.fr

Abstract—Cutting-plane methods are well-studied localization
(and optimization) algorithms. We show that they provide a
natural framework to perform machine learning —and not just
to solve optimization problems posed by machine learning— in
addition to their intended optimization use. In particular, they
allow one to learn sparse classifiers and provide good compression
schemes. Moreover, we show that very little effort is required
to turn them into effective active learning methods. This last
property provides a generic way to design a whole family of active
learning algorithms from existing passive methods. We present
numerical simulations testifying of the relevance of cutting-plane
methods for passive and active learning tasks.

I. INTRODUCTION

We show that localization methods based on cutting planes
provide a natural framework to derive machine learning al-
gorithms for classification, both in the supervised learning
framework and the active learning framework. Our claim
is that cutting plane algorithms, beyond their optimization
purposes, embed features that are beneficial for generalization
purposes. In particular a) under mild conditions, they may
provide compression scheme with a compression rate that is
directly related to their aim at rapidly finding a solution of the
localization problem and b) the pivotal step of such algorithms,
namely, the querying step, may be slightly twisted so as to be
active-learning friendly.

In the present paper, we show that existing learning algo-
rithms might be revisited from the cutting planes point of
view. Not only might the active learning SVM procedure of
Tong and Koller [1] be reinterpreted as an algorithm falling
under the framework we describe but so are the Bayes Point
Machines [2], for which we will propose an active learning
version of it.

The problems we are interested in are linear classification
problems. Given a training sample D .

= {(xn, yn)}n∈[N ], with
xn ∈ X

.
= Rd, yn ∈ Y

.
= {−1,+1}, and [N ]

.
= {1, . . . , N},

we are looking for a classification vector w ∈ X that is an
element of the version space

W0(D)
.
= {w ∈ X : yn〈w, xn〉 ≥ 0, n ∈ [N ]} , (1)

of D, i.e. the set of vectors w from X such that the corre-
sponding linear predictors

fw(x)
.
= sign(〈w, x〉) (2)

make no mistake on the training set D. In order to render the
exposition clearer, we make the assumption that the training
data are linearly separable so that W0(D) is not empty. The
case where W0(D) = ∅ can be tackled with usual machine
learning techniques —e.g. the “λ-trick” and/or kernels [3] [2].

Also, for the sake of brevity, we may useW0 instead ofW0(D)
and thus drop the explicit dependence on D.

With the relevant notation at hand, the problem we are inter-
ested in may be stated as:

find w ∈ W0, (3)

which might be simply rewritten as the problem of solving a
set of linear inequalities

find w s.t.
{
w ∈ X
yn 〈w, xn〉 ≥ 0, n ∈ [N ].

(4)

There is a variety of methods in the optimization literature
from as back as the 50’s that are available to solve such
problems. Among them, we may mention (over-)relaxation
based methods [4], [5], simplex-based algorithms and, of
course, the Perceptron algorithm and its numerous variants
[6]–[8]. Localization methods based on cutting planes, or, in
short, cutting planes algorithms, are well-studied algorithms,
well-known to be very efficient to solve such problems. We
will show that, when used to solve (4), i) they naturally
provide compression scheme algorithms [9], and thus, learn-
ing algorithms that embed features designed to ensure good
generalization properties and ii) they also set the ground for
the development of new active learning algorithms.

A. Related Works

Cutting-plane methods provide a family of optimizaton proce-
dures that have received some interest from the machine learn-
ing community [10]–[12]. However, they have mainly been
considered as optimization methods to solve problems such as
those posed by support vector machines or, more generally,
regularized risk functionals. The more profound connection of
these methods with learning algorithms, that is, procedures
that are designed in a way to ensure generalization ability to
the predictor they build (e.g. the Perceptron algorithm) has
less been studied; this is one of the peculiarities of the present
paper to discuss this feature—to some extent, the work of [12],
which pinpoints how statistical regularization is beneficial for
the stabilization of cutting-plane methods, skims over this
connection. Within the vast literature of active learning (see,
e.g. [13]), we may single out a few contributions our work is
closely related to; they share the common feature of focusing
on/exploiting the geometry of the version space. The query
strategies proposed by [14] and [15] are based on multiple es-
timations of the volume of the (potential) version space, which,
when added together might be computationally expensive. In
comparison, in the active learning strategy we derive from the
general cutting-plane approach, we compute our queries from
an approximated center of gravity of the version space, which



is computationally equivalent to a single volume estimation.
The work of [16], who propose a margin-based query strategy
provide theoretical justifications of such strategies and gives
insights on the foundations the work of [1] hinges on. Our
contribution is to show how the cutting planes literature and its
accompanying worst-case convergence analyzes may give rise
to theoretically supported query strategies that do not have to
hinge on margin-based arguments. To some extent, our work
has connections with uncertainty-based active learning (see,
e.g. [17]) which advocates to query the points whose class
is the most uncertain; our approach may be re-interpreted as
a theoretically motivated uncertainty measure based on the
volume reduction of the version space.

B. Outline

The paper is structured as follows. Section II provides some
background to cutting planes methods and their possible appli-
cation to learning. Section III further explores the connections
between cutting planes and learning algorithms and then
provides a way to turn cutting planes methods into an active
learning algorithms. Section IV reports empirical results for
algorithms derived from our argumentation on the relevance
of cutting plane methods to machine learning.

II. BACKGROUND

In this section, we first recall the general form of a cutting
plane algorithm to solve a localization problem. We then
specialize this algorithm to the case where the convex space
into which we want to find a point is the version space
associated to training set D. Finally, in order for the reader
to get a taste on how cutting planes algorithms give rise
to learning algorithms, i.e. algorithms that embed features,
namely, they define compression schemes with targeted small
compression size, that are beneficial for generalization.

A. Vanilla Localization Algorithm with Cutting Planes

In order to solve a problem like

find w ∈ C,

for C some closed convex set, a localization algorithm based
on cutting planes works as follows (see also the synthetic
depiction in Algorithm 1) [18]. The algorithm maintains and
iteratively refines (i.e. reduces) a closed convex set Ct that is
known to contain C. From Ct a query point is computed —
there are several ways to compute such query points; we will
mention some when specializing localization methods to the
specific problem of finding a point in the version space later
on— which leads to two possible options: either a) wt is in
C and the tackled problem is solved or b) wt 6∈ C. In the
latter case, a so-called cutting plane oracle is queried with wt
upon which it returns the parameters (at, bt) of the hyperplane
{z : 〈at, z〉 = bt} such that this hyperplane separates wt from
C, i.e., ∀w ∈ C, 〈at, w〉 > bt and 〈at, wt〉 ≤ bt. The hyperplane
is used to reduce Ct into Ct ∩ {w : 〈at, w〉 > bt} (which still
contains C). For the specific problem (4) of finding a point in
the version space, the cutting planes rendered by the oracle
will be such that bt = 0.

Algorithm 1 Classical Cutting Plane Algorithm for the local-
ization of w ∈ C.
Ensure: w ∈ C

1: compute C0, such that C0 ⊃ C and C0 is convex and closed.
2: t← 0
3: repeat
4: Compute query point wt in Ct
5: Ask the cutting plane oracle whether wt ∈ C
6: if wt /∈ C then
7: Receive a cutting plane (at, bt)
8: Ct+1 ← Ct ∩ {x : 〈at, x〉 > bt}
9: t← t+ 1

10: end if
11: until wt ∈ C
12: return wt

Algorithm 2 The Cutting Plane approach instantiated to the
problem of finding a point from the version space of D.

Ensure: w solution of Problem (7)
1: C0 ← B
2: t← 0
3: repeat
4: wt ← QUERY(Ct) . Compute query point wt in Ct
5: if wt /∈ W then
6: nt ← PICK(Ct, wt) . pick a cutting plane index
7: Ct+1 ← Ct ∩ {z : ynt

〈z, xnt
〉 > 0}

8: t← t+ 1
9: end if

10: until wt ∈ W
11: return wt

B. Cutting Planes to Localize a Point in the Version Space

Note that problem (4) is scale-insensitive: if w ∈ W0, then
λw ∈ W0 as well for any λ > 0. In order to get rid of
this degree of freedom and to make the use of cutting planes
algorithms possible (they require the sets Ct to be bounded),
we will restrict ourselves to finding a solution vector w∗ both
in W0 and in the unit ball

B .
= {w ∈ X : ‖w‖ ≤ 1} . (5)

In other words, we will be looking for w∗ in the constrained
version space

W .
=W0 ∩ B, (6)

and the problem we face is therefore:

find w such that
{
w ∈ B
yn〈w, xn〉 ≥ 0, n ∈ [N ]

(7)

In the case of Problem (7), the localization algorithm described
earlier translates into the one given in Algorithm 2. The
following changes might be observed when comparing with
Algorithm 1: C0 is now initialized to B, the unit ball, and
the cutting planes are picked among the hyperplanes —i.e. the
points of D— defining the version space.

C. Query Point Generation

In both Algorithm 1 and Algorithm 2, the strategy to compute
a query point is left unspecified. There actually exist many



ways to compute such query points, but they all aim at a query
point which calls for a cutting plane that will divide the current
enclosing convex set Ct in the most stringent way. It turns out
that such guarantee might be expected when the query point
is as close as possible to the ‘center’ of Ct, so that the volume
of Ct is reduced with a positive factor —just as in the well-
known bisection method, where the factor is 1/2. The center
of Ct is not defined in a unique way, but for the most popular
query methods, it may refer to: a) the center of gravity of
Ct, b) the center of the largest ball inscribed in Ct, which is
called the Chebyshev center or c) the analytic center, which we
will not discuss further (the interested reader may refer to [19]
for further details). We may mention three things regarding the
center of gravity: i) it is NP-hard1 to exactly compute the center
of gravity of a convex set in an arbitrary n-dimensional space
even though some practical approximation algorithms exist;
ii) it is the query point that comes with the best guarantees in
terms of convergence speed of the cutting plane method [20];
iii) the center of gravity of a polytope is precisely the point
that is looked for in the case of the theoretically founded Bayes
Point Machines of [2].

III. RESULTS

This section is devoted to some algorithmic results that can
be obtained when analyzing the behavior of cutting-plane
methods for the localization of a point in the version space.

A. Cutting Planes Provide Sample Compression Schemes

Let D .
=
⋃∞
n=1(X×Y)n be the set of all finite training samples

made of pairs from X × Y . In short, sample compression
schemes [9] are learning algorithms A : D → YX that are
associated with a compression function S : D → D so that,
given any training sample D, we have A(D) = A(S(D)).
Sample compression schemes are especially interesting when
the size |S(D)| of the compression set S(D) is small. Indeed,
generalization guarantees that come with these procedures say
that the generalization error of fD

.
= A(D) is, with high

probability (over the random draw of training set D according
to an unknown and fix distribution) bounded from above by
something like

1

N − |S(D)|

N∑
n=1

I [fD(xn) 6= yn] +O
(√

1

N − |S(D)|

)
(8)

(see [9], [21] for a precise statement of the bound). Among
the most well-known learning compression schemes, we find
the Perceptron and the Support Vector Machines.

We claim that Algorithm 2, which finds a point in the version
space using cutting planes, may be a compression scheme.

Proposition 1. If QUERY(Ct) (line 4, Algorithm 2) and
PICK(Ct, wt) (line 6) are both deterministic then Algorithm 2
is a sample compression scheme.

Proof: If the compression set is made of the training
examples that define the cutting planes, this result is a direct
consequence of the structure of Algorithm 2. A proof by
induction that essentially hinges on the fact that, at each

1To be precise, it is actually #P-hard.

Algorithm 3 Top : A Perceptron-based localization algorithm
for the case of problem (7). Bottom : The slightly modified
perceptron algorithm for compression scheme.
Ensure: Problem (7)

1: C0 ← B
2: t← 1, w0 ← 0, w̃0 ← 0
3: repeat
4: w̃t ← PERCEPTRON(w̃t−1, xn0

, · · · , xnt
)

5: wt ← w̃t/‖w̃t‖2
6: if wt /∈ W then
7: Pick a cutting plane index nt
8: Ct+1 ← Ct ∩ {z : ynt〈z, xnt〉 ≥ 0}
9: t← t+ 1

10: end if
11: until wt ∈ W
12: return wt

13:
14: function PERCEPTRON(wstart, xn0

, · · · , xnN
)

15: t← 0
16: w0 ← wstart

17: while ∃ni : 〈wt, xni〉 < 0 do
18: wt+1 ← wt + xni

19: t← t+ 1
20: end while
21: return wt

22: end function

iteration t, the next query point is deterministically computed
from Ct (only) gives the result.

A few observations can be made. First, the learning algorithm
obtained with the assumptions of Proposition 1 is a process
sample compression scheme, that is, even if we interrupt
the learning before convergence has occurred, running the
algorithm on the partial compression scheme obtained so far
gives exactly the same predictor. Second, it is obviously an
aim to have fast convergence of the localization procedure,
where fast convergence means few iterations of the cutting-
plane procedure. This directly translates into the idea of finding
a point in the version space that is expressed as a combination
as few vectors as possible, which, by (8), is very beneficial
for generalization purposes. Later, we will see that there are
settings for cutting-plane methods that come with guarantees
on the number of iterations, and therefore on |S(D)|, to reach
convergence.

B. Perceptron-based Localization Algorithm

One of the simplest ways to compute a query point wt for
Algorithm 2 is to run Rosenblatt’s Perceptron algorithm [8] at
each step and query the normalized solution wt = w̃t/‖w̃t‖2.
Intuitively, we may expect w̃t+1 to be ‘close’ to w̃t because
Ct+1 is essentially the intersection of Ct with a cutting plane
and much of the geometry of Ct might be preserved. According
to this intuition, w̃t should be a good starting point for the
Perceptron algorithm to be run and to have it output w̃t+1.
Algorithm 3 implements that idea, and reuses the last query
point as an initialization vector for the Perceptron to compute
the next query point. Additionally, note that for Algorithm
3 to match Proposition 1 a little technicality is needed: we
require that datapoints are selected in the lexicographical



Fig. 1: An Example of version space where the Chebyshev Center
(light blue) is a bad approximation of the gravity center (dark blue).

order2 when multiple choices are possible (e.g. line 7 and 17).
It turns out this simple querying procedure enjoys the same
convergence rate than a regular Perceptron, with the added
empirically observed benefit of providing stronger compression
(see Section IV for empirical results).

Proposition 2. Consider Problem (7) and let γ be the radius
of the largest inscribed sphere in W . Define M the number
of Perceptron updates performed by the Perceptron-based
Localization Algorithm 3 (i.e. M is the number of times
line 18 of PERCEPTRON() of Algorithm 3 is executed). Then
the following holds: M ≤ 1/γ2.

Proof: We recall that the usual definition of the margin
of D is minx∈D〈w∗, x〉 and note that γ is related to it since
∀n ∈ [N ], 〈w∗, xn〉/‖xn‖2 ≥ γ. Let S .

= {a1, . . . aM} be
the sequence of points used to perform Perceptron updates
across a complete execution of Algorithm 3. Thus, S is a
sequence from D (with possible duplicates) and w∗ achieves a
margin at least γ with all points in S. From [6], [7] we know
that the number M of Perceptron updates on any arbitrary
sequence linearly separable with margin γ is no more than
1/γ2. Since we use wt as a starting point to compute wt+1, the
execution of the cutting-plane algorithm is tied to the execution
of the Perceptron algorithm on S. Therefore, there is less than
1/γ2 Perceptron updates during the execution of the algorithm.
Alternatively, |S| ≤ 1/γ2 since all points in S correspond to
a Perceptron update, thus a mistake.

On a side note, the same argument can be applied to obtain
similar results with most Perceptron-like learning procedures
(see for instance [22], [23]).

C. Center of Gravity and Approximations

The question of computing a query point wt is of central
importance in cutting-plane localization algorithms. As we
have seen, a simple Perceptron can already yield interesting

2This is an arbitrary choice and any total order over Rd can be used instead

computational results for that matter. A more assiduous analy-
sis of this question can be conducted by looking at the volume
reduction V(Ct+1)/V(Ct) of Ct from one iteration to the next.
The notion of center of gravity is going to be pivotal to this
end.

Definition 1 (Center of Gravity). Let C be a closed set in
Rn. The center of gravity (CG) cg(C) of C is defined by as
cg(C) .

=
∫
C zdz/

∫
C dz.

The center of gravity is deeply tied to the volume of Ct and
plays a central role in devising cutting-plane algorithms for
which the volume reduction V(Ct+1)/V(Ct) is the largest.
Theorem 1 reports one of the most fundamental property of
the center of gravity (see [24]–[27])

Theorem 1 (Partition of Convex bodies). Let C ∈ Rd a convex
body of center of gravity cg(C) and h a hyperplane such that
cg(C) ∈ h. Thus, h divide C in two subsets C1 and C2 and the
following relations hold for i = 1, 2: V(Ci) ≥ e−1V(C)

The center of gravity method proposed by [25], [26] consists
in querying wt = cg(Ct) and typically have a very fast
convergence rate as the version space is almost halved at each
step. More precisely, a direct consequence of Theorem 1 is that
the volume of Ct is bounded by V(Ct) ≤ (1 − 1/e)tV(C0).
However, computing the center a gravity is hard, making
the center of gravity method impractical. Instead, one has to
consider structural or numerical approximations to the center
of gravity.

Definition 2 (Chebyshev’s Center). Let C a set in Rn. Cheby-
shev’s center (CC) of C, cc(C) is the center of the largest
inscribed ball in C:

cc(C) = arg min
ẑ

max
z
‖z − ẑ‖22.

Chebyshev’s center is used as a computationally efficient
approximation of the center of gravity for cutting-plane al-
gorithms since the late 70’s [28] (see, e.g. [29] for a linear
formulation of the problem). Unfortunately, the interesting
property of Theorem 1 does not carry over with Cheby-
shev’s center. One problem in machine learning related to
Chebyshev’s center is the extensively studied Support Vector
Machine (SVM) [30] defined as :

min
w

1

2
‖w‖22 s.t.

{
w ∈ X
yn 〈w, xn〉 ≥ 1, n ∈ [N ].

(9)

A notable property of the SVM is that its solution wSVM is
closely related to the center of the largest inscribed ball in W
and is an approximation of the center of gravity [2]. Indeed,
wSVM is actually a rescaled Chebyshev’s center [1] [2].

On the other hand, numerical approximations aim at finding
a point that is in the close neighborhood of the center of
gravity. One of the contributions of this paper is to give a
generalized version of Theorem 1 for approximations of the
center of gravity, thus laying a theoretical justification for these
methods.

Theorem 2 (Generalized Partition of Convex bodies). Let C
be a closed convex body in Rd and cg(C) its center of gravity.
Let hx a hyperplane of normal vector x, ‖x‖2 = 1 and define



the upper (resp. lower) partition C+ (resp. C−) of C by hx as

C+ .
= C ∩

{
w ∈ Rd : 〈x,w〉 ≥ 0

}
C− .

= C ∩
{
w ∈ Rd : 〈x,w〉 < 0

}
.

The following holds true: if cg(C) + Λx ∈ C+ then

V(C+)/V(C) ≥ e−1(1− λ)d,

where

Λ = λΘd
V(C)HC+
RdHC−

,

with λ ∈ R an arbitrary real, Θd a constant depending
only on d, R the radius of the (d − 1)-dimensional ball
B of volume V [B]

.
= V

[
C ∩

{
w ∈ Rd : 〈x,w〉 = 0

}]
and

HC+ = maxa∈C+ a
Tx (resp. HC− = mina∈C− a

Tx)

Proof: The proof is a (non-trivial) extension of Grun-
baum’s one for Theorem 1 [24]. Due to space restriction,
we cannot expose it here in full and refer the interested
reader to http://pageperso.lif.univ-mrs.fr/∼ugo.louche/paper/
activeCPSuppl.pdf

Theorem 2 extends Theorem 1 to the situation when an
approximation of the center of gravity is considered; it reduces
to Theorem 1 when applied to the very center of gravity. This is
to the best of our knowledge the first result of this kind and this
is a result that is of its own interest, wich may benefit to many
fields of computer science. Here, the purpose of Theorem 2
is essentially to validate the use of approximations of the
center of gravity cg(C) in the procedures at hand, which is
inevitable due to the complexity of exactly finding this point.
We will more precisely use it in two occasions: a) for center-
of-gravity-based compression scheme methods and b) in the
active learning setting (see below).

D. Active Learning with Cutting Planes

An interesting situation of learning is that of active learning
when the algorithm is presented with unlabelled data and it
has to query for the labels of the training points that carry
the most information to build a relevant decision boundary.
Given a volume C inside which a good classifier w∗ for the
classification task at hand is known to lie, the amount of
information carried by a labeled training point (x, y) (where
y has been queried) might be for instance measured by how
(x, y) can be used to identify within C an (hopefully small)
volume C′ ⊆ C where w∗ lives. Termed otherwise, the amount
of information provided by (x, y) might be measured as the
volume reduction induced by the knowledge of (x, y): this is
exactly the type of information cutting-plane methods build
upon. We take advantage of this philosophy shared by active
learning methods and cutting-plane algorithms to argue it is
easy to transform a cutting-plane algorithm into an active
learning method. Based on the idea of maximum volume
reduction, the question to address is simply that of identifying
a training pattern x in D such that, independently of the label
it might receive, is guaranteed to define a cutting hyperplane
of equation 〈x,w〉 = 0 that intersects the current convex C in
a controlled way. To do so, a typical good query point is one
that is as close as possible to the ‘center’ of C, where center
may have the few meanings discussed above (cf. center of
gravity, Chebyshev’s center). The algorithm given in Table 4 is

Algorithm 4 Top: a generic cutting-plane active learning
procedure; wt is computed as the ‘center’ of Ct —center my
refer to the center of gravity of the Chebyshev center. Bottom:
a possible implementation of QUERY(): sampling strategies are
given in, e.g., [2], [31], [32].

1: C0 ← B
2: t← 0
3: repeat
4: wt ← center(Ct)
5: xnt

, ynt
← QUERY(Ct, D)

6: if ynt
〈wt, xnt

〉 < 0 then
7: Ct+1 ← Ct ∩ {z : ynt

〈z, xnt
〉 ≥ 0}

8: t← t+ 1
9: end if

10: until Ct is small enough
11: return wt

12:
13: function QUERY(C, D)
14: Sample M points s1, . . . sM from C
15: g←

∑M
k=1 sk/M

16: x← arg minxi∈D〈g, xi〉
17: y ← get label from an expert
18: return x, y
19: end function

a generic active learning algorithm that is based on the classical
cutting-plane approach.

Making active learning algorithms from cutting-plane methods
is a route that has been taken by [1], even though the connec-
tion with cutting-plane algorithms was not clearly identified.

Being able to approximate the center of gravity of a convex
polytope is pivotal for the design of active learning strategies.
It is interesting to note that in the recent years, methods have
been devised to uniformly sample from the version space such
as the Hit-and-Run algorithm of [31] or a billiard algorithm
of [33]. More recently, the Dikin Walk algorithm of [32]
provided a strongly polynomial algorithm for approximate
uniform sampling over the version space while the Expectation
Propagation method of [34] gave a Bayesian interpretation
of billiard algorithms. Notably, these methods have been suc-
cessfully used with cutting planes for active Boosted Learning
[35]. Another practical approach we should mention is the one
proposed in [2] that consists in repeatedly running a Perceptron
over a permutation of the training set: in the active learning
setting, the number of labeled points available is just too low
to produce interesting approximation of the center of gravity
with this method.

A by-product of our active learning procedure is that we now
solve a Bayes Point Machine (BPM) problem [2] at each step t
by finding the center of gravity of the current convex body Ct.
Therefore, we can turn our active learning procedure into a full
active learning algorithm—that we dub Active-BPM—for
free by using the center of gravity for classification. Note that
this is one of many possible instantiations of our procedure,
which is nonetheless of interest as it is the BPM-counterpart
the Active-SVM algorithm of Tong and Koller [1].

In conclusion, Theorem 2 provides a general guideline to
systematically query the training point that comes with the best



volume reduction guarantees. This is a theoretically sound and
viable strategy for active learning that comes with a theoretical
bound on the induced volume reduction, the lack of which was
an essential limit of the Chebyshev’s center-based method of
[1].

IV. NUMERICAL SIMULATIONS

Here, we present some empirical simulations based on the
algorithms described throughout this paper in both passive and
active learning settings.

A. Synthetic Data and Perceptron-based Localization Algo-
rithm

We generate a toy dataset of 1, 000 2-dimensional datapoints.
Each point is uniformly drawn on a 20-by-20 square centered
at the origin. We label this dataset according to a classifier
w∗ uniformly drawn over the unit circle. In order to have
only positive labels, negative examples are reflected through
the origin. We then enforce a minimal margin γ by pruning
examples xi for which 〈w∗, xi〉 < γ. This last modification
allows us to have some control over the size of the version
space W . The downside of this is that we no longer have
exactly 1, 000 datapoints (though during our experiments we
noted that the size of the dataset stays mostly the same for
reasonable margin values).

For these experiments, we use the Perceptron-based Local-
ization algorithm (Algorithm 3). We implement it with three
different oracle strategies for selecting cutting planes. The first
strategy (which we call Largest Error) picks the cutting plane
with the lowest margin. The second one (Smallest Error) picks
the cutting plane with the highest negative margin, that is to say
points that are incorrectly classified but close to the decision
boundary. Finally, the third one (Random Error) simply picks a
cutting plane with negative margin at random. It should also be
noted that our instantiation of the Perceptron algorithm picks
the update vector that realizes the lowest margin for its internal
update—line (18) of PERCEPTRON() in Algorithm 3. This is
mostly an arbitrary choice and we only mention it for the sake
of repoducibility.

The first experiment consists in a single run over a dataset of
margin γ = 0.1. We monitor both the number of cutting planes
generated and the number of internal Perceptron updates for
each cutting plane. The presented results are averaged over
1, 000 runs.

The left pane of Figure 2 supports the soundness of our
approach in the case of a compression scheme with no more
than 6 cutting planes for the best strategy (Largest Error).
Additionally, we can observe a sharp decrease after the third
cutting plane with this strategy and 80% of the time, only 4
cutting planes are required to model the dataset. In contrast,
the right-hand side of Figure 2 reveals a trade-off between
the number of cutting planes used and the number of internal
updates for each cutting plane. We observe a smooth shift
across our three strategies with Smallest Error putting the
emphasis on small number of internal updates. In all respect,
the Random Error strategy acts as a middle ground between
the two other extreme approaches.

For the second experiment the margin (i.e. the volume of
W) is variable with values between 0.01 and 0.3. We also

monitor the total number of internal updates rather than the
per cutting plane value for the three strategies and a regular
Perceptron Algorithm 3. Remind that this value is bounded
from Proposition 2. This bound also holds for the regular
Perceptron.

The previously observed behavioral shift across the three
strategies is confirmed by Figure 3. Additionally, some relative
robustness is observed with respect to γ, especially when the
emphasis is put on querying a small number of cutting planes.
It is interesting to note that the Random Strategy makes nearly
as few updates as Smallest error while still querying a—
relatively—low number of cutting planes. Finally, all three
strategies are making slightly less updates than the regular
Perceptron. To conclude, note that the theoretical bound of
Proposition 2 is far too big to be plotted on the plot on the
left of Figure 2.

B. Active Learning on Real Data

We illustrate our method for active learning on text classifica-
tion data. For easy comparison, we follow an experimental pro-
cedure similar as the one in [1]. Namely, we use the Reuters-
21578 —ModApte variation— and Newsgroups datasets4. The
Reuters dataset is composed of 8, 293 documents represented
in TF-IDF form for 18, 933 words. The dataset spans 65
topics such as Earn, Coffee or Cocoa and is split in 5, 946
training examples and 2, 347 test examples. On the other hand,
the Newsgroups dataset accounts for 18, 846 documents of
26, 214 features splitted in 20 topics. Half of this dataset
is uniformly picked for training while the rest is kept for
testing purposes. On both datasets we train a “one-versus-
all” classifier for each class. We start by creating a pool of
unlabeled training examples sampled from the training set.
Then we run Algorithm 4. We use two variations of the
QUERY() function: one based on the Chebyshev center (note
that this is equivalent to the Active-SVM of [1]), and the
other based on an approximation of the center of gravity
from Minka’s Expectation Propagation method [34]. This last
approach corresponds to the Active-BPM algorithm and
has, to the best of our knowledge, never been used before.
It is a direct application of Active Learning algorithms with
Cutting planes method to the Bayes Point Machine. For both
methods, we use two pools of different sizes (500 and 1, 000
examples). For initialization reasons, each pool comes with
two already labeled vectors.5 All the computations are done
with a linear kernel and the presented results are class-wise
accuracy measurements on the test examples over the 10 most
represented classes. The values reported here are an average
of these measures over 25 runs. We complement these two
datasets with Gunnar Raetsch’s Banana dataset. The Banana
dataset is a widely used bataset of 2-dimensionnal points split
into two classes from which we extract 400 training and 4900
test examples. Due to its small size, the whole training set
is used for the pool of unlabeled example. The computations

3More precisely, we use the exact same Perceptron than the one used for
the internal loop but ran on the full dataset

4Available at http://www.cad.zju.edu.cn/ home/dengcai/Data/TextData.html
5SVM and CC are computed with libSVM:

http://www.csie.ntu.edu.tw/ cjlin/libsvm/. BPM and CG are computed
from Minka’s own implementation of EP for BPM in matlab:
http://research.microsoft.com/en-us/um/people/minka/papers/ep/bpm/
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Fig. 3: Left: The average number of cutting planes used for each strategy with respect to the value of γ. Right: the total number of internal
updates with respect to γ. The fourth plot corresponds to a regular Perceptron

are realized with an RBF kernel of parameter σ = 0.5 and
presented results are averaged over 50 runs.

Figure 4 graphically depicts the behavior of the so-called
Active-SVM [1] and the Active-BPM algorithms on each
dataset. Namely, in both algorithms, the queries are selected
according to their distance to the “centroid” of C, which, in
turn, serves as classifier. The difference between these two
algorithms lies in that Active-SVM uses the Chebyshev
center and Active-BPM the center of gravity for centroid.
In Figure 4, data are represented by circles of squares whether
they correspond to results achieved by Active-SVM or
Active-BPM. Additionally, for the Reuters and Newgroups
datasets, dashed plots correspond to the pool of 500 examples
while dotted plots relate to the pool of 1000 examples. The
error bounds on the third plot (Banana) correspond to the
usual standard deviation. Each plot represents the accuracy of
those algorithms with respect to the number of queries made.
We can see that Active-BPM systematically outperforms
Active-SVM and increases its accuracy faster for all datasets,
already attaining an accuracy of 0.9 after roughly 10 queries
for both Reuters and Newsgroups datasets. Both algorithm
seem to stabilize after 30 queries, with the Active-BPM
being slightly more accurate than its SVM counterpart. For
the Banana dataset, the accuracy increase in the first queries is
a lot smoother, with an accuracy for Active-BPM of roughly

0.8 after 20 queries. Both algorithms seem to have converged
after 60 queries. Comparatively, not only does Active-BPM
clearly dominate its SVM counterpart but it is also more stable
as evidenced by the error bars which become negligible past
the 60th query.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have shown that deep connections exist
between Localization methods and Learning algorithms. Both
fields have extensively characterized and studied similar con-
cepts over the past years, sometime independently. On the
other hand, complementary results have been found in each
community. A notable example is the absence of a kernel
approach in the Cutting Planes literature while center of
gravity methods were mostly unknown in machine learning
until Herbrich’s BPM [2]. We may also mention that the
Cutting planes’ equivalent of the famous SVM [30] appears
as soon as the 70’s in [28]. This work is a testimony on
how it is possible to derive new learning algorithms, both
efficient and theoretically funded, by reformulating Cutting
Planes approach for the learning paradigm. Besides the cutting
plane-related flavor of the present work, it should be restated
that Theorem 2 has a value that goes beyond the scope of
this paper. A field that may be impacted by this result is
obviously that of computational geometry where most of the
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results about the computation of centers of gravity come from;
nonetheless, it should be noted that more closely related works
could also benefit from our result. For instance, if we consider
the active learning methods whose query steps rely on explicit
exploration of all the possible query/label combinations (see,
e.g. [36]), then Theorem 2 provides a tool to devise natural
and theoretically sound heuristics to effectively locate the most
informative query points, or, in other words, those that may
lead to the smallest expected error.

Among all the possible extensions of this work, one we
are particularly interested in is to study how these results
may carry over to the multiclass setting and provide proper
multiclass active algorithms based on, for example, Crammer’s
Ultraconservative Additive Algorithms [37].
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APPENDIX

This appendix is composed of three sections. Section A serves
as reminder of basic notions and results for the proofs of
the other sections, additionally, we will introduce our set of
notation thorough this section. Section E consists in a rewriting
of the proof of Grunbaum in [24] on the partition of convex
bodies by hyperplanes. The proof is restated in full with proper
notation as it is the starting point of our result. The last section
gives the proof of theorem 4 which is an extended version of
the result of Grunbaum and is one of the contribution of our
paper.

A. Hyper-Sphere and Hyper-Ball

Definition 3 (n-dimensional Sphere). We call n-sphere of
center O ∈ Rn and radius R ∈ R and write S(O,R) ⊂ Rn
the subset

S(O,R)
.
= {x ∈ Rn : ‖x−O‖2 = R}

Definition 4 (n-dimensional Ball). We call n-ball of center
O ∈ Rn and radius R ∈ R and write B(O,R) ⊂ Rn the
subset

B(O,R)
.
= {x ∈ Rn : ‖x−O‖2 < R}

Alternatively, one can think of a ball as :

B(O,R)
.
=

⋃
r∈[0,R]

S(0, r)

Definition 5 (Surface of a spehe). We call Surface of the n-
sphere S(O,R) and write V(S(O,R)) the n− 1 dimensional
volume

V(S(O,R))
.
= Πs

n ×Rn−1

Where Πs
n is a constant factor depending only on n (e.g Πs

1 =
2, Πs

2 = 2π, Πs
3 = 4π and so on . . . )

Definition 6 (Volume of a Ball). We call Volume of the n-ball
B(O,R) and write V(B(O,R)) the n-dimensional volume

V(B(O,R))
.
=

∫ R

0

V(S(O, r))dr

That is

V(B(O,R)) =

∫ R

0

Πs
nR

n−1dr

=
Πs
nR

n

n
= ΠnR

n

Where Πn
.
=

Πs
n

n is a constant factor depending only on n.

B. Hyper-Cone

From these core definitions, we can now introduce (Hyper)-
cones and some of their core properties. Intuitively, an Hyper-
cone of dimension n+ 1, center O, radius R and height H is
a sequence of n-Ball of linearly decreasing radius between R
and 0, each one living on a difference “slice” of Rn+1 between
O and 0 +H .

Remark 1. We will use vn+1 to denote the vector of Rn+1

with 1 on its n+ 1 component and 0 elsewhere.

Definition 7 (Hyper-cone). We call Hyper-cone of dimension
n+ 1, base B(O,R) ⊂ Rn and height H the set :

H
.
=

⋃
∀h∈[0,H]

B
(
O + hvn+1,

H − h
H

R

)

Alternatively, we can define the apex Z .
= O +H × vn+1 of

the hyper-cone and give the following definition :

Definition 8 (Hyper-cone (2)). We call Hyper-cone of dimen-
sion n + 1, base B(O,R) ⊂ Rn and apex Z the convex hull
conv ({B(O,R); z}).

We are now ready to state the core properties of Hyper-cone
that we will use in the remaining of this document.

We start with the volume of a Hyper-cone

Definition 9 (Volume of Hyper-cone). Given an Hyper-cone
C ∈ Rn+1 of dimension n + 1, base B(O,R) ⊂ Rn and
height H we call volume and write V(C) the n+1-dimensional
volume :

V(C)
.
=

∫ H

0

V
(
B
(
O + hvn+1,

H − h
H

R

))
dh

Proposition 3. The volume of the Hyper-cone C ⊂ Rn+1 of
dimension n+ 1, base B(O,R) ⊂ Rn and height H is

V(C) =
ΠnR

n

n+ 1
H

Proof: From the definition of volume of a sphere we have
V(B(O,R))

.
= ΠnR

n. Substituting R by H−h
R and from the

definition of the volume of a Hyper-cone we have

V(C) =

∫ H

0

Πn

(
H − h
H

R

)n
dh

We substitute h by u .
= H − h, du = −dh.

V(C) =

∫ 0

H

−Πn

( u
H
R
)n

du

=

∫ H

0

Πn

( u
H
R
)n

du

=
ΠnR

n

Hn

∫ H

0

undu

=
ΠnR

n

Hn
× Hn+1

n+ 1

=
ΠnR

n

n+ 1
H

C. Center of Mass

With the previous definition formally stated, we can now go
one step further and define the center of mass or sometimes
called center of gravity



Definition 10 (Center of gravity). For a given convex body
X ⊂ Rn we call center of gravity 6 and write cg(X) ∈ Rn
the point :

cg(X) =
1

V(X)

∫
x∈X

xdx

Proposition 4. Let S a n-dimensional sphere such that S .
=

S(O,R). Then cg(S) = O.

Proof: Without loss of generality, assume that O = 0.
Then, S = {x ∈ Rn : ‖x‖2 = R}. Since ‖x‖2 = ‖ − x‖2 it is
clear that ∀x ∈ Rn : x ∈ S ⇔ −x ∈ S. Thus, we can rewrite
cg(S) as

cg(S) =
1

V(S)

∫
x∈S
−xdx

Thus

2cg(S) =
1

V(S)

(∫
x∈S

xdx+

∫
x∈S
−xdx

)
=

1

V(S)

∫
x∈S

x− xdx

= 0

Proposition 5. Let B a n-dimensional ball such that B .
=

B(O,R). Then cg(B) = O.

Proof: Remind that B can be seen as a collection of
concentric n-sphere of center O and radii between 0 and R
(see Def. 4). Then, we can rewrite cg(B) as

cg(B) =
1

V(B)

∫ R

0

cg(S(O, r))V(S(O, r))dr

= O

Where the last line come from Proposition 4.

Proposition 6 (Center of Gravity of an Hyper-cone). Let C a
n+1 dimensional Hyper-cone (C ⊂ Rn+1) of base B(O,R) ⊂
Rn and apex Z such that ‖Z − O‖2 = H . Then, cg(C) is
located on the segment [O;Z] at a distance H/n+2 of O.

Proof: Without loss of generality, we assume that O = 0
and Z = Hvn+1. By definition, C is a collection of ball, and
we can rewrite cg(C) as :

cg(C) =
1

V(C)

∫ H

0

cg
[
B
(
hvn+1,

H − h
H

R

)]
×V

[
B
(
hvn+1,

H − h
H

R

)]
dh

From Proposition 5 it is clear that cg(C) lies on the segment
[O;Z]. The remaining of the proof came by explicitly calcu-
lating cg(C).

6For a more complete definition, we should take into account the mass
distribution over X . Although, in an effort to keep things simple, we assume
a uniformly distributed mass.

cg(C) =
1

V(C)

∫ H

0

hvn+1 × V
[
B
(
hvn+1,

H − h
H

R

)]
dh

(Prop. 5)

=
1

V(C)

∫ H

0

hvn+1
ΠnR

n

Hn
(H − h)ndh

(Volume of a Ball)

=
1

V(C)

∫ H

0

(H − u)vn+1
ΠnR

n

Hn
undu

(Subst. u .
= H − h, see Prop. 3)

=
1

V(C)

[∫ H

0

ΠnR
nHvn+1

Hn
undu−

∫ H

0

ΠnR
nvn+1

Hn
un+1du

]

=
1

V(C)

[
ΠnR

nvn+1

Hn−1

∫ H

0

undu− ΠnR
nvn+1

Hn

∫ H

0

un+1du

]

=
1

V(C)

[
ΠnR

nHn+1vn+1

Hn−1(n+ 1)
− ΠnR

nHn+2vn+1

Hn(n+ 2)

]
=

1

V(C)

[
ΠnR

nH2vn+1

n+ 1
− ΠnR

nH2vn+1

n+ 2

]
=

n+ 1

ΠnRnH

[
ΠnR

nH2vn+1

n+ 1
− ΠnR

nH2vn+1

n+ 2

]
(Volume of a Hyper-cone)

=

(
H −Hn+ 1

n+ 2

)
vn+1

=

(
1− n+ 1

n+ 2

)
Hvn+1

=

(
n+ 2− n− 1

n+ 2
Hvn+1

)
=

(
H

n+ 2

)
vn+1

That is to say, cg(C) is on the segment [O;Z] at a distance
H/n+2 of O.

D. Hyperplane and Halfspace

Definition 11. We call (n)-Hyperplane of normal w ∈ Rn and
offset b ∈ R and write W (w, b) ⊂ Rn the subset :

W (w, b)
.
= {x ∈ Rn : 〈w, x〉+ b = 0}

Definition 12. We call Positive Halfspace of the n-Hyperplane
W (w, b) ⊂ Rn and write W+(w, b) ⊂ Rn the subset

W+(w, b)
.
= {x ∈ Rn : 〈w, x〉+ b ≥ 0}

Conversely, we call Negative Halfspace of W (w, b) ⊂ Rn and
write W−(w, b) ⊂ Rn the subset

W−(w, b)
.
= {x ∈ Rn : 〈w, x〉+ b ≤ 0}

Additionally, note that W (w, b) ⊂ W+(w, b) but W (w, b) 6⊂
W−(w, b).



Definition 13. For any subset X ⊂ Rn and any Hyperplane
W ⊂ Rn we call Positive Partition and write X+ ⊂ Rn the
subset

X+ .
= X ∩W+

Conversely, for we call Negative Partition and write X− ⊂ Rn
the subset

X−
.
= X ∩W−

Proposition 7 (Volume reduction of Hyper-Cone). For any
(n+ 1)-Hyper-cone of base B(O,R), apex Z and Height H ,
let set Wcg(C)

.
= W (vn+1, H/n+2) the Hyperplane passing

by cg(C) ( i.e. cg(C) ∈Wcg(C) ) and parallel to Rn. Then,

V(C+) = V(C)

 1(
1 + 1

n+1

)n+1

 ≥ V(C)e−1

Proof: We start by proving the right-hand side of the
relation. Let set n′ = n + 1 and divide both side by V(C)
then we can rewrite it as

1(
1 + 1

n′

)n′ ≥ e−1

From the usual definition of e we have that

lim
n→∞

(
1 +

1

n′

)n′
= e

⇔ lim
n′→∞

1(
1 + 1

n′

)n′ = e−1

And by standard arguments we can show that

1(
1 + 1

n′

)n′ ≥ 1(
1 + 1

n′+1

)n′+1

Therefore

1(
1 + 1

n′

)n′ ≥ lim
n→∞

1(
1 + 1

n′

)n′ = e−1

Finally, the left-hand side of relation is obtained by direct
calculation of V(C+). The general idea is the same than the
calculation of V(C) but, instead of integrating over the entire
height we start at H/n+2, thus ignoring C−. Besides, without
loss of generality, we assume that O = 0 and that Z = Hvn+1.

V(C+) =

∫ H

H/n+2

V
[
B
(
hvn+1,

H − h
H

R

)]
dh

=

∫ H

H/n+2

Πn
Rn

Hn
(H − h)ndh (Volume of a Ball)

=

∫ H(1− 1
n+2 )

0

Πn
Rn

Hn
undu (Subst. u .

= H − h)

=
ΠnR

n

Hn

∫ H(1− 1
n+2 )

0

undu

=
ΠnR

n

Hn
× Hn+1

n+ 1
×
(

1− 1

n+ 2

)n+1

=
ΠnR

nH

n+ 1
×
(

1− 1

n+ 2

)n+1

= V(C)

(
1− 1

n+ 2

)n+1

= V(C)

(
n+ 1

n+ 2

)n+1

= V(C)

(
(n+ 1)× 1

n+1

(n+ 2)× 1
n+1

)n+1

= V(C)

(
1
n+2
n+1

)n+1

= V(C)

(
1

1 + 1
n+1

)n+1

= V(C)

 1(
1 + 1

n+1

)n+1



E. Setting

For the remaining of this document, let K be a (full dimen-
sional) convex body in Rn+1.

Definition 14. For any convex body K ∈ Rn+1 we say that
K is Spherically Symmetric along the unit vector v if and
only if ∀λ ∈ R the cut of K by the hyperplane W (v, λ) (i.e.
K ∩W (v, λ)) is a n dimensional hypersphere of center λv

This section consists in a rewriting of the proof of [24]
instantiated within the previously defined notation and setting.

F. Theorem

Theorem 3. For any convex body K ⊂ Rn+1, and any
hyperplane W . If cg(K) ∈ K+ then

V(K+) ≥ e−1 × V(K)

Proof:

Note 1 (Points along vn+1). This proof will revolve around
key points located on the n+ 1th axis of Rn+1 of base vector
vn+1. In an attempt to avoid overburdening the notation, we



will treat these points as number along the real line when
context is clear. Therefore, if x = λ1vn+1 and y = λ2vn+1

we will freely write x > y if λ1 > λ2.

Let W the hyperplane such that W = arg minW V(K+) such
that cg(K) ∈ K+. It is easy to see that cg(K) ∈ W :
if cg(K) /∈ W you can always reduce V(K+) by shifting
W toward cg(K). Without loss of generality, let’s say that
cg(K) = 0 the origin of Rn+1 and that vn+1 is the normal
vector of W with b = 0, hence W = W (vn+1, 0).

In order to ease the comprehension of the proof, we make the
following assumption that we will lift later on.

Assumption 1. K is a convex body which is Spherically
Symmetric along vn+1

A direct implication of this is that cg(K) = cg(K ∩W ). In
other words, cg(K) is the center of the n − 1 dimensional
sphere K ∩W (see, for example, the argument of Prop. 6 ).

Let C+ the Hyper-cone of base K ∩W and apex Z such that
C+ ⊂W+ and V(C+) = V(K+).

Moreover either :

• K+ = C+ and Z is the apex of K+

• Z /∈ K+

To prove that, remember that each slice K ∩ W (vn+1, λ)
of K along the n + 1 axis is a sphere. We look at the
function rC+() (resp. rK+()) which maps each value of
λ ∈ R+ with the radius of the corresponding slice of C+

(resp. K+).By construction, we know that rC+(0) = rK+(0)
and, by definition rC+() is a deacreasing linear function. If
rK+() has any stricly convex part, then there exists an arc
[rK+(λ1), rK+(λ2)] which is not in K+ and therefore K is
not a convex set. Therefore rK+() is concave. Then, because
rC+(0) = rK+(0), for Z to be in K+ either K+ is a Hyper-
cone (and rK+ is linear) or V(K+) > V(C+) (that is to say∫∞

0
rK+(λ)dλ >

∫∞
0
rC+(λ)dλ ) which is in contradiction

with the definition of C+

As a consequence, C+ is at least as elongated as K+. In other
words, the mass of C+ is more spread along the axis of vn+1,
this incurs a shift of the center of gravity of cg(C+) with
respect to cg(K+). Therefore cg(C+) is on the closed segment
[cg(K+), Z].

Thus, by using the notation introduced in Note 1 :

0 = cg(K) ≤ cg(K+) ≤ cg(C+) ≤ Z

We now define C− by extending C+ such that C .
= C−∪C+

is a cone of apex Z and V(C−) = V(K−). Therefore,

V(C) = V(C+) + V(C−)

= V(K+) + V(K−)

= V(K)

Once again, we are interested in the relative position of
cg(K−) and cg(C−). We invoke the same arguments than
before and claim that, in a similar way :

cg(K−) ≤ cg(C−) ≤ 0 = cg(C)

Remark 2. The proof for this is a little more tricky this time
though. Part of this is due to the fact that C− is not a Hyper-
cone in itself and one must consider C and K in their entirety
for the nonconvexity argument. A possible start is to consider
the radius increase along the reverse axis vn+1

.
= −vn+1

and replicate the previous argument with added attention to
the slope of rK−() which must be such that rK() as a whole
is still concave.

Let α, β ∈ R such that α
.
= V(K+)/V(K) and β

.
=

V(K−)/V(K). Then

cg(K) = αcg(K+) + βcg(K−)

Or alternatively, by construction of C

cg(C) = αcg(C+) + βcg(C−)

Combining these with the previous inequalities, we have that

cg(K) ≤ cg(C)

Moreover, we know from Proposition 6 that cg(C) is at a
distance H/n+2 of its base, where H is the height of C.

Let W̃ .
= W (vn+1, b̃) such that cg(C) ∈ W̃ and write C̃+ the

positive partition of C by W̃ , that is C̃+ .
= W̃+ ∩ C.

From Proposition 7 we have that V
(
C̃+
)
≥ e−1V(C).

Moreover, because of cg(C) ≥ cg(K) we have that V(C+) ≥
V
(
C̃+
)

.

Putting all of this together we get that

V(K+) = V(C+)

≥ V
(
C̃+
)

≥ e−1V(C)

= e−1V(K)

Finally, all we have left is to deal with Assumption 1. This
is simply tackled by remarking that, by definition, spherical
symmetrization preserve volumes along its axis. Thus, for any
K of any convex shape it suffices to apply the proof on the
spherical symmetrization of K : symS(K) and we have

V(K+) = V(symS(K+)) ≥ e−1V(symS(K)) = V(K)

This section is dedicated to the main theorem which is a
generalization of Theorem 3 to approximate center of mass.

Theorem 4. For any convex body K ⊂ Rn+1 and any Hyper-
plane W of normal v, splitting K in K+ and K−. Let

X
.
= cg(K)+λ

(n+ 1)V(K)

ΠnRnK+

[
HK+

(n+ 2)HK−

]n [
1− 1

n+ 2

]
v



Where HK+ = maxa∈K+ aTv, HK− = mina∈K− a
Tv and

RK+ the radius of the n−1-Ball BK∩W such that V(BK∩W ) =
V(K ∩W ).

Then, if X ∈ K+ the following holds true

V(K+) ≥ V(K)(1− λ)n+1e−1

Proof:

The proof start in a similar way than the one of Grunbaum,
with respect to X .

Namely, let Assumption 1 hold for now, and let W the hyper-
plane such that W = arg minW V(K+) such that X ∈ K+.
Same as before, we have that X ∈ W . Without loss of
generality, let’s say that X = 0 the origin of Rn+1 and
that vn+1 is the normal vector of W with b = 0, hence
W = W (vn+1, 0).

Let define C+ the Hyper-cone of base K ∩W , apex Z such
that C+ ⊂ W+ and V(C+) = V(K+). Moreover, let C−
the extension of C+ such that C .

= C− ∩ C+ is an Hyper-
cone of height H and volume V(C) = V(K). That is to
say V(C−) = V(K−). From the same argument than before,
we know that cg(C+) (resp. cg(C−)) is shifted with respect
to cg(K+) (resp. cg(K−)), thus, according to the notation
defined in Note 1 we have that

cg(K) ≤ cg(C)

If X ≤ cg(C) then the exact same argument than the one of
Section E applies and

V(K+) ≥ V(K)e−1 (See Th. 3 for details)

Otherwise, we have that

cg(K) ≤ cg(C) ≤ X

The idea of the proof is to find X̃ such that X ≤ X̃ from
which we can bound the volume of K+ in a similar way than
before.

Let define

X̃
.
= cg(C) + λH

[
1− 1

n+ 1

]
vn+1 (10)

Denote by B0 = B(B0, R) the base of C and remind that C
has height H and apex Z and remind that cg(C) = B0 +
H/n+2vn+ 1. Therefore

X̃ = H

[
λ

(
1− 1

n+ 2

)
+

1

n+ 2

]
vn+1

Consider W̃ .
= W (vn+1, b̃) the Hyperplane of normal vector

vn+1 (i.e. W̃ is parallel to W ) and offset b̃ such that X̃ ∈ W̃ .
Then, let C̃+ the positive partition of C with respect to W̃

C̃+ = C ∩ W̃+

We can compute the volume of C̃+ as follow :

V(C̃+) =

∫ H

X̃

V
[
B
(
B0 + hvn+1,

H − h
H

R

)]
dh

=

∫ H

X̃

Πn
Rn

Hn
(H − h)ndh (Volume of a Ball)

=

∫ H−H[λ(1− 1
n+2 )+ 1

n+2 ]

0

Πn
Rn

Hn
undu

(Subst. u .
= H − h)

=
ΠnR

n

Hn

∫ H(1−λ)[1− 1
n+2 ]

0

undu

=
ΠnR

n

Hn
× Hn+1

n+ 1
(1− λ)n+1

[
1− 1

n+ 2

]n+1

= V(C)(1− λ)n+1

[
1− 1

n+ 2

]n+1

(Volume of a Hyper-cone)
≥ V(C)(1− λ)n+1e−1 (See Prop. 7)

Where in the first two lines, we allow a slight abuse of notation
and use X̃ as a real as explained in Note 1.

Then, we can rewrite the volume of C+ as

V(C+) =

∫ X̃

X

V
[
B
(
B0 + hvn+1,

H − h
H

R

)]
dh+ V(C̃+)

Consequently, if X ≤ X̃ then the first term of V(C+) is
positive and therefore, V(C+) ≥ V(C̃+)

X̃ = cg(C) + λH

[
1− 1

n+ 2

]
= cg(C) + λ

(n+ 1)V(C)

ΠnRn

[
1− 1

n+ 2

]
(Volume of a Hyper-cone)

≥ cg(K) + λ
(n+ 1)V(K)

ΠnRn

[
1− 1

n+ 2

]
(cg(C) ≥ cg(K) and V(C) = V(K))

Unfortunately, we cannot easily compute R directly. Nonethe-
less, since B0 and W are parallel, we can use the Trianngle
proportionality theorem. Denote RC+ the radius of the base
of C+, that is K ∩W and HC+ the height of C+ (i.e. the
distance between X and Z) then we have :

1

R
=

HC+

HRC+

From this, we want to bound HC+ and H since RC+ is easy
enough to estimate because it is directly related to K and W .

From previous argument, we know that Z /∈ K+ except if
K+ = C+. So let define

HK+
.
= max
a∈K+

aTvn+1

Intuitively, HK+ is maximal distance between a point in K+

and X with respect to the axis of vn+1. Because Z is precisely



on this axis, and that Z /∈ K+ (or K+ = C+) the following
holds true

HK+ ≤ HC+ (11)

Conversly, let define HK− as the maximal distance between X
and any point of K− with respect to the axis of vn+1. Again,
from previous argument, we know that B0 ∈ K−. Note that,
because C is a Hyper-cone, we know that B0 is at a distance
H/n+2 of cg(C). Moreover, remind that we are treating the
case where X ≥ cg(C), hence, the distance between B0 and
X is at least H/n+2 which in turn is smaller than HK− .
Reordering gives the following

HK− ≥
H

n+ 2
⇔ (n+ 2)HK− ≥ H (12)

Putting back equations (11) and (12) together, we have that

1

R
≥ HK+

(n+ 2)HK−RC+

Which we plug back into the previous calculation

X̃ ≥ cg(K) + λ
(n+ 1)V(K)

ΠnRn

[
1− 1

n+ 2

]
≥ cg(K) + λ

(n+ 1)V(K)

ΠnRnC+

[
HK+

(n+ 2)HK−

]n [
1− 1

n+ 2

]
= X

Remind that we drop vn+1 in the above since we treat X̃ and
X as real numbers (see Note 1).

To conlude this proof by rewinding all together. Namely,

• X ≤ cg(C) and

V(K+) ≥ V(K)e−1

• X ≥ cg(C) and we can define (̃X) such that

V(K+) ≥ V(C̃+) ≥ V(K)(1− λ)ne−1

Once again, we lift Assumption 1 as before by noting that
spherical symetry preserves volumes. One difference though
lies in the fact that computing RC+ is no longer immediate
in the general case. Notwithstanding, it can be easily approx-
imated within satisfactory precision.

As a final note, we may mention that distinguishing between
these two cases is non-trivial. Hence, without additionnal
computation, only the worst bound can be guaranteed.


